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EQUIVARIANT INVERSE SPECTRAL THEORY AND TORIC

ORBIFOLDS

EMILY B. DRYDEN, VICTOR GUILLEMIN, AND ROSA SENA-DIAS

Abstract. Let O2n be a symplectic toric orbifold with a fixed Tn-action and
with a toric Kähler metric g. In [10] we explored whether, when O is a man-
ifold, the equivariant spectrum of the Laplace operator ∆g on C∞(O) deter-
mines the moment polytope of O, and hence by Delzant’s theorem determines
O up to symplectomorphism. In the setting of toric orbifolds we significantly
improve upon our previous results and show that the moment polytope of a
generic toric orbifold is determined by its equivariant spectrum, up to two
possibilities and up to translation. This involves developing the asymptotic
expansion of the heat trace on an orbifold in the presence of an isometry. We
also show that the equivariant spectrum determines whether the toric Kähler
metric has constant scalar curvature.

1. Introduction

Given a Riemannian manifold (M, g), one can consider the Laplace operator
∆g acting on the space of smooth functions on M ; the spectrum of ∆g is the
set of eigenvalues of ∆g on C∞(M). From a spectral-theoretic point of view, one is
interested in how much about the geometry of (M, g) is determined by the spectrum
of ∆g. There are examples of Riemannian manifolds with the same spectrum which
are not isometric (e.g., [11], [16], [17]), and there are also positive results showing
that manifolds within a certain class are spectrally determined (e.g., [18]). In the
setting of symplectic toric geometry, Miguel Abreu [3] asked

Question 1.1. Let M be a toric manifold equipped with a toric Kähler metric g.
Does the spectrum of the Laplacian ∆g determine the moment polytope of M?

In [10] the authors considered a modified version of this question, replacing the
spectrum of the Laplacian by the equivariant spectrum of the Laplacian. This is
simply the spectrum of the Laplacian together with, for each eigenvalue, the weights
of the representation of Tn on the eigenspace corresponding to the given eigenvalue.
Question 1.1 then becomes

Question 1.2. Let M be a toric manifold equipped with a toric Kähler metric g.
Does the equivariant spectrum of ∆g on C∞(M) determine the moment polytope of
M?

Thomas Delzant [5] proved that the moment polytope of a toric symplectic man-
ifold M determines M up to symplectomorphim. Thus, if the answer to Question
1.2 is “yes,” the spectrum of the Laplacian of a symplectic toric manifold deter-
mines its symplectomorphism type. We showed that the answer is positive for many

2000 Mathematics Subject Classification. 58J50, 53D20.
Key words and phrases. Laplacian, symplectic orbifold, toric, moment polytope, equivariant

spectrum, constant scalar curvature.

1

http://arxiv.org/abs/1107.0986v1


2 EMILY B. DRYDEN, VICTOR GUILLEMIN, AND ROSA SENA-DIAS

generic toric 4-manifolds, up to translation and a small number of choices; however,
we could not resolve the question when the moment polytope of M has “many”
parallel sides, a case which occurs with positive probability.

Toric orbifolds are a natural generalization of toric manifolds. They admit toric
Kähler metrics, i.e., metrics that are determined by a symplectic form and a com-
patible, integrable almost complex structure and that are invariant under the torus
action. Thus one may again define the Laplacian and its associated equivariant
spectrum. Toric orbifolds also have moment polytopes associated to them, so it is
natural to ask Question 1.2 in the context of toric orbifolds. The same issues as in
[10] arise when the moment polytope has parallel facets, but unlike for manifolds
such facets occur for orbifolds with zero probability. Hence we are able to prove
the following theorem.

Theorem 1.3. Let O be a generic toric orbifold with a fixed torus action and a
toric Kähler metric. Then the equivariant spectrum of O determines the moment
polytope P of O, and hence the equivariant symplectomorphism type of O, up to
two choices and up to translation.

Note that the two choices determined by the equivariant spectrum have symplec-
tomorphic underlying manifolds (see §5).

The main tool in [10] is a result of Harold Donnelly [8] which gives an asymptotic
expansion for the heat kernel in the presence of an isometry on a manifold. A key
step in the proof of Theorem 1.3 is to generalize this tool to the setting of orbifolds
(see §3). Our approach is similar to the generalization of the asymptotic expansion
of the heat kernel to orbifolds that was done in [9]; the resulting expansion should
be of independent interest.

Theorem 1.4. Let O be a closed Riemannian orbifold, let K(t, x, y) be the heat ker-
nel of O, and let f be a nontrivial liftable isometry of O. Then

∫
O K(t, x, f(x))dvolO(x)

is asymptotic as t→ 0+ to

∑

S∈S(O)

1

| Iso(S)|
(4πt)−

dim(Fixf∩S)
2

∫

Fixf∩S

∞∑

k=0

bk(f, S)t
kdvolFixf∩S(x),

where S(O) is a stratification of O and | Iso(S)| denotes the order of the isotropy
of any point p ∈ S.

In a subsequent paper the authors will extend this result to more general operators
than the Laplacian using semi-classical analysis techniques.

Theorem 1.3 holds for any toric Kähler metric on O, and it is well known (see
[12], [1]) that toric orbifolds admit many toric Kähler metrics. Thus one is led to
ask what the equivariant spectrum tells us about the toric metric itself.

Question 1.5. Does the equivariant spectrum corresponding to a toric Kähler met-
ric on a toric orbifold determine the toric Kähler metric?

A positive answer to this question is unlikely, but one could hope that the equi-
variant spectrum might determine some properties of the metric. Finding “special”
Kähler metrics on Kähler manifolds or orbifolds is currently an active research
topic, with especial attention to Kähler Einstein metrics and extremal metrics in
the sense of Calabi. As a particular instance of these, one often looks for constant
scalar curvature metrics. It is known that such metrics do not always exist, but
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it is conjectured that their existence is equivalent to a stability condition on the
underlying manifold. For 4-dimensional toric manifolds this conjecture was proved
recently by Simon Donaldson [7]. We will use the asymptotic expansion in Theorem
1.4 to show that one can equivariantly hear constant scalar curvature toric Kähler
metrics.

Theorem 1.6. Let O be a generic toric orbifold endowed with a toric Kähler
metric g. Then the equivariant spectrum of O determines if g has constant scalar
curvature.

The paper is organized as follows. In §2 we give the necessary background on
orbifolds, with particular emphasis on orbifold strata and isotropy groups. This
allows us to prove Theorem 1.4 in §3. We then specialize to the setting of toric
orbifolds, giving relevant background in §4. The proof of Theorem 1.3 is given in
§5, followed by the proof of Theorem 1.6 in §6.

Acknowledgments: The first and third authors appreciate the hospitality shown
to them by the Mathematics Department at MIT during their visits there. The
first author’s visit during Summer 2010 was partially supported by an NSF-AWM
Mentoring Travel Grant, and the second author was partially supported by NSF
grant DMS-1005696. We thank Yael Karshon and Isabella Novik for making us
aware of the work by Daniel Klain on the Minkowski problem.

2. Background on orbifolds

We begin by reviewing some of the basic definitions related to orbifolds that are
relevant to our work. Our presentation and notation will follow that used in §2 of
[9], which the reader may consult for more details.

A k-dimensional orbifold O is a second-countable Hausdorff topological space X
that is equipped with a maximal orbifold atlas. Each chart in this atlas consists of a
connected open subset Ũ ⊂ Rk, a finite group GU acting on Ũ by diffeomorphisms,
and a mapping πU : Ũ → U , where U is an open subset of X and πU induces a
homeomorphism from GU\Ũ onto U . We will assume that the action of GU on Ũ
is effective.

Points in O are either singular or regular. A point x ∈ O is singular if for some
(hence every) orbifold chart (Ũ , GU , πU ) about x, the points in the inverse image

of x in Ũ have nontrivial isotropy in GU . The isomorphism class of this isotropy
group is called the abstract isotropy type of x and is independent of the choice of
point in the inverse image of πU and of the choice of orbifold chart about x.

An orbifold O can be endowed with a Riemannian structure by assigning to
each orbifold chart (Ũ , GU , πU ) a GU -invariant Riemannian metric on Ũ satisfying
an appropriate compatibility condition among charts. Every Riemannian orbifold
has an associated orthonormal frame bundle, as we now briefly describe. For an
orbifold O of the form G\M , whereM is a Riemannian manifold and G is a discrete
subgroup of the isometry group of M , we begin by considering the orthonormal
frame bundle ofM , F (M) →M . Since each element of G induces a diffeomorphism
of F (M) that takes fibers to fibers, we have an action of G on F (M) that covers
the action of G on M . We then define the orthonormal frame bundle of O, F (O),
to be G\F (M) → O, with the fiber over a point x ∈ O defined as the preimage of x
in G \F (M). Note that F (M) admits a right action of the orthogonal group O(k),
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and this action commutes with the left action of G; hence we have a right O(k)-
action on F (O). For an arbitrary orbifold O, one may define an orthonormal frame
bundle using the above construction on the local charts on O with an appropriate
compatibility condition among charts; this bundle is an orbibundle whose total
space is again a smooth manifold that admits a right action of the orthogonal
group. The orbifold O can then be viewed as the orbit space F (O)/O(k).

Let x ∈ O be a singular point and view it as an element of F (O)/O(k). As
x̃ ∈ F (O) ranges over the fibers in the preimage of x in F (O), the stabilizer Iso(x̃)
ranges over a conjugacy class of subgroups of O(k). It turns out that this conjugacy
class is independent of the choice of Riemannian metric used to construct F (O), so
it makes sense to call it the isotropy type of x ∈ O, denoted Iso(x). Moreover, the
subgroups in a given conjugacy class can be shown to lie in the isomorphism class
defined by the abstract isotropy type of x. The cardinality | Iso(x)| is the order of
the isotropy at x, and the equivalence classes of points with the same isotropy type
are called the isotropy equivalence classes.

Definition 2.1. A smooth stratification of an orbifold O is a locally finite partition
of O into submanifolds. Each submanifold, called a stratum, is locally closed and
its closure is the union of the stratum with a collection of lower-dimensional strata.

Given a stratification of an orbifold O, the strata of maximal dimension are open
in O and their union has full measure in O. From general results about smooth
actions of Lie groups on manifolds, one can prove

Proposition 2.2. [9, Cor. 2.11] Let O be an orbifold. Then the action of O(k) on
the frame bundle F (O) gives rise to a (Whitney) stratification of O. The strata are
connected components of the isotropy equivalence classes in O. The set of regular
points of O intersects each connected component O0 of O in a single stratum that
constitutes an open dense submanifold of O0.

The strata of O will be called O-strata; given an orbifold chart (Ũ , GU , πU ) on

O, the stratifications of sets U and Ũ induced by GU will be referred to as U -strata
and Ũ -strata, respectively. The following result was proved in [9].

Proposition 2.3. [9, Prop. 2.13] Let O be a Riemannian orbifold and (Ũ , GU , πU )
be an orbifold chart. Then:

(1) The U -strata are precisely the connected components of the intersections of
the O-strata with U .

(2) Any two elements of the same Ũ -stratum have the same stabilizers in GU
(not just conjugate stabilizers).

(3) If H is a subgroup of GU , then each connected component W of the fixed

point set Fix(H) of H in Ũ is a closed submanifold of Ũ . Any Ũ -stratum
that intersects W nontrivially lies entirely in W . Thus the stratification of
Ũ restricts to a stratification of W .

It follows from this proposition that if Ñ is any Ũ -stratum in Ũ , then all the
points in Ñ have the same isotropy group in GU ; we denote this isotropy group of
Ñ by Iso(Ñ). The set of γ ∈ Iso(Ñ) such that Ñ is open in Fix(γ) will be denoted

Isomax(Ñ). Note that the union of the Ũ -strata Ñ for which γ is an element of

Isomax(Ñ) has full measure in Fix(γ).
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Example 2.4. Let M ⊂ R3 be a sphere of radius 1 centered at the origin. The
quotient of M by a rotation of order p about the z-axis is a closed orbifold called a
(p, p)-football. Each of (1, 0, 0) and (0, 0,−1) is a singular stratum with isotropy of
order p.

We may also consider a (p, q)-football with p 6= q; this does not arise as a global
quotient of a manifold, but is an orbifold with two antipodal singular points whose
underlying topological space is a sphere. Taking the quotient of this orbifold with
respect to reflection in the plane containing the origin and the singular points, we get
an orbifold whose underlying space is a disk. The points on the boundary of the disk
are singular points (not boundary points) of the orbifold and comprise four strata:
the image of each antipodal point forms a single stratum with isotropy of order 2p or
2q, respectively, and each open edge forms a stratum with isotropy of order 2. The
intersection U of the disk with a smaller disk centered at one of the “poles” is the
image of an orbifold chart (Ũ , G, πU ), where Ũ is a disk in R2 centered at the origin

and G is the dihedral group of appropriate order. The Ũ-strata with respect to G
are the origin and the intersection of Ũ with, say, the positive and negative x-axis.
Let Ñ be the intersection of Ũ with one of the half-axes; then Iso(Ñ) contains the

reflection and the identity, but Isomax(Ñ) is just the reflection. If Ñ = {0}, then
Iso(Ñ) = G but Isomax(Ñ) is just the rotation through angle 2π

p
(respectively, 2π

q
)

about the origin.

We will return to variations on this example in §4.

3. Equivariant heat kernel asymptotics for orbifolds

We now develop the asymptotic expansion of the heat kernel on an orbifold O in
the presence of a liftable isometry. To show that such an expansion exists and to
find it, one approach is to use the local structure of orbifolds. In particular, one may
take a local covering of O by convex geodesic balls and piece together a parametrix
for the equivariant heat operator on O using locally defined parametrices: working
in a convex geodesic ball U ⊂ O with orbifold chart (Ũ , GU , πU ), define a local

parametrix H̃(t, x̃, ỹ) on (0,∞) × Ũ × Ũ . Suppose that f : O → O is an isometry

of O that lifts to an isometry f̃ : Ũ → Ũ with f̃ ◦ γ = γ ◦ f̃ for all γ ∈ GU . Then
the function

(t, x̃, ỹ) 7−→
∑

γ∈GU

H̃(t, x̃, f̃ ◦ γ(ỹ))

descends to a well-defined function on (0,∞) × U × U . The argument to patch
together these locally defined parametrices to get a globally defined parametrix
and thus an equivariant heat kernel on O follows as in §3 of [9].

To find the asymptotic expansion of the equivariant heat kernel, we generalize
the following theorem of Donnelly.

Theorem 3.1. [8]. Let M be a closed Riemannian manifold, let K(t, x, y) be the
heat kernel ofM , and let γ be a nontrivial isometry ofM . Then

∫
M
K(t, x, γ(x))dvolM (x)

is asymptotic as t→ 0+ to

∑

W⊂Fix(γ)

(4πt)−
dim(W )

2

∞∑

k=0

tk
∫

W

bk(γ, a)dvolW (a)
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where W ranges over connected components of the fixed point set of γ, bk(γ, a) is
a real-valued function on the fixed point set of γ and dvolW is the volume form on
W defined by the Riemannian metric induced from M .

The function bk(γ, x) has several key properties (see [9, §4]). First, its restriction
to any W ⊂ Fix(γ) is smooth. Second, it is local in that it only depends on the
germs at x of the Riemannian metric and of the isometry γ. Finally, it is universal in
that it behaves as one would hope with respect to isometries; namely, if M and M ′

are Riemannian manifolds admitting the isometries γ and γ′, respectively, and σ :
M →M ′ is an isometry satisfying σ ◦ γ = γ′ ◦σ, then bk(γ, x) = bk(γ

′, σ(x)) for all
x ∈ Fix(γ). Donnelly gave explicit formulas for b0 and b1, with the general definition
of bk as follows. Let x ∈W . Note that the orthogonal complement of TxW in TxM
is invariant under γ∗; let Aγ(x) be the nonsingular matrix transformation defined
by γ∗, and set Bγ(x) = (I −Aγ(x))

−1. Then we can define

bk(γ, x) = | det(Bγ(x))|b
′
k(γ, x),

where b′k(γ, x) is a universal invariant polynomial in the components of Bγ and in
the curvature tensor R of M and its covariant derivatives at x.

With this definition in mind, we prove a special case of Theorem 1.4.

Lemma 3.2. Let O = G\M , where M is a Riemannian manifold and G is a finite
group acting effectively on M . Let f : O → O be an isometry that lifts to an
isometry f̃ :M →M with f̃ ◦ γ = γ ◦ f̃ for all γ ∈ G. Then

∞∑

i=1

Tr(fλi)
∗e−tλi ∼

∑

S∈S(O)

1

| Iso(S)|
(4πt)−

dim(Fix f∩S)
2

∞∑

k=0

tk
∫

Fix f∩S

bk(f, x)dvolFix f∩S(x)

as t→ 0+, where | Iso(S)| is the order of the isotropy at every point in S as defined
in §2.

Proof. Note that (M,G, π) is a global orbifold chart where π : M → O is the
projection. If K denotes the heat kernel of M , then the heat kernel KO of O is
given by

KO(t, x, y) =
∑

γ∈G

K(t, x̃, γ(ỹ))

where x̃, respectively ỹ, are any elements of π−1(x), respectively π−1(y). Thus
∫

O

KO(t, x, x)dvolO(x) =
1

|G|

∑

γ∈G

∫

M

K(t, x̃, γ(x̃))dvolM (x̃).

Let us examine what happens to this heat kernel in the presence of an isometry
f : O → O. Letting KO

f denote the f -equivariant heat kernel of O, we have that
∫

O

KO
f (t, x, x)dvolO(x) =

1

|G|

∑

γ∈G

∫

M

K(t, x̃, f̃(γ(x̃)))dvolM (x̃).

Applying Theorem 3.1 to this expression gives
∫

O

KO
f (t, x, x)dvolO(x) ∼

1

|G|

∑

γ∈G

∑

W∈Fix(f̃◦γ)

(4πt)−
dim(W )

2

∞∑

k=0

tk
∫

W

bk(f̃◦γ, x̃)dvolW (x̃)

(1)
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as t → 0+. In order to express the right side of (1) in terms of intrinsic orbifold

data, we need to analyze the fixed point sets arising from f̃ ◦γ for γ ∈ G. We begin
by relating these fixed point sets to M -strata.

Let W be a connected component in Fix(f̃ ◦γ) and let Ñ be an M -stratum con-

tained in W . Then either Ñ has measure zero in W (in which case γ /∈ Isomax(Ñ))

or Ñ is open in W and γ ∈ Isomax(Ñ ). Suppose x̃ ∈ Ñ and γ ∈ Isomax(Ñ). Since

Ñ ⊂ W ∈ Fix(f̃ ◦ γ), we have f̃(γ(x̃)) = x̃. But γ ∈ Isomax(Ñ), so γ(x̃) = x̃.

Thus f̃(x̃) = x̃, or x̃ ∈ Fix(f̃ ◦ I). This means that we only need to consider the
contribution from the identity element in G, and we may replace the integral over
W with integrals over the M -strata that are open in W . Thus the right side of (1)
becomes

1

|G|

∑

Ñ∈Sf (M)

(4πt)−
dim(Ñ)

2

∞∑

k=0

tk
∫

Ñ

bk(f̃ ◦ γ, x̃)dvol
Ñ
(x̃), (2)

where Sf (M) denotes the strata in S(M) that are open in Fix(f̃ ◦ γ).
Our next task is to relate the data on the manifold M to data on O. Let N

be an O-stratum that is open in a component of Fix(f). Then π−1(N) is a union
of finitely many mutually isometric strata in Sf (M) and π : π−1(N) → N is a

covering map of degree |G|
| Iso(N)| . Moreover, the total contributions to (2) from the

elements of π−1(N) are equal to

|G|

| Iso(N)|
(4πt)−

dim(N)
2

∞∑

k=0

tk
∫

N

bk(f, x)dvolN (x).

Thus (2) becomes

∑

N∈Sf (O)

1

| Iso(N)|
(4πt)−

dim(N)
2

∞∑

k=0

tk
∫

N

bk(f, x)dvolN (x) (3)

where Sf (O) denotes the strata in S(O) that are open in Fix(f). This proves the
lemma. �

The argument in the proof of Lemma 3.2 can be applied to orbifold charts, and
one may piece together the resulting computations via a partition of unity to prove
Theorem 1.4. The ideas are exactly the same as those used in [9] to pass from the
asymptotic expansion of the heat trace for an orbifold of the form O = G\M to
the expansion for a general orbifold. We refer the interested reader to §4 of [9] for
details.

Using computations from [8] and [9] one can find explicit expressions for the first
few terms in the asymptotic expansion in Theorem 1.4. We will denote the scalar
curvature by s, the Ricci tensor by ρ and the full curvature tensor by R. Let S be
a connected component of S(O) and x ∈ S. Let γ be an element of Isomax(S) and
Wf be a local lift of S ∩ Fix(f) via an orbifold chart. Let Af,γ be the isometry

df ◦ dγ : Tx̃W
⊥
f → Tx̃W

⊥
f ,

where Tx̃W
⊥
f denotes the normal space to Wf , and set Bf,γ(x̃) = (I −Af,γ(x̃))

−1.
Then we have

b0(f, x) =
∑

γ∈Isomax(S)

| det(Bf,γ(x̃))|,
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and
b1(f, x) =

∑

γ∈Isomax(S)

| det(Bf,γ(x̃))|τγ(x̃)

where

τγ =
s

6
+

1

6
ρkk +

1

3
RikshBkiBhs +

1

3
RikthBktBhi −RkahaBksBhs.

Here the indices k, i, s, h, t correspond to normal directions in Tx̃W
⊥
f and we sum

over repeated indices.
When f is the identity and we are in a neighborhood of a regular point x ∈ O,

the function bk equals the usual heat invariant ak for manifolds. In particular, we
note for use in §6 that

b2(x) =
1

360

(
2|R|2 − 2|ρ|2 + 5s2

)
. (4)

4. Background on toric orbifolds

We now specialize to the setting of toric orbifolds, providing the definitions and
background that are needed to understand the proof of Theorem 1.3. The notion
of symplectic manifold generalizes easily to the orbifold setting: an orbifold is said
to be symplectic if it admits a 2-form ω which is nondegenerate and closed. One
can then specify what it means for an orbifold to be toric.

Definition 4.1. Let (O, ω) be a symplectic orbifold of real dimension 2n. Then
(O, ω) is said to be toric if admits an effective Hamiltonian Tn-action, where Tn is
the real torus of dimension n.

An action of a Lie group G on a symplectic orbifold (O, ω) is said to be Hamil-
tonian if it admits a moment map. This is a map φ : O → G

∗, where G
∗ denotes

the dual of the Lie algebra of G, satisfying

dφ(x)(v) = v♯yω,

where v is an element of the Lie algebra of G and v♯ is the vector field determined
by v on O. That is, if g(t) is a smooth path on G with g(0) = id and

v =
d

dt |t=0
g(t),

then

v♯(x) =
d

dt |t=0
g(t) · x.

Note that this is well-defined up to a constant.
For toric manifolds it is known that the image of the moment map determines the

manifold up to symplectomorphism. For toric orbifolds the image of the moment
map is insufficient to give this result, but Eugene Lerman and Sue Tolman [15] have
indicated what additional data one needs to determine the orbifold. To state their
result, we begin by describing the image of the moment map. Identifying the dual
of the Lie algebra of Tn with Rn, Lerman and Tolman showed that the image of
the moment map of a toric orbifold is a special type of convex polytope in Rn.

Definition 4.2. A convex polytope P in Rn is rational simple if

(1) there are n facets meeting at each vertex;
(2) for every facet of P , a primitive outward normal can be chosen in Zn;
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(3) for every vertex of P , the outward normals corresponding to the facets meet-
ing at that vertex form a basis for Qn.

Note that a facet is a face in P of codimension 1.

The triangle with vertices (0, 0), (0, 1), (2, 0) is an example of a rational simple
polytope. Moreover, this polytope cannot be the moment map image of a toric
manifold; in the manifold setting, we replace Qn in (3) of Definition 4.2 by Zn.

It is also important to understand what types of singularities can occur in toric
orbifolds. Lerman and Tolman show that all the points over the interior of the
moment polytope of the toric orbifold are regular and that the points over the
facets of the polytope have cyclic isotropy type.

Theorem 4.3. [15, Theorem 6.4] Let (O, ω) be a toric orbifold with moment map
φ. Let F be an open facet of φ(O). Then there exists an integer mF such that all
points in φ−1(F ) have isotropy group ZmF .

The integer mF is called the label of the open facet F , and we call the moment
polytope together with the facet labels a labeled polytope. Thus to each toric orb-
ifold of dimension 2n, we can associate a labeled rational simple polytope in Rn.
Lerman and Tolman proved that these labeled polytopes essentially determine the
associated symplectic orbifolds.

Proposition 4.4. [15, Proposition 6.5] If two toric orbifolds have the same la-
beled moment polytopes up to SL(n,Z)-transformations and translations, then the
orbifolds are equivariantly symplectomorphic.

Example 4.5. We return to the (p, q)-footballs of Example 2.4. These are sym-
plectic orbifolds and they admit a Hamiltonian S1-action given by rotation about
the north-south axis. The labeled polytope associated to this toric orbifold is the
interval [−1, 1] with labels p and q at the upper and lower endpoints, respectively.

In the proof of Theorem 1.3, we will need two further results relating the moment
polytope to its associated orbifold. These results are stated and proved in the
setting of toric manifolds in [10], but the proofs are exactly the same in the orbifold
case. First we examine the fixed point set of an isometry of an orbifold.

Lemma 4.6. [10, Lemma 2.9] Let θ ∈ Rn. The fixed point set of ψ(eiθ), denoted
Fθ, is the union of the pre-images via the moment map of all faces to which θ is
normal in a face of lower codimension.

Finally, we give the relationship between the volume of a face in the polytope
and the volume of its pre-image under the moment map.

Lemma 4.7. [10, Lemma 2.10] Consider a face F of dimension q in the labeled
polytope P of a symplectic toric orbifold (O, ω). Let φ be the moment map of the
torus action with respect to the form ω. Then

Volω(φ
−1(F )) = (2π)q Vol(F ).

Since we want to study the spectrum of the Laplacian on toric orbifolds, we
need to understand metrics on such orbifolds. We will restrict to metrics that are
compatible with the symplectic structure and that are Kähler. That is, we consider
metrics that come from an integrable almost complex structure J on (O, ω) which
is compatible with ω; more precisely,

g(·, ·) = ω(·, J ·)
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defines a positive definite metric on O.
It was shown in [12] that all toric manifolds admit a special Kähler structure

which is invariant under the torus action, called the reduced Kähler structure. We
will refer to Kähler structures which are invariant under the torus action as toric
Kähler structures. In [3] Abreu showed how to construct all other toric Kähler
structures from the reduced Kähler structure using functions on the moment poly-
tope of the toric manifold. One may generalize the results in [12] and [3] to orbifolds;
for a discussion of this generalization, see [2].

Theorem 4.8. [12],[3] Any toric orbifold admits many toric Kähler structures.

As mentioned in §1 the problem of finding the “best” such Kähler structures has
been the source of much work in differential geometry, and the Kähler structures
which correspond to metrics whose scalar curvature is constant are of particular
interest. We return to these metrics in §6.

5. Hearing a generic toric orbifold

In this section we prove Theorem 1.3. First we give a precise definition of equi-
variant spectrum; it is entirely analogous to the corresponding definition for mani-
folds.

Definition 5.1. Let O2n be a toric orbifold with a fixed torus action. Denote by
ψ : Tn → Sympl(O) the corresponding group homomorphism, and let g be a toric
metric on O. The equivariant spectrum is the list of all the eigenvalues of the
Laplacian on (O, g) together with the weights of the action induced by ψ(eiθ) on the
corresponding eigenspaces, for all θ ∈ Rn. The eigenvalues and weights are listed
with multiplicities.

By studying the asymptotic expansion in Theorem 1.4, we see that the equivari-
ant spectrum provides significant information about the moment polytope of a toric
orbifold. We begin with the case in which the moment polytope has no parallel
facets.

Proposition 5.2. The equivariant spectrum associated to a toric orbifold O whose
moment polytope has no parallel facets determines

(1) the (unsigned) normal directions to the facets;
(2) the volumes of the corresponding facets;
(3) the labels of the facets.

Proof. Let φ be the moment map of the torus action on O and let P be its image,
with P given by

P = {x ∈ Rn : x · ui ≥ ci, i = 1, . . . , d}

for some collection of ui in Rn and ci ∈ R. For each u in Rn let ψ(u) denote the
isometry of O given by the eu-action on O. For each λ in the spectrum of O, the
map ψ(u) induces a linear action on the λ-eigenspace of O which we denote by

ψ♯λ(u). The asymptotic expansion from Theorem 1.4 gives
∑

λ

tr(ψ♯λ(u))e
−tλ ≃

∑

Vi

1

| Iso(Vi)|
(4πt)−

dim(Vi)

2 Vol(Vi)Di +O(t) , (5)

where the Vi are the connected components of the fixed point set of ψ(u) and Di

is calculated as follows. Let x be in Vi and choose an orbifold chart (Ũ , GU , πU )
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about x, where GU = Iso(x). We can locally lift ψ(u) to an isometry ψ̃(ũ) on Ũ
which commutes with GU . Then

Di(x) =
∑

γ∈Isomax(Vi)

∣∣det((I −Aψ,γ(x̃))
−1)

∣∣

where Aψ,γ(x̃) is as in §3. Note that Di is GU -invariant and locally constant, so it
is indeed a constant function on Vi.

We will now untangle the polytope data contained in the right side of (5). Set
u = rui for some r and some ui. If r 6= 0, Lemma 4.6 implies that the connected
components of the fixed point set of ψ(u) are the pre-image via the moment map
of all the faces whose normal is parallel to ui. The highest-dimensional connected
components have dimension 2(n − 1) and we can determine the ui’s up to sign:
they are the vectors for which the right side of (5) has power −(n− 1) in t. When
our polytope does not have parallel facets there is a single highest-dimensional
connected component of Fix(ψ(u)), namely the pre-image of a facet F ; we can
determine its volume and its label by considering how Dr varies with r. More
precisely, given x ∈ φ−1(F ) we can find an orbifold chart (Ũ , GU , πU ) about x and

we know by Theorem 4.3 that GU is a cyclic group, say of order Ω. Let ψ̃r be the
local lift of ψ(rui). We have

Dr(x) =

Ω−1∑

l=1

∣∣∣det((I −Aψ̃r ,γl(x̃))
−1)

∣∣∣

where γ generates GU . Now Tx̃ Fix(ψ̃r)
⊥ is a two-dimensional vector space and

Aψ̃r,γl are isometries of that space, so they must be rotations. Note that dγΩ

is the identity and therefore the rotation angle of dγ is a multiple of 2π/Ω; by

reordering we may assume that the rotation angle equals 2π/Ω. Since ψ̃r is a

group homomorphism from S1 to the group of isometries of O, we see that dψ̃r is a
rotation whose angle is rθ for some fixed θ. Therefore Aψ̃r,γl is a rotation of angle

rθ + 2lπ
Ω , and the matrix representation of I −Aψ̃r ,γl is

(
1− cos(rθ + 2lπ

Ω ) − sin(rθ + 2lπ
Ω )

sin(rθ + 2lπ
Ω ) 1− cos(rθ + 2lπ

Ω )

)
.

Thus

Dr =

Ω−1∑

l=1

1

2− 2 cos(rθ + 2lπ
Ω )

,

and the coefficient corresponding to the lowest-order term in the right side of (5) is

(4π)−(n−1)

Ω
Vol(F )

Ω−1∑

l=1

1

2− 2 cos(rθ + 2lπ
Ω )

.

Hence this coefficient is spectrally determined for all r 6= 0, which implies that
Vol(F ) and Ω are spectrally determined. Note that we have used that the volume
of φ−1(F ) is proportional to the volume of F , as indicated in Lemma 4.7. �

We next address the fact that the spectrum only determines the normals of the
facets up to sign. Note that a convex polytope with associated facet normals and
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volumes {(ui, νi), i = 1, . . . , d} always satisfies

d∑

i=1

νiui = 0.

Definition 5.3. Let P be a convex polytope in Rn with associated facet normals
and volumes {(ui, νi), i = 1, . . . , d}. We say that P has no subpolytopes if

∑

i∈I

νiui = 0 implies I = {1, . . . , d} or I = ∅.

For convex polytopes with no subpolytopes the set of normals up to sign deter-
mines the actual normals up to a finite number of sign choices.

Lemma 5.4. Let P be a convex polytope in Rn with no subpolytopes and facet
volumes ν1, . . . , νd. Assume that the facet normals to P are u1, . . . , ud up to sign.
Then, up to translation, there are only 2 choices for the set of signed normals.

Proof. For each choice ξi = ±ui, i = 1, . . . , d, corresponding to a convex polytope
we have

d∑

i=1

νiξi = 0.

Adding the sums corresponding to two different choices, we get a relation
∑

I

νiξi = 0.

Our assumption that P has no subpolytopes ensures that I is actually empty and
the two choices must be (ξ1, . . . , ξd) and (−ξ1, . . . ,−ξd), which clearly give rise to
convex polytopes. �

Thus we see that the equivariant spectrum of a toric orbifold with no parallel
facets and no subpolytopes determines two collections of facet normals and corre-
sponding facet volumes. The question we are asking becomes a purely combinatorial
one.

Question 5.5. Do the normal directions to the facets of a rational simple poly-
tope and the corresponding facet volumes determine the rational simple polytope
uniquely?

For convex polytopes, this question and its answer are known as the Minkowski
problem. Daniel Klain [14] recently gave an elegant solution to this problem.

Theorem 5.6. [14, Thm. 2] Given a list {(ui, νi), ui ∈ Rn, vi ∈ R+, i = 1, . . . , d}
where the ui are unit vectors that span Rn, there exists a convex polytope P with
facet normals u1, . . . , ud and corresponding facet volumes ν1, . . . , νd if and only if

d∑

i=1

νiui = 0.

Moreover, this polytope is unique up to translation.

Klain proves uniqueness of the solution to the Minkowski problem using a clever
inductive argument involving the Minkowski and Brunn-Minkowski inequalities.
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These inequalities are generalized isoperimetric inequalities for so-called mixed vol-
umes, which encode the relationship between a compact convex set and its orthog-
onal projections onto subspaces. For the base case in his induction, Klain gives
the solution to the Minkowski problem in dimension 2 and derives the inequalities
as consequences. He then assumes that the Minkowski and Brunn-Minkowski in-
equalities hold in dimension n− 1 and uses them to prove uniqueness in dimension
n. The Minkowski inequality in dimension n follows, and this in turn implies the
Brunn-Minkowski inequality in dimension n. See [14] for more details.

Together with Proposition 5.2 and Lemma 5.4, Theorem 5.6 implies the following
preliminary result.

Corollary 5.7. Let (O, ω) be a toric orbifold with a toric Kähler metric such that
the moment polytope of O has no parallel facets and no subpolytopes. Then the
equivariant spectrum of O determines the moment polytope of O up to translation
and 2 choices, and hence determines O up to symplectomorphism.

In order to prove Theorem 1.3, we only need to show that rational simple poly-
topes with no parallel facets and no subpolytopes are generic among all rational
simple polytopes.

Lemma 5.8. Close to any rational simple polytope in Rn, there is a rational simple
polytope that has no parallel facets and has no subpolytopes.

Proof. Let P = {x ∈ Rn : x · ui ≥ ci, i = 1, . . . , d} be a rational simple polytope
and let ν1, . . . , νd be the corresponding facet volumes.

It is easy to perturb our polytope to a rational simple polytope without parallel
facets, and this is precisely the advantage of toric orbifolds over toric manifolds.
Suppose that P has two parallel facets, say those with labels 1 and i. Choose
ũ1 ∈ Qn very close to u1. Let

P̃ = {x ∈ Rn : x · ui ≥ ci, i = 2, . . . d, x · ũ1 ≥ c1}.

It is easy to see that P̃ is simple and rational: one can multiply ũ1 by an appro-
priate integer multiple so that ũ1 ∈ Zn, and if ũ1 is sufficiently close to u1, then
{ũ1, u2, . . . , un} will remain a basis of Qn.

Now we show that one can also perturb our polytope to a rational simple polytope
without subpolytopes. If P has a subpolytope then there is a proper subset I of
{1, . . . , d} such that ∑

I

νiui = 0.

Choose j ∈ {1, . . . , d} \ I and perturb P by moving the facet Fj perpendicular to
uj along uj by distance ǫ, thus changing ci. For ǫ sufficiently small, we will not
introduce new subpolytopes. The only νi ’s that are changed by this perturbation
are the ones corresponding to facets which intersect Fj , and one obtains a one
parameter family of polytopes. If the sum

∑

I

νi(t)ui

is nonzero for some small value of the parameter t, then we have the desired per-
turbation. If not, then taking derivatives with respect to t yields

∑

I′

ν′i(t)ui = 0,
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where I ′ is the subset of i ∈ I such that Fi ∩ Fj 6= ∅. It is not hard to see that

ν′i(0) = Vol(Fi ∩ Fj),

so that ∑

I′

Vol(Fi ∩ Fj)ui = 0.

Choose k ∈ I ′ such that k 6= j. By slightly perturbing uk in Qn without changing
the volume Fk∩Fj (i.e., such that u⊥j ∩u⊥k is unchanged), the preceding sum equals
a nonzero vector and one obtains the desired rational simple polytope without
subpolytopes. �

The two possibilities in Theorem 1.3 corresponding to the polytopes P and −P
may not be equivariantly symplectomorphic, and thus the equivariant spectrum
does not determine a single pair (toric orbifold, torus action). However, the under-
lying toric manifolds are symplectomorphic (but not equivariantly so).

Proposition 5.9. Let (O, ω) be a generic toric orbifold endowed with a toric Kähler
metric. Then the equivariant spectrum of O determines the symplectomorphism type
of O.

Proof. Since we have proved Theorem 1.3, we only need to show that the orbifolds
OP and O−P are symplectomorphic. Let P be given by

P = {x ∈ Rn : x ·miui ≥ ci, i = 1, . . . , d} (6)

where the ui are the primitive inward-pointing normals to the facets of P with
corresponding weights mi, and ci ∈ R. Then −P is given by (6) with −ui replacing
ui. The explicit construction of the toric symplectic orbifolds associated to such
polytopes (e.g., [2, pp. 8-9]) shows that these two orbifolds are in fact the same
orbifold, with different torus actions. For the sake of completeness we briefly de-
scribe the construction. For the orbifold associated with the polytope P consider
the exact sequences

0 → N → Td
β′

−→ Tn → 0

0 → n
ι
−→ Rd

β
−→ Rn → 0

where β takes an element ei in the canonical basis for Rd to miui, and n is the Lie
algebra of N . The group N acts symplectically on Cd with moment map

φ(z) =
∑

|zi|
2ι∗ei.

The toric orbifold associated to P is O = φ−1(c)/N , where c ∈ n is determined by
the ci as c = −

∑
ciι

∗ei. The symplectic structure on O comes from the canonical
symplectic structure on Cd via symplectic quotient in the usual way. We see that
this construction will yield the same orbifold O with the same symplectic form
when we replace β by the map −β defined by −β(ei) = −miui. Hence OP and
O−P are symplectomorphic. �

Note that the Tn-actions on OP and O−P differ. For example, for OP we have

eitul · [z1, . . . , zd] = [z1, . . . , e
itzl, . . . , zd],

whereas we have

eitul · [z1, . . . , zd] = [z1, . . . , e
−itzl, . . . , zd]

for O−P .
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6. Constant scalar curvature metrics are audible

The goal of this section is to prove Theorem 1.6. In this theorem, “generic”
has the same meaning as in Theorem 1.3. In particular, the equivariant spectrum
of (O, g) must determine the moment polytope of O (up to translation and two
choices) as well as its labels. Theorem 1.6 also holds in the setting of smooth toric
2n-manifolds, provided the corresponding Delzant polytope is audible (again, up to
translation and two choices). From [10] we know that this occurs for n = 2 if the
manifold is generic and has at most 3 pairs of parallel sides.

Throughout this section we will make use of Chern classes for orbifolds. For the
relevant background, see [13, §2]. As for manifolds, Chern classes for orbifolds are
diffeomorphism invariants.

We start with a few preliminary results.

Lemma 6.1. The quantities
∫
O c2 ∧ ω

n−2 and
∫
O c

2
1 ∧ ω

n−2 are determined by the
equivariant spectrum of O, as is the cohomology class of ω.

Henceforth we will write
∫
O
c2 and

∫
O
c21 for

∫
O
c2 ∧ ωn−2 and

∫
O
c21 ∧ ωn−2,

respectively.

Proof. We know from §5 that the equivariant spectrum determines a set of two
rational simple polytopes P and −P that can arise as moment map images of O.
It also determines a unique set of labels L associated to the faces of P (or −P ).
The data (P,L) determine a symplectic toric orbifold OP and the data (−P,L)
determine another symplectic toric orbifold O−P . We know that O is equivariantly
symplectomorphic to either OP or O−P . Proposition 5.9 ensures that OP and
O−P are symplectomorphic even though they are not equivariantly symplectomor-
phic. This then implies that the characteristic classes of O are determined from its
equivariant spectrum, and so is the cohomology class of ω. �

Since the labels of the moment polytope of O are uniquely determined, the
isotropy groups of points in O are uniquely determined.

Lemma 6.2. The isotropy groups associated to all points in O are determined by
the equivariant spectrum.

Proof. A point p ∈ O is associated to certain facets of its moment polytope P ; let
F(p) denote the set of facets of P containing φ(p). For each facet Fi in F(p), let
ui denote its primitive outward normal and mi its label. Define

Λp = Span
Z
{ui : Fi ∈ F(p)}, Λ̂p = Span

Z
{miui : Fi ∈ F(p)}.

In [15], Lerman and Tolman show that Iso(p) is Λp/Λ̂p. Thus P and L determine
the isotropy groups of all points in O, and one can check that the above construction
gives the same isotropy groups for −P . �

Remark 6.3. Note that the above characterization of isotropy groups shows that
all elements in the pre-image of an open facet in the moment polytope have the
same isotropy group. In fact we see that the orbifold stratification is as follows.
The highest-dimensional stratum S0 is the pre-image of the interior of the polytope.
The strata of codimension 1, S1, are the pre-image of the union of the interior of
codimension 1 facets. In general, the codimension i strata, Si, are the pre-image of
the union of the relative interior of the faces of codimension i.
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We now prove Theorem 1.6.

Proof. Let us first apply Theorem 1.4 to O with f equal to the identity. This is
the case that is treated in [9]. The heat trace is asymptotic to

∑

S∈S(O)

1

|Iso(S)|
(4πt)−

dim(S)
2

∫

S

∞∑

k=0

bk(I, S)t
kdvolS(x).

In this expansion the term in t−n+2 is spectrally determined. It is given by

(4π)−nb2(O) + (4π)−n+1
d∑

i=1

∫
Fi
b1(Fi)

mi

+ (4π)−n+2
∑

a∈I

∫
Fa
b0(Fa)

ma

, (7)

where Fi denotes the pre-image via the moment map of a face and mi is the corre-
sponding label; I denotes some set that indexes codimension 2 faces; Fa denotes the
pre-image via the moment map of a codimension 2 face; and ma = | Iso(Fa)|. Note
that we use Fk to denote both the kth face and its pre-image under the moment
map. Although this is an abuse of notation, it should not cause confusion. We
show that each of the terms in (7) is determined by the equivariant spectrum.

We begin with the last term. We have that
∫
Fa
b0(Fa) = Vol(Fa) is determined

by P (equivalently, by −P ), hence it is determined by the equivariant spectrum.
By Lemma 6.2 we also hear ma, implying that the last term in (7) is determined
by the equivariant spectrum.

Next we consider the middle term in (7). Let F be a face and u the corresponding
normal. Consider the isometry ψu defined by

ψu(p) = eiu.p ;

it follows from Theorem 1.4 that the asymptotic behavior of the ψu-invariant heat
trace is given by

∑

S∈S(O)

1

|Iso(S)|
(4πt)−

dim(Fixψu∩S)
2

∫

Fixψu∩S

∞∑

k=0

bk(f, S)t
kdvolFixψu∩S(x).

Now Fixψu = F , which has dimension 2(n−1) and thus does not intersect S0. The
coefficient of t−n+2 in this expansion is given by

(4π)−n+1

∫
F
b1(F )

m
+ (4π)−n+2

∑

a∈I

∫
Fa
b0(Fa)

ma

,

where m is the label corresponding to F ; I denotes some set that indexes the
codimension 2 faces that intersect F ; Fa denotes the pre-image via the moment
map of a codimension 2 face; and ma = | Iso(Fa)|. The same argument as above
shows that each summand in the second term of this expansion is determined by
the equivariant spectrum. The index set I is also determined by P , so that the sum

over I is spectrally determined. Thus we hear
∫
F
b1(F )

m
for each face, and hence the

middle term in (7) is determined by the equivariant spectrum.
Since the middle and last terms in (7) are spectrally determined, so is b2(O). It

follows from (4) that

360b2(O) =

∫

O

b2(x)dvolO(x) =

∫

O

(2|R|2 − 2|ρ|2 + 5s2)dvolO(x) (8)
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where R denotes the full curvature tensor, ρ denotes the Ricci tensor, and s denotes
the scalar curvature. Our next goal is to show how the right side of (8) can be
expressed as a linear combination of

∫
O
s2,

∫
O
c21, and

∫
O
c2, where the coefficient

in
∫
O s

2 is nonzero.

We first show that
∫
O
|ρ|2 can be written as a linear combination of

∫
O
s2 and∫

O c
2
1. Recall that the complex dimension of O is n. Let ρ0 be the primitive part

of the Ricci curvature so that

ρ =
Tr(ρ)

n
ω + ρ0.

By definition, Tr(ρ) = s and the decomposition above is orthogonal, implying that

|ρ|2 =
s2

n2
|ω|2 + |ρ0|

2.

Since |ω|2 = n this becomes

|ρ|2 =
s2

n
+ |ρ0|

2.

Using the Apte formula (see [4, p. 80]) we have

4π2

(n− 2)!

∫

O

c21 =
n− 1

4n

∫

O

s2 −

∫

O

|ρ0|
2, (9)

and thus
∫

O

|ρ|2 =
1

n

∫

O

s2 +
n− 1

4n

∫

O

s2 −
4π2

(n− 2)!

∫

O

c21

=
n+ 3

4n

∫

O

s2 −
4π2

(n− 2)!

∫

O

c21 .

Next we write
∫
O
|R|2 as a linear combination of

∫
O
s2,

∫
O
c21, and

∫
O
c2. One

can view R as an endomorphism of Ω2O and decompose it as

R = U + Z +W,

where the tensor U is determined by the scalar curvature, Z is related to the trace-
free part of the Ricci tensor, and W is the usual Weyl tensor. This decomposition
is also orthogonal so that |R|2 = |U |2 + |Z|2 + |W |2. We have the relations

|W |2 = |B0|
2 +

3(n− 1)

n+ 1
|U |2 +

n− 2

n
|Z|2, |U |2 =

s2

4n(2n− 1)
, |Z|2 =

|ρ0|2

n− 1
,

where B0 is the trace-free part of a tensor that arises in a different decomposition
of R (see [4, p. 77]). Thus

|R|2 = |B0|
2 +

2(2n− 1)

n+ 1
|U |2 +

2(n− 1)

n
|Z|2

= |B0|
2 +

1

2n(n+ 1)
s2 +

2

n
|ρ0|

2. (10)

Using the Apte formula again gives

8π2

(n− 2)!

∫

O

c2 =
n− 1

4(n+ 1)

∫

O

s2 −
2(n− 1)

n

∫

O

|ρ0|
2 +

∫

O

|B0|
2 ;
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we substitute this expression and that from (9) into (10) to get
∫

O

|R|2 =
8π2

(n− 2)!

∫

O

c2 −
n− 1

4(n+ 1)

∫

O

s2 +
2(n− 1)

n

∫

O

|ρ0|
2 +

1

2n(n+ 1)
s2 +

2

n

∫

O

|ρ0|
2

=
8π2

(n− 2)!

∫

O

c2 +
2 + n− n2

4n(n+ 1)

∫

O

s2 + 2

∫

O

|ρ0|
2

=
8π2

(n− 2)!

∫

O

c2 +
2 + n− n2

4n(n+ 1)

∫

O

s2 −
8π2

(n− 2)!

∫

O

c21 +
n− 1

2n

∫

O

s2

=
8π2

(n− 2)!

∫

O

(c2 − c21) +
1

4

∫

O

s2 .

We can replace
∫
O
|ρ|2 and

∫
O
|R|2 in (8) by the equivalent expressions we have

found to get

360b2(O) =
16π2

(n− 2)!

∫

O

(c2− c
2
1)+

1

2

∫

O

s2−
n+ 3

2n

∫

O

s2+
8π2

(n− 2)!

∫

O

c21+5

∫

O

s2,

which simplifies to

360b2(O) =
8π2

(n− 2)!

∫

O

(2c2 − c21) +
10n− 3

2n

∫

O

s2 .

We saw above that b2(O) is determined by the equivariant spectrum, and so are∫
O
c21 and

∫
O
c2 by Lemma 6.1; hence

∫
O
s2 is spectrally determined.

We conclude our proof of Theorem 1.6 by giving a characterization of constant
scalar curvature that is amenable to our spectral setting. Consider the integral

C(g) =

∫

O

(s− s̄)2
ωn

n!
,

where s̄ denotes the average of the scalar curvature, i.e., s̄ =
∫
O
s

Vol(O) . It is known

that s̄ is determined by the symplectic topology of O (see [6]): we have

sωn

n!
=

2πc1 ∧ ω
n−1

(n− 1)!

so that we may write s̄ as

s̄ =
2πc1 ∧ [ω]n−1

Vol(O)(n− 1)!
.

The metric g has constant scalar curvature if and only if C(g) is zero. One can
write C(g) as

C(g) =

∫

O

(s2 − 2s̄s+ s̄2)
ωn

n!

=

∫

O

s2
ωn

n!
− 2s̄

∫

O

s
ωn

n!
+ s̄2Vol(O)

=

∫

O

s2
ωn

n!
− 2s̄2Vol(O) + s̄2Vol(O)

=

∫

O

s2
ωn

n!
− s̄2Vol(O)

so that g has constant scalar curvature exactly when
∫

O

s2
ωn

n!
=

1

Vol(O)

(
2πc1 ∧ [ω]n−1

(n− 1)!

)2

.
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By Lemma 6.1, the expression on the right is determined by the equivariant spec-
trum. Hence to determine if g has constant scalar curvature we “hear”

∫
O s

2, we

“hear” 1
Vol(O)

(
2πc1∧[ω]n−1

(n−1)!

)2

, and we compare the two quantities. �
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