
A New Lab for 6.111:
A Coin operated Vending Machine Controller

by

Calvin J. Lin

Submitted to the Department of Electrical Engineering and
Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 19, 1999

Copyright © 1999 Calvin J. Lin. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce
and distribute publicly paper and electronic copies of this thesis and to

grant others the right to do so.

Author.
Department of Electrical Engineering an Computer Science

May 21, 1999

Certified by
Donald E. Troxel

Thesis Spervisor

Accepted by -

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

0

ENS
LIBRARIES

An New Lab for 6.111:
A Coin Operated Vending Machine Controller

by

Calvin J. Lin

Submitted to the Department of Electrical Engineering and Computer Science

May 21, 1999

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This new lab was designed for the purpose of updating the curriculum of MIT's digital
design course, 6.111 Introductory Digital Systems Lab. The subject of the laboratory
assignment is the construction of a coin operated vending machine controller. It requires
students to design, build and debug this controller using current technology available in
the 6.111 lab. Because this is the first design exercise for most students, the assignment is
structured in a manner appropriate for teaching the design process Students gain practical
experience in designing a real digital system using industry based tools and standards. It
is expected that completion of this lab will prepare the students for subsequent labs and a
final project.

Thesis Advisor: Donald E. Troxel
Title: Professor

2

Acknowledgments

This thesis would not have been completed if I did not receive the help and support
from several people. First are the students who patiently undertook the first iteration of
this assignment. I know I gave them a hard lab to complete and hope they were able to
gain the knowledge I wanted to impart.

I would also like to thank the staff of 6.111 whom I had the good fortune to come
to know during my brief time with the class. Not only did they give me great suggestions
on how to improve this lab, but kept me company when I was helping students into the
early hours of the morning.

I would like to thank my family for giving me the opportunity and instilling in me
the drive to complete my education at MIT. Don't worry Mom and Dad, your money
hasn't gone to waste.

Finally, I would like to thank my friends for making the time I've spent here very
enjoyable. They not only supported me in my classwork, but they also made sure I had
fun while I was here.

3

Table of Contents

1 Overview ... 9

2 Background..11

2.1 U pdating 6.111.. 11

2.1.1 Previous W ork .. 12

2.1.2 W ork Since... 12

2.2 Problem Statem ent... 12

2.2.1 Testing and Verification..................................... 13

2.2.2 Flexibility .. 13

2.2.3 Bridge for Lab Three....................................... 13

2.3 D esign G oals ... 14

2.3.1 Educational Goals ... 14

2.3.2 Scope of Project... 15

3 Design of the Laboratory Assignment...................................16

3.1 Vending Machine Operation 16

3.2 Organizing the Assignment 17

3.2.1 Design Review... 17

3.2.2 Building the Project 18

3.2.3 Laboratory Report .. 18

3.3 Satisfying Design Criteria .. 19

3.3.1 Educational Goal .. 19

3.3.2 Scope of Project.. 20

4

4 A Discussion on Implementation...........

4.1 Initial Problems

4.1.1 Fitting.......................

4.1.2 Testing

4.2 Student Feedback....................

4.2.1 Software vs. Hardware

4.2.2 Learning VHDL

4.2.3 Difficulty Compared to Lab Three.

4.3 Modifications to the Lab

4.3.1 More Structured Assignment

4.3.2 Testing Eliminated

4.4 Future W ork

4.4.1 Testing and Verification

4.4.2 More Modifications

4.4.3 An Interactive Demo

4.4.3 Designing a New Lab...........

5 The Laboratory Handout...

6 A Sample Solution.........

6.1 Clock Generator.......

6.2 Memory Storage Unit . .

6.3 CPLD

6.3.1 Synchronizer ...

6.3.2 Accumulator

6.3.3 FSM

7 Checkoff Guidelines......

8 Conclusion..............

. .21

................. 2 1

................. 2 1

................. 22

................. 22

................. 23

................. 23

................. 23

................. 23

................. 24

................. 24

................. 25

................. 25

................. 25

................. 26

................. 26

.. 27

. .37

.. 37

.. 38

.. 38

.. 40

.. 40

.. 41

44

. .. 47

5

... 0 0 0 0 0 0 0

A Listing of Code Provided to Students 49

A. 1 Example FSM : lab2.vhd 49

B Listing of Code Used in the Sample Solution.............................51

B.1 Synchronizer Code: sync.vhd 51

B.2 Accumulator Code: accum.vhd 52

B.3 FSM Code: vendcont.vhd 53

6

List of Figures

5.1 Vending Machine Top Level Controller Block Diagram.................. 29

5.2 System Level Block Diagram 30

5.3 SRAM Address Timing ... 35

6.1 Clock Generator Schematic 38

6.2 CPLD and SRAM Schematic 39

6.3 Synchronizer Block Diagram and Timing 40

6.4 Accumulator Block Diagram 41

6.5 FSM State Transition Diagram 42

7

List of Tables

5.1 FSM InputSignals...31

5.2 FSM Output Signals..31

5.3 Table of FSM M odes...31

8

Chapter 1

Overview

The new lab project, which is intended to replace the second lab in 6.111, is the

design of a coin operated vending machine controller. The vending machine controller is

an interesting and familiar subject for students which also provides practical experience in

the design of a digital system. Central to this design process is the use of a high level

description language, VHDL, to implement and debug certain hardware components of

the lab. By teaching VHDL, this lab gives students a very valuable and powerful tool

which is used in industry today.

This assignment requires students to implement a Finite State Machine (FSM) to

determine the behavior of the vending machine controller.The system takes as inputs vari-

ous control signals and switches as well as coin inputs. Based on these signals, the con-

troller will step through the different states of the FSM and provide outputs as described

by FSM's state transition table. A vending machine controller was chosen because it is a

very common piece of equipment all students are familiar with. By eliminating the confu-

sion of describing a complex user interface, this project allows students to focus purely on

the design.

9

This document describes the design and implementation of the lab. It begins with

a discussion concerning why a new lab is needed as well as various issues involved in

designing this lab. It will then describe the actual design process through which the lab

assignment was produced and various problems and changes that resulted from imple-

menting the lab. The lab handout given to the students, a sample solution, as well as

checkoff guidelines for the lab are included in the next sections. The conclusion sums up

the work that has been done and evaluates the effectiveness of this project.

10

Chapter 2

Background

This chapter describes the background behind the design of a new Lab Two for

6.111. Understanding the background is important because it gives a sense of purpose for

the project. It is also important to know how this project fits with the rest of the work that

has been done. Finally, clearly defined goals for the new lab will help focus the design

and implementation of this project.

2.1 Updating 6.111

College courses have an inherent problem of not staying up to speed with current

technology. 6.111 is no exception. Digital technology has become so complex that indus-

try designers need to use a high level language to describe these circuits. Until a couple of

years ago, 6.111 did not have that capability. A very strong effort has been made to cor-

rect this problem by adopting VHDL as part of the curriculum. This thesis is another step

toward making 6.111 a more useful class for students.

11

............

2.1.1 Previous Work

Marc Tanner '98, as a graduate student at MIT under the supervision of Prof.

Troxel first investigated the use of VHDL in 6.111 [1]. He established the infrastructure

for using VHDL and researched what hardware and software should be used in order to

make programming Complex Programmable Logic Devices (CPLDs) with VHDL a viable

option for the students. To demonstrate these new tools Marc implemented a new design

for the third lab of 6.111.

2.1.2 Work Since

Since Marc's update, some changes to the other two labs have been made. In the

fall term of 1998, the students were given the option to implement the second lab using

VHDL [2]. They had the choice of designing the project with the old tools, using a CPLD

chip to implement the FSM only, or implementing the entire lab using one or two CPLDs.

Lab One has also been updated to introduce students to VHDL programming [3].

2.2 Problem Statement

As a continuation of the work that has been done, identifying the specific problems

that remain is an important step. There are three issues that serve as the impetus for

designing a new lab. The first one is to add an increased emphasis on testing and verifica-

tion. The second is to add more flexibility to the class. Third is to bridge the gap between

the updated Lab Three with the rest of the curriculum.

12

9'" , 001

2.2.1 Testing and Verification

Testing has become a vital part of the digital design industry. Because microelec-

tronic devices have become increasingly complex, testing has become an immense prob-

lem. In 6.111, verifying the functionality of a completed system is all that has been done

in the past. This, however, is not enough. Testing systems beyond base functionality is

essential in developing a robust, cost effective product. Designers seek to investigate and

solve as many unanticipated problems as possible before the product reaches the market.

Because testing is very important in industry, it is worthwhile to investigate adding this

aspect to the class.

2.2.2 Flexibility

For many years, the lab exercises for 6.111 have remained relatively unchanged.

Although the specifics of the projects had been altered to prevent students from copying

previous work, the actual project topics have not changed. The design methodology that is

taught in lab still remains valid, but the students would benefit from the design of a new

lab. The new up-to-date lab will not only help to increase student interest, but also add

flexibility to the 6.111 curriculum by providing the instructors with more choices of lab

projects.

2.2.3 Bridge for Lab Three

This lab serves as a bridge between Lab One and Lab Three. After Marc Tanner's

successful update of the third lab, students have been learning how to use VHDL effec-

tively. However, lab three has traditionally been a very large and time consuming project.

13

Having to learn how to use a completely new language to implement their projects is a lot

to ask from the students. The work to upgrade the old Lab Two was an effort to make a

smoother transition. Because the lab was not designed to teach VHDL, it was only par-

tially successful. A new lab focusing on teaching the basics of VHDL programming, is

necessary to make the curriculum more rewarding for the students.

2.3 Design Goals

The lab assignment must satisfy certain design criteria before it can effectively

address the problems stated above. Traditionally, the second lab is the first exposure 6.111

students have to the design process. Therefore, the assignment must emphasize that pro-

cess. This means the project must not be too complex. Otherwise, it will distract from the

educational goals of the lab.

2.3.1 Educational Goals

The new lab must augment the old educational goals with the new tools that have

been made available to the students. FSM control, memory usage, and timing circuitry are

all concepts that have been taught in the past. For this lab, the students are asked to imple-

ment some of these components using VHDL.

The assignment must present the students with the necessary steps to properly

design and build a digital system. This presentation, however, cannot be too restrictive,

limiting the students' creativity in coming up with their own design. Also, testing and ver-

14

w.- _*A,

ification must be added to these steps because these concepts are vital components of

proper design.

2.3.2 Scope of Project

As a continuation of prior work, this lab must utilize the new tools and hardware

that has been incorporated into 6.111. VHDL and CPLDs should be used in the design of

the project. The project must also be a practical application of digital design students can

relate with. To make the lab a rewarding educational experience, the project itself must be

challenging and interesting for the students.

The new lab must be completed within the time allotted. With an increase in com-

plexity and the addition of a testing and verification strategy, the scope of the project has

the potential to become too large. Therefore, when designing the lab it is important to set

reasonable goals the students can accomplish in time.

15

Chapter 3

Design of the Laboratory Assignment

A Coin Operated Vending Machine Controller offers an ideal choice for the second

lab in 6.111. The controller is simple enough to be implemented using a simple FSM,

while being complex enough to make an interesting design project. It offers a wide range

of possibilities for the actual representation of the vending machine as well as the structure

needed to teach concepts of digital design. All of the students should be familiar with

examples of this product making it a fun project for them to build and demonstrate.

This chapter describes how a vending machine controller design was adapted to fit

within the constraints of a 6.111 lab. The first section discusses how the control of a vend-

ing machine is possible using an FSM. The second section addressed organization of the

lab assignment. The last section discusses how this assignment satisfies the design crite-

ria.

3.1 Vending Machine Operation

16

Although a vending machine is a very complex piece of machinery, the electronic

controls are rather simple. FSM control of the vending machine is possible because the

physical actions of the machine can be broken down to a small number of distinct states.

These states are enumerated within the FSM and control is achieved by encoding the

appropriate state transition table [4].

For this assignment, the model of the vending machine can be broken down into

four modes: program, display, vend, and test. The action the vending machine will take in

each mode is determined by a sequence of steps, each represented by a state. There are a

few other states which govern the flow of the table as well as some initial start-up states. It

is a conglomeration of all these states that the FSM is built.

3.2 Organizing the Assignment

The laboratory assignment which is handed out to students at the beginning of the

lab is included in chapter 4. The purpose of the handout is to give students information

about the project they are about to undertake. It outlines the specifications of the vending

machine, presents a suggested solution, and states the various deadlines for the lab. Also,

it clearly outlines the steps the students need to follow in order to design their project. The

project itself is divided into three sections: design review, implementation, and report.

3.2.1 Design Review

Because this is the first design problem many of the students will encounter, it is

necessary to help them throughout this process. The design review offers the students an

17

opportunity to discuss their design with the instructors. It also gives the instructors an

opportunity to check and evaluate the students' progress.

Before the review, students are required to design and draw block and circuit dia-

grams for most of their components. They are encouraged to take a look at various timing

issues for each of the components and understand how that would affect their design.

Also, they should have a state transition diagram describing the behavior of the vending

machine controller.

During the design review, the students will go over their design with a TA. The TA

will correct any errors in the design, offer suggestions to make the design better, and

answer any questions the students might have about the design. Only after talking with a

TA will they be able to continue with their lab.

3.2.2 Building the Project

After the design review, students have two weeks to build and demonstrate their

controller. During this time, they need to wire up the hardware on their lab kits, write the

VHDL code that will be programmed into the CPLD, and debug their project. During the

demonstration, the TA's will have a set of guidelines which will help facilitate this check-

off process. These guidelines are included in chapter 7.

3.2.3 Laboratory Report

The final task the students are required to complete is a written report of the lab.

The content of this report should include a section on the specifications of the vending

machine controller and a description of the controller they implemented. The students are

18

W-M..

to include circuit, block, and timing diagrams for the various components of the project.

Also, any VHDL code they programmed should be attached to this document.

The required report is intended to be a clear and concise description of their work.

The students have the option of submitting this document to MIT's writing department to

fulfill their phase two writing requirement. If they choose to do so, there are more guide-

lines for both content and format the students will need to follow.

3.3 Satisfying Design Criteria

This project satisfies the design requirements as stated in chapter 2.

3.3.1 Educational Goals

The educational goals for this lab are to teach various digital design theories using

the up-to-date tools available to the students. This lab requires the students to use an FSM,

memory unit, and clock generator in the implementation of their design. The students are

also required to use VHDL in designing and realizing their FSM component. The experi-

ence the students gain is not just an understanding of the usage of these components and

the structure of the VHDL programming language; they also gain practical experience

using these design tools.

This lab also presents the design process clearly and succinctly. The handout gives

students specific steps in the design and implementation of their project. For the third lab,

they design another, more complex project. By the end of the two labs, the students

19

should be confident enough with their design skills to be able to conceive, design and

implement their final project.

3.3.2 Scope of Project

Because this lab is centered around a VHDL implementation of the FSM control-

ler, students will gain experience using these tools. Also, the vending machine controller

is a very practical electronic component. Digital designers in industry could conceivably

work on a similar problem.

This familiar subject of the project is both challenging and interesting. It is also

small enough for the students to build in lab. Because the controller is relatively simple,

the time involved in building it should fall within the constraints of the class.

20

Chapter 4

A Discussion on Implementation.

This chapter discusses how well this lab assignment was implemented. There

were some initial problems that caused difficulties for the students. Based on feedback

received from the students, changes were made to improve the lab. There is, however,

more work that can be done to make the lab even better.

4.1 Initial problems

Despite the fact that the lab assignment was designed to make the learning experi-

ence challenging but fun, there were some problems with the lab that made it a frustrating

experience for the students. These problems detracted from the educational value of the

exercise.

4.1.1 Fitting

The problem that plagued the students the most was fitting their VHDL code in the

CPLD provided. Although there is enough of space on the chip, the students had difficulty

21

making their project fit. The main cause of this problem was that students did not have

enough experience with VHDL. Their code was inefficient because they did not under-

stand how it synthesizes into hardware. Also, they did not know how to solve the fitting

problems themselves.

4.1.2 Testing

Students traditionally approached testing as an afterthought. They like to design

things and tend to ignore testing beyond basic functionality. Unfortunately for this lab,

testing became more of a chore rather than an integral component of the design. Because

students left testing toward the end, some never completed it. Also, the testing routines

took up a large amount of space in the CPLD, adding to the fitting problem. Many stu-

dents resented having to implement testing without understanding the necessity of proper

testing in industry.

4.2 Student Feedback

Students were given the opportunity to comment on the content and implementa-

tion of this lab. Approximately 15 out of 88 students responded to an informal e-mail sur-

vey that was sent the class mailing list. Other students talked with TAs and LAs in lab,

some included a feedback section in their report. The students predominantly felt that this

lab was very frustrating and difficult. They cited several reason that contributed to this

opinion.

22

4.2.1 Software vs. Hardware

The heart of this lab is the code that is programmed into the CPLD. Students only

needed to wire three chips. Feedback from the students indicated that they felt most of

their time was spent coding rather than designing hardware. They felt that they were so

occupied with debugging their code that they did not learn digital design skills.

4.2.2 Learning VHDL

Although most of the students' time was spent coding, the feedback indicated that

the students did not feel they understood VHDL. They felt that the fitting issue was such a

distraction that they did not have time to learn proper VHDL programming.

4.2.3 Difficulty Compared to Lab Three

One of the initial goals of this lab was to facilitate the learning of VHDL in order

to make the transition to lab three smoother. Conversations with the students after they

finished the third lab indicated that the experience with VHDL did make the that lab much

easier to understand. In fact, they felt the third lab was easier than the second. However,

the transition between Lab One and this lab became disjoint.

4.3 Modifications to the Lab

Using observations made in lab and feedback from both students and instructors,

several changes have been made to the lab assignment. These changes will hopefully

address some of the problems the students had.

23

4.3.1 More Structured Assignment

Teaching proper coding of VHDL will address better understanding of digital sys-

tems as well as the fitting problem. The crux of the problem is that this lab is the first time

students have to apply the knowledge imparted to them in lecture. The original assign-

ment only outlined the system level diagram without detailing how the VHDL code should

be structured. This left the students with too much to figure out independently.

This is the first time students are asked to design digital hardware; it is also the first

time they are asked to code in VHDL. To facilitate learning these two concepts, a more

structured assignment is necessary. The key to understanding digital design and how

VHDL fits into the picture is to realize that VHDL is a hardware description language.

Digital engineers use VHDL to describe the hardware they design.

Conceptualizing the CPLD as discrete elements will help students learn proper

digital design and VHDL programming. Having the students think about implementing

the CPLD as separate hardware components will reinforce basic concepts of digital

design. Asking them to code each component separately will help their understanding of

VHDL code organization.

4.3.2 Testing Eliminated

Although testing is a very important part of any design process, it is too important

of a topic to be added as an afterthought. Testing and verification is such a large task that

many companies require a separate group of engineers to complete it. There is enough

material concerning testing to create an entire course at MIT. If in fact testing cannot be

24

presented properly, it is better to eliminate it rather than distract the students from learning

more central concepts.

4.4 Future work

Although the changes that have been made should make this lab more rewarding

for the students, many things that can be done to improve it.

4.4.1 Testing and Verification

As stated above, testing should not be attempted unless it is taught properly. Eval-

uating the practicality of testing in a lab is necessary before it can be implemented. If

implemented, it requires more specific instructions in the laboratory handout. The instruc-

tors and lab assistants must fully support and encourage students in this endeavor.

4.4.2 More Modifications

If this lab is used in the future, small changes are necessary to prevent students

from copying previous projects. Some easy modifications can change the user interface or

the model of the vending machine. Changing the number of coin inputs or products is rel-

atively simple.

A more involved modification is to utilize the timer circuit students build in lab

one. The timer could control a timeout signal. If the user does not select a product before

the time expires, the collected money would be returned. This signal can even be used to

25

make the outputs "cleaner." The machine will display the price, change and product

vended for a certain amount of time, after which the displays would be cleared.

4.4.3 An Interactive Demo

The current demo project consists only of a lab kit. To present this to the students,

a camera would be used to project the kit onto a screen. One of the original goals of this

project was to develop a more interactive and realistic demo. Unfortunately due to time

constraints, this goal was not accomplished. Therefore, building some kind of mini-vend-

ing machine, or programming a GUI for a workstation would make the project more

appealing to the students. This demo could be made available to the students to enhance

their demonstrations.

4.4.4 Designing a New Lab

This lab is closely based on the old Massachusetts Stoplight Controller Lab [2].

Because of this, the structure and implementation of the labs are very similar. It would be

worthwhile to investigate implementing a completely new type of lab. The new lab would

be able to take advantage of the many new programmable chips and boards that are cur-

rently being integrated into the class.

26

Chapter 5

The Laboratory Handout

The following section contains the laboratory assignment that was handed to the

students. It was adapted from the Massachusetts Stoplight Controller lab handout which

was used in previous semesters of 6.111 [2].

27

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.111 - Introductory Digital Systems Laboratory

Laboratory 2 - Finite State Machines

Handout Date: February 17, 1999
Design Due: February 24, 1999

Lab Checkoff Date: March 8, 1999
Report Due: March 10, 1999

Introduction

This laboratory exercise concerns the design and implementation of a coin operated vend-
ing machine controller. The heart of your implementation will be a synchronous finite
state machine (FSM).

This lab is designed to give you a methodology for designing and building a digital system
and creating procedures to test it for completeness. This lab is also designed to give you
practical experience using VHDL to implement your design.

This laboratory is an exercise that reflects current issues digital designers face in industry.
Design and implementation have always been part of this industry, but as microchips have
become more complicated and the overhead for fixing mistakes become more expensive,
verification and testing has become an integral part of digital design. This lab will intro-
duce some testing techniques and procedures designers use today.

Your vending machine controller FSM is also given the task of loading static RAM loca-
tions with the cost of the vended products. The FSM will also display these values by
reading the RAM locations.

Vending Machine Controller

The vending machine to be controlled accepts only coins (nickels, dimes, and quarters)
and vends four products. There are two input switches which serve as the function and
product selectors. There are also two reset switches.

Along with the three coin denominations, there will be another input, the execute or "GO"
button. Essentially, this button will be used as the action button. In any operating mode,
this is the button that will initiate any action in the FSM controller.

28

Input Switches - -

Coin Inputs Vending - - Products

GO M -- -Cost
Machine ost

Controller MnyI
Local Reset----l

Global Reset-

Figure 5.1: Vending Machine Top Level Controller Block Diagram

As outputs, the vending machine controller should indicate to the user whether or not the
product selected has been vended as well as the change returned. The machine should also
display how much money was put in as well as how much a product costs.

Upon start-up, the user will use the global reset switch to initialize the FSM. This switch
will set off a simple routine which will test and clear the memory. If this routine fails, it
will halt the FSM. Leds will be used to indicate whether or not the start-up routine has
completed successfully or not. The user should be able to use this switch at any time dur-
ing the operation of the machine.

After running through the initial start-up routine, the operator can switch the controller
between four modes: normal operation, programming, display, and free. Using the selec-
tion switches, the operator of the vending machine can switch between these modes by
selecting the appropriate function and pressing the "GO" button.

In normal mode, the vending machine operates just like any other vending machine. The
controller will keep a running total when coins are deposited. To vend a product, the user
will select the product and push the "GO" button. If there is enough money in the
machine, it will vend the specified product and return any change. The controller will
ignore any vend requests if not enough money had been deposited.

In programming mode, the prices for the products are stored in memory. Using the same
buttons used to simulate coin input, the operator of the vending machine has the ability to
program different prices for the various products.

In display mode, the operator can display prices that were programmed into the vending
machine controller by selecting the product and pressing the "GO" button. This will allow
the operator of the vending machine to manually check the prices that were programmed.

In free mode, the vending machine will ignore any of the programmed prices and always
vend a product when it is selected.

29

-- w-hange

SO

Si

GOH

Local Reset-jH

Global Reset-H

Nickel--I

Dime-

Quarter--

L

FSM
+5

, -- Change

-- Vended
Products

0~4/
$- - Accumulated

CLR IMoney
Aw CLK

W + Accumulator
Clock Generator

..... .2: - - - - - - J

Figure 5.2: System Level Block Diagram

The local reset signal is used to switch out of a mode. The operator of the vending
machine can terminate any mode by using this switch. When this switch is activated, the
FSM will return to the function selection state. From there, the operator can select the
next function to be executed. This switch should be synchronized to the system clock.

Specifications

A system level block diagram of the vending machine controller is shown in figure 5.2.
There are three main components to this system, the SRAM, Clock Generator and the
FSM Controller (represented by the dashed box).

The SRAM is used to store the prices for the four vended products. Remember to wire the
unused RAM address lines to GND. However, leave the unused 1/0 pins unconnected.
The RAM is implemented using the 6264 SRAM. Timing specification and data sheets
are included at the end of this handout.

The Clock Generator is the component that produces the FSM clock, CLK. This is the
signal that the entire system will be driven and synchronized to. You are welcome to use
the timer you constructed in Lab One.

30

A0

Al SRAM

(WE

/OE

Fost /CE CE

C
No

Global RESET (from Synchronizer)
Local RESET (from Synchronizer)
GO (from Synchronizer)
Si and SO Determine Function and Product (from switches)
Accumulated Money Amount of money in the machine (from Accumulator)

Table 5.1: FSM Input Signals

Al and AO Specifies an address in the SRAM
WE Drives values into SRAM
OE Drives values from SRAM
Cost Used to read and store the cost of products to SRAM
Vended Products Vended product indicators (to Led's)
Change Change indicator (to HEX led's)

Table 5.2: FSM Output Signals

FO F1
0 0 Examine memory locations specified by address switches (display)
0 1 Store new value in memory location of address switches (programming)
1 0 Run vending machine (normal)
1 1 Vend products for free (free)

Table 5.3: Table of FSM Modes

The FSM Controller is the heart of the system. It should be implemented using VHDL
and programmed into a CPLD chip. It consists of three separate components, the Syn-
chronizer, Accumulator, and FSM.

The Synchronizer is used to sync the GO, coin, and reset inputs to the system clock.
While it is possible to effect this synchronization by being clever and absorbing the syn-
chronizing function within your FSM, it is strongly suggested that you explicitly synchro-
nize the input signals with D

flip-flops. It is up to you to design the exact timing of each of these signals. Remember
that you only want to assert any one of these signals only once per clock cycle. Also, you
should consider what would happen if multiple buttons were pushed at once.

The Accumulator is used to store the amount of money that has been put into the machine.
It is up to you to devise an appropriate data representation for the money. Don't forget to
include a clear signal which will set the value in the accumulator to 0. Also remember to
output the accumulated money to the FSM and HEX led's.

31

The FSM itself should be the physical embodiment of the state transition table for the
FSM you created. Although the Warp synthesizer takes care of creating this table, it is
important to remember FSM timing considerations when writing the VHDL code for it.

The input and output signals for the FSM are listed and described in table 5.1 and 5.2.
You may use any polarity you like, e.g., NWE or WE as you choose. table 5.3 describes
the four functions specified by the two function switches.

A partially completed VHDL source file is located in the 6.111 locker, /mit/6. 11 1/vhdl/
lab2/lab2.vhd. Copy it to your locker by executing:

cd
mkdir lab2; cd lab2
cp /mit/6. 11 1/vhdl/lab2/lab2.vhd lab2.vhd
chmod 600 lab2.vhd

The VHDL source file provided is not complete enough to create a CPLD file yet. For
example, it does not include the complete FSM specification.

Procedure

For the sake of simplicity, use the switches and lights available to simulate the machine.
The four push-buttons should be used for the three coin inputs and the GO button. Use the
switches to implement the two reset and input switches. You should use the hex leds to
display the amount of money in the machine, the cost of the products and the change
returned, and one led per product to indicate if it has been vended.

Use the following steps to facilitate your design, implementation, test, and report of the
lab.

1. Before proceeding with the details of the FSM design, you should design the circuitry
needed to synchronize the GO, Nickel, Dime and Quarter signals. You will want these
synchronized signals to be asserted only once per clock cycle.

2. Draw up a complete logic diagram of the system and a state transition diagram of your
FSM.

3. Sketch out timing diagrams which completely demonstrate the operation of each func-
tion of your FSM.

4. You should discuss the design with a member of the teaching staff before program-
ming your CPLD. Bring the sketches and drawings of your FSM to this Design
Checkoff.

5. Before wiring the entire system together, it is recommended that you wire and verify
each individual component separately. Test the functionality of the SRAM first. Use

32

the switches to manually store values into the SRAM and verify them by loading them
to the led's.

6. It is recommended that you also program and verify the FSM controller in parts. For
each separate component, use a combination of the Nova simulator, logic analyzer and
manual inputs to verify that they work. Build each component on top of each other,
starting with the synchronizer, then accumulator, and finally the FSM itself.

7. Once the FSM controller has been verified, put the entire system together. Now that
you understand how the signals work for each component, it will be easier for you to
debug the interactions between the components within FSM controller as well as the
SRAM. Again, use the logic analyzer to debug the various control signal outputs of
the FSM.

8. Once you have debugged the system for functionality, you should demonstrate the sys-
tem to one of the instructors. Have all your timing diagrams, state diagrams, VHDL
file, and logic diagrams available for this demonstration.

9. If you have time, you should test the system for erroneous inputs: inputs that the
project was not designed to handle. What happens when you switch into program
mode during the vend cycle? What happens when you push two coin buttons at once?
Investigate how robust your design is in regard to these inputs.

Laboratory Report

You should write up a report for this lab which meets the requirements specified in the
"Report Guide" handout. Your report should include the following: data paths, an FSM,
VHDL source file and the corresponding state diagram, at least one logic diagram, and all
timing diagrams. You should also discuss your design, method of implementing it, and
how you tested for functionality and bugs. The report should flow, be well organized, and
most importantly, be complete. Verbosity is not a requirement.

Design Tips

There are two major problems you will encounter when designing and implementing sys-
tems in VHDL: understanding how the code synthesizes into hardware and fitting the
entire system onto one chip. An understanding of the first will help to solve the second.
These are some tips to help you solve these problems with regard to this lab as well as
general tips for designing digital systems.

It is very important to remember the proper approach to programming in VHDL. VHDL
is a (H)ardware (D)escription (L)anguage. Instead of laying out circuits and components
using a CAD program or wiring various chips together, you will be describing actual phys-
ical components using programming constructs.

33

Therefore, you should approach programming in VHDL like you would if you were
designing this lab using the IC chips you have on hand. The FSM controller is separated
into three separate parts. Think about and implement each component separately. Once
you do, then put them together either by instantiating them using component declarations
or by declaring separate processes for each. If needed, break each of the separate compo-
nents down even further. Remember that the hierarchical nature of VHDL is a very pow-
erful tool.

You have been introduced in lectures and problem sets to various ways if implementing
FSM's in VHDL. Because each implementation synthesizes differently, it is very impor-
tant to understand how they are synthesized and the hardware that results. When design-
ing your FSM think about how you would generate the equations for the outputs of your
state transition diagram.

You will be spending a large part of your time trying to make your code fit in the CPLD.
The secret to understanding how to make your VHDL code efficient is to understand how
it synthesizes into hardware. As mentioned above, each different implementation of an
FSM will synthesize differently. Some will take up more space than others.

Remember, you want to minimize the amount of product terms your code will generate.
Think about where these product terms come from. How does changing the number of
inputs and outputs affect this? How does the number of case statements affect the number
of product terms? It is very bad to have conditionals which use comparators or arithmetic
operators. Think about how checking for one of these conditions affects the conditionals
that don't use these operators.

It is important to realize how important PROPER verification and testing is in the design
process. It can make the difference between success and failure. The underlying trait that
is most useful is patience. It is very easy to become so eager to program and wire up the
entire system and hope that it works the first time you turn it on. Unfortunately, 99 percent
of the time, it doesn't. By then, it become very hard to isolate bugs in such a complex sys-
tem.

Therefore, you should have the patience to test each part of the system individually. Not
only verify that it works, but understand the timing involved in making it work. If you do
this, you will be able to eliminate the parts individually from consideration when you
encounter bugs while integrating the system. You can concentrate on the interactions of
the parts rather than the parts themselves.

The last and simplest thing you can do to make your life easier is to have the patience to
wire NEATLY. Instead of connecting wires using big arches, try using right angles to wire
around the chips and protoboard. Making your chips accessible is very important. You
should minimize the possibility of unplugging a wire when you need to replace chips.
Also, use different colored wires to differentiate between different lines. It is much easier
to follow a single wire if its different than the wires next to it. Remember, the neater the

34

wiring, the easier it is for you, the TA's and LA's to debug your kit. The easier it is for you
to debug, the more time you will save.

6264 SRAM Chip

Because you will be using a separate SRAM chip, data sheets for the 6264 SRAM are
attached. PLEASE read the data sheet carefully as this chip is easily damaged by incor-
rect use (wiring). ASK QUESTIONS IF YOU ARE NOT SURE!

The 6264 has a tristate Input/Output (1/0) bus. Reread the handout "Gates, Symbols, and
Busses" which pertains to bussing. The 1/0 bus of the 6264 MUST be driven by a tristate
buffer; use the 74LS244 included in your kit, or you can use outputs of the CPLD.

Tristate bus contention occurs when two (or more) drivers are active at the same time. The
6264 tristate output is enabled when the /OE input is asserted low, the /CS is asserted low,
and the /WE line is high. While it is true that many logic designers allow tristate bus con-
tention to occur for short times (due to chip delays), it is not a good idea. For this labora-
tory exercise you are to ensure that NO tristate bus contention can occur.

/CS tied to /WE /CS tied to CLK

CLK CLK

/CS /CS

AVE /WEI

ADDR valid ADDR v id

start write start write

Figure 5.3: SRAM Address Timing

The actual write pulse is the AND of both the /CS and the /WE asserted low. It is essential
that the address lines to the SRAM not change when the write pulse is active. Otherwise
you may write to multiple locations!

While the 6264 is advertised as a static RAM, a memory cycle is actually initiated when-
ever ANY address line changes. Thus, the address lines may NOT be tristated whenever
the /CS is asserted, as the internal timing circuitry is actuated by noise on the HI-Z address
lines.

One way to solve both the tristate bus contention and address holding problems is to con-
nect /CS to the CLK signal. This fix prevents bus contention because the SRAM does not
drive the output when /WE is asserted low before /CS is asserted. Figure 3 outlines the
reason this fix solves the address holding problem. The left diagram has /CS ties to /WE.
We see that the address isn't valid when the write occurs. The right diagram shows /CS

35

tied to CLK. It is obvious to see that the address have enough time to settle before the
write happens.

More specific timing diagrams for both the read and write cycle for the SRAM are
included with the data sheets.

36

Chapter 6

A Sample Solution

This chapter describes a sample solution to the Vending Machine Controller

assignment. Built to satisfy the specifications set in the Laboratory Handout, this solution

can be used as a demonstration for the students. It is only one of many possible solu-

tions.

Following the design recommendations in the Lab Handout, the Coin Operated

Vending Machine Controller can be split up into three hardware components: the CPLD,

memory storage unit, and clock generator. There are three components programmed into

the CPLD: the synchronizer, accumulator, and FSM. Figure 4.2 on page 28 shows the

system level diagram, and the VHDL code for this project is included in Appendix B.

6.1 Clock Generator

The clock signal is generated using a 1.8432MHz square wave crystal oscillator.

Although the frequency of the oscillator is slow enough to handle the propagation delays

of the system, the clock signal is used to drive a divider circuit because the oscillator has a

low fanout. All that is required is to feed the clock signal through a buffer. However, the

37

Figure 6.1: Clock Generator Schematic

students should have already built a clock timer circuit in the first lab and have the option

of using it. This example does use a timer circuit. The divider is built out of three four bit

counters (74LS393) [5]. By taking the 11th bit of the counter chain, a 450Hz clock signal

is generated.

6.2 Memory Storage Unit

This project uses a 6116 SRAM to implement the memory storage unit. Although

the handout given to the students recommends using a 6264 SRAM, the 6116 SRAM

behaves almost identically to the 6264 SRAM. The only perceivable difference is that the

6116 SRAM doesn't have the extra chip select pin. Because this pin is tied to Vdd when

the 6264 SRAM is used, its absence in the 6116 SRAM is inconsequential. The pin

assignments for the SRAM are shown in Figure 6.2.

6.3 CPLD

A 372i CPLD is used to store the VHDL implementation for the three programmed

components [6]. The CPLD also has the capability of storing up to 320 product terms,

divided up into 64 macrocells. 32 macrocells are used for 1/0, the remaining 32 are buried

within the chip. The CPLD has a total of 37 possible external pin connections. These

38

Figure 6.2: CPDL and SRAM Schematic

specifications are sufficient to implement the three components programmed in the CPLD.

This example only uses 34 pins, 50 macrocells, and 259 product terms.

The CPLD takes as inputs the clock, coin inputs, go, local and global reset, and

address switches. It outputs to the SRAM the address, write enable, and output enable sig-

nals. Price, change, and accum go to the hex leds and the product selection indicators go

to the normal leds. Figure 6.2 shows the pinout assignments of the CPLD.

As seen in figure 5.2, the functionality of the CPLD can be split into three distinct

components: the synchronizer, accumulator, and the FSM. This project separates these

components into three different files, with synchronizer and accumulator instantiated

within the top-level FSM file. The reasons these components are separated are to take

advantage of VHDL's hierarchical organizational capability, to allow for flexibility in the

system's design, and to facilitate testing and debugging [7].

39

SInu- D Q - D Q D Q Output
gQ1 Q2 Q3

CLK

CLK

Input

Q1

Q2

Q3

Output

Figure 6.3: Synchronizer Block Diagram and Timing

6.3.1 Synchronizer

A single synchronizer consists of three edge triggered flip flops, an AND gate, and

an inverter, shown in figure 6.3. The first flip-flop is used to eliminate any metastable

states that may be generated. The second and third flip-flops are used to generate the sin-

gle clock period pulse that is needed for these signals. The timing diagram in figure 6.3

shows how the output is generated. Because there are six signals that need to be synchro-

nized, this circuit is instantiated six times.

6.3.2 Accumulator

The accumulator is used to store the amount of money that has been inputted into

the machine. It also raises a flag if there is enough money in the machine when a product

is selected. It takes as inputs the three coin denominations, the price of a product, and the

40

Figure 6.4: Accumulator Block Diagram

accumulator clear signal. It outputs the accumulated money and a status signal which

indicates that there is enough money in the machine.

Money is stored as the denomination of the coin divided by 5 (nickel = 1, dime =2,

quarter = 5). When a coin is deposited, the accumulator will add that amount of money to

the running total. Also, it always checks the running total against the price of the product.

If it is greater than the price, then the "enough" flag is raised. Finally, when the accumula-

tor clear signal is set to 1, the accumulator will clear the accumulated money.

The VHDL code for the accumulator is separated into two processes indicated by

the dashed boxed in figure 6.4. The first is a clocked process which contains the code that

accumulates the money. The second process contains the comparator which determines

whether or not to raise the enough flag. It is implemented as combinational logic.

6.3.3 FSM

The FSM is implemented according to the specifications described in the lab hand-

out. This design uses a 11 state mealy machine to implement its functionality. The FSM

41

11%

All transitions except for global
reset states, comp and clear
occur on go = 1.

On global reset from any state,
next state = globall.

Program, Display and Free will
perform their programmed
actions when go is pressed
and loop back to themselves.

Figure 6.5: FSM State Transition Diagram

will determine the outputs and next state based on the current state and inputs. Figure 6.5

shows the state transition diagram of the FSM.

The VHDL code for the FSM is split into two different processes. One process

takes the current state and the inputs and determines the next state and output. Essentially,

this is the process which encodes the state transition table for the FSM. The other process,

clocks the next state into the current state. This clocked process regulates the states.

Upon start-up and global reset, the controller will start the global reset routine.

This sequence of four states will clear the contents of the SRAM. The controller will then

42

transition to the idle state. When the go button is pushed in the idle state, the controller

will select one of the four states to go to based on switch inputs.

If go is pressed in the program mode, the controller will set the address to the

switch inputs, the SRAM input to the accumulated price, and the SRAM to write. The

price that was set will be programmed to the appropriate address in memory.

If go is pressed in the display mode, the controller will set the address to the switch

inputs and the SRAM to output the data. Because the output is already connected to the

hex leds, the cost of the product will be displayed.

In vend mode, the controller will transition to the comp state only if the cost of the

product is less than or equal to the accumulated money. Otherwise it will remain in the

vend state. If there is enough money, the controller will output the calculated change and

appropriate led indicator. It will then transition to the clear state where the accumulator is

cleared.

In free mode, the controller will ignore all accumulated money and cost of prod-

ucts. When go is pressed, it will light up the appropriate product leds based on the input

switches.

In all four modes, if local reset is selected, the modes will transition to the idle

state. Also, if the global reset is selected in any of the states, the machine will immedi-

ately transition to the first global reset state.

43

Chapter 7

Checkoff Guidelines

This chapter contains the guidelines TAs can use to help checkoff students' lab

projects. It is important to remember that these are only guidelines. It is up to the TA's

judgment whether or not the students have satisfied the lab requirements. If they can jus-

tify their design choices, then their project is satisfactory.

44

Lab 2: Vending Machine Controller
Checkoff Guidelines

Basic Functionality

The hardware components are the first thing to check. Check the wiring for the clock gen-
erator, SRAM, and CPLD. Pay attention especially to how the SRAM is wired up. Ask
the students how any why they wired up the SRAM.

When checking off the CPLD, ask the students to produce their VHDL code. Make sure
he/she understands how the code relates to the operation of the machine. Ask them how
their code would be synthesized into hardware components. If convenient, have the stu-
dents show a simulation of the components. If they did not use the simulator, encourage
them to do so for the next lab.

Next, ask them how they implemented the synchronizer and accumulator. Make sure they
understand why the synchronizer needs three flip flops instead of two. Also ask about how
the delayed synchronizer output affects the operation of the FSM. For the accumulator
check to see that the code does indeed works. Point out places where code might be inef-
ficient.

To verify the base functionality of the FSM, have the students demonstrate that each of the
four functions of the vending machine controller works. Have a copy of their state transi-
tion diagram handy. Ask the students to step through the diagram while demonstrating
their project.

The programming and display modes can be verified in conjunction. Have the students
program distinct prices in each of the four products. Verify that the correct price was pro-
grammed using the display mode.

To verify the vend mode, use the prices programmed when verifying the programming
mode. Try different combinations of coin inputs to verify that the accumulator is working.
Vending products with accumulated money that is greater than, equal to, and less than the
price of a product. Make sure that the correct price, change, and product light are dis-
played when the product is vended. The product led should not light up if not enough
money was inputted.

The local reset signal should be functional, otherwise switching between modes would not
be possible. One thing to make sure, on local reset, the accumulator should be cleared.
For the global reset signal, verify that all the memory locations are cleared using the dis-
play mode.

45

Questions to Ask Students

These are interesting issues that the students are not required to have an answer for. If
they have not addressed them, then bringing it up is sufficient. If they have addressed
these issues in their design, they should be rewarded appropriately.

1. What happens when the accumulator rolls over? What is a good solu-
tion to this problem?

2. What will happen if multiple inputs are pressed at once? Will all the
inputs be processed? If not, which input has precedence?

3. What state does the machine start when it is first powered up? What
would happen if somehow the machine got stuck in an unanticipated
state?

4. How is their VHDL code organized and why did they choose to orga-
nize it in that manner? Why does separating the components make the
design process easier?

5. What part of the VHDL code takes up the most space in the CPLD?
Why?

46

Chapter 8

Conclusion

This new lab for 6.111, The Coin Operated Vending Machine Controller, succeeds

as a continuation of the work that has been done to update the 6.111 curriculum. It effec-

tively utilizes the new tools that were recently developed while leaving room for future

technological improvements.

It offers a solution to the problems stated in Chapter 2 while staying within the

confines of the design goals. Designed with VHDL in mind, this lab takes advantage of

the power inherent in designing digital systems using a high level description language. It

accomplishes this without adding more complexity to the problem. Students are given a

clear and concise learning experience.

Some problems did occur with the initial implementation of the lab. However,

these problems were minor, only distracting minimally from the educational purpose of

the lab. With the understanding and patience of the students and the support of the teach-

ing staff, an improved lab is the result of this endeavor.

Although there is still more work that can be done to make this lab even better, this

lab can stand in its current form. It does serve a very useful and educational purpose. The

47

success of the students even through the initial problems is a testament to that fact. The

reactions from students were positive and the staff does intend to use the new lab for

future classes. Except for the failure to integrate testing into the curriculum, the imple-

mentation of this new lab can be deemed as a success.

48

Appendix A

Listing of Code Provided to Students

This appendix contains the files which were provided to the students. The code

only gives a framework in which the students were to work.

A. 1 Example FSM: lab2.vhd

-- This lines are the library and use clauses
LIBRARY ieee;
USE ieee.stdjlogic_1164.ALL;
USE work.stdarith.all;

-- This is the FSM's entity declaration.
-- Note that it is not complete.
ENTITY fsm IS

PORT (clk, go: IN stdjlogic;
led: OUT stdlogicvector(3 downto 0));

END fsm;

-- This is the FSM's archticture declaration.
ARCHITECTURE archfsm OF fsm IS

-- External component declarations go here.
-- The actual entity and architecture declarations can be --

-- written in a separate file.
COMPONENT sync

PORT (clk, x: IN stdjlogic;

49

y: OUT stdjlogic);
END COMPONENT;

-- These lines set up the state encoding as well as any
-- signals.

TYPE states IS (statel, state2);
SIGNAL pstate, n-state: states;

BEGIN

-- This is how you instantiate a component.
go-s: sync port map(clk => clk, x => go, y => syncgo);

-- This process encodes the FSM's state transition table
PROCESS (syncgo)
BEGIN

CASE p_state IS
WHEN statel => led <= "1100";

IF syncgo = '1' THEN
n_state <= state2;

ELSE

n_state <= statel;
END IF;

WHEN state2 => led <= "0011";
IF syncgo = '1' THEN
n_state <= statel;

ELSE

n_state <= state2;
END IF;

END CASE;

END PROCESS;

-- This process creates the register the states are clocked
through.
PROCESS (clk)

BEGIN

IF risingedge(clk) THEN
p-state <= nstate;

END IF;

END PROCESS;

END archfsm;

50

Appendix B

Listing of Code Used in the

Sample Solution

This appendix contains listings of code used in the sample solution to the labora-

tory assignment. This code is not handed to the students. The framework for the sample

code handed to the students is generated from the overall structure of this code.

B.1 Synchronizer Code: sync.vhd

This file contains the code for the synchronizer. Signal x and clk are the inputs, y

is the synchronized output. The three flip-flops are instantiated by the clocked process.

Because the AND gate is combinational, it is instantiated outside of a process.

library ieee;
USE ieee.stdjlogic_1164.ALL;

ENTITY sync is
PORT (clk, x: IN stdlogic;

y: OUT stdjlogic);

51

END sync;

ARCHITECTURE pulse OF sync IS
SIGNAL a,b,c: stdjlogic;

BEGIN

y <= b AND (NOT c);

PROCESS (clk, x, a, b, c)
BEGIN

IF risingedge(clk) THEN
c <= b;

b <= a;

a <= x;

END IF;

END PROCESS;

END pulse;

B.2 Accumulator Code: accum.vhd

This file contains the code for the accumulator. It contains the two process

described in chapter 6.

LIBRARY ieee;

USE ieee.stdjlogic_1164.ALL;
USE work.stdarith.all;

ENTITY count IS

PORT (clk, reset: IN stdjlogic;
quarter, nickel, dime: IN stdjlogic;
price: IN stdlogic-vector(3 DOWNTO 0);
enough: OUT stdjlogic;
accum: BUFFER stdjlogicvector(3 DOWNTO 0));

END count;

ARCHITECTURE archcount OF count IS

BEGIN

PROCESS (price, accum)
BEGIN

IF accum >= price THEN
enough <= '1';

ELSE

enough <= '0';

52

END IF;
END PROCESS;

PROCESS (clk, reset, quarter,
BEGIN

IF risingedge(clk) THEN
IF quarter = '1' THEN
accum <= accum + 5;

ELSIF nickel = '1' THEN
accum <= accum + 1;

ELSIF dime = '1' THEN
accum <= accum + 2;

ELSIF reset = '1' THEN
accum <= "0000";

END IF;
END IF;

END PROCESS;
END archcount;

nickel, dime, accum)

B.3 FSM Code: vendcont.vhd

This file contains the code for the FSM. It is split up into two processes. One

encodes the state transition table. The other clocks the next state into the current state.

The synchronizer and accumulator are both instantiated in this file.

LIBRARY ieee;
USE ieee.stdlogic_1164.ALL;
USE work.stdarith.all;

ENTITY fsm IS
PORT (clk, resetg, reset_1: IN stdjlogic;

go: IN stdjlogic;
sw: IN stdjlogicvector(1 downto 0);
quarter, nickel, dime: IN stdjlogic;
price: INOUT stdjlogicvector(3 downto 0);
we, oe: OUT stdjlogic;
addr: OUT stdlogic-vector(1 downto 0);
led: OUT stdlogicvector(3 downto 0);
change: BUFFER stdjlogicvector (3 downto 0);
accum: BUFFER stdjlogicvector(3 downto 0));

ATTRIBUTE pin-numbers OF fsm: ENTITY IS
"price(0):31 price(l):30 price(2):29 price(3):28" &

53

led(O):2 led(l):3 led(2):4 led(3):5" &
change(Q):27 change(l):26 change(2):25 change(3):24" &
go:6 nickel:15 dime:16 quarter:17" &
addr(O):39 addr(1):38 we:37 oe:36 sw(O):32 sw(1):43";

END fsm;

ARCHITECTURE archfsm OF fsm IS
COMPONENT count

PORT (clk, reset: IN stdlogic;
quarter, nickel, dime: IN stdjlogic;
price: IN stdlogic-vector(3 DOWNTO 0);
enough: OUT stdjlogic;
accum: BUFFER stdlogic-vector(3 DOWNTO 0));

END COMPONENT;

COMPONENT sync
PORT (clk, x: IN stdjlogic;

y: OUT stdjlogic);
END COMPONENT;

TYPE states IS (globall, global2, global3, global4, idle,
program, display, vend, comp, clear, free);

SIGNAL pstate, nstate: states;
SIGNAL reseta: stdlogic;
SIGNAL syncreset_l, sync-reset-g, sync-go: stdlogic;

SIGNAL sync-nickel, sync_dime, syncquarter: stdjlogic;
SIGNAL enough, subgo: stdlogic;

BEGIN

gos: sync port map(clk => clk, x => go, y => syncgo);
reset_1_s: sync port map(clk => clk, x => reset_1,

y => syncreset_l);
reset_g_s: sync port map(clk => clk, x => reset_g,

y => syncreset_g);
nickels: sync port map(clk => clk, x => nickel,

y => sync-nickel);

dimes: sync port map(clk => clk, x => dime,
y => sync-dime);

quarters: sync port map(clk => clk, x => quarter,
y => syncquarter);

accumulator: count port map(clk => clk, reset => reseta,
quarter => syncquarter, nickel => syncnickel,

dime => sync-dime, price => price,

enough => enough, accum => accum);

54

PROCESS (p-state, syncresetg, syncreset 1, syncgo, sw,
enough, accum, change, price)

BEGIN

IF sync_resetg = '1' THEN
n_state <= globall;

ELSE

CASE pstate IS
WHEN globall => price <= "0000";

we <= '0';
oe <= '1';

addr <= "00";
n_state <= global2;

WHEN global2 => price <= "0000";
we <= '0';
oe <= '1';
addr <= "01";
n_state <= global3;

WHEN global3 => price <= "0000";
we <= '0';
oe <= '1';

addr <= "10";
n_state <= global4;

WHEN global4 => price <= "0000";
we <= '0';
oe <= '1';
addr <= "11";
n_state <= idle;

WHEN idle => price <= "ZZZZ";
led <= "0000";

change <= "0000";
we <= '1';

oe <= '1';
reseta <= '0';
IF syncgo = '1' AND sw = "00" THEN
n_state <= program;

ELSIF syncgo = '1' AND sw = "01" THEN
n_state <= display;

ELSIF syncgo = '1' AND sw = "10" THEN
n_state <= vend;

ELSIF syncgo = '1' AND sw = "11" THEN
n_state <= free;

ELSE

n_state <= idle;
END IF;

WHEN program => oe <= '1';

IF syncreset_1 = '1' THEN

55

we <= '1';
price <= "ZZZZ";
reseta <= '1';
n_state <= idle;

ELSIF syncgo = '1' THEN
addr <= sw;
we <= '0';
price <= accum;
reseta <= '1';
n_state <= program;

ELSE
price <= "ZZZZ";
we <= '1';
n_state <= program;

END IF;
WHEN display => we <= '1';

price <= "ZZZZ";
IF syncreset_1 = '1' THEN

oe <= '1';
n_state <= idle;

ELSIF syncgo = '1' THEN
addr <= sw;
oe <= '0';
n_state <= display;

ELSE
oe <= '0';
n_state <= display;

END IF;
WHEN vend => we <= '1';

price <= "ZZZZ";

IF sync-resetl = '1' THEN
oe <= '1';
reseta <= '1';
n_state <= idle;

ELSIF syncgo = '1' AND enough = '1' THEN
addr <= sw;
oe <= '0';
n_state <= comp;

ELSE
oe <= '1';
n_state <= vend;

END IF;
WHEN comp => we <= '1';

oe <= '0';
price <= "ZZZZ";
change <= accum - price;

56

n_state <= clear;
IF sw = "00" THEN

led <= "0001";
ELSIF sw = "01" THEN

led <= "0010";
ELSIF sw = "10" THEN

led <= "0100";
ELSE

led <= "1000";
END IF;

WHEN clear => we <= '1';
oe <= '1';
reseta <= '1';
price <= "ZZZZ";

n_state <= vend;
WHEN free => we <= '1';

oe <= '1';
price <= "ZZZZ";

IF sync-reset_1 = '1' THEN

n_state <= idle;
ELSIF syncgo = '1' AND sw

led <= "0001";

n_state <= free;
ELSIF syncgo = '1' AND sw

led <= "0010";

n_state <= free;
ELSIF syncgo = '1' AND sw

led <= "0100";

n_state <= free;
ELSIF syncgo = '1' AND sw

led <= "1000";

n_state <= free;
ELSE

n_state <= free;
END IF;

WHEN others => we <= '1';
oe <= '1';
price <= "ZZZZ";

n_state <= globall;

= "00" THEN

"01" THEN

"10" THEN

"11" THEN

END CASE;

END IF;

END PROCESS;

PROCESS (clk)
BEGIN

IF risingedge(clk) THEN

57

,4- -- -1- - - -- z-- --- - - '-

p-state <= nstate;
END IF;

END PROCESS;

END archfsm;

58

Biblography

[1] Marc D. Tanner. Helium Breath: An Updated 6.111 Curriculum. Master's Thesis,
Massachusetts institute of Technology, May 1998.

[2] Donald E. Troxel. 6.111 Laboratory 2: Massachusetts Stoplight Controller. Massa-
chusetts Institute of Technology. Spring 1999 edition.

[3] Donald E. Troxel. 6.111 Laboratory 1. Logic Analizers, Digital Oscilloscopes, PALs,
and CPLDs. Massachusetts Institute of Technology. Spring 1999 edition.

[4] Prof Troxel and James Kirtley. 6.111 Lecture Notes. Massachusetts Institute of Tech-
nology.

[5] Texan Instruments. The 7TL Data Book, 1988 edition, 1994.

[6] Cypress Semiconductor, Programmable Logic Data Book, 1996 edition, 1995.

[7] Kevin Skahill. VHDL for Programmable Logic. Addison-Wesley, Menlo Park, 1996.

59

