Volumetric Surface Sculpting
by
Aseem Agarwala

S.B., Computer Science and Engineering
Massachusetts Institute of Technology (1998)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 1999

(© Massachusetts Institute of Technology 1999. All rights reserved.

AULNOT « o e e
Department of Electrical Engineering and ¢ Computer Science
August 8, 1999

Certified by........ooii i N REERREEE e
Julie Dorsey
Associate Professor
Thesis Supervisor

-

Accepted byoiii Lo e R

Arthur C. Smith
Chairman, Department Committee on Graduate Students

MASSACRUSETTS msm T
OF TECHNOL 0y o

Volumetric Surface Sculpting
by

Aseem Agarwala

Submitted to the Department of Electrical Engineering and Computer Science
on August 8, 1999, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

In computer graphics, two types of geometric representations are widely used: surfaces
and wvolumes. Surfaces are infinitely thin skins defining the boundary of an object,
and have been successful in modeling realistic appearances. However, their lack of
information about the solid nature of objects make them inadequate for many applica-
tions. Volumes represent the entire solid geometry of an object in a three-dimensional
grid. Volumes, however, are ineflicient and cannot achieve high resolutions since they
must maintain information about internal geometry that is not pertinent to rendering
realistic appearances.

We have created a new, hybrid data structure, the volumetric surface, which com-
bines the benefits of surfaces and volumes. A volumetric surface represents solid ma-
terials in a thin region near the surface of an object in an efficient, multi-resolution
data structure. Volumetric surfaces are thus designed to exploit the coherency of
roughly surface aligned-layers of materials which are ubiquitous in real-world mate-
rials. Examples of such materials include wood, stone, and building facades.

To demonstrate the utility of volumetric surfaces, we present a system for the inter-
active sculpting of weathering and erosion effects on building facades. High-resolution
sculpting of layers of solid brick, plaster, and mortar are not possible with surfaces or
volumes alone. Volumetric surfaces are well suited to the representation and intuitive
editing of such complex appearances. This thesis presents detailed algorithms for the
sculpting system with a focus on efficient rendering and manipulation of volumetric
surfaces.

Thesis Supervisor: Julie Dorsey
Title: Associate Professor

Acknowledgments

First T would like to thank Professor Julie Dorsey for giving me this project and
supporting me with funding, office space, equipment, and other resources. I would
also like to thank Justin Legakis for the use of his ray tracer, his excellent C++ library
JLLib, and general graphics and C++ advice. Bob Sumner and Hans Pedersen were
also very helpful, along with the rest of the MIT Computer Graphics Group.

More thanks go to my family, including my parents Om and Kala Agarwala, my
sister Anjalika, and my brother Amit. Their support is much appreciated. I also
want to thank all the other people I have worked for over my time here at MIT
including Matt Brand at the Media Lab and Carol Strohecker and Joe Marks at
MERL. Their support really helped to cultivate my interests in computer graphics
and user interaction, and their faith in me is much appreciated.

And finally, thanks to the 249-foolz, the TDC crew, the bone boyz, and the brew-
dogg. Peace.

Contents

1 Introduction

1.1
1.2
1.3

1.4
1.5

Organization of Thesis
Traditional Modeling Primitives
1.3.1 Surfaces
1.3.2 Volumes v o e e
Related Work o

Organization of Systemo

2 Hierarchical Volumetric Surfaces

2.1

2.2

2.1.1 Complicationso
2.1.2 Advantageso
Inside the Slabo

3 Creating Solid Geometry

3.1
3.2

3.3

3.4

Slab Geometryo e
Solid Textures o v v o e e e e e e e
3.2.1 Materials
Sampling Solid Textures into Slabs
3.3.1 Subdivision e
3.3.2 Sampling the Solid Textures

DISCUSSIon e e e e e e e e e

11
12
12
12
13
14
16

17
17
19
19
20

4 Interactive Rendering

4.1 Design Requirementso
4.2 Design Alternatives
4.2.1 Hardware Accelerated Volume Rendering
422 Ray Casting« o o v i
4.2.3 Marching Cubes Lo
4.2.4 Height Fields
43 TFinal Designo
4.3.1 Culling Unnecessary Geometry
4.3.2 Quadtree Traversal with Neighbors
4.3.3 OpenGL Rendering
434 Results. Lo
4.3.5 Further Optimizations
44 Shading
4.4.1 Coordinate System Transformations
4.42 T-joints
4.4.3 Single Corner Traversal
4.44 Normal Storage
445 Results. e
4.5 Model Navigation

5 Interactive Sculpting

5.1 Graphics Updating
5.2 Tool Editing of Geometry
521 Tools. e
5.2.2 Tool Modification Steps
5.2.3 Tool Specifics
5.2.4 Modifying Normalso
53 Results. e

6 Final Rendering
6.1 Design Alternatives oo

29
29
30
30
30
30
31
32
32
33
33
34
34
36
37
37
38
39
40
42

43
43
46
46
47
49
o1
52

54

6.1.1 Marching Cubes 55

6.1.2 Direct Ray Tracing L 55
6.2 Final Design o 56
6.2.1 Restricted Quadtree Triangulation 56
6.2.2 Growing Height Fields 59
6.2.3 Patching Height Fields 64
6.2.4 Shading 66
6.3 Results e 67
Discussion and Conclusion 69
7.1 Shaded Results 69
7.1.1 Crumbled Bricko o 69
7.1.2 Plaster Over Bricks 70
7.1.3 Building Cornero 70
7.2 Future Work e e 73
7.3 Conclusion 75

List of Figures

1-1
1-2

2-1
2-2
2-3
2-4
2-5

2-6

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8

5-1
5-2
9-3

6-1
6-2

Examples of weathering effects on Venetian building facades. 10
Flow chart of the sculpting system. 16
A slab and its local coordinate system. 18
A brick wall composed of 81 slabs.o 18
A stone column composed of slabs. 18

A quadtree. Shown is (a) the spatial subdivision, (b) the tree hierarchy. 21

A linked list of materials, consisting of air, plaster, and brick from top

dOWN. . . . e 21
A complete slab with quadtree and materials. 22
Meshing algorithm on untouched brick wall. 35
Meshing algorithm on a sculpted section of brick. 35
Calculation of normals. oo 36
T-joint problems in shading., 38
Touching of the side corners., 40
Single corner traversal order.o 40
Shading algorithm on untouched brick wall. 41
Shading algorithm on a sculpted section of brick. 41
Two viewsof achisel. o 50
Wireframe model of a spherecut. 53
Shaded model of the same sphere cut. 53
a 2D example of patched height fields. 56
An example of a crack problem in quadtree triangulations. 57

7-1
7-2
7-3
7-4
7-5
7-6

A correct restricted quadtree triangulation.00 L. o7

Differences in brick subdivision that lead to bad shading. 39
The vertex join data structure. 60
An SAT’s pointers to vertex joins. 60
Examples of surface sharing for neighboring SAI’s. 61
A case of three found surface sharing agreements. 63
A contradicting case of four agreements. 63
Patch caseone.o 65
Patch case two. L 65
Patch case three. o 66
An example of final meshing on a tooled area. 68
Annother example of final meshing. 68
Interactive rendering of tooled, crumbling brick. 71
The ray-traced rendering. oL 71
Interactive rendering of a tooled, layered model. 72
The ray-traced rendering.o 72
Interactive rendering of a tooled building corner. 74
The ray-traced rendering. 74

Chapter 1

Introduction

Real-world appearances have a complex, time-varying nature that is frequently miss-
ing from today’s computer graphics. While natural materials are crumbled, eroded,
and stained, computer graphics models usually have a pristine and plastic look that
is not realistic. Even when more complex appearances are modeled successfully they
are accomplished through painstaking, time-consuming methods. The fundamental
problem is that traditional modeling primitives used to represent appearances in com-
puter graphics fail both conceptually and technically when used to create weathered
effects.

A representative gallery of complex, eroded appearances which are hard to rep-
resent using traditional computer graphics techniques is shown in Figure 1-1. The
first thing to note about these appearances is that they are volumetric in nature.
The crumbling brick in 1-la would not be well represented by a surface mesh. If
an artist wished to crumbled away brick, or remove plaster in 1-1c to reveal more
brick, a surface model would not provide the information about solid materials that
would be necessary to allow such operations. On the other hand, representing such
materials with a full volumetric model would not be practical. The information that
leads to these appearances is contained in a region near the surface, and the overhead
of maintaining internal volumetric information would prevent us from reaching high
levels of resolution.

In this thesis we introduce a new data structure, the wvolumetric surface. The

volumetric surfaces is a hybrid data structure that combines the benefits of volumes

Figure 1-1: Examples of weathering effects on Venetian building facades.

10

and surfaces. A thick layer of volumetric data is maintained near the surface in local,
surface aligned coordinate systems. We further enhance our data structure by making
it adaptive; we allow resolution in the model to vary depending upon where realistic
detail is most needed. A key feature of volumetric surfaces is that it is a conceptually
intuitive way to model appearances, and thus straightforward methods exist to edit
and model using volumetric surfaces. To this end, we present a three-dimensional
sculpting system in which users can directly edit geometry in 3D using real-world
sculpting tools. To focus our efforts we will work exclusively with the sculpting of
layered effects on building facades. The examples in Figure 1-1 depict the kinds of

appearances we may be able to model.

1.1 Goal

The goal of our system is to be able to allow artists to sculpt complex appearances
at resolutions greater than what has previously been possible. We feel that such
appearances can be modeled best at resolutions on the order of millimeters. The
specific goal, then, is to create an interactive sculpting system that can keep a whole
building facade in memory and allow modifications on the order of millimeters. This is
several orders of magnitude higher than what has been possible with other volumetric
sculpting systems. To keep the system interactive rendering rates must be maintained
above 20 frames per second. This certainly presents a difficult challenge, and some

of the key issues are mentioned below.

e The first and hardest challenge is speed. Allowing the modeling of highly complex
geometry at interactive rates requires that all algorithms in critical loops be as
efficient as possible. For algorithms that are used heavily in interactive loops, it

is sometimes necessary to sacrifice visual quality for speed.

e Another challenge is memory conservation. Storing large amounts of geometry
at high resolutions can require prohibitive amounts of memory, and so it is

necessary to make the data structures as efficient as possible.

e A high-resolution sculpting system is useless if it is not easy to use. Therefore

effective tools, an intuitive interface, and good tool control are necessary.

11

1.2 Organization of Thesis

The remainder of this chapter will describe traditional modeling primitives that vol-
umetric surfaces build on, related work that has inspired volumetric surfaces, and
an overview of the system. Once this is accomplished, a more complete description
of the data structure is presented. This is followed by a description of the various
components of an interactive sculpting system. Results are presented, as well as a

discussion of future areas of improvement.

1.3 Traditional Modeling Primitives

The two most common modeling primitives in three-dimensional computer graphics
are surfaces and volumes. Surface models are characterized by infinitely thin surfaces
around the interface of an object, thus leaving the interior hollow. Volume models
are defined by a three-dimensional grid of voxels that describe how space is filled by
an object. Both models have their strengths and weaknesses, but neither alone can

achieve the appearances we desire.

1.3.1 Surfaces

Surface models have been extraordinarily useful in the history of computer graphics.
Indeed, they are the basis of almost all modeling and animation to date. They work
well because in many applications only the surface of a model is of interest.

Surfaces are usually composed of many polygons linked together at corner vertices
to form a surface mesh [15]. They can be made more realistic by applying textures.
More complicated variants are parametric surfaces which allow mathematically de-
fined, curved surfaces. One of the first difficulties involved with surface meshes is
they are not easy to create or edit. Many 3D surface modeling packages exist, but
they are time-consuming to learn and difficult to use. Another recent option is 3D
laser range scanning; real-world objects can be physically scanned to create a surface
mesh [9].

Surface models become especially unwieldy when representing eroded appearances.

Surfaces have a conceptual problem in that they are hollow shells, and have no notion

12

of filling solid space. This makes it difficult to model and edit many types of objects,
such as the crumbling brick wall in Figure 1-la. A surface model of this wall would
be very difficult to build, and would consist of highly complex and irregular geometry.
Even if such a surface model were built, close inspection would reveal that it is only
a surface; hence it would appear unrealistic. Even more difficult would be interactive
editing of such a surface model. If an artist wished to crumble away more brick or
otherwise edit the geometry, this would be next to impossible to do with a surface

representation. There is simply no solid material with which to work.

1.3.2 Volumes

The other common data structure for three-dimensional objects is a volume. Here,
there is a notion of filled space, and it is described explicitly through an axis-aligned
grid of voxels. Volumetric models have proven useful in many applications such
as medical imaging where the inside of the human body can be visualized. However,
volumes suffer from what is often called the ‘curse of dimensionality.” The memory and
rendering overhead of volume models increases with the cube of the model resolution.
Also, the entire three-dimensional solid volume of a model must be stored, and this
incurs huge storage and computational overhead. This internal data is useful for
medical imaging or representing diffuse materials such as clouds, but is unnecessary
for modeling appearances of solid objects. In these ways the resolution of volume
models is severely limited, and is several orders of magnitude below what is required
for realistic appearances. Also, since the voxels are axis-aligned, volumetric models
often suffer aliasing problems when the surface of the model lies at strange angles
relative to the major axes. Axis-aligned voxels are thus not well suited to capturing
realistic, high-resolution effects that lie mostly near the surface.

The major benefit of volumes, however, is that it is an intuitive way to represent
many of the appearances we seek to create. It is also easy to edit interactively, and
several volume sculpting systems have been created to demonstrate this functional-

ity [16, 41).

13

1.4 Related Work

There has been much work done in the computer graphics field to model complex,
natural phenomena. Many interactive modeling tools have also been created. It is
useful to mention notable related work in surface sculpting, volumetric sculpting,
texels, layered models, erosion models, and interactive systems.

Surface models have been effective in capturing properties that occur only at the
surface of the model. Two-dimensional texture maps can be used to specify color,
transparency, and other 2D properties at high resolution. There have also been
attempts to capture 3D effects on surfaces. Bump maps [6] can be used to perturb
normals, thus simulating 3D-like textures. However, this technique is an attempt to
capture effects that are not meant to be modeled using thin surfaces, and thus suffer
from limitations such as bad silhouette images and unrealistic shadows. Displacement
maps [14] are used to specify a position offset from the surface, thus capturing a 3D
effect. Displacement maps are similar to our technique, but have the significant
limitation that under-cuts beneath the surface can not be represented.

Many attempts have been made to use surfaces as a flexible modeling tool. Various
papers have been presented on systems that allow sculpting and free-form deforma-
tions of surface models [8, 27, 32, 37, 42]. However, these attempts have met with
limited results and are complicated by the cracks, folds, and self-intersections than
can occur with surface sculpting. The problem is that infinitely thin surfaces are not
a good primitive for sculpting; it makes more sense to sculpt solid materials.

Another approach to capturing complex phenomena using surfaces is to represent
a surface as a composite of many layers. RenderMan [2] has been used this way with
good success, as evidenced by some of the convincing imagery from Pixar’s films.
This technique was also used to model metallic patinas on surfaces as they weather
over time [12]. While many effects can be captured with layered geometry, they are
still limited by their attachment to a surface.

Volumes are another approach to 3D modeling. Volume models treat a model as a
solid, filled object in space. This makes many modeling tasks, such as sculpting, much

easier. Volume sculpting was introduced in [16]. In this system a user could move a

14

tool in 3D space and locally edit the volumetric information. At each step marching
cubes[24] was performed to calculate a surface model that was then rendered. Volume
sculpting was significantly extended in [41], where localized volume ray-casting was
used. A haptic interface was added to volume sculpting in [5], which made interacting
with a 3D volume much more intuitive. While volume sculpting produced some
nice results, all these systems are severely limited in resolution. Since only coarse
models can be sculpted the resultant objects are not at all realistic or impressive.
By discarding the inner voxels we hope to be able to provide for high-resolution
volumetric sculpting near the surface of the object.

Another approach to modeling with volumes is volumetric textures, or texels.
Texels were introduced in [21] and were very effective in rendering furry surfaces.
Texels are similar to our notion of volumetric surfaces in that it attempts to maintain
information of a volumetric nature near the surface of an object. Also, our notion of
a thick skin around models is shared by texels. Texels were extended in [29, 28, 26].
Texels work well when attempting to model complex repetitive geometries like fur and
foliage near the surface of an object. However, they cannot be interactively sculpted.
Also, each texel must contain one of a limited number of pre-defined objects, and
these cannot be modified in any way.

There are various other examples of previous systems that have inspired the direc-
tion of this work. In [13] eroded appearances caused by water flow were modeled using
particles systems. An excellent example of an elegant interactive modeling system
was presented in [18], where a user was able to paint directly on 3D surfaces. The
painter could even use displacement maps to capture more complex effects. Many of
the design metaphors presented in this paper affected interactive systems that have
followed it. More sophisticated 3D painting systems have followed [1], but since all
these systems work with surfaces they suffer from the same limitations.

And finally, the concept of volumetric surfaces was first introduced in [11]. This
system, which was developed concurrently with our sculpting system, uses volumet-
ric surfaces to numerically simulate weathering effects in stone. There are two main
differences between this system and ours. First, the stone weathering system fills

the volumetric surfaces with a discrete volumetric grid. We use a different, multi-

15

Sculpting <
Solid 6

Textures
Hierarchical Interactive
Volumetric |——P» Rendering
sSurfaces
Slab
Geometry Final
P! Rendering

Figure 1-2: Flow chart of the sculpting system.

resolution data representation that will be described in depth. Second, the stone
system uses numerical simulation to achieve complex appearances. We focus on in-

teractive sculpting.

1.5 Organization of System

The sculpting system was implemented in C++ [40] using the openGL [44] graphics
library. It is designed to run on graphics hardware accelerated machines such as
SGI’s. The overall sculpting system is organized according to the flow chart shown
in Figure 1-2. The first task is to create the initial volumetric surface geometry. This
is done by combining volumetric surface containers (called slabs) and solid textures
(Chapter 3). Once this is done we pass the data to an interactive sculpting system
for editing. The two main components of this system are the rendering of geometry
(so that the user can see where he or she is sculpting, Chapter 4), and the actual
algorithms involved in altering the geometry (Chapter 5). Once the user is done
sculpting, a high quality surface mesh of the volumetric surfaces is created for ray-

tracing and final image output (Chapter 6).

16

Chapter 2

Hierarchical Volumetric Surfaces

The hierarchical volumetric surface is a multi-resolution data structure for represent-
ing complex, volumetric geometry near the surface of an object. It is designed to
exploit the coherency found in models that consist of layers of materials that are
approximately surface-aligned. While this data structure has the potential to be use-
ful in a wide range of applications, we will focus our examples on the modeling of

weathered building facades consisting of layers of materials.

2.1 Slabs

The fundamental unit of volumetric surfaces is the slab. A slab is a volume delineated
by eight corners, as shown in Figure 2-1. This volume has a local coordinate system
defined as the tri-linear interpolation between eight corners. The interpolation con-
stants u, v, w are valid in the range [0,1] and are the variables in the local coordinate
system.

These slabs are put together to form a thick skin around an object. Slab geometry
is constrained such that each slab may only have North, South, East, and West
neighbors, and neighbors must share the appropriate vertices. An example of a brick
wall composed of a 9 x 9 grid of slabs is shown in Figure 2-2. Another example of
slabs composing a section of a stone column is shown in Figure 2-3. Note that slab

geometry is very similar to texel geometry in [29].

17

Figure 2-1: A slab and its local coordinate system.

Figure 2-2: A brick wall composed of 81 slabs. Figure 2-3: A stone column composed of slabs.

18

2.1.1 Complications

One of the complications this structure creates is that the data is in a separate
coordinate system from the global coordinate system where geometry would be ren-
dered. Thus, two of the most heavily used procedures in our system convert local
coordinates to global, and vice versa. Converting local coordinates into global is a
simple tri-linear interpolation of the slab corners. This procedure is the most heavily
used during interactive rendering, and so it must be computed quickly. The fastest
algorithm is presented in [20] and can accomplish tri-linear interpolation of three-
dimensional coordinates in 21 multiplies. This algorithm was implemented in our
system. Converting from global to local coordinates is much more difficult as it in-
volves taking the inverse of a cubic polynomial. So, an iterative numerical scheme
must be used to calculate this conversion. As a result it is important to minimize the
use of this conversion in any critical loops.

Yet another complication is the distortion problem. The slabs are not constrained
so that opposite sides of the slab are parallel. This can cause the local coordinate
system to be distorted. This means that a straight line in slab coordinates may be
curved in global space, and vice versa. This causes many problems, as many of the
assumptions we make in Euclidean geometry will fail as we go between coordinate

systems. Examples of these problems will appear later.

2.1.2 Advantages

This slab structure is complicated but has several advantages. For one, slabs of local
coordinate systems allow us to roughly align coordinate systems and the surfaces they
are representing. In traditional volumetric schemes there is one global, axis-aligned
coordinate system. This leads to aliasing effects when the surface of the object cuts
at angles across the global coordinate system. Here we minimize this effect by using
separate, local coordinate systems that follow the surface. This allows the appearance
of higher resolution without additional storage.

Another advantage is that these slabs are well positioned to take advantage of
coherency in objects that are composed of layers of materials. Since the local co-

ordinate system is roughly surface-aligned, there should be significant coherency in

19

the u, v plane, and a constant number of material boundaries in the w direction that
correspond to the number of layers of materials in the object. This allows us to use
a unique, multi-resolution data structure that in the average case grows O(n?) with
respect to resolution rather than O(n?) of traditional volumetric data. This is the

advantage afforded by volumetric surfaces.

2.2 Inside the Slab

To take advantage of this coherency we use a two-dimensional spatial subdivision
scheme called a quadtree [36] to fill the slab. A quadtree is a simple, hierarchical
data structure that divides squares into four equal components recursively until the
desired resolution is reached. An example is shown in Figure 2-4. The tree hierarchy
depicts how such a quadtree would be represented in memory. The leaf nodes are
shown in red, and the non-leaf nodes are shown in black. Such a quadtree is then
stretched across the u, v plane of a slab. In local slab coordinates the lower left corner
of the root level quadtree is (0,0) and the upper right corner is (1,1).

The advantage of using a quadtree as opposed to a regular grid is that we can
approximate using coarse resolution areas where the object being modeled is uniform
parallel to the surface. On the contrary, where fine detail is needed the quadtree
can subdivide to the needed resolution. The disadvantages are two-fold. First, we
must store non-leaf nodes that do not themselves contain geometry. This additional
memory, however, is trivial compared to the memory saved by adaptive resolution.
There are pointerless representations of quadtrees that store only the leaf nodes,
but many of the traversal algorithms that we later need are not possible with such a
representation. The second disadvantage is that algorithms operating on the geometry
become significantly more complicated. With a regular grid, data can be accessed
easily and efficiently. With a quadtree any access algorithms must be written in the
form of a tree traversal.

Now that we have described the two-dimensional subdivision in the u, v plane, we
can describe how the slabs contain three-dimensional volumetric data. At each leaf

node of the quadtree, a linked list is stored that specifies intervals of materials. The

20

(a) (b)

Figure 2-4: A quadtree. Shown is (a) the spatial subdivision, (b) the tree hierarchy.

w=1

w=.6

w=0

Figure 2-5: A linked list of materials, consisting of air, plaster, and brick from top down.

top of each interval is specified as a w coordinate, giving us floating point precision
in the third dimension. An example list of materials is shown in Figure 2-5. This
technique is similar to run-length encoding [7], except that instead of counting discrete
voxels, we specify floating point intervals. Also, note that this representation allows
under-cuts since intervals of air can be placed anywhere in the list.

A simple example of a complete, filled slab is shown in Figure 2-6. This slab
contains a small section of a brick wall. The quadtree has subdivided to a maximum
depth of 6, which means that a regular grid would need to have 64 x 64 cells. It can
be seen from the figure that many areas were coarse and did not need this resolution.
Other areas near the edges of mortar and brick boundaries did need this resolution,
and subdivided appropriately. The next chapter will describe how this slab was filled

with materials such as brick.

21

Figure 2-6: A complete slab with quadtree and materials.

22

Chapter 3

Creating Solid Geometry

The first task in creating a volumetric surface sculpting system is to import or create
the original geometry. Our unique data structure must somehow be filled by solid

material, and this must be done at adaptive resolutions.

3.1 Slab Geometry

The first task is to specify the geometry of the slabs. This establishes the local coordi-
nate systems that we can later fill, render, and sculpt. This is fairly straightforward.
First, the system takes as input a list of vertices in 3D space. The next input is a
list of slabs. Slabs are specified as eight vertices that form their corners. The vertices
are listed in integers that index back into the original list of vertices. It is up to the
user to make sure the slabs are well formed, and that slabs that should be neighbors
share the approriate vertices.

Once the slabs are specified, the system passes over the slabs and generates ad-
jacency information. Thus each slab stores pointers to its eight neighbors. This
algorithm takes O(n?) where n is the number of slabs, and is performed by having
each slab check every other slab to see if it shares certain vertices. Since generating
the adjacency information is a one-time pre-processing step it does not affect the

performance of the system.

23

3.2 Solid Textures

Solid textures are function in 3D space that map a location to a material [33, 31].
That is, given an (x,y, z) point it returns whether the spot is filled or not, and if it
is filled it returns the material that resides at that location.

For our simplified version of building facades we have created two general classes
of solid textures. The first is simply solid material that always returns the material it
represents. The other is brick, which returns empty if the point is in a space between
bricks, or solid if the point is in a brick. The brick solid texture is initialized by the
dimensions of a single brick, as well as the width of the gaps between bricks. A brick
solid texture, then, can be thought of in brick coordinates where a single unit in x is
the width of a brick plus the width of the gap, a unit in y is the height of the brick
plus the width of the gap, and a unit in z is the depth of the brick plus the width of
the gap. This technique is beneficial for two reasons. For one, it is easy to sample. An
input position can be converted to brick coordinates by dividing by the appropriate
brick unit length. By storing the percentage of the brick unit in each dimension
that is actually brick (as opposed to gap), we simply compare against this number to
determine the status of a position. To acheive the off-alignment of different rows of
bricks, 0.5 can be added to the y and z coordinates if the floor of either coordinate is
odd. Second, each brick can be referenced by a unique ID consisting of its (z,y, z) in
brick coordinates. This leads to a straightforward hash function, which will be used
in Section 3.2.1.

Solid textures have several other features that make filling volumetric surfaces
easier. First, ranges can be set in either direction. For example, a solid texture could
be set so that its = range is (—1,1). Any points outside this range would return
empty. Also, solid textures can be rotated, scaled, and transformed. Rather than
actually transforming the textures, the same effect is achieved by simply performing
the inverse transformation to any location being queried.

Also, solid textures can be organized into layers, where earlier layers take prece-
dence. This makes it easy to compose a brick and mortar wall. The first layer is a

brick texture, with its z range set to allow only one layer of brick. The next layer

24

is mortar, with its z range set slightly smaller so that the brick sticks out from the

mortar.

3.2.1 Materials

The material returned by a solid texture is returned (and stored) as a single byte. This
byte is used to look up a fuller material description in a global list of materials. This
technique saves significant memory since each interval of material in our volumetric
surface must know which material it is. Currently our materials only store a color.
However, since volumetric surfaces simply point to materials, many more properties
could be added without significant overhead. An example would be to store a hardness
factor that could control a material’s response to sculpting.

This material table is also used to acheive variety in colors of brick. We want
different bricks to have slightly different colors, and we do not want discernible pat-
terns on brick coloration across a wall. We thus store 23 (this is an arbitrary prime
number) different brick materials which vary in color. This color is generated by a
noise function whose expected value is ‘brick red.” Then, since each location maps
to a specific brick ID, this ID can be hashed into the 23 brick colors. This allows
any position’s brick color to be computed in constant time while still avoiding any
discernable patterns in brick coloration.

For our simple building facades, we have materials for plaster, mortar, and 23
different bricks. There is also a material entry for air. This framework could easily

support a variety of additional materials.

3.3 Sampling Solid Textures into Slabs

Now that we have slab geometry and solid textures, the final task is to sample the
solid textures into the slabs. This would be much easier if we had a discrete, regular
volumetric grid: we could simply somple the solid textures at their voxel centers. Our

unique data structure requires more complicated algorithms.

25

3.3.1 Subdivision

To begin filling a slab we create a root node quadtree, and specify the maximum
depth we want from the quadtree. This determines the maximum resolution. We also
pass in a solid texture, which itself can be composed of many layers of solid textures.
Then, in a depth-first manner we create nodes for the quadtree down to the maximum
depth. Each leaf node initializes its material list (a linked list of material intervals,
as discussed in Section 2.2) by sampling the solid texture using a technique that we
will discuss. Since we are using depth-first traversal, each step back up the tree will
stop at a quadtree with four child nodes. This quadtree will then compare the four
children nodes and decide if they can put approximated with one node. The criteria

for this is as follows:

1. Each child must be a leaf node. If a child instead has four of its own children it

clearly can not be approximated by one node.
2. The material lists of each child must have the same number of intervals.

3. The floating point w values for each interval and its neighbors must be the same
to within a floating point tolerance (usually set as the resolution determined by

the maximum depth of the tree).

If these criteria are met, we can delete each leaf node, and create a material list
for this node as an average of the lists of the leaf nodes. Note that since we are using
depth-first traversal, we do not initially create all the leaf nodes; this would require
prohibitive amounts of memory. Instead, as leaf nodes are created they are tested for

deletion as we ascend the tree.

3.3.2 Sampling the Solid Textures

To do this, we need to be able to create an initial material list from the solid texture
for each leaf node. Each leaf node has a central (u,v) location, but its w extends
from 0 to 1. Thus we need to sample the texture along a line. Note that this line is
in global space, which means the line could actually be a curve. But, since the line is

along a constant (u,v), the line is always straight.

26

Each solid texture, then, must be able to take two endpoints and return a linked
list of materials alone the line formed between them. This is easy for solid material
textures. The list is initialized to one interval of solid material, and then clipped by
any range limits.

The task is much more difficult for brick patterns. It is accomplished using the
observation that changes in brick material occur along constant z,y, and z planes
(rotation transforms do not complicate the situation since they are applied in inverse
to the input points). The list is initialized by first adding every possible location
where a change in material may occur along the specified line. Thus, every x,y,
and z plane within the endpoints is added, along with any range limits. The center
point of each interval is then sampled in order to assign a material. Finally, since
this procedure may add redundant events, one pass of the list is executed to delete
redundant intervals. This allows us to create a list of materials to floating point

accuracy.

3.4 Discussion

The above technique serves well to create example volumetric surfaces for our sculpt-
ing system. However, it requires that geometry be hardwired and that each solid
texture be mathematically defined. This makes it difficult for anyone other than the
creator of the system to create initial geometry.

The goal of our sculpting system is not to be able to create geometry, but instead
to be able to import existing geometry and add volumetric weathering effects. The
idea is to import a building facade, for example, and then use tools to crumble brick
or remove paint and plaster to reveal layers of material underneath. The focus of
the research in this thesis has been algorithms for fast, high-resolution rendering and
sculpting of volumetric surfaces. The ability to import detailed geometry is a time-
consuming task to engineer but does not pose interesting research questions. It is a
crucial feature, however, to make our system a useful tool. The examples used in this
thesis have been hardwired; this is not a feasible option for other users.

To this end, there are several possibilities for future processes to import geometry.

27

The challenge is that most buildings are CAD models, which can be generalized as
collections of polygons. To sample into volumetric surfaces we must be able to assign
a list of materials to any line in the scene. This could be done for CAD models by
intersecting each line with the polygons in the model using ray-tracing techniques.
This poses several problems, however. First, it is highly inefficient, but could be made
faster by placing the CAD polygons into octrees [35]. Second, it places requirements
on the CAD model. The polygons must correctly indicate which way they face so
that we know the boundaries of a material, i.e. when we are entering material or
leaving it. Second, the material of the entering polygon should match that of the exit
polygon. Otherwise there is ambiguity.

A better idea would to be create a set of building blocks. There would already
exist a set of pre-fabricated slabs, the most basic one being a section of brick. Other
blocks (such as windows, doors, arches) could be created by allowing users to fill
slabs with polygons. The system would then sample these polygon-filled slabs to
create volumetric surfaces using the same technique discussed for CAD models. After
the building blocks are created, an interactive system could be built to place these
blocks together like assembling Legos to make buildings.

The advantage of this technique is two-fold. First, basic brick wall sections form
the majority of building facades, and are best done procedurally with the techniques in
this chapter rather than through CAD modeling. This will save much pre-processing
time. We still allow more complex geometry to be created by a user, but in smaller
chunks that can be reused. Second, this technique would allow instancing. Rather
than store the volumetric texture for each brick section, we can dump this redundant
information by having the slabs point to one reference block. Then, when the user
actually sculpts a specific section, the reference slab could be copied in. This would
allow untouched expanses of wall to be stored with little memory and would enable
the modeling and storage of larger collections of buildings.

Thus, the techniques implemented for filling volumetric surfaces are able to provide
us the examples we need. However, to make this system accessible to a wider audience

and to make more impressive geometry possible, extensions will be necessary.

28

Chapter 4

Interactive Rendering

One of the harder challenges when working with hierarchical volumetric surfaces is
visualizing them. To create a sculpting system, it is necessary to render the volumetric
surfaces to the screen at interactive rates. This requires a technique that can render
complex geometry fast and in a manner that is visually faithful to the data structure.
Also, there are no established or obvious methods to render hierarchical volumetric

surfaces, and so one must be chosen from the many options.

4.1 Design Requirements

There are are many techniques that could be used to interactively render volumetric
surfaces. In order to choose the best method it is helpful to consider some of the

design requirements for an interactive rendering method.

1. The rendering must be fast. Rendering is a major bottleneck, and the faster our

rendering method the more resolution we can get from the sculpting system.

2. The method should be able to faithfully render any under-cuts in the volumetric

surfaces.

3. The rendering primitives must be locally updateable. When a tool edits the data
in a region of a volumetric surface, we only want to have to render the changed

region rather than the entire volumetric surface.

4. The rendering method must be amenable to a multi-resolution data structure.

29

4.2 Design Alternatives

There are many possible rendering methods, and it is fruitful to consider some of the

rejected solutions.

4.2.1 Hardware Accelerated Volume Rendering

There has been a flurry of recent research on hardware accelerated volume render-
ing [43]. These techniques use 3D texture hardware to render volume data in a series
of slices, which is very fast. These methods are perfect for volumetric surfaces in
every way except for the fact that they are not amenable to multi-resolution data
structures, which is design requirement number 4. This is because the 3D texture
buffer used is a regular grid. It would be interesting to see if a variant of this hardware

could be built that could render volumetric surfaces at rapid rates.

4.2.2 Ray Casting

Ray casting has been used in volume sculpting systems [41] to render at interactive
rates. In this technique a ray is cast from the eye point through each each pixel into
the scene. A big advantage of this method is that it is an image-order technique; to
render a scene, a task is done for each pixel of the image. This makes it very easy to
locally update the rendering during tool operations, since we just need to render those
pixels in the area of the tool. However, it also means that renderings that require the
whole image to be updated (such as a rotation of the model) are very slow. Also, this
technique does not use any hardware acceleration; this makes it significantly slower

than polygon-based methods.

4.2.3 Marching Cubes

Marching cubes [24] is a simple, fast, and high-quality method to generate a surface
mesh from a volumetric data set. It was initially not possible to do local updating
of a marching cubes solution, but a technique called incremental marching cubes [16]

developed for the first volume sculpting system solved this problem. It is also not

30

straightforward to use marching cubes for a hierarchical data structure, but it has
been done for octrees in a technique called adaptive marching cubes [38].

The problem with marching cubes is that it is designed for a discrete volumetric
grid, which our data structure does not have. It is possible to build such a grid
from our data structure, but adding this layer of indirection would take up precious

memory and processor time. It can also lead to contouring problems.

4.2.4 Height Fields

Volumetric surfaces are very similar to height fields. Height fields add 3D effects
to surfaces by specifying a displacement at each vertex in a surface mesh along the
normal at that vertex. This is certainly similar to our slab data structure except
for one major difference: volumetric surfaces can handle under-cuts. Height fields
have the advantage that they are usually rendered using polygons. Polygons can be
rendered very fast on graphics hardware accelerated machines using openGL. Also,
the rendering of height fields is a heavily researched field and we can borrow these
previously developed techniques. One area of research [17] is polygonizing a height
field accurately while minimizing the number of triangles, since fewer triangles lead
to faster rendering. The problem is that these methods generally use Triangulated
Irregular Networks, or TINs, which have very irregular meshes. If a local area of the
mesh changes, the whole mesh must be regenerated. This violates design requirement
3.

Another area of research is the regular triangulation of hierarchical height fields
organized in quadtrees [19, 23, 30]. This is clearly very similar to our data structure.
The difficulty in polygonizing a hierarchical height field is the avoidance of cracks, but
fast algorithms have been developed to do this. We will explore this method in Chap-
ter 6 when we do final rendering; however, it is unsuitable for interactive rendering.
First, these methods require that the quadtree be a restricted quadtree. This means
that the quadtree must be balanced so that no leaf node has a leaf neighbor whose
depth differs by more than one. Making a quadtree restricted involves adding many
nodes, and we do not want to place this restriction on our quadtree. Second, height

fields do not render under-cuts. This can be solved by patching together different

31

height fields where under-cuts occur, and this technique will be discussed. How-
ever, it is a complicated task and can not be done efficiently enough for interactive

rendering.

4.3 Final Design

The rendering algorithm that we finally settled on satisfies all the design requirements
and is fairly simple. Each interval of material is polygonized as a six-sided box, and
rendered to the screen as quadrilaterals using openGL. This is done during a depth-
first traversal of the quadtree. At each leaf node the list of materials is traversed. The
naive algorithm is then to render each solid interval as a six-sided box. The vertices are
converted from slab coordinates to global coordinates before output. This technique
is very simple but leads to a large number of polygons that are either redundant or
not visible, and this can slow rendering. For example, an entire interval could be
invisible if there is another interval of material above it and the neighbors are all
high enough in the w direction. Also, both neighbors that share a side render that
side when really only the higher neighbor need do so. Thus, various techniques are

necessary to polygonize in a way that minimizes geometry.

4.3.1 Culling Unnecessary Geometry

To use a minimal number of polygons, we add more information to the nodes of the
quadtree. Each node of the quadtree stores the minimum height of material in the
North, East, South, and West directions. For a leaf node this number is simply the w
value of the first interval in the material list. For non-leaf nodes, the minimum height
in a certain direction is the minimum of the the minimum height of the children in
that direction (for example, the NE and NW children to compute the N minimum
height). This information can be easily computed during the depth-first filling of a
slab, and must be maintained after any tooling. The information is relevant because
it informs neighbor quadtrees that any polygons below the specified height in that
direction will be obscured. For example, if a quadtree finds that its North neighbor

has a minimum height of 0.3, this quadtree must polygonize at least as far down as

32

.3 on the North side. Any polygons beneath that will be obscured. This information
adds four floats and thus sixteen bytes to each node of the quadtree; but the increase
in rendering speed from saved geometry justifies the memory expenditure.

So, to polygonize a leaf node the material list is traversed until it ends or the w
coordinate is below the minimum height in all directions. The top face of the top
interval is output. Then, each solid interval outputs the side faces in all four directions
(the top or bottom of the box is not necessary). The side faces either descend to the
next interval or to the minimum height of the neighbor in their direction. For under-
cut empty intervals, the top and bottom faces must be drawn, and they must face
inwards. When a neighbor in a certain direction does not exist (along the fringes of
edge slabs), the minimum height used is 0. In this fashion there is no unnecessary
geometry; every part of every polygon is visible from some angle at an external

location.

4.3.2 Quadtree Traversal with Neighbors

To use this technique quadtree nodes must be able to communicate with their neigh-
bors. A fast procedure exists to traverse the tree and find a neighbor in any direc-
tion [36], but in the worst case it takes on the order of the depth of the tree. We use
this procedure in the system (slightly modified to work across different slabs, using
the neighbor information stored within each slab), but it is not the best method for
this traversal. Since each leaf node needs to talk with all four neighbors during our
rendering algorithm, this procedure consumes too much time. Instead, a tree traver-
sal algorithm is used that passes a list of pointers to the eight neighbors to each node
as a parameter. The list can be calculated in constant time. This top-down traversal
with neighbors is a very useful algorithm, and will be used several times throughout

the system. It is implemented directly from [34], modified to work across slabs.

4.3.3 OpenGL Rendering

Finally, openGL calls are used to actually render the polygons. To achieve maximum
speed we keep an openGL display list for each slab. During rendering, we simply call

the display lists for the slabs that must be rendered; this saves the time necessary to

33

copy the vertex information from the client to the openGL server. This technique,
though, requires that openGL store all the vertex information. This consumes a
significant amount of memory, but is justified by the large speed increase in rendering.
We also use double-buffering to eliminate flickering. When an event occurs that
requires the graphics to be updated, the display lists are rendered into the back
buffer, and then the back buffer is copied to the front buffer. A final optimization
culls slabs that are outside of the viewing frustum. We use the gluProject () [22]
command to project the corners of each slab into window coordinates to create a 2D
bounding box for the projection of the slab. Then, if the entire slab is outside the

render window, the slab is not drawn.

4.3.4 Results

A simple wireframe model of our meshing algorithm can be seen in Figure 2-6 and 4-1.
A more complicated result achieved after interactive sculpting is shown in Figure 4-2.
Note that the results of this meshing algorithm are very aliased; in fact there are only
six different normals across all the polygons (unless there is distortion). If drawn in
this way, the shading quality will be unacceptable. Instead, a normal is calculated
for each vertex using information from the data structure. This shading helps fool
the viewer into not noticing the stair-step nature of the mesh, a problem that will be

discussed in Section 4.4.

4.3.5 Further Optimizations

Analysis of the performance of this rendering system reveals that the largest bot-
tleneck is the transmission of data from the client side to the openGL server. The
problem is that many of the vertices are called several times, and each time they are
called six floats (three floats for location, three floats for a normal) are copied to the
server. A fruitful area of future research would be to figure out ways to polygonize
our mesh while calling each vertex only once. Vertex arrays, a new feature in openGL

1.1 [44], may be another way to accomplish this.

34

Figure 4-1: Meshing algorithm on untouched brick wall.

Figure 4-2: Meshing algorithm on a sculpted section of brick.

35

Figure 4-3: Calculation of normals.

4.4 Shading

The generation of attractive normals is crucial to attractive rendering; using normals
per face that are calculated directly from our generated mesh would not be satisfac-
tory. However, our data structure does not have a clear definition of normals as there
is for a discrete grid; for a discrete grid with floating point densities, a normal at a
point can be defined as the density gradient at that point. In our case, since there is
no clearly defined notion of normals, an approximation must be found.

The general idea is depicted in Figure 4-3. Here, we see the top materials for four
adjacent leaf nodes. Although these leaf nodes may not share the same parent in
the quadtree, for our purposes, we can refer to them as the NW, NE, SE, and SW
nodes. The NE and SE nodes share their w heights, while the NW and SW differ
slightly. We want to calculate all the normals at the corners of quadtree nodes, not
at the centers. So, we can calculate one normal from the four nodes shown. To do
so we calculate a center point that averages the heights of the adjacent nodes. We
then define vectors from this point to the centers of the tops of the adjacent nodes, as
depicted by the arrows. To get normal vectors we take the cross-product of adjacent
vectors. This gives us four vectors: NExNW, NWxSW, SWxSE, and SExNE. We
define the normal at this corner as the average of these four cross-product vectors. In

the diagram it is depicted as a dotted line.

36

4.4.1 Coordinate System Transformations

The remaining question is the use of coordinate systems. The obvious method is
to compute this normal in slab coordinates, and then convert the normal to world
coordinates. The problem is that normals do not transform the same way that points
do. The mathematically correct way to transform a normal is to multiply the normal
by the transpose of the Jacobian of the tri-linear interpolation. The Jacobian matrix
is a 3 x 3 matrix of partial derivatives describing how slab coordinates change with
respect to world coordinates. This matrix is straightforward to calculate, but its value
changes from location to location within the slab. This makes the transformation of
normals too expensive for interactive rendering.

Next, we attempted to use a linear approximation of this transformation. In this
technique, two points are transformed to world coordinates: the center point and a
point slightly displaced in the direction of the normal. The subtraction of these two
points in world space should be the transformed normal. This approximation worked
fine when slabs were not distorted, but caused significant visual artifacts when they
were.

Finally, it was decided to do the entire calculation of the normal in world space.
Each point used in the calculation was transformed to world coordinates first, and
the cross-products were done in this space. This worked fine for both undistorted
and distorted slabs. The disadvantage is that five coordinate transformations are

necessary to calculate each normal.

4.4.2 T-joints

A T-joint in a quadtree occurs when a leaf node neighbors two smaller leaf nodes.
An example is shown in Figure 4-4, where the T-joint is indicated by a red circle.
T-joints cause problems throughout the system, and one example is shading. The
problem occurs when the normal calculated at b is not the average of the normals at
a and c¢. This causes a distinct visual artifact as the eye travels left to right across
the T-joint. To solve this problem, T-joints are detected during the calculation of
normals and handled as a special case. The normal at b is set to the average of the

normals at a and c.

37

@

C

Figure 4-4: T-joint problems in shading.

4.4.3 Single Corner Traversal

The calculation of normals occurs during a traversal of the quadtree. However, the
normals are calculated at the corners of the quadtree nodes. The naive algorithm
would just calculate the normal for each corner at each leaf node. However, this
would mean each normal would be calculated four times (except at T-joints, where
it would be calculated two times). To be efficient we need to design a traversal
algorithm that touches each corner of a quadtree leaf node exactly once, and it also
has to work across slabs as well. To do so we start with a quadtree traversal with
neighbors (see section 4.3.2). This passes an array A with eight members pointing
to neighbors. We then calculate normals in a top-down fashion, as depicted in the
following pseudo-code. This procedure is started by calling it on the root node, and
then proceeds recursively. The procedure TouchCorner (Direction D) calculates a
normal at corner D. The procedure ChildType () tells us whether this quadtree node is
the NW, NE, SW, or SE child of its parent. Depth is 0 at the root node, and increases
as we descend. GetChild(Direction D) gives us the child in direction D (out of
NW,NE,SW SE). BuildNeighbors(Neighbors A, Direction D) calculates a new

neighbor array from the current neighbor array and the direction we are traversing.

Traverse(Neighbors A) {

IF (depth==0) {
TouchCorner (NE) ;
IF (A[W]==NULL) TouchCorner (NW) ;
IF (A[S]==NULL) TouchCorner(SE);
IF (A[SW]==NULL) TouchCorner (SW);

}

ELSE {
IF (ChildType()==NE) {

TouchCorner (NW) ;

38

TouchCorner (SE) ;

}

IF (ChildType()==SE & (A[S]==NULL | A[S]->getDepth() < depth))
TouchCorner (SW) ;

IF (ChildType()==SW & (A[W]==NULL | A[W]->getDepth() < depth))
TouchCorner (NW) ;

}

IF (this is a non-leaf node) {
GetChild (SW)~->TouchCorner (NE) ;
GetChild (NW) ->Traverse(BuildNeighbors(A,NW));
GetChild (NE) ->Traverse (BuildNeighbors(A,NE));
GetChild (SW) ->Traverse(BuildNeighbors(A,SW));
GetChild(SE)->Traverse(BuildNeighbors(4,SE));

This algorithm works as follows. At the root level (depth=0) each slab touches its
NE corner. The other corners are touched if the neighboring slab that was supposed
to take care of it does not exist. The next chunk of code takes care of the side
corners, as shown in Figure 4-5. If there are no null neighbors and no T-joints, all
side corners should be taken care of by having the NE child touch its NW and SE
corners. However, if the S neighbor is absent or is a T-joint (detected by checking if
its depth is less than ours), the SE child must touch its SW corner. This is indicated
in the figure by the dotted arrow. Likewise, if the W neighbor is absent or a T-joint,
the SW child must touch its NW corner. Finally, if this is not a leaf node, we touch
the center corner between our four children and then traverse the four children. An
example of the traversal order is shown in Figure 4-6. Here, arrows from head to
tail show the order of the corners traversed. The first corner traversed is the far NE
corner, and its tail comes from outside the quadtree to show that it is first. This
traversal example assumes the neighboring slabs are null. Note that each corner is

touched exactly once.

4.4.4 Normal Storage

The last issue to consider is the efficient storage of normal data. Notice that since
normals are at corners rather than centers, each normal is shared by four different
quadtree nodes. It would be wasteful of memory to store normals in each quadtree
node, and it would more difficult to update after tooling. Instead, all normals are

stored in a bucket array that is a static variable of the quadtree class. Each quadtree

39

»
.
’
#
-
.
.
"

Figure 4-5: Touching of the side corners. Figure 4-6: Single corner traversal order.

node then stores integer pointers to each of its four corner normals. This cuts memory
for normal storage by two-thirds, and makes it easier to update without worrying

about consistency.

4.4.5 Results

Normals are initially calculated at each corner in one traversal with neighbors (see
Section 4.3.2). They are also recalculated after sculpting, and this is discussed later
in Section 5.2.4. Examples of shading can be seen in Figures 4-7 (which is the same
brick section as in Figure 4-1) and 4-8 (same as Figure 4-2). Note that this technique
does not shade under-cuts perfectly. To do so would add significant processor time to
shading, and it is not justified considering that the visual results with this technique
are better than expected for under-cuts. Another visual artifact noticeable is that
the shading is not uniform across the bricks; some bricks seem more bulgy. This is
because of differences in subdivision in the different bricks; the solution is to ensure
that the subdivision is fine where big changes occur (such as at the edges of bricks).
This will be done for final rendering, but is not expedient for the interactive system.
Interactive rendering must favor speed in the tradeoff between quality and efficiency.
Final rendering should favor quality, however, and must shade under-cuts better and

achieve better uniformity.

40

Figure 4-7: Shading algorithm on untouched brick wall.

Figure 4-8: Shading algorithm on a sculpted section of brick.

41

4.5 Model Navigation

Finally, when the user is not doing any sculpting he/she should be able to move
the model around to look at the desired parts; this includes rotation, translation, and
zoom. At the same time, rendering calls must operate in a constant coordinate system
without worrying about user transformations. To do this, two graphics coordinate
systems are maintained: the object system and the projection coordinate system. A
transformation matrix is kept that converts from object to projection coordinates.
When the user uses the mouse to rotate, translate, or zoom, these changes are mul-
tiplied into our transformation matrix. To keep in mind the big picture, consider all
the transformations that occur when a volumetric surface is drawn. Slab coordinate
are converted to object coordinates, then to projection coordinates, and then passed
to openGL, where several more transformations occur before reaching the screen.
Also note that to maintain maximum efficiency we cull slabs that are outside of the
viewport when rendering images during model navigation. We do this by projecting
the eight corners of each slab to window coordinates. If the slab is entirely outside
the viewport we do not traverse its quadtree. This speeds up rendering considerably

when the user is zoomed in.

42

Chapter 5

Interactive Sculpting

Now that we can fill our slabs and interactively render them, the next step is to
allow the interactive sculpting of volumetric surfaces. There are many components
to such a system. The first part is the ability to move a tool and render the part
of the graphical output that needs to be updated. It is important for speed to only
redraw the section of the output that is necessary. Next, it is necessary to modify the

volumetric surface geometry by the tool. Finally, normals must be recalculated.

5.1 Graphics Updating

If the entire scene were redrawn when a sculpting tool moved, sculpting would be very
slow. It is therefore necessary to update only the portion of the screen necessary. This
turns out to be much more complicated than expected.

The tool is moved with the mouse, but this is difficult since the mouse is a 2D input
device moving an object in 3D. To accomplish this, normal mouse movements move
the tool in a 2D plane parallel to the screen. When the middle mouse button is held
down, mouse movements move the tool in the depth direction. Mouse movements
must affect the tool in projection coordinates rather than object coordinates (see
Section 4.5) to maintain intuitive, screen aligned movements. At the same time, the
tool must affect the geometry in object space.

We have designed a set of steps that accomplish our objective. To begin, when

a sculpting tool is activated we make sure an accurate rendering of the entire scene

43

exists in both the front and back buffer. This sets up the initial conditions to a series

of events that are executed each time the tool is moved.

1. Three dimensional coordinates are calculated for the new mouse position. This

is done by using gluProject () to project the mouse into projection coordinates.

2. A 3D bounding box in object coordinates is calculated that encloses the tool
at its previous position and its new position. The projection of this box to the

screen should enclose the area that must be updated.

3. This 3D bounding box must be transformed to projection space so that it is
aligned with the screen again. To do this, the box is transformed by the
object—projection matrix (see Section 4.5). A fast algorithm for transform-
ing axis-aligned bounding boxes is presented in [4], and we implemented this

algorithm directly.

4. The front face of this bounding box is projected into the screen and stored for
later use. This information gives us a 2D bounding box in window coordinates

that tightly encloses the area where updating might occur.

5. Four vectors are calculated from the eye point through the corners of the front
face of the 3D bounding box into the scene. These four vectors delineate the
edges of a frustum in space such that any geometry within this space must be
redrawn. The naive and simpler alternative to this method (simply redrawing
any geometry that intersects the 3D bounding box defined in Step 2, without
any of the above coordinate transformations) does not work for several reasons.
One problem is occlusion; editing the geometry of one slab may reveal geometry
in another that does intersect the bounding box. This revealed geometry must
be redrawn. The second problem is tool rendering: the movement may reveal
geometry that was previously occluded by the drawing of the tool. Therefore, the
containing geometry that includes any geometry that must be drawn is a frustum
from the eye point into the scene, where the frustum edges travel through the

corners of the front face of the 3D bounding box calculated in Step 3.

6. This entire frustum is transformed from projection space into object space.

44

This is done by multiplying the four frustum vectors by the inverse of the

object—projection matrix.

7. Equations of the four planes of the frustum are calculated using the frustum

vectors in the format Ax + By + Cz = D.

8. We determine which slabs need to be redrawn by testing each slab against the
frustum. A plane test is conducted by taking the dot product of all eight corners
with the (A, B, () vector of one of the planes of the frustum. If all eight dot
products are greater than D, then the slab falls outside the frustum and does not
need to be redrawn. Otherwise, the eight corners are tested against the other
three planes. If the slab passes all four plane tests, it must be redrawn, and is

marked as such.

9. At this point the geometry of the slabs is edited. This task is discussed in depth

in Section 5.2.

10. The back buffer should contain the last rendering done in the previous execu-
tion of these steps. The front and back buffers are now swapped, making this

rendering visible to the user.

11. The back buffer should now contain the previous contents of the front buffer.
The goal is to update the back buffer with the contents of the front buffer. To
do so, we will copy the front buffer into the back buffer. However, for maximum
efficiency, we wish to copy the smallest region possible. This region in window
coordinates was calculated in Step 4. This section of the front buffer is copied

into the back.

12. Draw the tool geometry directly into the front buffer. This could in theory lead
to flickering, but since the tool geometry is very simple it is drawn faster than

the monitor refresh rate and does not flicker.

13. The slabs that were marked for redraw in Step 8 are redrawn directly into the

back buffer.

At this point the front buffer should be an image viewable to the user that contains

a correct rendering of the geometry and tool, though the geometry will be one step

45

behind. The back buffer will contain an image of correctly rendered geometry that is
the current state, without any rendering of the tool. These conditions are appropriate
initial conditions for the next execution of steps when the tool moves again. The fact
that the viewable image is one step behind does not cause a problem. This is because
tool movement is generally continuous, and the differential in tool position is small.

This series of steps is unfortunately complicated, but is the only method that will
guarantee correct rendering including any occlusions while minimizing the amount
of geometry rendered and maximizing efficiency. Other, simpler techniques were
attempted, but they either failed to be correct under strange occlusion situations, or

were very slow.

5.2 Tool Editing of Geometry

The next step is to enable the tool to modify the geometry of our volumetric surfaces.
The general idea is to subdivide the quadtrees within the region affected by the tool
to a certain resolution. Then, the actual geometry is subtracted from the material
lists in the quadtree leaf nodes.

5.2.1 Tools

In our system there are currently only two tools: a sphere and a chisel. It is easy to
add more, though. There are several requirements for the satisfactory definition of a

tool.

1. Each tool must know the maximum depth that it wants the quadtree to subdivide

to (or a resolution in millimeters that it edit at).
2. Each tool must have a bounding sphere, expressed as a radius in millimeters.

3. The geometry of the tool must be convex. As such it must be able to return 0, 1,

or 2 intersection points that are the intersection of a line segment and the tool.
4. The tool must be able to draw itself to the screen.

5. The tool must know its normal at any surface point (this is used in Section 5.2.4).

46

5.2.2 Tool Modification Steps

In Step 9 in the graphics updating loop above, the process of editing geometry by the

tool is started. This process occurs in another series of steps.

Intersecting Slabs

The first step is to intersect the bounding sphere of the tool with the axis-aligned
bounding box of each slab. This is done quickly using the algorithm presented in [3],
which finds the point in the bounding box that is closest to the sphere.

If no slabs are intersected, we are done. Otherwise, we should have one or perhaps
a handful of intersected slabs. We iterate over these. The following is done for each

such slab.

Entering Slab Space

We have already found the closest point in the bounding box of the slab to the center
of the sphere. This location will either be the center of the sphere (if the center of
the sphere is in the bounding box), or the point in the bounding box that is furthest
inside the sphere. We convert this point to slab coordinates (see Section 2.1.1). This
point may not return valid slab coordinates (valid is in the range [0, 1]), since not
all points in the slab bounding box are actually within the slab coordinate system.
In this case the slab coordinates are clamped to the valid range. This results in a
location in slab space that is closest to the center of the tool bounding sphere. We
are not guaranteed that it is in the bounding sphere, however. Also, in the case of
distortion this point becomes only an approximation to the closest point within the

tool.

Traversing the Quadtree

We now traverse the quadtree. For each non-leaf node traversed, we find the closest
point in the geometry of the node to the center of the tool sphere (in slab space
a quadtree node is shaped like a box. So, we can use [3] again, as discussed in
Section 5.2.2). Note that this is done in slab space, so in the case of distortion the

closest point in slab space may not be the closest point in world space. However,

47

it is a sufficient approximation. If the point is within the tool, we traverse the four
children. Otherwise, we no longer explore this section of the tree. Once we reach leaf
nodes, we first make sure the leaf node is as deep as the tool resolution calls for. If it
is not, we subdivide the node and traverse the children. For leaf nodes that are at the
correct resolution and within the tool, we commence to edit their material lists. Note
how the hierarchical nature of the data structure allows us to efficiently visit only
those nodes that are within the tool. The others are quickly pruned from the search
tree before any of their leaf nodes are visited. This would be much more difficult with

a regular grid.

Editing Material Lists

The general idea for editing a material list is as follows. The material list exists along
a line in space defined by two endpoints (v and v are placed at the center of the
node, and w goes between w = 0 and w = 1). This line is fortunately guaranteed to
be straight in both slab and world space. Whichever tool is in use is expected to be
able to take these two endpoints converted into world space and return two g values
that are linear interpolation values indicating where the line enters and leaves the
geometry of the tool (tools are constrained to be convex). The values of ¢; and g2

lead to five cases.

Tool Intersection Cases

L (g <0)A(gz> D)V (@ >1) A (g <0))

In this case the entire material list is in the tool. Erase the whole list.

2. ({1 <O)A (g2 <0))V ((@1 > 1) Ag2 > 1))

The tool does not intersect the material list. Leave it as 1s.

3. (1 > 0) A (g <1)A (g >1)
The tool intersects the top the material list. In this case, traverse the material
list from top down. Remove intervals until we reach g; in the list. If the interval

containing ¢q; is air, do nothing. Otherwise set the top to ¢i.

4. (>0 A (<A >1)

48

The tool intersects the material list from behind. Do the same thing as case 3,

but backwards.

5 (1 >0 A (@ <) A(g2>0)A (> 1)
The tool is in the middle of the material list, and thus will create an under-cut.
This is the most difficult case to handle. We first find the interval containing ¢s.
If the interval is solid we clamp it to the value of g2, and then insert an interval
of air. We then traverse the material list until we find ¢;, removing intervals
along the way. We pull down the start of this interval to the value of g1, unless
it is air in which case we remove the air interval we previously inserted. There
are several special cases to handle, such as when the same interval contains ¢,

and gs.

5.2.3 Tool Specifics

The above details work for all tools. There are several capabilities that must be
programmed separately for each tool. We explain these inner workings for two tools:

a sphere and a chisel.

Spherical Tool

Spherical tools are fairly straightforward. They are defined by a radius, and the
bounding sphere has this same radius. To draw the spherical tool we use the function
gluSphere () [22]. Intersection tests are done by calculating the distance of the point
to the center of the sphere, and comparing this to the radius. The normal at a surface
point is simply a normalized vector from the center of the sphere to the surface point.
Finally, we must be able to intersect the sphere with a line defined by two endpoints
and return two linear interpolation values.

Given the center of the spherical tool C , two endpoints of a line 131 and P;, a point
of intersection L, and the spherical radius r, the following vector formulas define a

sphere and linear interpolation result g.

(C—L)? =r?

Figure 5-1: Two views of a chisel.
b= +Q(P2 — Pl)

After significant algebra to eliminate L and simplify, these formulas reduce to the

following scalar quadratic equation.
(P — P)*)g* +2[(B - C) o (P, — P)lg+ (B = C)? = =0

It is first important to take the discriminant of this quadratic. If it is less than 0
the line does not intersect the sphere. Otherwise the quadratic formula should yield

values ¢; and gs.

Chisel Tool

The chisel tool is more complicated. A chisel in our system is a truncated pyramid and
is composed of six sides. The two end sides are constrained to be square. Therefore
a chisel is defined by three floats specifying the length of a chisel (I), the width of
the big side (w;), and the width of the small side (w,), as shown in Figure 5-1. The
normals to the chisel are the normals to the planes making up the sides of the chisel.
Note that since the chisel should be perpendicular to the screen it is always aligned
with the projection coordinate system such that the length of the chisel runs parallel
to the z axis. This makes calculations easier.

The bounding radius of the tool is the length of a line from the center of the chisel
to a corner of the big side, which is 12/4 + w?/2. To draw the tool, 12 lines are
drawn depicting the outline of the tool. Intersection tests are done in three stages for
maximum efficiency. First the point is tested against the bounding sphere. After this

test is passed, the point is converted to projection space (which the tool is always

50

axis-aligned with), and then translated so that the origin is the center of the tool.
The second test checks that the z coordinate is in the range (—1/2,1/2). We then
calculate the width w,, that is the width of the square slice of the tool that contains
the test point. The third test checks that the z and y coordinates are in the range
(—wWm/2,wn/2). This three-stage intersection is more complicated than it needs to
be, but is significantly faster than the naive alternative.

Finally, we must be able to intersect an arbitrary line with the chisel. Both end-
points are converted to projection space, and then translated so the origin is the
center of the tool. We first throw out cases where the entire line is outside of the
chisel bounding box. Then, the line is intersected with each of the six planes of the
tool sides. The normals to the planes can tell us whether the intersection point is an
entry or exit point. Note that since we are testing against entire planes there can be
spurious intersections. However, some simple case handling can eliminate these. The

found intersection points are then converted back to object space.

5.2.4 Modifying Normals

After the tool has edited the geometry we need to recalculate normals. This is a
tricky task, as calculating a correct normal requires knowledge of neighboring quadtree
nodes. We therefore cannot do it in the same quadtree traversal as the editing of ge-
ometry, since neighbors might not have been updated yet. Instead, a second traversal
of the quadtree is necessary. However, making two traversals of the quadtree at each
motion of the tool is prohibitively slow. So, we instead recalculate normals as a batch
job after the user lifts the mouse button, indicating that the tool stroke is over.

However, this means that the user will have poor visual cues while making a tool
stroke, since shading helps the user to see depth. Therefore, we make a guess at the
new normals during the original traversal of the quadtree. This guess is formed not
from the edited geometry but from the shape of the tool itself. The tool is asked for
its normal at the entering intersection point of the quadtree node material list and
the tool. This normal is reversed and assigned. Such a shading method gives a decent
approximation to the appropriate shading of the edited geometry.

While the user is performing a tool stroke, the system keeps track of which slabs

51

have been touched. When the user finishes a stroke, the system traverses the quadtrees
of the touched slabs and recalculates the normals using the same algorithm as in
Section 4.4. This provides better shading, and can be done quickly enough to not

annoy the user.

5.3 Results

The results of a spherical tool stroke in both wireframe and shaded renderings can be
seen in Figures 5-2 and 5-3. Note the subdivision level where the tool has touched

the solid materials.

52

Figure 5-2: Wireframe model of a sphere cut.

Figure 5-3: Shaded model of the same sphere cut.

Chapter 6

Final Rendering

After a user is finished sculpting erosion effects, it is desirable to be able to create
a high-resolution, high-quality surface mesh from the sculpted volumetric surfaces.
Such a surface could be imported into a user’s animation, or ray-traced to create a
photo-realistic image.

The first impulse is to use the same mesh generated for interactive rendering, as
discussed in Chapter 4. However, the design requirements of a mesh for final ren-
dering are quite different than those for interactive rendering. Speed is no longer a
consideration; rendering can take much longer since there are no interactive require-
ments. Instead, high-quality is the driving motivation. We also do not need our mesh
to be locally updateable; no further modification will occur.

There are several problems with our interactive meshing technique that make it
unsuitable for final rendering. For one, since the mesh is extremely aliased the sil-
houettes are unacceptable. Second, because of differences in subdivision levels there
is a lack of uniformity in shading; two identical bricks can look different in our inter-
active techniques. And finally, our interactive technique does not shade under-cuts
correctly. This is very noticeable for significantly large under-cuts.

Instead we need a new meshing algorithm, and there are several alternatives for

such an algorithm.

54

6.1 Design Alternatives

6.1.1 Marching Cubes

We considered using marching cubes in Section 4.2.3. Marching cubes works on a
discrete, volumetric grid dataset, which we do not have. However, such a grid could be
made from our volumetric surfaces through a form of volumetric scan conversion. This
option was rejected for interactive techniques because such a level of data indirection
would significantly slow rendering; this is no longer such a problem here. Problems
do arise with this technique, however. First, it is hard to generate such a discrete
grid that will not exhibit contouring problems when a marching cubes surface is
constructed. Second, the discrete grid generated would have to be uniform at the
resolution of the deepest subdivison. Hierarchical volumetric surfaces are designed so
that whole buildings can be stored in memory by keeping uniform areas at very coarse
resolution. Such coarse resolution can coexist with detail that exists at sub-millimeter
resolution. If such an entire building were forced to exist at sub-millimeter resolution
the size of the polygonal data would become prohibitive even for batch ray-tracing.
A possible solution to this would be to use some sort of adaptive marching cubes,
as discussed in Section 4.2.3 and [38]. However, such algorithms operate on volumetric
data that is stored in a 3D hierarchical structure like an octree. Our data structure
is based on a 2D subdivision scheme, and it is not clear that there is a way to convert
our data structure into an octree. Since octrees take advantage of different types of

geometric coherency, such a conversion might not result in an efficient data structure.

6.1.2 Direct Ray Tracing

It might be possible to directly ray trace our volumetric surfaces using techniques
similar to volumetric ray tracing [39]. Such a technique has the potential to render
very realistic images of our volumetric surfaces. There are several problems to tackle,
however. First, some sort of interpolation method would have to be conceived to
eliminate the aliasing that is inherent in the data structure. Second, the process of
casting a ray into volumetric surfaces involves converting world coordinates into slab

coordinates. As discussed in Section 2.1.1, this is very slow. Third, a straight line

35

Figure 6-1: a 2D example of patched height fields.

in world space is not necessarily straight in slab space. Therefore, simply finding the
entering and exiting intersections of a ray with a slab and then interpolating a straight
line between them in slab space would not work for distorted slabs. If these problems
can somehow be solved, volumetric surface ray tracing might be an interesting area

of future work.

6.2 Final Design

The final design, which was first discussed in Section 4.2.4, uses a hierarchical height
field triangulation. We want to take advantage of the fact that volumetric surfaces
consist mostly of expanses of height field. The major complications occur where there
are under-cuts, and some sort of patching technique must be implemented to patch
together height fields that are separated by under-cuts. A drawing that shows our
concept for a 2D case is shown in Figure 6-1. Here, three height fields that can
be inferred from the geometry are shown with red lines. The green segments show

patches that connect the separate height fields.

6.2.1 Restricted Quadtree Triangulation

The triangulation of height fields organized in a quadtree is a well researched field.
The main problem is to avoid cracks, which can occur at T-joints. An example of
a crack problem is shown in Figure 6-2. A solution to this problem was formulated

in [19], and further discussed in [30]. The first step in a restricted quadtree triangula-

56

Figure 6-2: An example of a crack problem in Figure 6-3: A correct restricted quadtree tri-
quadtree triangulations. angulation.

tion is to make the quadtree restricted; a restricted quadtree enforces the constraint
that no two neighboring leaf nodes can differ in depth by more than one. To create a
restricted quadtree, leaves must be added to the tree. It has been shown in [10] that
if the original size of the quadtree is O(n), the restricted quadtree may be larger but
is still O(n).

Once a quadtree is restricted, a simple rule can be used to triangulate. For each
leaf node, begin by triangulating with two triangles. If any of the neighbors are
of greater depth, divide to four triangles. Then, in each direction where a smaller
neighbor exists, further divide the triangle in that direction into two. This means that
the number of triangles for a leaf node can range from two to eight. This technique
can be best depicted by example, and such a triangulation is shown in Figure 6-3.
In this figure black lines are those that are both a subdivision line and part of the
triangle mesh. A red line is only part of the triangle mesh. Note that the quadtree is
restricted, and that no T-joints exist in the triangulation. This solves the problem.

Therefore, to create a restricted quadtree triangulation a restricted copy of the

current volumetric surfaces must be created. This is done in two steps.

Making a Restricted Quadtree

An algorithm for making a restricted quadtree copy from an original quadtree was
designed in [10]. First, a direct copy of the quadtree is made. While the copy is

being made a linked list of all leaf nodes is constructed. The list is then traversed.

57

Each node is checked against its neighbors in the quadtree, and if the node needs to
be split to be balanced with its neighbors, we do so. The children of the newly split
node are then added to the end of the list. Also, if any neighbors now need to be
split because this split makes the neighbor unbalanced, the neighbor is added to the
list. Once the list is exhausted the quadtree should be restricted.

Our new restricted quadtree will be used differently than the original quadtree, and
80 its material representation should not be the same. We want a leaf node’s notion
of filled materials to be conducive to the construction of height fields. Thus, instead
of a list of material intervals, we construct a list of surface-air intersections. That
is, wherever the original material list indicates that a material borders empty space,
we construct a surface-air intersection node indicating that a surface needs to exist
there. We store the material properties of the intersection, the direction (up or down
in the w coordinate) of the intersection, and the height. This eliminates information
extraneous to surface construction, such as when two different solid materials border
each other in the same material list. No surface should exist there, so the restricted
quadtree need not know about it. Note that in most cases there will only be one
surface-air intersection for a leaf node. The length of the list will only be greater

than one if there is an under-cut. We shall refer to a surface-air intersection as an
SAIL

Adding Nodes to Enforce Shading Uniformity

We discussed in Section 4.4.5 that differences in subdivision (stemming from differ-
ences in quadtree alignment with the brick pattern) can lead to non-uniformity in the
shading of bricks. The problem is shown in Figure 6-4. The normals in the left brick
are going to interpolate slower, leading to a bulgy arc-like appearance. In the right
brick, the edges will instead be sharper. This is not good, since to the user’s eye both
bricks should appear identical. Of course, the quadtrees shown are not restricted, and
this restriction help some. However, though no longer as severe the non-uniformities
still exist in the restricted quadtree.

To solve this problem we need to ensure that edges stay sharp. To do this, we

detect edges by detecting changes in the w coordinate that are greater than a certain

o8

TTTTITTTTTTITTIITI T,]

HENEENEEEEENEEN RN

Figure 6-4: Differences in brick subdivision that lead to bad shading.

threshold. The subdivision levels around such edges are then forced to a certain
maximum depth. This is done by splitting the nodes during the construction of the
restricted quadtree and adding the children and appropriate neighbors to the same

linked list. This technique leads to good uniformity in shading.

6.2.2 Growing Height Fields

Now that we have a good restricted quadtree with lists of surface-air intersections we
need to construct height fields from them. This is not straightforward since there can
be multiple height fields facing different directions. We need to ensure that quadtree
nodes that should share a height field do. In effect, we need to grow height fields
by having neighboring leaf nodes communicate with each other and decide to share
surfaces. In this way we grow connectivity and ensure that connected surfaces grow

to their maximum size without jumping under-cuts.

Vertex Joins

The first mechanism we need is a way to latch together the corners of the SAI’s in
different leaf nodes so that they know that they belong in the same surface. Such
a latch is constructed at the corners of quadtrees nodes, and we call them wvertex
joins. A single vertex join is depicted in Figure 6-5. Each vertex join stores four
pointers, one for each diagonal direction. Each SAI also stores pointers to vertex
joins in eight directions; that is why the arrows in the figure are double-headed. The
need for pointers to the NE, NW, SW, and SE vertex joins is clear. We also need
pointers to possible N, E, S, and W vertex joins in the case of T-joints. The pointers
in the vertex join may be null (though at least one must point to something), and

a null pointer indicates that no surface is shared in that direction. Each surface-air

59

e *

el A

Figure 6-5: The vertex join data structure. Figure 6-6: An SAI’s pointers to vertex joins.

intersection must point to four valid vertex joins in the corner directions. The side
directions only need to point if a T-joint exists in that direction. An example for a
single SAI is shown in Figure 6-6. Here, the SAI pointers to the six vertex joins are
shown in red. The N and S pointers are null, but the W and E are not since T-joints
exist in these directions. Notice that the NW and SW pointers in the vertex join
labelled a point to the same SAIL This helps us to easily detect T-joints.

Each vertex join stores a height in slab coordinates; this height is the average of
the heights of the connected SAI's. This specifies where a surface passing through
this corner would be located. Note that if there are under-cuts several vertex joins
may exist at different heights at the same corner. Vertex joins are stored in a large
bucket array, and SAI’s point to them using integer indices. Using this mechanism
decisions on the sharing of height fields can be stored entirely within the pointers of
these vertex joins. It also makes it possible to walk along a single height field directly

without traversing the underlying quadtrees.

Heuristic for Surface Sharing

Before constructing vertex joins we need to be able to decide if two neighboring SAT’s
share the same surface. The hueristic for doing so is fairly simple. First, the two
SAI’'s must face in the same direction (remember that height fields can face up or
down in volumetric surfaces). Second, when travelling from one SAI to the other, no
other SAI can get in the way; this constraint eliminates self-intersections. Examples

of when SAI’s share and when they do not are shown in Figure 6-7. The two examples

60

': 4
|

Figure 6-7: Examples of surface sharing for neighboring SATI’s.

on the left show SAI’s that do share, and the examples on the right are cases where

they do not. The dotted red lines indicate the sharing relationships (or lack thereof).

Growing nets of Vertex Joins

Vertex joins exist at the corners of quadtree nodes. To construct vertex joins into
nets of height fields we need to traverse each such corner once. Fortunately, we have
already devised a single corner traversal algorithm for quadtrees in Section 4.4.3. We
use this algorithm again.

At each corner the challenge is to figure out surface sharing. There are four
quadtree leaf nodes (NE, NW, SE, and SW), and each leaf node has a list of SAD’s.
Note that in the case of T-joints, two of the leaf nodes could be the same node. Also,
any of the leaf nodes could be null.

During a single corner traversal, each corner that is touched is called by a certain
leaf node. We start with the leaf node in this direction, since we are guaranteed that
this leaf node actually has a corner at the corner being touched (and thus is not part
of the larger node in a T-joint). We traverse the list at this node.

For each SAI we do the following. We ask the node in the CW direction if it has
any SAI that should share a surface (as decided by the heuristic in Section 6.2.2).

If one is found, we continue in the clockwise direction. We stop either when there

61

is no sharing SAI, or we have come back to ourself (after four comparisons). The
most common case is when there are four SAD’s that want to share a surface. In this
case, we create a vertex join and set the appropriate pointers. If, instead, we stopped
going clockwise because at some point there was a failure to share, we continue by
searching counterclockwise from the original node. We do this either until we find a
failure again, or we come up upon the node where the last failure was detected. In
the case where a node and its neighbor in a certain direction are the same, we have
a T-joint. In this case we skip a direction and keep going. We must make a note of
this, though, so that we can correctly set its side vertex join pointer.

At this point we can proceed depending upon how many surface sharing agreements
we found. If there were two, we are in good shape. This means that the SAI in the
direction we started in shares a surface with both its clockwise and counter-clockwise
neighbor, but the opposite neighbor is either part of a different surface or on its own.
We create a vertex join, set the appropriate pointers, and move on.

If, instead, we found three surface sharing agreements, we have an annoying contra-
diction. A typical example of this contradiction is shown in Figure 6-8, with sharing
agreements shown in red, dotted lines. In this case a shares with b, b shares with ¢,
¢ shares with d, but d does not share with a since e is in the way. In this case it is
not clear how to build a surface. We do know, however, that we want a surface that
includes b and ¢. We then need to choose to include either a or d in this surface. We
choose the one that adds the lowest overall error to the height of the surface. The
other we separate to form its own surface.

Another annoying case can arrive when we have four surface sharing agreements,
but they are not consistent. A typical case of this is shown in Figure 6-9. In this
case a shares with b, b shares with ¢, ¢ shares with d, and d shares with f. This is
a problem since we started with a, but when we came back to the SE direction we
found a different SAIL. There is no coherent surface for this situation.

The best way to solve this situation is to assign two different surfaces, one com-
posed of two SAI’s and the other composed of three. In this case, one surface will
include a and b, and the other ¢, d, and f. How do we decide? There are only two

possible configurations, so we choose the one that minimizes error in height (when

62

Figure 6-8: A case of three found surface shar- Figure 6-9: A contradicting case of four agree-
ing agreements. ments.

creating a surface vertex at a corner we average the heights of the SAI’s included in
the surface, so error is the sum of differences from the average).

Note these two cases would become very difficult to handle if there were a T-joint.
Fortunately this does not happen since such strange situations only occur from tool
operations, which force the area to a common level of subdivision.

After we have traversed the list of SAI’s in the initial direction, we continue around
the corner and traverse the lists of the other nodes. At this point an SAI may already
have its vertex join in the direction of the corner set. If this is the case the SAI is
skipped. After we have traversed the four lists of SAI’s we should be guaranteed that
every SAI will point to a valid vertex join in the direction of the corner. For example,
the SAT’s in the SW node will all have their NE pointers set.

So, once we finish the single corner traversal all SAT’s in all leaf nodes will point
to four valid vertex joins. All these vertex joins will have their height set, and so will
know their position in both slab and world coordinates. These will form the vertices

of the output mesh.

63

QOutputing Height Field Triangles

The height fields are now defined so that we can easily output triangles. The quadtrees
are traversed (with neighbors), and the SAI’s in each leaf node are traversed. If all
the neighbors are the same size or bigger, we output two triangles. Otherwise, we
add a vertex for the center point of the SAIL. Then, for each neighbor that is the same
size or larger, we output one triangle in the neighbor’s direction. For the smaller
neighbors we output two triangles, querying the neighbor for the middle point of that

side.

6.2.3 Patching Height Fields

At this point we have defined height fields that stretch as far as possible across
the volumetric surfaces. However, in the many cases where height fields break, we
need to patch up the holes between them. In most cases, we do not need to add
vertices to patch; we instead need to stretch triangles between the fringe vertices of
adjacent height fields. There is also a clear indication of when patching needs to
occur. Patching is needed whenever a pointer to an SAI in a vertex join is null.

For simplification, patching can be divided into three cases.

1. The first case occurs when there is a downward facing SAI and two vertex joins
have a null pointer in a certain direction. An example is shown in Figure 6-10.
Here, for the downward SAI labeled a, the SE pointer in the NE vertex join
and the NE pointer in the SE vertex join are null (indicated by the crossed-out
pointer arrows), and so we know the E side must be patched. Since this is a
downward SAI, the patch will cover an empty interval in our material list. This
should only be done if the neighbor on the side in question is solid over this
interval, which is the case in our example. We thus stretch a patch on the side
in question from the downwards SAI to the next SAIL This is indicated in the
figure by a red patch, with an arrow showing the direction of the polygon. It
there is no next SAI the patch must be extended to w = 0. To do this, we need

to add vertices at w = 0, which is straightforward.

2. The second case is very similar to the first, except that it handles upwards SAI’s.

64

Figure 6-10: Patch case one. Figure 6-11: Patch case two.

In this case, the patch would cover a solid interval neighboring an empty one.
An example is shown in Figure 6-11. In this case, the upward SAI has the vertex
joins with null pointers as shown. Hence, a patch is necessary. Since there is no
next SAI, the patch must be extended all the way down to w = 0 (where new

vertices are created).

. The third case is more complicated and only arises from some of the strange
contradictory cases handled in Section 6.2.2. An example of this type of patch is
shown in Figure 6-12. This patch arises at the junction of two SAI’s that would
normally share. In the figure, the SAI’s share through the vertex join labelled b.
However, due to a contradiction case as discussed earlier, their sharing agreement
had to be terminated at the corner labelled a. The two SAI’s thus have separate
vertex joins at this corner. In the figure, the blue polygons are height field
polygons. The single triangle shown in red patches the hole that arises from
this situation. To detect such a situation, it is sufficient to detect a mismatch
between the vertex join pointers. In this case, from the left SAI perspective the
SE pointer of the NE vertex join is not null, while the NE pointer of the SE
vertex join is null. Also, care must be taken that this patch is not handled twice,
as both the left and right SAI’s would detect this situation during traversal. To
ensure this an SAI only adds a patch of this type if it is higher than its neighbor

65

<

Figure 6-12: Patch case three.

in the direction the patch is to be added.

Patches are added during an additional traversal of the quadtrees with neighbors.
All quadtree leaf nodes look in all four directions and add patches as necessary. Since
this means each boundary between quadtree nodes is examined twice for patching,
care must be taken so that redundant polygons do not occur. Also, if a larger node is
neighboring a smaller one (T-joint), two patches may be necessary. In this case, side

(as opposed to corner) vertex joins are examined.

6.2.4 Shading

If the resultant triangles are rendered with flat shading, significant aliasing can result.
Instead, it is better to calculate normals at the corners of triangles and then smoothly
interpolate these normals over the triangles during ray tracing. There are several
ways to do this. One obvious way to do this would be to calculate normals using the
techniques used in interactive rendering (Section 4.4). However, this failed to give
attractive results.

Better results were achieved by ignoring the volumetric surfaces and examining
the resulting triangles. The normal at each vertex of the mesh is set to the average
of the normals of the adjacent triangles. This achieves shading that is faithful to the
mesh being rendered while still achieving smooth shading.

Simple shaders were used to achieve realistic-looking materials. The brick shader
involves subtle variation of color across each brick using a noise function. The mortar
shader uses a high-frequency bump map to give it a rough appearance. Plaster uses

a low-frequency bump map.

66

6.3 Results

Results of the meshing algorithm can be seen in Figures 6-13 and 6-14. These images
show wireframe renderings of the mesh generated by the algorithm. The first figure
shows an area that has been sculpted by a chisel tool. The second figure shows fresh
brick. Examples of both hierarchical height fields and patching can be seen. Shaded

images are presented in Chapter 7.

67

Figure 6-13: An example of final meshing on a tooled area.

Figure 6-14: Annother example of final meshing,.

68

Chapter 7

Discussion and Conclusion

Now that the fundamental algorithms have been described it is possible to examine
final results and discuss both the successes of the system as well as areas for future

work.

7.1 Shaded Results

To demonstrate the efficacy of the final system we have generated three examples
of eroded appearances that were interactively sculpted with our system. In all the
examples we show both the interactive rendering after tooling as well as a shaded,

ray-traced image of the final mesh.

7.1.1 Crumbled Brick

The first example depicts a close-up of a crumbling brick wall. Figure 7-1 shows the
interactive rendering, and Figure 7-2 shows the final rendering. The sculpting was
done entirely with a blunt chisel tool. The light source used during rendering was a
spherical source located above and to the left of the brick wall.

The original model on which this sculpting was performed consisted of a 1.8 X 1.8
brick wall in meters, and was depicted in Figure 2-2. The deepest resolution of the
model was about 3.1 millimeters. This model did not come close to stretching the
resolution capabilities of the system, and was easily rendered at interactive speeds

on an SGI Octane. A traditional volumetric data structure of this brick wall would

69

require a 576 x 576 x 96 volume raster, which is well beyond the capabilities of current
volume sculpting systems.

There are some deficiencies to be noted in the final rendered image. First, the
current meshing method has difficulty with well-defined edges, as evidenced by the
edges of the bricks. The mortar does not look as inset from the brick as it is in
the model. This is because a height field triangulation of a sharp edge between two
different materials will be less sharp and will split the triangles along the edge between
the materials. This gives the mortar appearance half of the w distance between brick
and inset mortar, making the mortar appear to creep up the edge. Some sort of

feature detection in the meshing could solve this.

7.1.2 Plaster Over Bricks

The second example, which can be seen in Figures 7-3 and 7-4, shows the capability
of volumetric surfaces to efficiently handle layered models. We begin with the same
brick wall as in the previous example, but then cover this wall with a thick layer of
plaster. The plaster covers the brick and fills in the inset mortar gaps as well. When
the chisel tool plunges through the plaster the brick underneath is revealed. In this
case, a sharper chisel tool was used than in the previous example.

A second feature added to this example was material-selective tools. It is very
straightforward to restrict tools to edit only certain materials. Mortar is a softer
material than brick, and so it erodes faster. To model this, we used an additional

chisel, which only affects mortar, to further erode this material.

7.1.3 Building Corner

The third and final example shows the corner of a building with walls of brick cov-
ered by plaster. Although the images in Figures 7-5 and 7-6 show only the lower
portion of the corner, the model maintained in memory is three stories high. The
building is 12.35 meters high, the front wall is 5.7 meters, and the side wall is 2.85
meters. All of this is maintained at 7 millimeter resolution, which is clearly beyond
the capabilities of volumetric sculpting. It also pushes the limits of this system. It

requires 265 megabytes of memory (although over half of this consists of openGL’s

70

Figure 7-2: The ray-traced rendering.

71

Figure 7-3: Interactive rendering of a tooled, layered model.

Figure 7-4: The ray-traced rendering.

72

own memory in the form of display lists), and it is difficult to rotate the entire model
at interactive speeds. To this end, an additional display mode shows only the edges
of the slabs during rotation, and renders the entire model when the rotation handles
are released. However, when the user zooms in to chisel at the slabs, interactive rates
are maintained. This is because slabs outside the viewport are culled and because
our local update algorithms minimize the polygons that need to be rendered during
the tooling loop. Hence, even a model of this complexity is easy to position and edit
in our system.

Another difficulty posed by this model is that the slabs that comprise the corner
are necessarily distorted. The edges of the slabs located at the corner are at 45 degree
angles to the edges along the walls. While these slabs require greater subdivision than
the non-distorted slabs, all the algorithms in the system still work correctly for the

distorted slabs.

7.2 Future Work

While this thesis has established the algorithmic engine for the interactive sculpting
of volumetric surfaces, there are many areas of possible improvement that could make

this system useful and ground-breaking in computer graphics.

e Tool control: It is fairly difficult to finely control the sculpting tool. This is
because the mouse is a 2D input device in a 3D sculpting system, and this is
a poor interaction metaphor. It is much easier to use a 3D input device. Even
a 3D input device is not enough; force-feedback would greatly improve ease of
use. This would make it possible to feel the materials as we sculpt. Beyond this
different materials could have different hardnesses such that harder materials
would resist sculpting more than softer ones. To this end the system is currently

being interfaced to a PHANToM force-feedback device [25].

e Complex geometry: A major improvement would be the capability to import
complex geometry. This was already discussed in Section 3.4. A second way
to improve the system along these lines would be to import scanned meshes.

Scanned meshes are very common in computer graphics, and the ability to volu-

73

Figure 7-5: Interactive rendering of a tooled building corner.

Figure 7-6: The ray-traced rendering.

metrically sculpt near the surface of these models would be very useful. The most
difficult part of this task would be to establish the geometry of the slabs so as to
achieve even spacing and minimal distortion. An optimization or spring-based

technique would be useful in accomplishing this.

e Operators: Additional operators would make the system more flexible. Many
different tool shapes could be added. A paint operator could be added to allow
the addition of thin layers of paint. Another operator could be devised to allow
the flaking off of paint chips. Tools to add volumetric data rather than subtract
could also be useful. Physically based operators could be added to simulate
cracking, dirt accumulation, and other natural weathering phenomena. There
could also be user interface improvements, such as an undo option to reverse the
effect of the last tool stroke. Finally, there is still room for further optimization

of the critical algorithms to achieve even higher resolutions at interactive rates.

7.3 Conclusion

There is a clearly a need for systems that allow the interactive editing of complex
surface appearance effects in computer graphics, and this thesis describes a system
that is a step in this direction.

The first part of the system is a new, hierarchical data structure for representing
volumetric data near the surface of an object at high resolutions. We then presented
algorithms for filling this data structure from solid textures. A system was built that
allows a user to sculpt these volumetric surfaces at high resolution and at interactive
rates. The core of this system is algorithms for interactive meshing and local updating
of the graphics display. Also necessary are algorithms for modifying the data structure
after tool operations. An algorithm for generating a high-quality mesh for ray-tracing
was also presented. Finally, examples were presented of weathering effects produced
using the interactive system.

Hierarchical volumetric surfaces are a promising new direction in computer graph-
ics, and hopefully their potential will continue to be explored. Their unique capa-

bilities for representing realistic appearances could prove very useful in a variety of

applications.

76

Bibliography

[1] Maneesh Agrawala, Andrew C. Beers, and Marc Levoy. 3D painting on scanned
surfaces. In 1995 Symposium on Interactive 3D Graphics, pages 145-150. ACM
SIGGRAPH, April 1995.

[2] Anthony A. Apodaca and M. W. Mantle. Renderman: Pursuing the future of
graphics. IEEE Computer Graphics and Applications, 10(4):44-49, July 1990.

[3] James Arvo. A simple method for box-sphere intersection testing. In Andrew

Glassner, editor, Graphics Gems, pages 335—-339. Academic Press, 1990.

[4] James Arvo. Transforming axis-aligned boxes. In Andrew Glassner, editor,

Graphics Gems, pages 548-550. Academic Press, 1990.

[6] Ricardo S. Avila and Lisa M. Sobierajski. A haptic interaction method for volume
visualization. In IEEE Visualization '96. IEEE, October 1996.

[6] James F. Blinn. Simulation of wrinkled surfaces. In Computer Graphics (SIG-
GRAPH ’78 Proceedings), volume 12, pages 286-292, August 1978.

[7] Wayne E. Carlson. A survey of computer graphics image encoding and storage

formats. Computer Graphics, 25(2):67-75, April 1991.

8| Sabine Coquillart. Extended free-form detormation: sculpturing tool tor

Sabine Coquill Extended free-fi def i A scul i 1 for 3D
geometric modeling. In Computer Graphics (SIGGRAPH ’90 Proceedings), vol-
ume 24, pages 187-196, August 1990.

[9] Brian Curless and Marc Levoy. A volumetric method for building complex models
from range images. Proceedings of SIGGRAPH 96, pages 303-312, August 1996.
ISBN 0-201-94800-1. Held in New Orleans, Louisiana.

77

[10]

[11]

[12]

[13]

[14]

[15]

[16]

18]

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf.
Computational Geometry: Algorithms and Applications, chapter 14, pages 289—
301. Springer-Verlag, 1997.

Julie Dorsey, Alan Edelman, Justin Legakis, Henrik Wann Jensen, and Hans Ped-
ersen. Modeling and rendering of weathered stone. In SIGGRAPH 99 Conference
Proceedings, Annual Conference Series, pages 225-234. ACM SIGGRAPH, Ad-
dison Wesley, August 1999.

Julie Dorsey and Pat Hanrahan. Modeling and rendering of metallic patinas. In
SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pages 387—
396. ACM SIGGRAPH, Addison Wesley, August 1996.

Julie Dorsey, Hans Pedersen, and Pat Hanrahan. Flow and changes in appear-
ance. In SIGGRAPH 96 Conference Proceedings, Annual Conference Series,
pages 411-420. ACM SIGGRAPH, Addison Wesley, August 1996.

B. Fishman and B.Schachter. Computer display of height fields. Computers and
Graphics, pages 53-60, 1980.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Com-
puter Graphics: Principles and Practice, Second Edition. Addison-Wesley, 1990.

Tinsley A. Galyean and John F. Hughes. Sculpting: An interactive volumet-
ric modeling technique. In Computer Graphics (SIGGRAPH 91 Proceedings),
volume 25, pages 267-274, July 1991.

Michael Garland and Paul Heckbert. Fast polygonal approximation of terrains
and height fields. Technical Report CMU-CS-95-181, School of Computer Sci-
ence, Carnegie Mellon University, Sept 1995.

Pat Hanrahan and Paul E. Haeberli. Direct WYSIWYG painting and texturing
on 3D shapes. In Computer Graphics (SIGGRAPH 90 Proceedings), volume 24,
pages 215-223, August 1990.

78

[19] Brian Von Herzen and Alan H. Barr. Accurate triangulations of deformed, in-
tersecting surfaces. In Computer Graphics (SIGGRAPH ’87 Proceedings), vol-
ume 21, pages 103-110, July 1987.

[20] Steve Hill. Tri-linear interpolation. In Paul Heckbert, editor, Graphics Gems 1V,
pages 521-525. Academic Press, 1994.

[21] James T. Kajiya and Timothy L. Kay. Rendering fur with three dimensional
textures. In Computer Graphics (SIGGRAPH ’89 Proceedings), volume 23, pages
271-280, July 1989.

[22] Renate Kempf and Chris Frazier, editors. OpenGL Reference Manual, Version
1.1. Addison-Wesley, 1997.

[23] Peter Lindstrom, David Koller, William Ribarsky, Larry F. Hughes, Nick Faust,
and Gregory Turner. Real-Time, continuous level of detail rendering of height
fields. In SIGGRAPH 96 Conference Proceedings, Annual Conference Series,
pages 109-118. ACM SIGGRAPH, Addison Wesley, August 1996.

[24] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. In Computer Graphics (SIGGRAPH 87 Pro-
ceedings), pages 163-169, July 1987.

[25] T.M. Massie and J.K. Salisbury. The phantom haptic interface: A device for
probing virtual objects. In Dynamic Systems and Control 1994, volume 1, pages

295-301, Nov 1994.

[26] Alexandre Meyer and Fabrice Neyret. Interactive volumetric textures. In Eu-
rographics Rendering Workshop 1998, pages 157-168, New York City, NY, July
1998. Eurographics, Springer Wein.

[27] Bruce Naylor. SCULPT an interactive solid modeling tool. In Proceedings of
Graphics Interface ’90, pages 138-148, May 1990.

[28] Fabrice Neyret. A general and multiscale model for volumetric textures. In
Graphics Interface 95, pages 83-91. Canadian Information Processing Society,

Canadian Human-Computer Communications Society, May 1995.

79

[29] Fabrice Neyret. Modcling animating and rendering complex scenes using volu-
metric textures. IEEE Transactions on Visualization and Computer Graphics,

4(1), January-March 1998.

[30] Renato Pajarola. Large scale terrain visualization using the restricted quadtree

triangulation. In IEE Visualization 98, pages 19-26. IEEE, October 1998.

[31] Darwyn R. Peachey. Solid texturing of complex surfaces. Computer Graphics
(SIGGRAPH ’85 Proceedings), 19(3):279-286, July 1985. Held in San Francisco,

California.

[32] A. Pentland, I. Essa, M. Friedmann, B. Horowitz, and S. Sclaroff. The thingworld
modeling system: Virtual sculpting by modal forces. In Computer Graphics (1990
Symposium on Interactive 3D Graphics), volume 24, pages 143144, March 1990.

[33] Ken Perlin. An image synthesizer. Computer Graphics (SIGGRAPH ’85 Pro-
ceedings), 19(3):287-296, July 1985. Held in San Francisco, California.

[34] Hanan Samet. A top-down quadtree traversal algorithm. IEEE Transactions on

Pattern Analysis and Machine Intelligence, PAMI-7(1), January 1985.

[35] Hanan Samet. Implementing ray tracing with octrees and neighbor finding. Com-

puters And Graphics, 13(4):445-60, 1989.
[36] Hanan Samet. Applications of Spatial Data Structures. Addison-Wesley, 1990.

[37] Thomas W. Sederberg and Scott R. Parry. Free-form deformation of solid geo-
metric models. In Computer Graphics (SIGGRAPH 86 Proceedings), volume 20,
pages 151-160, August 1986.

[38] Renben Shu, Chen Zhou, and Mohan S. Kankanhalli. Adaptive marching cubes.
The Visual Computer, 11(4):202-217, 1995.

[39] Lisa Sibierajski and Arie Kaufman. Volumetric ray tracing. In 1994 Symposium
on Volume Visualization, pages 11-18. ACM SIGGRAPH, October 1994.

[40] Bjarne Stroustrup. The C++ Programming Language, Third Edition. Addison-
Wesley, 1997.

80

[41] Sidney W. Wang and Arie E. Kaufman. Volume sculpting. In 1995 Symposium
on Interactive 3D Graphics, pages 151-156. ACM SIGGRAPH, April 1995.

[42] William Welch and Andrew Witkin. Free-Form shape design using triangu-
lated surfaces. In Computer Graphics (SIGGRAPH ’9/ Proceedings), Computer
Graphics Proceedings, Annual Conference Series, pages 247-256. ACM SIG-
GRAPH, ACM Press, July 1994.

[43] Rudiger Westermann and Thomas Ertl. Efficiently using graphics hardware in
volume rendering applications. In Computer Graphics (SIGGRAPH ’98 Proceed-
ings), pages 169-178, July 1998.

[44] Mason Woo, Jackie Neider, and Tom Davis. OpenGL Programming Guide, Sec-
ond Edition. Addison-Wesley, 1997.

81

