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ABSTRACT

Real-world multi-agent systems exist in dynamic, uncertain environments. Achieving
robust behavior in such complex conditions often requires equally complex solutions.
Traditional approaches focus on imbuing each agent with the ability to respond any
exception conditions that may occur. Dellarocas and Klein [14] suggest an alternative
solution to this survivalist approach: a global-shared service exception-handler. Acting
as a "social institution" in the environment, the exception-handler polices the system,
monitoring agent interaction and intervening when exceptions arise. Assessing the
validity of the hypothesis requires a suitable test-bed environment that can inject
instability in a controlled, robust manner. Direct prototyping of such a system would
ascertain the most accurate results. However acquiring the results may prove frustrating
at best, since the environment itself is destabilized. Although analytical modeling affords
the most control, the dynamical nature of the system would render the equations
intractable. Inhabiting the middle ground between these approaches, simulation offers
operation under repeatable, controllable conditions, while maintaining the dynamic,
stochastic nature of the target environment. This thesis presents a design for the agent-
world exception simulator: SimHazard. SimHazard addresses the key issues of exception
event scripting, simulation log generation, and agent-neutral design with an extensible,
modular design employing a variety of object technologies and frameworks.

Thesis Supervisor: Chrysanthos Dellarocas
Title: Douglas Drane Career Development Assistant Professor of Management

2



Acknowledgements

I would like to acknowledge the following people for their support, guidance and overall

camaraderie in helping me complete this work. Many thanks go to Professor Chris

Dellarocas and Mark Klein for their mentorship in guiding me through the sometimes

arduous task of design, development, and documentation, and for granting me the

privilege of working on the project. A special thanks to Lijin Aryananda for spending

endless hours experimenting with the system, and having immeasurable patience. My

heartfelt gratitude extend to my friends who are as brothers and sisters to me in my

church and fellowship, without whom I would be far more the worse for wear. To Shiu

Au, Will Chen, Dave Chen, my fellow MEng buddy and roommate Richard Perng, Emily

Liu and Janet Liu, more thanks than I can muster for their care and concern. A gift I

would give, if I could find what might fully express my gratitude and love to my parents,

who have provided this opportunity and have been my constant support. Finally, I give

this thesis, and all the toil, heartache, and ultimately triumph to the One who makes all

things possible, and deserves all glory, God Almighty. It is by grace alone that this

journey comes to an end.

3



A CK N O W LED G EM EN TS......................................................................................... 3

CH A PTER 1: IN TR O D U CTIO N ................................................................................ 7

1.1 M OTIVATION AND G OAL.......................................................................................... 7

1.2 THESIS OUTLINE .................................................................................................... 9

CHAPTER 2: CONTRIBUTIONS OF SIMHAZARD..................................................9

2.1 SIMULATION ............................................................................................................. 10
2.2 RELATED W ORK ..................................................................................................... 12

2.3 CONTRIBUTIONS OF SIM H AZARD ........................................................................... 13

CH APTER 3: D ESIG N O VERV IEW ........................................................................... 15

3.1 DESIGN CRITERIA ................................................................................................... 15
3.2 D ESIGN REQUIREMENTS.......................................................................................... 16

Autom ated event generation/scripting..................................................................... 16
Session logging ....................................................................................................... 17
Functional user interface ....................................................................................... 17
Robust Architecture-neutral Agent-Environment interface.....................................17
Flexible/extensible component m odel fram ework .................................................. 17
Environm ent m odeling language............................................................................ 17

3.3 DESIGN OVERVIEW ................................................................................................. 18
3.3.1 Sim ulation Issues ............................................................................................ 18
3.3.2 Basic System Structure .................................................................................. 20
3.3.3 Technologies Employed................................................................................. 22

CH APTER 4: A R CH ITECTU RE ................................................................................. 23

4.1 SIMULATION M ODULES.......................................................................................... 23
4.1.1 Sim ulation M anager ....................................................................................... 23
4.1.2 Engine................................................................................................................ 26
4.1.3 M odel M anager .............................................................................................. 31

4.2 M ODEL FRAMEW ORK.............................................................................................. 35

4.2.1 M odel Interfaces ............................................................................................ 35
4.2.2 N etwork M odels.............................................................................................. 40
4.2.3 Agent Adapters .............................................................................................. 43
4.2.4 Fram ework Events.......................................................................................... 46

4.3 SIMULATION INTERFACE ........................................................................................ 48

4.3.1 SimH azard UI.............................................................................................. 48
4.3.3 Palette................................................................................................................ 50
4.3.4 D esign Pane................................................................................................... 50
4.3.5 Property Editor............................................................................................... 51

CHAPTER 5: DESIGN EVALUATION...................................................................52

5.1 SIMULATION PARADIGM EVALUATION .................................................................. 52
5.2 M ODULE D ESIGN EVALUATION.............................................................................. 53

4



5 .2 .1 E ng in e ................................................................................................................ 5 3
5.2.2 M odel M anager .............................................................................................. 54

5.3 INTERFACE EVALUATION ....................................................................................... 55

5.4 FRAMEWORK EVALUATION...................................................................................55
5.4.1 O bject fram ew orks....................................................................................... .55
5.4.2 Event fram ew orks ....................................................................................... .56

5.5 EVALUATION OF PRELIMINARY RESULTS................................................................. 56

CHAPTER 6: CONCLUSIONS AND FUTURE WORK ................... 58

M O D U LES: ...................................................................................................................... 59
FRA M EW O RK : ................................................................................................................. 60
IN TER FA C E ...................................................................................................................... 6 1

APPENDIX A: USER'S GUIDE.....................................63

CREATING A SIMULATION ............................................................................... 63
RUNNING A SIM ULATION ............................................................................................. 65

APPENDIX B: SIMULATION MANAGER API.....................................................67

APPENDIX C: MODEL MANAGER API................................................................69

APPENDIX D: ENGINE API........................................................................................71

APPENDIX E: MODEL DEFINITION FILE DTD................................................72

APPENDIX F: SIMULATION PARAMETER FILE DTD.....................................74

REFERENCES ................................................................................................................ 75

5



List of Figures

Figure 1: SimHazard Module Dependency Diagram.............................................. 20

Figure 2: Simulation Manager module interaction diagram..................................24

Figure 3: Simulation Manager state transition diagram.........................................25

Figure 4: Engine-model event-execution cycle ......................................................... 27

Figure 5: Engine state transition diagram................................................................27

Figure 6: Agent-engine interaction diagram ........................................................... 29

Figure 7: Model Manager structure......................................................................... 31

Figure 8: Model Manager model life-cycle ................................................................ 33

Figure 9: Model Interface definition ......................................................................... 36

Figure 10: Fallible interface definition.......................................................................37

Figure 11: Viewable interface definition.................................................................. 38

Figure 12: Textifiable interface definition ................................................................ 39

Figure 13: Network Model object hierarchy ........................................................... 40

Figure 14: Network Model event interaction diagram........................................... 41

Figure 15: AgentAdapter object hierarchy.............................................................. 45

Figure 16: SimHazard UI...........................................................................................49

Figure 17: Design Palette........................................................................................... 50

Figure 20. Effect of a "social monitoring" institution on the completion delay of

supply chains where at least one subcontractor agent unexpectedly fails.........58

6



Chapter 1: Introduction

1.1 Motivation and Goal

Current computing environments can be hazardous environs for autonomous agents. The

high degree of heterogeneity and unpredictability inherent in modem computing systems

serve only to destabilize agent behavior. Robust operation in such uncertain settings is

difficult at best. Add in the convolution of multi-agent communication, collaboration,

and coordination and the system reaches the boiling point, ready to roil over in a foaming

rage of system failures. Agents may crash, go dormant, break down or disappear without

notice. Communications links may fail, sending messages into cyber-oblivion.

Unforeseen inter-dependencies can lead to deadlock or resource starvation. In a system

of inter-operating agents, these errors are no longer confined to the operations of a single

entity, but propagate throughout the system. Left unresolved, they can wreak havoc on

the system: clogged networks, inefficient resource allocation, poor performance, system

shutdowns, and security vulnerabilities [14].

Most standard approaches to the multi-agent coordination problem have focused on

infusing existing coordination protocols with exception-handling logic to deal with non-

ideal situations [5] [19] [21]. Several problems plague this approach, however. With the

inclusion of fault tolerant protocols comes the onus of increased complexity and size in

both agent and message implementation. Consequently, development becomes an even

more tedious and time-consuming process that is prone to human-error. Moreover, the

inherent distributed nature of the protocols, though nicely complementing the distributed
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paradigm of agent oriented programming, lacks a global view necessary to deal with

systemic errors that involve collections of agents. To address these concerns, Dellarocas

and Klein have suggested a global shared-service exception handling mechanism to act as

an external watchdog for the system. Agents using the system need only implement

some diagnostic interfaces, primarily for communication and monitoring. The system, an

agent-based entity itself, would then use these interfaces in conjunction with a

knowledge-base of exception handling strategies to detect, diagnose and resolve

exceptions.

To investigate the feasibility and viability of such an approach requires a suitable test-bed

that offers both realism and control. Although direct experimentation would give the

most convincing results, attempting to induce exceptions in real systems would introduce

too much volatility making it prohibitively difficult to test and develop. Purely

theoretical models lack sufficient detail to provide the practical test results obtainable

through empirical study. Moreover, theoretical models are notoriously ill-equipped to

handle complex systems with dynamic interactions. Given the already intricate behaviors

of multi-agent systems, injecting further instability and uncertainty would only lead to

utterly intractable equations. The best option would be to construct a simulation that

models the agent-world and its intrinsic unpredictable nature, i.e. exceptions. Simulation

provides a stable environment in which to observe the effects of instability in the system

and determine how it might be curbed. In this thesis, I intend to design and construct

SimHazard , an agent-world simulator capable of generating environmental exceptions.

SimHazard will provide a test bed for the exception handler to study the effectiveness of
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the global shared-service exception handler as compared to traditional protocol-

enhancement based methodologies.

1.2 Thesis outline

The thesis is subdivided into the following sections. Chapter 2 lays down the goal of

SimHazard and its contribution to the field. The next two chapters delve into the actual

design, starting with a high-level view in Chapter 3, and culminating in a full

architectural design discussion in Chapter 4. Chapter 5 brings a critical eye to evaluate

the design in its achievement of the goals set forth in Chapter 2. Lastly, the thesis

concludes in Chapter 6 with a summary of the work done, a few closing remarks, and a

view towards future work. The appendix includes a users guide and several major API

listings.

Chapter 2: Contributions of SimHazard

Prior to discussing the contributions and the overall goals of SimHazard, this Chapter

lays the foundation for the present work being conducted. The section builds upon the

rudiments of simulation, followed by an examination of current work regarding agent-

exception simulation. Once the context has been set, the chapter concludes with a

discussion of the goals and contributions of the SimHazard system.
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2.1 Simulation

Digital simulation is a modeling process where a dynamic reality is imitated by a

computational process [9]. Haggett and Chorley describe models to be:

A model is a simplified structuring of reality, which presents supposedly significant

features or relationships in a generalized form. Models are highly subjective

approximations in that they do not include all associated observations or

measurements, but as such they are valuable in obscuring incidental detail and in

allowing fundamental aspects of reality to appear. [12]

Unlike purely analytical models, simulation models distill real objects into well-defined

components embodying the attributes and behaviors critical to operation, rather than

reducing everything to a set of abstract equations. The key is to simplify while

maintaining enough detail to generate tenable results. Heavyweight models that

incorporate every iota of detail fall prey to the same fiends of complexity that preclude

direct experimentation. Over simplified systems diverge from real system behavior,

thereby obviating their validity. It is this tenuous balance that often renders model design

more of an art than a science. In the end, the hope is to create a set of computational

components that can model real system behavior accurately while remaining

computationally tractable, controllable, and testable.

To extract the behavioral insight out of the simulation models, simulations often

incorporate stochastic processes to generate environmental conditions. By adding
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variability to simulated attributes and values, these processes inject non-determinism into

the simulation to mimic the behavior of natural processes. In this way statistical models

of system behavior can emerge from the morass of collated data generated by multiple

runs. However, after all the data has been recorded and tabulated, if the discrepancy

between the simulated and real systems exceeds the tolerable bounds, the results are

essentially useless. For this reason, adequate validation is essential: running the

simulation against a set of known situation/behavior pairs to ensure that the system

models reality. Although such testing cannot guarantee perfect extrapolation, it serves as

a model of believability, which gives credence to observations extracted from the

simulation. [2]

At the heart simulation is the simulation clock. This device drives the forward progress

of time, causing events to fire and actions to occur. Time is a continuous entity;

computers are digital machines. Thus, the simulation clock must employ some method to

discretize time. The isochronous approach opts to evenly divide time into uniform

segments 6t, i.e. days, minutes, milliseconds, etc. This scheme requires 6t to be equal to

or less than the duration of the shortest event, similar to digital clock chips. Multiple

events occurring during the course of a single time slice fire simultaneously at the next

clock edge. A major disadvantage of this approach is the potential for periods of

dormancy when the system waits for a long activity to complete. This can lead to rather

glaring inefficiencies, especially when a large discrepancy exists between the granularity

of 8t and the duration of crucial events.
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Alternatively, the asynchronous approach focuses on state transitions rather than

temporal transitions. By advancing time only when the simulation state changes, i.e. a

new input arrives, a producer services a consumer, etc, the asynchronous, or Discrete-

Event Simuation (DES) approach, as it is commonly known, avoids large periods of

inactivity. When an event fires, the targeted model accepts the input event and processes

the state transition, generating output events as result. These events then enter the

simulation event list, time advances and the next scheduled event fires. One drawback

with DES is the particular difficulty of implementing a wait-until mechanism, which

checks for conditions within a certain time interval. Since it is not a state change, the

mechanism can only make observations when the event fires, potentially skipping over

the intended interval. [2]

2.2 Related work

Vincent R., Horling B., Wagner T., and Lesser V. [22] have constructed a Multi-Agent

Survivability Simulator (MASS) to test and predict the performance of various

coordination protocol level exception-handling mechanisms for detecting, reacting, and

adapting to adverse conditions. MASS routes agent messages, synchronizes agent

activity, and establishes a world model. Following a isochronous simulation scheme, the

simulator synchronizes the agents using a time pulse mechanism. An agent manager

receives the pulse and converts it into processing time, allowing agents to run for a

specified duration corresponding to the granularity of the pulse. When the run period

expires, the agent manager returns a pulse acknowledgement to the simulator. After

sending a pulse, the simulator waits on the acknowledgements before proceeding to the

next time tick. Allowing the agent managers to determine the pulse-to-time conversion
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gives the system the ability to vary agent running speeds, effectively simulating slow

hosts, long processing times, etc. MASS interposes itself between the agents, acting as a

communications wrapper for routing messages. In this way, MASS can simulate high

bandwidth connections using near instantaneous message delivery. To simulate

bottlenecked links the simulator can incur message delays, or even message drops.

MASS uses a quality/cost/duration--tuple to model the effect of actions in the world,

rather than represent the entities directly. These values exist in the system, associated

with various actions. When an agent decides upon a course of action, it uses its own

subjective, potentially flawed, view of the world as a decision foundation. To actuate the

command, the simulator obtains the true quality/cost/duration values from its objective

view. The discrepancies that may arise from the difference in an agent's subjective view

and the real objective view injects the necessary uncertainty into the system for testing

protocol exception handling capabilities. Although a novel approach to simulating

exception scenarios, MASS lacks a robust world model, relies on an inefficient

simulation paradigm, and suffers from dependence on specific multi-agent coordination

mechanisms and protocols that preclude the testing of agents employing different

protocols.

2.3 Contributions of SimHazard

The aim of SimHazard is to provide a multi-agent simulation test-bed capable of

introducing exceptions in a controlled manner. Running experiments on such a test-bed

will provide insight into predicting the performance and effects of using a global shared-

service exception handler vs. the traditional distributed protocol exception-handling.
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Unlike [22], SimHazard adopts the Discrete Event Simulation (DES) approach to handle

the interactions of a simulated agent environment. As described in section 2.1, the

fundamental paradigm of DES revolves around an event-driven model: input events

trigger state transitions and generate output events. The DES models follow a nearly

object-oriented paradigm of encapsulating state as attributes and event-handling behavior

as operations. For the most part, SimHazard follows a traditional approach to DES as

taken by [15] [7]. The contributions SimHazard makes mostly deal with the areas in

which SimHazard deviates from tradition.

While [15] [7] are industrial-strength general-purpose modeling languages/simulation

environments, SimHazard focuses on the specialized domain of agent simulation.

Actually, SimHazard is really a hybrid simulator. Although SimHazard models the

agent-environment, the agents remain fully functional entities. By abstracting the agents

from the simulation, SimHazard can test the behavior of real-world agents in its

controlled environment. This approach significantly increases the utility of SimHazard

by expanding the potential user base and reducing the development and accuracy costs of

analyzing and creating agent models.

Most simulators concentrate on modeling performance or other general system behaviors

under various conditions. However, SimHazard is a specialized simulator designed to

model the effects of exceptions on agent coordination in the presence of different

exception handling schemes. Modeling raw system performance is of ancillary concern.
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The design focuses on establishing a framework for exception events and injecting

instability rather than on modeling performance attributes.

The last major contribution of SimHazard bears resemblance to the approaches taken by

[15]. Both of these simulators rely on an object-hierarchy framework for defining

models. Users reap the benefits of such a framework in the efficacy and efficiency of

creating new models through subclassing. SimHazard attempts to provide such modeling

flexibility through the use of its own set of model frameworks.

To summarize, SimHazard stands among the few agent-oriented simulations geared

towards exception handling. Its primary contributions include agent-pluggability,

exception modeling, and extensible modeling through object frameworks.

Chapter 3: Design Overview

Starting at a high level with the design criteria and requirements, this chapter shapes the

direction of the SimHazard design. After the principles are set, the chapter begins the

descent into the bowels of the design with a view of the general system structure.

3.1 Design Criteria

As software design is an iterative process, SimHazard keeps its eye on the future by

emphasizing flexibility and extensibility in its architecture. In turn, a flexible, open
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architecture allows developers to capitalize on a general framework/infrastructure for

modifying and adding functionality. Efficiency is an ancillary concern, as optimizations

and performance issues can be left to later refinements. Finally, the system must be easy

to use. As the basic purpose of the system is to acquire preliminary results within a

limited time frame, a steep learning curve would be a prohibitive restriction.

Due to the early stage of the exception-handler research and development, several

assumptions underlie the design of SimHazard. First, in the simulated realm agents must

behave as single-task entities. Although the agent may queue any number of messages,

only one processing task can run at any given time. Secondly, as agent interactions and

coordination are the only activities of true interest in the simulation, the simulated

environment focuses solely on the routing and transport of messages. Lastly, as a

measure of simplicity and incremental design network resources, such as printers, i/o

devices, etc. are excluded from this iteration of SimHazard.

3.2 Design Requirements

Automated event generation/scripting

the simulator must provide a mechanism for explicitly scripting exception scenarios in

conjunction with the implicit generation of random anomalous events.
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Session logging

to extract useful data about environmental parameters over the course of simulation runs,

the simulator should enable the logging of simulation attributes and user-definable

metrics.

Functional user interface

both functionality and ease of use are critical to the utility of the user interface. It must

be intuitive in presentation as well as powerful and flexible in manipulation.

Robust Architecture-neutral Agent-Environment interface

the system must provide a standard API for agents to access services and process

messages in the simulated environment. To avoid imposing prohibitive constraints on

agent developers, the system should adopt an agent-architecture neutral interface scheme.

Flexible/extensible component model framework

to maximize the simulator's modeling acumen, the model hierarchy should be based on

an easily extensible object framework that defines both entity relationships and design

patterns.

Environment modeling language

Providing a well-defined textual file format for constructing agent environments confers

flexibility in the system. The specification format should be human-readable and

standardized.
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3.3 Design Overview

3.3.1 Simulation Issues

Due to the nature of the simulation, in conjunction with the underlying assumptions in the

system, several simulation related design issues arise. As a time-driven DES simulation,

SimHazard requires that the execution of simulation events adhere to a strict time-ordered

sequence. Such ordering is enforced by a linear serialization of events according to

timestamp. However, when events with identical timestamps occur in the queue, the

ordering issue becomes muddled. The proper way to execute these events would be to

invoke parallel execution. Since SimHazard is a single-process simulation, the simplest

solution is to handle the events in order of arrival, regardless of source. Say event A

occuring at t = 5 triggers event C at t =10 and event B occuring at t=6 triggers event D

also with timestamp t = 10. Event C will have ordering precedence over event D because

event A occurs prior to B, hence C enters the queue before to D. Although such ordering

imposes a deterministic ordering on the inherently parallel nature of concurrency in the

simulation, sans parallel computing, it is a simple and tractable solution.

Following from the assumption that agents are essentially single-task entities, the

simulator must supplant the agent's internal message queue with an external simulated

one. By queuing messages in the simulator, the simulator can ensure that an agent will be

processing only one task at a time. Since most agent architectures have the capacity to

handle multiple messages and tasks concurrently, imposing a single-task restriction on

the agents would only bring undue requirements on the developer, violating the some of
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the design goals of the system. Broadening the message queuing notion to encompass

general simulation models, model multitasking adds a level of concurrency control for all

models. This method works by tagging each model with an attribute indicating the

maximum number of concurrent tasks it can support. Once this number is exceeded, the

simulator queues subsequent events in a model-specific event queue for later scheduling

after the model finishes its prior tasks. This policy enforces task serialization in

accordance with the agents' abilities.

One final difficulty stems from the actuation of hazards that alter the outcome or cancel

the effect of an event. Again, in the DES approach, simulation events indicate the start of

a process in a model. When the event fires, the model performs the tasks specified by the

event. Although from start to finish, event handling occurs in real time, simulated time

remains fixed at the start of the event. All consequent output events are scheduled in the

queue asfuture events. Until the original event actually completes in simulated time, the

model remains in a processing state. Should a hazard event fire in the interim, and either

change the output events or cancel the action altogether, the previously generated outputs

events are now invalid. To maintain system consistency, the simulator must purge the

queue of these invalidated events.
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3.3.2 Basic System Structure

The simulation core is comprised of three object modules: the Simulation Manager (SM),

the Model Manager (MM), and the Engine. Extending over the core is the User Interface

(UI). Beneath the simulation core is the modeling infrastructure, the AgentAdapter and

NewtorkModel object frameworks, the Model Interface framework, and the Event

Framework.

User Interface

Simulation
Core uses Simulation uses

Manager

Model Manager Engine

----------------- w- ----------------

AgentAdapter/NetworkModel object frameworks
Model Interface framework Modeling

Infrastructure

Event framework

Figure 1: SimHazard Module Dependency Diagram

As shown in Figure 1, the Simulation Manager sits atop the simulation core, directing the

simulation runs by defining the simulation parameters and manipulating the Engine.

During the design phase, the SM remains dormant, with only its parameters exposed for

modification. Here, the Model Manager takes center stage, managing the entire model
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life-cycle, from instantiation to initialization and editing, to finalization and

deletion/removal. Once the model is in place, and the run is ready, the Engine takes over

and drives the simulation. As the simulation chums, the SM controls the simulation run

by manipulating the Engine.

Above the simulation layer is the user interface. The UI wraps a shell around the

simulation to facilitate access to simulator functionality for both creating and running

simulations. To accomplish this, the UI taps into all three core modules.

Underlying the simulation, at the infrastructure level, is the model framework, comprised

of two frameworks: NetworkModels and AgentAdapters. These entities encapsulate the

basic attributes and behaviors of their "real" counterparts: network elements and software

agents. NetworkModels are simulate the agent-world network topology while the

AgentAdapters interface with the actual agents, acting as agent-architecture neutral

proxies between agents and the simulator. These two object frameworks build off the

abstract Model Interface framework and make extensive use of the Event Framework.

The partitioning of functionality into UI, Simulation Core, and Modeling Infrastructure

roughly corresponds to the Model View Controller design paradigm inspired by early

SmallTalk design patterns, which fosters modular design [4]. In this paradigm, the

Modeling Infrastructure represents the model, while the UI acts as the view and the

Simulation Core the controller. By harnessing this design pattern, the modules not only

follow a logical grouping, but also provide a level of flexibility since each piece of the
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MVC puzzle can be removed and replaced with minimal changes to the existing

architecture.

3.3.3 Technologies Employed

Language:

Java was chosen as the object-oriented language to implement the system. Although Java

performs poorly, it more than compensates for the lackluster speed with robust and

cleanly designed libraries and powerful facilities for dynamic class loading and

reflection. Moreover, Java's platform transparency and network orientation (network i/o

libraries, servlets [10]) provide a spring board for SimHazard to migrate to other

platforms or even to web based three-tiered architecture.

Events

Since SimHazard is an event-driven system, events pervade the system. Besides the main

DES model, events, in the Java Bean sense [8], signal the occurrence of everything from

property changes, to raised exceptions, to state changes, and beyond. By leveraging the

Java Bean EventObject/EventListener design pattern, objects can register for events of

interest while preserving anonymity behind the listener abstraction.

Frameworks

Object Frameworks form the basis for extending and customizing SimHazard's

simulation models. Beyond establishing an object hierarchy, frameworks also specify the

procedures for extending the hierarchy, and how the models plug into the system as a

whole, from creation, to initialization, to running, to termination [17] [11].
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XML

XML, or Extensible Markup Language, is a superset of HTML that supports data markup

and specification. It is a textual, human readable format designed to encode most data

types in a standard format [3]. SimHazard uses XML extensively as a text-based

serialization format for models and simulation parameters.

Chapter 4: Architecture

Herein lies the core of the thesis. This chapter scrounges through the details of the

SimHazard system architecture. In order of presentation, each major simulation module

is described in turn, followed by the underpinning system frameworks.

4.1 Simulation Modules

4.1.1 Simulation Manager

The Simulation Manager controls the simulation. Much like a micro-controller, the SM

takes high level commands and translates them into executive signals for the underlying

components. Through its public API, described in Appendix B, the SM exposes methods

for controlling simulation runs, defining environment parameters, and managing

simulation logs. Internally, the simulation manager defines the state of the system, which

constrains system behavior. Figure 2 depicts the Simulation Manager's basic control

structure.
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Simulation
Manager

initialization/finalization complete run control

Model Manager Engine

Figure 2: Simulation Manager module interaction diagram

The Simulation Manager API provides a set of basic simulation control methods for

directing the progress of a simulation run. These methods initialize, start, stop, pause,

resume, and reset simulation runs. Aside from the control methods, the SM exposes the

simulation parameters through the beans design pattern of get/set methods. These

parameters determine the course and nature of the simulation: run title, start time,

duration, simulation seed, parameter file, model definition file. For serialization

purposes, the SM saves the parameters in an XML format Simulation Parameter File

(SPF). More detailed description of these parameters and the SPF format are found in

Appendices B and F.

Over the course of a simulation run, the simulation manager exists in one of four states:

IDLE, READY, PAUSED, and RUNNING. The state transitions and constraints are

illustrated below in Figure 3.
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Control API:
startRun Control API: Control API:
stopRun stopRun stopRun
Parameter API: pauseRun resumeRun

initialize odManag disabled

prime Engine with Agent startRun: pauseRun:
start events start Engine pause Engine
create Logs

Idle Ready Running Paused

0 S S resumeRun:
resetRun stopRun resume Engine

top :rsumiEnin
Control API: stopRun or Engine
initializeRun ni n rParameter API: flsd close
enabled Lg

Figure 3: Simulation Manager state transition diagram

During the design phase, the Simulation Manager is in a quiescent IDLE state; the

parameter API is fully accessible, while the run control methods are disabled. When the

SM initializes a simulation run, it validates the simulation model and transitions to the

READY state. Once in the READY state, the only permissible actions are to proceed

with the run, or return to the IDLE design state. The system has entered the simulation

phase. After a run starts, the SM remains, for the most part, in the RUNNING state until

the run terminates. Over the course of a run, the SM can pause and resume any number

of times, toggling between the RUNNING and PAUSED states. When the simulation

stops, the SM returns to the IDLE state.

For pseudo-random number generator initialization, SimHazard uses a single user

specified seed to generate a system wide set of seeds used to initialize the individual

models' pseudo-random number generators. Although this method may propagate errors
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inherent to the pseudo-random number generator, the effects should be negligible

compared to the error that could arise from the actual sampling performed during a run.

As a final design feature, the Simulation Manager manages the simulation log files.

During initialization, the Simulation Manager creates the four log files: message log,

exception log, parameter log, and simulation log. The SM names the files using the

following convention <runTitle>-<logtype>.log. The message log records agent creation

and consumption of messages, the exception log tallies exceptions occurrences, the

parameter log catalogues fluctuations in model parameters, and the simulation log scribes

an exhaustive listing of the events executed in the system. Although the SM manages all

the log files, it logs only the Simulation and Exception events. The Model Manager is

responsible for logging Parameter and Message events, since these are model specific

events.

4.1.2 Engine

The Engine combines the event driver and event queue data structure into one module.

As the engine fires events, models respond by generating output events, which are

scheduled into the event queue. This is the essence of the engine-model event cycle

which drives the simulation. Figure 4 delineates the event cycle.
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Simulator

Figure 4: Engine-model event-execution cycle

At its core, the Engine is an event-execution loop. The Engine starts in the inactive IDLE

state, where it remains throughout the span of the design phase. When the simulation

commences, the Engine enters the RUNNING state, creating and executing a new thread

to run the event-execution loop. Like any event-loop, the Engine event-execution loop is

basically a large while loop. At the top of the loop, the Engine checks for termination

conditions: empty event queue, expired duration, or end-states: IDLE, PAUSED. A

PAUSED engine suspends the Engine event-loop thread, waiting on the Engine object

until it is resumed-returns to the RUNNING state, or terminated-moves back to the

IDLE state. Figure 5 details the transitions.

sequent ally execute ents
i event queue

schedul events signa ed by
odels

start pause

Idle Running Paused

stop
duration expired resume

event queue empty

stop

Figure 5: Engine state transition diagram
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On each pass through the loop, the Engine pops the earliest event off the queue and

dispatches the event to the specified target. For non-threaded models i.e.

NetworkModels, the Engine simply invokes model's the execute method with the event

as input. AgentAdapters, being autonomous (threaded) models, require special treatment.

To preserve the single-event execution invariant, the Engine first synchronizes on the

current event. Next, it calls the AgentAdapter's execute method to handle the event.

Immediately following the call, the engine waits on the current event lock, sleeping until

the AgentAdapter seizes the current event lock and notifies the engine-when the agent

pauses or completes processing. Using this threading scheme, the Engine thread

maintains a lock-step synchronization with the agent threads, ensuring that only one

thread is active at any given time.

Output events generated by a model during event processing reach the Engine via the

SimulationListener interface. When the model creates a new event, it notifies all

registered SimulationListeners of the action through the eventFired method. Upon

receiving the notification, the Engine schedules the new event. To facilitate event

scheduling, the SimulationListener interface furnishes the eventFinished method. Models

call this method to notify the listeners of process completion. To allow interrupts and

other message events to reach agents while a task is running-in simulated time, Agent

Adapters have a pause mechanism which wakes the engine without invoking

eventFinished. When an agent completes its message handling, it calls the Agent Adapter

done method, invoking eventFinished and waking the engine. Figure 6 depicts this

process in greater detail.
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Figure 6: Agent-engine interaction diagram

Scheduling in the Simulation Engine relies on the innate ordering imposed by the event

queue data structure, which is basically a red-black tree that allows multiple key-value

pairs with the same key [18]. By maintaining the insertion order of key-value pairs with

the same key, the event queue preserves the "order of arrival" scheduling of concurrent

events. However, the need for per-model event queuing introduces some additional

complexity into the scheduling process. Say an output event A emerges from a model
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process with timestamp t=5. Assume the target of the event A is model M. If the number

of pending events in the event queue designated for M, Mpe reaches the concurrent task

capacity Ccap for M, the Engine pushes the event into the pending event queue for M,

Mpeq. When the next event for M fires, Mpe decrements, and a slot opens in the event

queue. Upon receiving the eventFinished signal from the model, the Engine then resets

extracts the earliest event in Mpeq, resets its timestamp to the donetime of the completed

event, and transfers the event to the main event queue. In this way, the Engine

guarantees that no more than Ccap events will ever be scheduled for a model at any given

moment.

Event cancellation occurs when an actuated hazard causes a model to terminate or alter

its current event processing. As a result, all output events generated by the halted event

become invalid. To ensure Engine consistency via purging of the invalid events, the

model notifies SimulationListeners of event cancellation through the eventCanceled

method. Two types of cancellation exist: purge or cancel. Purge occurs when a model

dies and can no longer process any events. As a result, all events targeted at the model

must be purged from the engine, as they are no longer consistent with the model state.

Cancel requires the Engine to expunge all output events caused by the canceled event.

The Engine achieves this by examining the event queue and model queues. If an event

should have the cancelled event as a cause, the Engine removes the invalid event. For a

full Engine API listing, consult Appendix C.
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4.1.3 Model Manager

The Model Manager is the central simulation model repository. It manages the entire

simulation model life-cycle, from creation to deletion. The only proper way to create

models is through the Model Manager API, listed in Appendix D. This centralization

hides the complexities of dynamic model creation behind an abstraction barrier for

simplicity. Throughout the design phase, models can be created, removed or modified.

Once the system transitions to the simulation phase, the Model Manager initializes its

constituent models, which includes creating logging classes for the models to record

events of interest. Over the course of a run, the MM maintains model consistency as

AgentAdapters terminate and NetworkModels fail. At the end of a simulation session the

Model Manager performs finalization operations to clean up the models. Additionally,

the Model Manager provides methods to save and load the models from a Model

Definition File. The general Model Manager structure is shown below in Figure 7.

Model Manager

Agent Layer NetworkLayer

initialization: start agent initialization: generate
create start msg routing tables
finalization: stop agent finalization: clear tables

Agent Network
Adapters Models

Figure 7: Model Manager structure

31



Model creation in the Model Manager relies heavily on Java's reflection and dynamic

class loading capabilities. To create a model, the Model Manager uses the model's model

Factory method. Every simulation model implements a static Factory method with the

following signature <type> create<type>( ) for creating new instances of the model.

Although ordinary dynamic instantiation using the model's constructor would work

equally well for practical purposes, using the Factory method wrapper abstracts away the

specifics of the constructor call. In this way, changes to the constructor or its arguments

do not propagate to the Model Manager. Moreover, the abstraction simplifies

construction by eliminating the specific knowledge needed to create a new Model.

During initialization, the Model Manager uses the Classes utility class to load the models

into the system. From these subclasses of the Model interface, the Model Manager

extracts and stores the model Factory methods. This dynamic class loading mechanism,

enables the addition of new models into the system at runtime, without the need to

recompile. After creating a model, the Model Manager generates a unique model id and

label delimiter for the model. Figure 8 lays out the model life-cycle in the Model

Manager.
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Figure 8: Model Manager model life-cycle

For model initialization and finalization, the model manager employs a framework based

on the LayerManager interface. The methods defined by the LayerManager interface

provide a means for performing type-specific initialization. Each LayerManager is

associated with a specific root model type. AgentLayer handles AgentAdapter models

and NetworkLayer handles NetworkModels. When the Model Manager initializes or

finalizes a model, it checks the root model type of the model and delegates the task to the

associated LayerManager.

At initialization, the AgentLayer creates a MessageLogger for each agent and starts the

agent thread. MessageLoggers record the occurrence of messageSent and

messageReceived events in an AgentAdapter. A different MessageLogger class exists for

each agent message type used in the simulation. The text format of the log is set using a

LogFormat object. Much like the Model Factory methods, these classes are loaded and
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created dynamically by the Model Manager as well. When an agent dies, its associated

MessageLogger is removed from the system. At finalization, the AgentLayer kills any

non-terminated agents, and removes the associated MessageLoggers.

NetworkModel initialization revolves around generating a global routing table.

Currently, the NetworkLayer employs the Floyd-Warshall all-points shortest path

algorithm [6] to initialize node routers. To compute the algorithm, the NetworkLayer

records the nodes and vertices of the network topology as NetworkModels are added and

removed during the design phase. When the system is ready to initiate a simulation run,

the Model Manager initializes the NetworkLayer, triggering the computation of the

global routing table, and uses it to initialize the routing table of RoutingService models.

One limitation to the current routing scheme is the lack of dynamic rerouting in the event

of node or link failure. In addition to routing initialization, the NetworkLayer also

creates a parameter Monitor for each NetworkModel. The Monitor logs parameter

changes for each NetworkModel. Upon model termination or finalization, the

NetworkLayer removes the Monitors from service.

The Model Definition File (MDF) contains the complete XML specification of the

simulation models. Each model is responsible for serializing and loading its state from

the XML parse tree. The full MDF format is descibed in Appendix E.

34



4.2 Model Framework

4.2.1 Model Interfaces

The Model Framework is a set of interfaces designed to abstract simulation behavior into

functional sets. Comprising this framework are the following interfaces: Model,

ProbabilisticModel, PendingModel, Host, Resident, Fallible, Viewable, Textifiable, and

ModelResolution. As described in section 4.1.2, the Engine drives the simulation by

executing an event on the specified target model. This single execute method defines the

essence of the model's DES characterization. Beyond implementing the event execution

method, a simulation model needs only a few additional support methods and attributes to

define its simulation identity. The base Model interface defines these methods, while the

other model interfaces indicate more specialized model types. The remaining interfaces

provide system support. By implementing these interfaces, objects of any kind can serve

as simulation models. This high level of polymorphic abstraction allows the simulation

to handle almost any form or implementation of model.
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Model

execute(event: SimulationEvent) : void
getConcurrentTaskso : int
getLabel() : String
getLastTime() : long
getModelldo : long
initializeo : void
isMultitasking() : boolean
reset() : void
setLabel(label: String) : void
setModelld(mid: long): void
shutdown( : void
addSimulationListener(sl: SimulationListener): void
removeSimulationListener(sl : SimulationListener) : _id

Figure 9: Model Interface definition

The most important method in the Model interface is the execute method. This is the

basic event input method that tells the model to execute an event. On the attribute side,

there are two critical identification attributes a model must implement: model id and

model label. The model id is a long integer unique to the model in the scope of the

simulation, which the system uses to identify the model. The label is a human readable

string for visual identification. The model must also specify whether it is multitasking

and how many concurrent tasks it can support. Additionally, the Model interface

specifies several support methods for creation and finalization. When a model is created,

initialize is called to set the model's attributes to initial values. Reset clears the model's

non-identification attributes. This is called prior to setting the model's attributes to

default values or for finalization to return the models to design time settings. Shutdown

is called when a model terminates during a run to perform necessary dereferencing clean

up e.g. removing dead agents from nodes. Additionally, Model has methods for adding

and removing SimulationListeners, e.g. the Engine.
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Probabilistic Model extends the Model interface with methods to get/set simulation seeds

and updateParameters for probabilistic modeling. PendingModel defines a set of support

methods for models that need to track events running the model to calculate load. Host

indicates that a model is capable of housing residents. Models implementing the

Resident interface specify whether they are dependent on the host for operation.

Dependent models rely on hosts for time calculations e.g. agent residents expending

processor cycles that the host node converts into execution time.

Fallible

actuateHazard(hevt: HazardEvent) : void
clearHazards( : void
getHazardTypeso: Enumeration
hazards( : Enumeration
insertHazard(hevt : HazardEvent) : void
removeHazard(hevt : HazardEvent) : void
addExceptionListener(el : ExceptionListener) : void
removeExceptionListener(el: ExceptionListener) : v id

Figure 10: Fallible interface definition

Fallible specifies methods necessary for implementing exceptions. Exceptions in the

system are divided into two categories: implicit and explicit. Implicit exceptions arise

from probability distributions associated with Model parameters, i.e. processor load,

network congestion, misrouting, etc. Explicit exceptions are deterministically scheduled

hazard events. Fallible provides methods for inserting, viewing, removing, and clearing

hazard events. Most importantly, actuateHazard enacts the effects of the hazard event on

the Model. By making these exceptions explicit, discrete exceptions can be pre-

determined to occur, infusing the system with deliberate instability. Additionally,
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getHazardTypes allows a model to specify the types of hazards that it supports, and

objects interested in ExceptionEvents can be registered and removed as well.

Viewable

getParameter(label: String): Parameter
parameterso : Enumeration
setParameter(label : String, param : Parameter) : void
addPropertyChangeListener(pcl : PropertyChangeListener) : void
removePropertyChangeListener(pcl : PropertyChangeListener) : vid

Figure 11: Viewable interface definition

All probabilistic Models use psuedo-random univariate number generators as the basis

for emulating stochastic behavior. This randomized behavior, in turn, simulates

fluctuations in performance and gives rise to implicit exceptions. Randomized attributes

are embodied in the Parameter class. Each Parameter specifies a value and distribution

description which includes distribution type and distribution parameters. Using the

Distribution utility class, which implements a collection of univariate distributions in

[16], models can sample parameter values from a variety probability distributions. The

Viewable interface provides a window onto these Parameters and enables Monitors to

survey Parameter changes via the PropertyChangeListener interface.
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Textifiable

getFormat( : String
parseObject(doc: Element): voad
setFormat(format: String): void
textify(doc : Element): void

Figure 12: Textifiable interface definition

To support saving and loading in XML, the Textifiable interface provides two essential

methods: parseObject and textify. For SimHazard simulation models, saving to an XML

MDF file through the textify method entails using VarTextify, a utility wrapper class

around the IBM XML4J DOM/XML implementation. Loading entails calling

parseObject and uses VarParser, another utility wrapper class. A more detailed

description of the textification process is given below in the Model Extension subsection.
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4.2.2 Network Models

PendingModel

ProbabilisticModel Implements

implemnts PendingNetworkMod

Host

Implements \ RoutingService

Resident

Figure 13: Network Model object hierarchy

As a set of foundation classes, the simhazard Model Hierarchy provides the core Models

for simulating a network topology. At the base of the hierarchy is the NetworkModel,

which implements the basic Model interfaces and provides convenience methods for

initialization, hazard triggering, and sampling. Directly extending the NetworkModel are

PendingNetworkModel and ResidentModel. PendingNetworkModel implements the

PendingModel interface, and ResidentModel the Resident interface. Past these base

models, NetworkNode and NetworkLink represent nodes and links in the network, and

NetworkInterface and RoutingService embody the NIC and Routing Table of a network

protocol stack. Figure 14 displays the function of these models and their simulated

interaction.
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Figure 14: Network Model event interaction diagram

At the present moment, only the basic set of network elements are implemented, but there

remains ample space for extension from any of the basic classes: Workstation, Server

node specializations, InternetBridge, ATMRelay as BroadBand links, various NIC's to

support them, and RoutingServices to support dynamic or cell-based routing schemes.

To extend the Model Framework, there are several design patterns to adhere to, and a few

issues to keep in mind. At the very least, any new model in the framework must

implement initialize, reset, shutdown, textify, selectVars, and specifyVars methods, if it

contains any state variables of its own. These new subclassed versions should follow the

structure used in the base class implementations. Initialize, reset, and shutdown follow

the creation-finalization routines described in section 4.1.3. Textify writes the model's

state to XML format. SelectVars and specifyVars are methods to aid in XML loading.
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To prevent rescanning of the entire XML DOM parse tree at every class in the hierarchy

chain, the utility class VarParser enforces a parse ordering. First, all the desired XML

variables must be specified. Then the variables are "parsed" from the tree. Finally the

variables can be extracted to obtain the serialized values. In NetworkModel, parseObject

calls specifyVars to allow the entire class chain to specify the desired variables. It

invokes the VarParser's parse method and calls selectVars for the class chain to extract

the values. All of these subclassed methods must call the superclass versions as well to

ensure completion of the corresponding process.

Models that will handle new simulation events must override the dispatch method. This

method dispatches the simulation event to the appropriate handler based on method.

Dispatch is used as the subclassed method instead of execute because execute performs

event pre-processing and post-processing operations which preclude method chaining.

Along with dispatch, the new Model must also provide the actual event handlers. These

methods will perform the actual work, and add the new simulated behavior. Any events

generated by the handler methods are sent to the SimulationListeners using the

fireEventFired method. Exception events can be reported with the

fireExceptionTriggered method. Following the handler pattern, new handlers should be

protected methods. Reducing handler method visibility ensures that execute remains the

only entry point for event handling.

To add new hazards or extend old ones, the new model need only override actuateHazard,

the hazard dispatch method, and implement new hazard handlers. ActuateHazard should
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fire the appropriate ExceptionEvent when a given hazard occurs. Following a design

pattern much like the simulation event handlers, hazard handlers must be declared as

protected methods. The only additional aspect is adding new hazard types in the

initialization method.

4.2.3 Agent Adapters

Building off the Model Framework interfaces, the AgentAdapter Framework establishes

an architecture neutral API interface for agent-simulator interaction. Essentially a proxy

for communication between agents and the simulator, each AgentAdapter uses

architecture-specific code to integrate an agent system into the simulation. Basically, an

AgentAdapter implements the Adapter interface for communication with the agent on

one end, and translates agent requests into simulation events on the other. Another

Adapter interface, the SystemAdapter exists to provide additional functionality to

privileged agents, such as the ExceptionHandler. In this way, different agent systems can

be used in the simulation without significantly modifying either the agents or the

simulator, but by merely extending the AgentAdapter Framework. This extensibility is

crucial to augmenting the viability of the simulator and its capabilities to run simulations

containing a heterogeneous mix of agents.

The Adapter specifies the following set of methods for agent-simulator interaction.

void sendMessage (long cycles, Object msg): translate agent

communication into simulator events for message sending. The msg is

handled in an architecture specific way. This method may be ignored

in favor of an existing agent-communications interface specified by

the architecture.

pause (long cycles): yield to the simulator so that other pending

messages and interrupts can be handled
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timeout(long timestamp): notify the agent when a certain amount of

time has elapsed.

die(long cycles): notify the AgentAdapter that the agent is dead and

should be cleaned up/shutdown.

done(long cycles): signals message handling completion

long getLastTime(: returns the agent host's local time stamp

These methods provide a standard way for agents to interact with the simulator. All

actions requiring actual simulated time include a cycles field. Cycles represent the

number of processor cycles that the agent has expended since it first started processing its

current message. The AgentAdapter computes actual simulation timestamps. During

message processing, agents can send any number of messages and set timeouts.

However, agents should periodically call the pause method to relinquish control to the

simulator. This ensures that high-priority messages are received in a timely fashion.

Otherwise, the agent will have completed its task by the time the high-priority message

arrives, which may cause problems if the message was meant to terminate the agents

activity. When the agent is finished computing, it calls done to signal event completion,

transferring control back to the simulator.

The SystemAdapter interface is for use by uber-agents only. It provides a set of network

monitoring methods for determining network performance. Currently only the exception

handler can use this interface for diagnostic purposes.
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Figure 15: AgentAdapter object hierarchy

Similar to the NetworkModel base class in the model Framework, the AgentAdapter class

furnishes implementations of the Model Framework interfaces, making the adapter full-

fledged models as well. Furthermore, AgentAdapter implements all the Adapter interface

methods except for sendMessage, which is architecture specific. For interfacing with the

simulator, the AgentAdapter provides a skeletal implementation of the receiveMessage

event handler, which sends incoming messages to the agents, the wakeUp event handler,

which notifies agents of timer expiration, and the terminate hazard handler, which kills

the agents.

Subclasses tailor the AgentAdapters to the specific architectures by implementing

sendMessage or an architecture specific communication interface, receiveMessage,

wakeUp and terminate. By using the existing agent-architecture communications

infrastructures, agents can communicatedwith the simulator as if it were another agent.

Additionally, the AgentAdapters must also implement agent specific start methods for

creating and initializing the agents. The AgentAdapter should expose all agent attributes

that need to be modified using the get/set design pattern. For simulation initialization

45



purposes, the agentadapters must implement createStartMessage which is used by the

Simulation Manager to prime the Engine. Although agents are created at simulation

initialization, they can commence activity only upon receiving the start messages.

Again, much like the extension of NetworkModels, AgentAdapters with new attributes

are responsible for initialization and textification.

4.2.4 Framework Events

As seen in the various parts of the SimHazard design, Java EventObjects, as specified in

the Beans architecture [8], are central inter-object communication. These seemingly

ubiquitous objects define events of interest in the system, from simulation events to

hazard events to exception events. The beans EventObject-EventListener architecture

provides a means to register call-back functions anonymously, hidden behind an

abstraction barrier. In the spirit of beans design, this design promotes software reuse,

while complimenting the event-driven nature of the simulation.

Simulation Events are the bread and butter of the simulation. These events specify the

model execution parameters: source, target, method, arguments, timestamp and priority,

and the engine firing parameters: timestamp, donetime, and cause. The model dispatches

the event to the appropriate handler indicated by the method with the given arguments.

Donetime indicates when the event finishes, and is used for rescheduling (see section

4.1.2) and event cancellation (see section 4.1.2). Additionally, Simulation Events

implement a done method that deferences completed events in the causal chain. This

prevents arbitrarily long event chains from existing in the system and wasting memory.

In large, long simulations, such waste may prove prohibitive.
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ResumeEvents extend simulation events, adding the resume method. This event is posted

by AgentAdapters when an agent pauses. The resume method toggles an internal flag to

indicate that the agent should resume when it is woken up from by Engine.

Hazard Events implement explicit hazards. Currently they only include a type, start time,

and end time. These are simple hazards that have, minimally, a timestamp and duration

of effect.

PropertyChangeEvents are defined by in the java.bean.event package. This event signals

a change in an object's attribute, or property, state. In SimHazard, these events are used

extensively in its original form to update listeners when a model's state changes,

including changes in Parameters and message sending/receiving, for logging purposes.

EngineEvents notify the listener when the engine state changes. These events ensure that

listeners, such as the Simulation Manager and UI know when the engine has actually

changed state, since it runs in its own thread. Moreover, the EngineEvents are also

triggered whenever a simulation event is fired in the Engine, for logging purposes.

ExceptionEvents occur when models trigger hazards either explicitly or implicitly. These

events are used solely to log these anomalous occurences.
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ModelStateEvents indicate when the state of the ModelManager changes during a

simulation run. These events occur only when a new simulation entity occurs in the

system.

4.3 Simulation Interface

4.3.1 SimHazard UI:

Aside from the raw simulator functionality, there is a distinct need for a user interface

that brings the full utility of system to bear while maintaining ease of use. The aim of the

SimHazard UI (SUI) is to engender a design/run environment that is both intuitive and

powerful. To this end, the SUI borrows from the visual metaphor found in many visual

builder applications like IBM's Visual Age for Java and Microsoft's Visual Basic [13].

These development environments enable the construction of programs from visual

component, with minimal hand coding. Similarly, the SUI provides a graphical means of

constructing simulations without having to manually compose the Model Definition File.

The SUI encapsulates the View and parts of the Controller in an MVC architecture. Any

number of views can be used to interface with the simulator, though currently there is

only one. The basic GUI widgets/components are derived from the Swing library.

Figure 16 is a screenshot of the SimHazard UI.
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Figure 16: SimHazard UI

The SUI operates in two modes: design mode and simulation mode. Like most visual

composers, in design mode, the user can build the simulation by selecting models from

the Palette and adding them to the Design Pane. Once a model is created, its properties

can be edited using the Property Editor, similar to a beans or Visual Basic control

property sheet. Simulation parameters also appear in the Property Editor, under the

simulation runtitle, and can be edited as well. The File menu contains options for saving,

loading and creating a new simulation. These actions modify the simulation parameters.

Under the Design menu, there are additional features to load models from a user-

specified Model Definition File and refresh the Palette. Either pressing the start button or

selecting start from the simulation menu transitions to simulation mode. In simulation

mode, the interface lies dormant, allowing only a static view of the system as it runs. The

components, however, do change in response to model termination and pending events.
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If specified, the Simulation Progress window appears during simulation mode displaying

simulation and exception events as they emerge.

4.3.3 Palette

Model The Palette acts as a graphical repository for the models in the
Node

NetworkNode
Link simulation. When the SUI initializes, it uses the Classes util class to

DEthernetLink

A e directionalLin search for the models in the system. These models are then organized
D SentinelAdapte

DummyAdapter in the palette tree according to type. Selecting a model in the palette
EHAdapter

Iteimapter prepares the SUI for adding the indicated model into the simulation.
B Networkinterfac
RoutingService

Figure 17: Design Palette

4.3.4 Design Pane

The Design Pane is

essentially a display of the

models in the simulated

ddednodel topology. The Design Pane

* is based on GEF, Graph

Editing Framework [20].

GEF provides a basic set of

Figure 18: Design Pane graph objects that

SimHazard subclasses to construct the visual components. In addition, GEF includes

features for selecting, grouping, aligning, distributing, and reordering elements. Models

are added by choosing a model from the Palette and clicking on the design pane. Once
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the model is created and appears, it can be selected and positioned. Right-clicking on a

model brings up a popup menu. The menu contains some generic graph editing features

as well as model specific options for editing hazards, message logs, monitors, etc,

depending on the model's capabilities. Selecting an editing option spawns an editor

dialog for the chosen option.

4.3.5 Property Editor

The Property Editor emulates the behavior of component

property sheets. By using Java reflection, the editor

displays all model attributes that are exposed via get/set

methods. Moreover, the Property Editor also displays

Parameters for objects/models that implement the

Viewable interface. Using this tabular format

maximizes information display, as all the attributes can

Figure 19: Property Editor be viewed and edited on the same panel. Double

clicking on an editable field engages the editing mode. For most simple values, the user

can edit the value in place. However, for more complex data types like Files and

Parameters, an editor Dialog is started to handle the editing. Users can select the model

to edit by using the combo box list of simulation models, or by selecting the desired

model in the Design Pane. To show the Property Editor, users must choose the Edit

Properties option in the Design menu.
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Chapter 5: Design Evaluation

Having lain down the ironwork, this section proceeds to evaluate the design piece and

discuss the decisions and trade-offs made. At the end of the section, a brief summary of

preliminary results demonstrates system viability in the context of simple experiment.

5.1 Simulation paradigm evaluation

Using a DES approach instead of the isochronous time-sliced brings benefits on both the

performance and design level. As explained in section 2.1, isochronous methods that rely

on a fixed time-slice 6t may incur heavy performance penalties due to periods of

inactivity which may result in useless simulation cycles. The problem is most visible in

the case where model behaviors vary greatly in duration. The size of dt is fixed by the

duration of the shortest action to disallow multiple actions in a single simulation cycle.

Given this restriction, if only long duration actions are running in the simulation, or if the

system is waiting for a timer to expire on the order of hundreds of 6t, an incredible

number of simulation cycles would be wasted as the simulation chums toward the

completion of those activities. Since the nature of the simulation mimics this scenario,

using time-slicing is prohibitively expensive.

Moreover, using the isochronous approach would require all the models to record the

progress of its actions at each cycle. Behaviors with multiple effects would need to be

divided into smaller actions, atomizing the structure of the models. Imposing this

requirement on agents would incur an unaccepatably high development penalty for

modifying the agents to fit the schema. DES has its own set of limitations in its inability
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to handle true "interrupts". Once an event fires and finishes processing, the execution

state no longer exists. Should an interrupt, such as a hazard, arrive prior to the done time

of the event, there is no way to fully reverse or redirect the event processing since it has

already completed in real time. For normal models, this does not pose a large problem,

as event cancellations remedy the invalidation of results. However, for agents, it can

prove to be troublesome, since a high priority message may request certain changes in

behavior, not just task termination. SimHazard attempts to circumvent this problem by

using the pause mechanism as described in section 4.2.3. For most simulations, this

should be a sufficient fix. Thus, for its performance and ease of development, DES still

emerges as the paradigm of choice for the SimHazard system.

5.2 Module Design evaluation

5.2.1 Engine

Several issues exist in the design of the Engine. Engine-agent synchronization is

necessary to ensure event serialization for agent message handling. However

synchronization introduces a model-specific event triggering in the Engine event loop.

To avoid being tied to a specific model hierarchy, the Model interface should be extended

to include Threaded or AutonomousModel interfaces. Such an interface would notify the

engine to use synchronization without binding the process to a specific object hierarchy.

A related issue is the use of message/event queues in the Engine. With the restriction that

agents can only handle one message at a time, comes the need for agent message/event

queuing. However, there is no fundamental constraint on agents that would prevent

simulated multi-tasking. Although multitasking could lead to multiple task threads

53



existing at the same time in the agent, only one will ever be executing. The agent would

only need to manage its tasks thread. Lastly, it would probably be more appropriate if

Hazards were treated as full-fledged simulation events, rather than special events

associated with a given model. This would consolidate the event execution mechanisms

and improve modularity.

5.2.2 Model Manager

The intent in designing the Model Manager to be a centralized model "factory" is both to

hide the complexities of model construction and to make the Model Manager more bean-

like and self contained. Objects interfacing with the Model Manager and the simulation

as a whole should not have to deal with internal simulator issues. Moreover, the

simulation should have control over what models can be used in the system. The use of

the LayerManager interface is part of an attempt to maintain a model neutral design

overall. Enforcing a model neutral design means less work when adding new models or

model types e.g. physical models (buildings, etc). Using pluggable interfaces like the

LayerManager enhances extensibility and allows the Model Manager to be used with a

wide array of models for different types of simulations. Coupled with the extensive use

of dynamic class loading, it gives the simulator extreme flexibility. Building off this

foundation, the simulator could even provide simulation templates to define the type of

simulation desired, and switch between templates on the fly.

Logging in the system follows the same extensible design pattern of using pluggable

classes and object hierarchies to achieve extensibility. Currently there are only a few
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classes in the hierarchy, and the addition of more powerful subclasses for creating user-

defined metrics would significantly benefit the system.

5.3 Interface evaluation

As a whole, the User Interface succeeds in providing a useful and intuitive front-end to

the simulator. The visual composition metaphor is a relatively familiar for the intended

user audience of SimHazard: Agent Researchers and Developers. Leveraging the GEF

libraries reduced the design workload by uncountable degrees. However, limitations in

the GEF design may predicate the re-design of the Design Pane and visual layout

modules. Further adjustments to the interface are needed as well, to improve on the

overall utility and look and feel of the system.

5.4 Framework evaluation

5.4.1 Object frameworks

Both the Model and AgentAdapter frameworks stress the use of extensible architectures

in their design. Again, this is to allow the system to grow and adapt to the needs of the

user and the simulation domain. The extensive use of interfaces to define models and

functionality ensures that the system can accommodate most any type of simulation

model. Using method overriding, in network models and agent adapters for initialization,

finalization, and textification, leverages the method chaining design pattern to

simplify framework extension.
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5.4.2 Event frameworks

Overall the hazards, along with the probabilistic parameters provide a simple exception

scripting mechanism suitable for this initial design. The most interesting exception

events in the current system deal with model death and performance issues which are

easily implemented by this design. However, more complicated simulations may require

more sophisticated approaches to hazard scripting. Using the event-listener design

pattern to model many of the module interactions increases the modularity of the design

by focusing attention on event-driven behavior: entities act and respond to events

generated by other entities. This pattern can be exploited, however, to render the system

fully component-based and event-driven.

5.5 Evaluation of preliminary results

To test functionality and garner preliminary results, a simple experiment comparing

shared-service exception-handling vs. heavyweight protocol exception-handling

performance was devised. The agents themselves are simple single-threaded entities

implementing a basic version of the Contract Net protocol. To interface with these

agents, the Demo and Simple Adapters were constructed. An exception handler

prototype, based on the same agent architecture, provided the shared-service exception

handling, while an internal switch activated the agents' heavyweight protocol. As a

simplification, SentinelAdapters were created at every node to act as a message rerouting

wrapper. Every message sent by an agent was first routed to the exception handler, then

sent on its way to the intended recipient. In a more realistic simulation, these

SentinelAdapters would embody agents themselves, performing distributed monitoring
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tasks and communicating with the exception-handler. High priority exception-handler

messages were rendered immune to network and node delays as a simplification as well.

The goal of the experiment was to measure the usefulness of the shared exception

handling approach in dealing with subcontractor agents that may crash unexpectedly after

having been awarded a task but prior to completing the work. It works by periodically

monitoring the "health" of subcontractors and assisting in the immediate reassignment of

tasks performed by failed subcontractors. In the absence of this "social monitoring", the

heavyweight variant of the contract net protocol used in the experiment only checks for

subcontractor death after a task result fails to arrive by a specified deadline. The

experiment, itself, involves agent tasks of varying complexity for which a single agent in

the contracting chain dies prior to completing its task. Figure 20 depicts the results of the

experiment, showing that the exception handling service does reduce the average contract

completion delay by a greater factor than the normal heavyweight protocol [1].
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Completion delay of contract net-based supply chains
in the face of subcontractor failures
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Figure 20. Effect of a "social monitoring" institution on the completion delay of
supply chains where at least one subcontractor agent unexpectedly fails.

Chapter 6: Conclusions and Future Work

Designed for ease-of-use and extensibility, SimHazard uses a novel blend of DES

simulation and flexible, framework based design to engender an agent-architecture

neutral simulation test-bed for observing and extrapolating agent behavior in an

exception-riddled environment. Exploiting the generality of Model interface, the

simulator core modules can control, drive, and store a variety of simulation types. The

NetworkModel and AgentAdapter hierarchies provide an easily extensible object model

foundation for creating new simulation elements and incorporating agents of different

architectures. By exploiting a familiar development interface metaphor, the SimHazard

User Interface exposes simulator functionality in an easily accessible way. Being a first
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design implementation, the current system benefits greatly from the extensibility of the

SimHazard design. Extending the system to include additional functionality and expand

on various aspects of the simulation is simple and requires no changes to the overall

system architecture. This insures that changes to one module will not propagate to

others. As a final note, throughout the implementation of SimHazard, leveraging of

existing software libraries expedited development immeasurably.

There are many areas in which the SimHazard system can be improved and extended.

Listed below are several possible additions and modifications along with a brief

description for each.

Modules:

Beanify: to support component-based software and augment the utility of SimHazard,

realizing the modules as certified Java Beans would allow the system to be easily

embedded and integrated in a larger system/environment.

Client/server: As mentioned in section 4.1.1, the Simulation Manager has the potential

for moving to a server or servlet design as part of client-server/web-based application.

This would greatly increase the viability/accessibility of the system.

Run scripting: One very useful feature would be to incorporate a generic run scripting

mechanism in the Simulation Manager. Many of the experiments intended for

SimHazard are permutations of a basic simulation template. Providing a way to specify a
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template and the variation of parameters would greatly expedite the simulation process

and reduce tedious user interaction.

Consolidated logging: Currently the system partitions logging into the Simulation

Manager and Model Manager. A more centralized, unified logging pool would

streamline the design.

Simulation templates: As mentioned in the Run scripting item, simulation templates

would greatly facilitate the simulation design process. These templates would define the

basic simulation behaviors that would vary from run to run. The LayerManager used by

the Model Manager can form the foundation of such a system since it provides a

pluggable means of specifying initialization and finalization behaviors.

Hazard engine: More complicated simulations may require a more sophisticated explicit

hazard specification system. A Hazard Engine would provide an automated/scriptable

way of incorporating hazards on a behavioral level. Instead of specifying exact hazards

at certain times, the scripts would define what kinds of hazards should occur and under

what conditions. An inference engine would be a suitable candidate for the task.

Framework:

Network protocol stacks: Currently the protocol stack defined by the NetworkNode is

static and rigid. Generalizing the stack to allow an arbitrary number of layers adds the

possibilities for different/multiple routing schemes and end-layer wrappers.

60



Model verification: Conferring to models the ability to perform self-verification would

enable the enforcement of different simulation constraints, e.g. all interfaces must be

connected to a link, no node self-loops, at least one agent must be present in the system,

etc

General resource interface: As mentioned in section 3.1, SimHazard currently has no

support for general network resources. Including such elements as 1/0 devices and other

resources would broaden the simulated domain by introduce new simulated exception

behaviors such as resource deadlocking and resource poaching.

XML DTD's: DTD, or Document Type Definition, files define the structure of a specific

XML format. Creating DTD's for the Model Definition File and the Simulation

Parameter File would provide a more rigorous specification of the file formats.

Distributed agents: for scalability, enabling distributed agents would greatly reduce the

strain of running large numbers of agents. Currently, every agent runs in the simulator

process. Moving to a distributed paradigm would spread the load onto other machines

and possibly allow true event parallelism as well.

Interface

Button palette: Most visual builder environments represent components as buttons in the

palette. Emulating the design would make the interface even more accessible.
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Interface settings: As with most design environments, giving the user the ability to

customize system settings like font, color, etc., makes for a less rigid environment,

enhancing the user's UI experience.

Simulation indicators: Adding more indicators of simulation progress during a run would

improve the interactivity of the interface and provide the user with useful info.

Layout algorithm: Currently, the system does not save the layout of the simulation

models. When the models are loaded, they appear in a tangled mess that the user must

navigate manually. Providing an automatic layout algorithm would enhance the practical

aesthetic of the interface.
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Appendix A: User's Guide

Creating a Simulation

The best way to explain how to use the system is through an example. The goal of this

example is to demonstrate how to create a simulation, add models, edit parameters, and

save the results. To keep things simple, this example contains a small network topology

comprised of a few models.

1. Start SimHazardfrom the command line: java edu.mit.ases.simhazard.ui.SimHazard

2. Edit the simulation parameters:

2.1. open the Property Editor by selecting the Edit Properties option from the Design

Menu. The Property Editor should be displaying the simulation parameters.

2.2. Edit the parameters by double-clicking on the value field.

2.2.1. Set the runtitle to "TestSim", and set the duration to 100000.

2.2.2. For ParameterFile and ModelFile, press the edit button in the field. This

brings up a file chooser dialog. Go to the SimFiles directory and specify the

filename TestSim.spf for the ParameterFile. For ModelFile specify

TestSim.mdf

3. Create the models:

3.1. Select NetworkNode under the Node "folder" in the Palette. Add a node to the

Design Pane by clicking on the pane.

3.2. Click on the model and edit the parameters in the Property Editor. To keep

things simple, just change the name to Node A.

63



3.3. Create another node and set it to Node B.

3.4. Add an EthernetLink by choosing the corresponding item in the Palette and

clicking on the Design Pane. Set the link name to Link 1.

3.5. To connect the nodes to the link, interfaces must be added to the nodes.

3.5.1. Select the Networkinterface Palette item and click on a port in Node A.

Ports are the small squares bordering the node. The port should turn black,

signifying the presence of an active interface port.

3.5.2. Click on the interface port and drag the line to a link port. This connects

Node A to Link 1.

3.5.3. Repeat the process to connect Node B to Link 1.

3.6. To add Agents into the system, select an AgentAdapter from the Palette, under

the agent branch. Again, adding the chosen agent requires just a click on the

design pane.

3.7. Change the agent's name to Agent A and add it to Node A by clicking on an

agent port and dragging to a non-interface node port.

3.8. To complete the sample model set, add one more agent, Agent B, and connect it

to Node B.

4. Save the simulation and exit:

4.1. select the save option in the File menu, to save the simulation. This saves

Simulation Parameter File and Model Definition File as specified through the

Property Editor: TestSim.spf and TestSim.mdf.
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4.2. To save the SPF under a new name, use the Save As menu item. For the MDF,

either change the ModelFile simulation parameter or use the Save Models As

item in the Design menu.

4.3. Once the files have been saved, select Exit from the File menu to quit.

Running a Simulation

Continuing from the previous example, this segment explains how to run a simulation.

1. Start SimHazard: from the command line: as above

2. Load the Simulation Parameter File:

2.1. choose Open in the File Menu and select TestSim.spf in the File Chooser from

the SimFiles directory.

2.2. To load a different model set, select Load Models in the Design menu to choose

a new model file.

3. Start the simulation:

3.1. To start the simulation, press the start button or select start from the Simulation

menu. The start options should now be disabled, while the other simulation

controls should be online: pause, stop, reset. The Simulation Progress window

should also be visible now as the simulation runs.

4. Pause and Resume the simulation:

4.1. As the simulation runs, click on the pause button to suspend the run. Select a

model and view its properties in the Property Editor. At this point only

Parameters can be edited. Hazards can also be added via the popup menu editor.

4.2. Press resume to continue the run.
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5. Stop/reset the simulation and exit: a run can be manually terminated using the stop

button. However, this is a short simulation and the run should be over quickly.

5.1. After the run stops, select reset from the Simulation menu to bring the system

back to Design mode.

5.2. The run is complete, now select exit from the File menu and quit.

These examples cover the rudiments of creating and running a simulation using

SimHazard. Alternatively, to design a simulation, the model and simulation parameter

files can manually edited. After a simulation run, the log files can be examined and

processed. These include TestSim-sim.log, TestSim-exception.log, TestSim-

message.log, and TestSim-parameter.log.
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Appendix B: Simulation manager API

SimulationManager implements ExceptionListener, EngineListener
SimulationManager(String runtitle) Constructs a SimulationManager with the

given runtitle

void addPropertyChangeListener (PropertyChangeListener pcl) Adds a property change listener

void closeLogs() Closes the simulation logs

void engineStateChange (EngineEvent eevt) EngineListener method, handles changes in

engine state

void exceptionTriggered (ExceptionEvent evt) ExceptionListener method, logs exceptions

void flushLogs() Flushs the simulation logs

Engine getEngine () Returns the simulation engine

ModelManager getModel () Retuns the model manager

void initialize() Initializes the SimulationManager and its

constituent modules

void initializeRun () Initializes a simulation run

void initLogs(String path) Creates and initializes the simulation logs

void loadModelFile () Loads a Model Definition File

void loadParameterFile () Loads a SimulationParameterFile

void loadRun(String modelfile, String paramnfile) Loads a saved simulation run (not

implemented)

void pauseRun() Pauses a simulation run

void removePropertyChangeListener (PropertyChangeListener pcl) Removes a property change listener

void reset() Resets the Simluation Manager and its

modules

void resetRun() Resets a simulation run

void resumeRun() Resumes a paused simulation run

void saveModelFile () Saves the models into a ModelDefinitionFile

void saveParameterFile () Saves the simulation parameters into a

SimulationParameterFile

void saveRun() Serializes a simulation run (not

implemented)

void startRun() Starts a simulation run

void stopRun() Stops a simulation run

Simulation Parameters: for each of these parameters, SimulationManager implements a get/set method pair

Duration Duration of the simulation session in microseconds

StartTime Starting time of the simulation session in microseconds

ModelFile Model Definition File handle
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ParameterFile Simulation Parameter File handle

RunTitle Simulation RunTitle

SimulationSeed Simuation random number generator seed
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Appendix C: Model Manager API

ModelManager implements PropertyChangeListener
void addExceptionListenerToModels (ExceptionListener el) Convenience method for adding

ExceptionListeners to the models

void addLayerManager (LayerManager layer) Adds a LayerManager to the

ModelManager init/finalization framework

void addModelStateListener (ModelStateListener msl) Adds a ModelStateListener

void addSimulationListenerToModels (SimulationListener sl) Convenience method for adding

SimulationListener to the models

void clear() Clears the models from the

ModelManager

void createMessageLoggerFor (long id) Creates a message logger for a particular

AgentAdapter

long createModel (String modeltype) Create a model specified by modeltype,

returns the new model's id

long createMonitor(long logmod) Creates a standalone Model Monitor

public void createMonitorFor (long model) Create a Monitor for a specific model

public void finish() Finalize the models at the end of a

simulation run

void generateModel(String mdf) Generates the model from a Model

Definition File

LayerManager getLayerManager (Class type) Returns the LayerManager associated

with the baseclass type

MessageLogger getMessageLogFor (long modelid) Returns the MessageLogger associated

with the given modelid

Model getModel(long mid) Returns the model with the given modelid.

long getModelSeed() Retrieves the model simulation seed

Monitor getMonitor(long mid) Returns a standalone monitor

Monitor getMonitorFor(long mid) Retrieves the Monitor created for the

Model specified by mid

boolean hasModel(long mid) Whether a model exists in the Model

Manager or not

void initialize() Initializes the Model Manager

void initMessageLog (PrintWriter pw) Initializes the MessageLoggers with the

PrintWriter file stream

void initModels() Initializes the models for a simulation run

void initMonitors(PrintWriter pw) Initializes the Monitors with the PrintWriter

file stream

Enumeration layers () Returns the layers in the ModelManager

void loadModel(String msf) Loads a serialized model (not

implemented)

int modelCount() Returns the number of Models in the
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repository

int messageLogCount () Returns the number of MessageLoggers

in the repository

int monitorCount () Returns the number of Monitors in the

repository

Enumeration models () Returns the Models

Enumeration models(Class type) Returns the Models in the ModelManager

repository that subclass type

Enumeration modelTypes () Returns the types of Models supported by

the ModelManager

void propertyChange (PropertyChangeEvent pce) Implements the PropertyChangeListener

method. Used for handling model death

void refreshFac tories () Refreshes the Model Factories

dynamically

void removeExceptionListenerFromModels (ExceptionListener el) Convenience method for removing the

ExceptionListener from the Models

void removeLayer (LayerManager lay) Removes the LayerManger from the

ModelManager

void removeMessageLogger (long mid) Removes the MessageLogger from the

ModelManager

void removeModel(long mid) Removes the Model from the

ModelManager

void removeModelStateListener (ModelStateListener msl) Removes the ModelStateListener from the

ModelManager

void removeMonitor(long mid) Removes the Monitor from the

ModelManager

void removeSimulationListenerFromModels (SimulationListener sl) Removes the SimulationListener from the

ModelManager

Void resetFromFile(String resfile) Resets the Models from the specified

Model Definition File

Void resetModel(long mid) Resets the specified Model to default

values

Void setModelSeed(long seed) Sets the Model Seed

Void textify(String mdf) Textifies the Models in the specified Model

Definition File
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Appendix D: Engine API

71

Engine implements Runnable, SimulationListener
Engine () Constructs the Engine object
void addEngineListener(EngineListener el) Adds an EngineListener
void cancelEvent (SimulationEvent cevt) Cancels all events caused by the specified event
void eventFini shed ( SimulationEvent evt) Implements the SimulationListener method. Handles

the completion of the given event. Reschedules the
event target.

void eventFired (SimulationEvent evt) Implements the SimulationListener method. Handles
the generation of new events. Schedules the event.

long getEndTime() Returns the end time of the session
void insertEvent (SimulationEvent evt) Insert an event into the Engine manually
void pause() Pauses Engine processing. Fires an EngineEvent to

signal the change in Engine RunState.
void purgeModelEvents (Model targ) Purges all the events for the specified model
int queuedEvents() Returns the count of events in the event queue
void removeEngineListener (EngineListener el) Removes the EngineListener
void removeEvent (SimulationEvent revt) Removes the specified event from the event queue
void rescheduleModel (Model mod, long timestamp) Reschedules the specified model with at the given

timestamp.
void reset() Resets the Engine. Fires an EngineEvent to signal the

change in Engine RunState.
void resume() Resumes Engine processing. Fires an EngineEvent to

signal the change in Engine RunState.
run () Implements the Runnable method. Executes the

event loop.
int runState() Returns the RunState of the Engine
scheduleEvent (SimulationEvent evt) Schedules the specified event in the event queue
void setEndTime (long endtime) Sets the EndTime of the session
void start() Starts the Engine. Creates a new thread for the

session and runs it. Fires an EngineEvent to signal
the change in Engine RunState.

void stop() Terminates Engine processing. Stops the current
session. Fires an EngineEvent to signal the change in
Engine RunState.



Appendix E: Model Definition File DTD

<?xml encoding="US-ASCII"?>

<!ELEMENT mdf (model+, adapter+)>
<!ATTLIST mdf version CDATA #REQUIRED>

<!ELEMENT model
(processorspeed?, memory?, bandwidth?, latency?,
defaultinterface?, link?, service?, maxsize?,

queueadd?, queuecost?, routecost?, handlecost?,

sendcost?, maxprocesses?, router?, interface*,

resident*, host?, multitasking, concurrent-tasks,

reliability, parameter*)>
<!ATTLIST model

type CDATA #REQUIRED

id ID #REQUIRED
simseed CDATA #REQUIRED>

<!ELEMENT processorspeed (#PCDATA)>

<!ATTLIST processorspeed type CDATA #REQUIRED>

<!ELEMENT memory (#PCDATA)>
<!ATTLIST memory type CDATA #REQUIRED>

<!ELEMENT bandwidth (#PCDATA)>

<!ATTLIST bandwidth type CDATA #REQUIRED>

<!ELEMENT latency (#PCDATA)>

<!ATTLIST latency type CDATA #REQUIRED>

<!ELEMENT defaultinterface (IDREF)>

<!ELEMENT link (IDREF)>

<!ELEMENT service (IDREF)>

<!ELEMENT maxsize (#PCDATA)>
<!ATTLIST maxsize type CDATA #REQUIRED>

<!ELEMENT queueadd (#PCDATA)>

<!ATTLIST queueadd type CDATA #REQUIRED>

<!ELEMENT queuecost (#PCDATA)>

<!ATTLIST queuecost type CDATA #REQUIRED>

<!ELEMENT routecost (#PCDATA)>

<!ATTLIST routecost type CDATA #REQUIRED>

<!ELEMENT handlecost (#PCDATA)>
<!ATTLIST handlecost type CDATA #REQUIRED>

<!ELEMENT sendcost (#PCDATA)>
<!ATTLIST sendcost type CDATA #REQUIRED>

<!ELEMENT maxprocesses (#PCDATA)>

<!ATTLIST maxprocesses type CDATA #REQUIRED>

<!ELEMENT router (IDREF)>

<!ELEMENT interface (IDREF)>

<!ELEMENT resident (IDREF)>

<!ELEMENT host (IDREF)>

<!ELEMENT multitasking (#PCDATA)>
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<!ATTLIST multitasking type CDATA #REQUIRED>

<!ELEMENT concurrent_tasks (#PCDATA)>
<!ATTLIST concurrent-tasks type CDATA #REQUIRED>

<!ELEMENT reliability (#PCDATA)>
<!ATTLIST reliability type CDATA #REQUIRED>

<!ELEMENT parameter (value, distribution)>
<!ATTLIST parameter

type CDATA #REQUIRED
label CDATA #REQUIRED>

<!ELEMENT value (#PCDATA)>

<!ATTLIST value type CDATA #REQUIRED>

<!ELEMENT distribution (distributionparameter+)>
<!ATTLIST distribution type CDATA #REQUIRED>

<!ELEMENT distributionparameter (#PCDATA)>

<!ATTLIST distributionparameter type CDATA #REQUIRED>

<!ELEMENT adapter (taskfile?, parameterfile?, host, reliability)>

<!ATTLIST adapter

type CDATA #REQUIRED
label CDATA #REQUIRED
id ID #REQUIRED
simseed CDATA #REQUIRED>

<!ELEMENT taskfile (#PCDATA)>

<!ELEMENT parameterfile (#PCDATA)>

<!ELEMENT taskfile (#PCDATA)>
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Appendix F: Simulation Parameter File DTD

<?xml encoding="US-ASCII"?>

<!ELEMENT spf (title, modelfile, parameterfile, starttime, duration,

simulationseed)>

<!ATTLIST spf version CDATA #REQUIRED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT modelfile (#PCDATA)>

<!ELEMENT parameterfile (#PCDATA)>

<!ELEMENT starttime (#PCDATA)>

<!ELEMENT duration (#PCDATA)>

<!ELEMENT modelfile (#PCDATA)>

<!ELEMENT simulation-seed (#PCDATA)>
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