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Solution to Homework 1
Solution to Problem 1
a) (ten points) Let’s first find appropriate payoffs for Alice. The information

stated in the question shows us that the payoffs will be of the form

Bob

Alice
A M H

P a b b
G b a c

We can arbitrarily assign b to be 0 and (using the information that b>c) c
to be -1. All that remains is to solve for a. To do this, we’ll use the information
that Alice prefers Penn Station to Grand Central Station iff p>q-r/2. In other
words, we have

ap+ 0q + 0(1− p− q) > 0p+ aq + (−1)(1− p− q)

iff p > q − (1 − p − q)/2. We can rearrange these inequalities to see that we
want a(p− q) > (−1)(1− p− q) iff p− q > −(1− p− q)/2. In other words, we
want a(p− q) > (−1)(1− p− q) iff 2(p− q) > −(1)(1− p− q). So we see that
we need a = 2.

Now let’s look at Bob’s payoffs. The information stated in the question
shows us that they must be of the form

Bob

Alice
A M H

P x z w
G z y w

Moreover, when the probability of Alice waiting at Penn Station is 1/2, Bob
prefers Amtrak to Metroliner, which tells us that x>y. Using this information,
we can arbitrarily assign x to be 1 and y to be 0. Now we need to solve for z and
w. Using s to denote the probability of Alice waiting at Penn Station, the fact
that Bob prefers Amtrak to Metroliner iff s > 1/3 means that 1s+ z(1− s) >
zs + 0(1 − s) iff s>1/3. This will hold if z=-1. Finally, the fact that Bob
prefers Amtrak to Home iff s>2/3 means that 1s+ (−1)(1− s) > w iff s>2/3.
This means that w=1/3.
Thus, in the end, our normal form game is:

Bob

Alice
A M H

P 2,1 0,-1 0,1/3
G 0,-1 2,0 -1,1/3
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b) (five points) We can perform any positive affine transformation to the
payoff function of either player and preserve the structure of the game. So let’s
add 1 to Alice’s payoffs and multiply Bob’s payoffs by 3. We end up with:

Bob

Alice
A M H

P 3,3 1,-3 1,1
G 1,-3 3,0 0,1

c) (ten points) The question is asking for the rationalizable strategy profiles.
Note that H strictly dominates M. Removing M from the game gives us:

Bob

Alice
A H

P 3,3 1,1
G 1,-3 0,1

In this new game above, P strictly dominates G. Removing G gives us:

Bob

Alice
A H

P 3,3 1,1
And in the game where Alice goes to Penn Station and Bob chooses between

A and H, A strictly dominates H. So the only possible outcome given that it’s
common knowledge that both players are expected utility maximizers with the
stated preferences is for Bob to take Amtrak and for Alice to meet him at Penn
Station.

Solution to Problem 2

a) (six points)
2

1

Llλ Llρ Lrλ Lrρ Rlλ Rlρ Rrλ Rrρ
Axa 3,0 3,0 3,0 3,0 0,2 0,2 0,2 0,2
Axb 3,0 3,0 3,0 3,0 0,2 0,2 0,2 0,2
Aya 1,5 1,5 1,5 1,5 0,2 0,2 0,2 0,2
Ayb 1,5 1,5 1,5 1,5 0,2 0,2 0,2 0,2
Bxa 1,2 1,2 2,1 2,1 1,2 1,2 2,1 2,1
Bxb 1,2 1,2 2,1 2,1 1,2 1,2 2,1 2,1
Bya 1,2 1,2 2,1 2,1 1,2 1,2 2,1 2,1
Byb 1,2 1,2 2,1 2,1 1,2 1,2 2,1 2,1
Cxa 1,0 2,1 1,0 2,1 1,0 2,1 1,0 2,1
Cxb 0,1 0,0 0,1 0,0 0,1 0,0 0,1 0,0
Cya 1,0 2,1 1,0 2,1 1,0 2,1 1,0 2,1
Cyb 0,1 0,0 0,1 0,0 0,1 0,0 0,1 0,0
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b) (seven points) For player 1, Cxa (among other things) strictly dominates
Cxb and Cyb. Moreover, the mixed strategy that involves playing Axa and Bxa
each with probability 1/2 strictly dominates Aya, and it also strictly dominates
Ayb. Every other strategy of player 1 is a best response to some strategy
of player 2, which implies that it can’t be strictly dominated. Similarly, each
strategy of player 2 is a best response to some strategy of player 1, so player 2 has
no strictly dominated strategies. After deleting strictly dominated strategies,
we end up with:

2

1

Llλ Llρ Lrλ Lrρ Rlλ Rlρ Rrλ Rrρ
Axa 3,0 3,0 3,0 3,0 0,2 0,2 0,2 0,2
Axb 3,0 3,0 3,0 3,0 0,2 0,2 0,2 0,2
Bxa 1,2 1,2 2,1 2,1 1,2 1,2 2,1 2,1
Bxb 1,2 1,2 2,1 2,1 1,2 1,2 2,1 2,1
Bya 1,2 1,2 2,1 2,1 1,2 1,2 2,1 2,1
Byb 1,2 1,2 2,1 2,1 1,2 1,2 2,1 2,1
Cxa 1,0 2,1 1,0 2,1 1,0 2,1 1,0 2,1
Cya 1,0 2,1 1,0 2,1 1,0 2,1 1,0 2,1

In this new 8 x 8 game, Lrλ is strictly dominated by a mixed strategy that
plays Llρ and Rrλ each with probability 1/2, but every other strategy for each
player is a best response to some strategy of the other player. So after the
second round of elimination, we have:

2

1

Llλ Llρ Lrρ Rlλ Rlρ Rrλ Rrρ
Axa 3,0 3,0 3,0 0,2 0,2 0,2 0,2
Axb 3,0 3,0 3,0 0,2 0,2 0,2 0,2
Bxa 1,2 1,2 2,1 1,2 1,2 2,1 2,1
Bxb 1,2 1,2 2,1 1,2 1,2 2,1 2,1
Bya 1,2 1,2 2,1 1,2 1,2 2,1 2,1
Byb 1,2 1,2 2,1 1,2 1,2 2,1 2,1
Cxa 1,0 2,1 2,1 1,0 2,1 1,0 2,1
Cya 1,0 2,1 2,1 1,0 2,1 1,0 2,1

In this new 8 x 7 game, each strategy of either player here is a best response
to some strategy of the opponent in this game, which implies that we can no
longer eliminate anything. So the rationalizable strategies are Axa, Axb, Bxa,
Bxb, Bya, Byb, Cxa, and Cya for player 1; and Llλ, Llρ, Lrρ, Rlλ, Rlρ, Rrλ,
and Rrρ for player 2.

c) (five points) The best responses of player 1 to Llλ are Axa and Axb.
Player 1’s payoff from playing those strategies are in bold in the column corre-
sponding to Llλ in the payoff matrix below. I have done this for player 1’s best
response to each of the rest of player 2’s strategies, and I have done a similar
thing for player 2’s best response to each of player 1’s strategies. If both payoffs
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in a box are in bold, it means that each player is playing a best response to the
other (i.e., we have a Nash equilibrium).

2

1

Llλ Llρ Lrλ Lrρ Rlλ Rlρ Rrλ Rrρ
Axa 3,0 3,0 3,0 3,0 0,2 0,2 0,2 0,2
Axb 3,0 3,0 3,0 3,0 0,2 0,2 0,2 0,2
Aya 1,5 1,5 1,5 1,5 0,2 0,2 0,2 0,2
Ayb 1,5 1,5 1,5 1,5 0,2 0,2 0,2 0,2
Bxa 1,2 1,2 2,1 2,1 1,2 1,2 2,1 2,1
Bxb 1,2 1,2 2,1 2,1 1,2 1,2 2,1 2,1
Bya 1,2 1,2 2,1 2,1 1,2 1,2 2,1 2,1
Byb 1,2 1,2 2,1 2,1 1,2 1,2 2,1 2,1
Cxa 1,0 2,1 1,0 2,1 1,0 2,1 1,0 2,1
Cxb 0,1 0,0 0,1 0,0 0,1 0,0 0,1 0,0
Cya 1,0 2,1 1,0 2,1 1,0 2,1 1,0 2,1
Cyb 0,1 0,0 0,1 0,0 0,1 0,0 0,1 0,0

So there are eight Nash equilibria in pure strategies: (Bxa,Rlλ), (Bxb,Rlλ),
(Bya,Rlλ), (Byb,Rlλ), (Cxa,Rlρ), (Cxa,Rrρ), (Cya,Rlρ), and (Cya,Rrρ).

d) (seven points) For player 1, Aya, Ayb, Cxb, and Cyb are weakly domi-
nated by Axa. None of the other strategies are dominated (not even by a mixed
strategy) because they are each a best response to some strategy of player 2 and
there is no other strategy of player 1 that is also a best response and that gives
a higher payoff against any of player 2’s strategies. For player 2, Rlρ weakly
dominates Rrρ, Rlλ weakly dominates Rrλ, Llλ weakly dominates Lrλ, and
Llρ weakly dominates Lrρ. But neither Rlρ,Rrλ, Llλ, nor Llρ is weakly domi-
nated (you should be able to convince yourself of this). So after round one of
elimination, we end up with:

2

1

Llλ Llρ Rlλ Rlρ
Axa 3,0 3,0 0,2 0,2
Axb 3,0 3,0 0,2 0,2
Bxa 1,2 1,2 1,2 1,2
Bxb 1,2 1,2 1,2 1,2
Bya 1,2 1,2 1,2 1,2
Byb 1,2 1,2 1,2 1,2
Cxa 1,0 2,1 1,0 2,1
Cya 1,0 2,1 1,0 2,1

Now for player 1, Cxa weakly dominates Bxa, Bxb, Bya, and Byb. Axa,
Axb, Cxa, and Cya are not weakly dominated. For player 2, Rlρ is a weakly
dominant strategy. Thus, after round two of elimination, we have:
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2

1

Rlρ
Axa 0,2
Axb 0,2
Cxa 2,1
Cya 2,1

And in this game, Cxa weakly dominates Axa and Axb. So after round
three, we wind up with:

2

1
Rlρ

Cxa 2,1
Cya 2,1

.

And it should be obvious that we can do no more elimination. So the
strategies that survive iterated elimination of weakly dominated strategies are
Cxa and Cya for player 1, and Rlρ for player 2.

Solution to Problem 3.

(a) (10 points) Payoff to student i is

xi − xit (x1, .., xn)

Given the choices of the other students
©
x∗j
ª
j 6=i, player i’s optimal strategy

is to choose xi such that

1− xi
∂t

∂xi
− t (x∗1, x

∗
2..xi, .., x

∗
n) = 0

=⇒ xi = 1− t (x∗1, x
∗
2..xi, .., x

∗
n) (1)

Summing across all students,

nX
j=1

x∗j = t (x∗1, .., x
∗
n) = n− nt (x∗1, .., x

∗
n)

=⇒ t (x∗1, .., x
∗
n) =

n

n+ 1
(2)

Substituting for t (x∗1, .., x
∗
n) in (1) using (2),

xi =
1

n+ 1

Therefore, in the unique Nash equilbrium, each student chooses to send
data of size 1

n+1 and receives a payoff of
1

(n+1)2
.

(b) (15 points)
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1. Payoff to student i is

M + xi − xit (x1, .., xn)− pxi

We proceed as in the first part. If the choices of the other students
are given by

©
x∗j
ª
j 6=i, player i’s optimal strategy is given by

1− xi
∂t

∂xi
− t (x∗1, x

∗
2..xi, .., x

∗
n)− p = 0

=⇒ xi = 1− t (x∗1, x
∗
2..xi, .., x

∗
n)− p (3)

Summing across all students,

nX
j=1

x∗j = t (x∗1, .., x
∗
n) = n− nt (x∗1, .., x

∗
n)− np

=⇒ t (x∗1, .., x
∗
n) =

n (1− p)

n+ 1

=⇒ x∗i = 1−
n (1− p)

n+ 1
− p =

1− p

n+ 1

Therefore, given M and p, each player chooses to send 1−p
n+1 units of

data in the Nash equilibrium, and receives a payoff equal to M +h
1−p
n+1

i2
2. If each student sends 1−p

n+1 units of data, at price p this generates a

total revenue of np(1−p)
n+1 . So, to break even, we must set

nM =
np (1− p)

n+ 1
=⇒ M =

p (1− p)

n+ 1

The utility each player obtains from such a scheme =

p (1− p)

n+ 1
+

∙
1− p

n+ 1

¸2
=

1

(n+ 1)2
(1− p) (np+ 1)

which attains its maximum at p = n−1
2n , M = n−1

4n2 . These values for
p and M yield a utility of 1

4n .

3. Note that, for n = 1, the expressions obtained for p and M in part
(b)2 equal zero and the utility to each player in equilibrium equals
1
4 in both the first and second programs. The reason this is so is
that when there is only one individual, there is no scope for nega-
tive externalities on the data network, and therefore the charge for
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transmitting data cannot improve utility. For higher values of n, the
second program always does better — by charging students for data
transmission, it ensures that they take into account the negative ex-
ternalities involved when deciding how much data to send.

Solution to Problem 4
The following is a proof for the general n-person case [a proof of the 3-

person case previously posted contained an error and has been removed; it will
be substituted with an alternate proof]. Denote by ti the true preferences of
candidate i. Fix a set of ‘declared’ prefereces {sj}j 6=i for the other candidates
(which may or may not involve truth-telling). Denote by μM the matching that
takes place when the algorithm described in the question (called henceforth

the Gale-Shapley algorithm) is used for declared preferences
³
ti, {sj}j 6=i

´
. We

show below that if there is any other matching μ such that candidate i prefers
his position under μ to that under μM , then the matching μ will be ‘blocked’;
i.e. there is a candidate (different from i) and a position not paired with one
another under μ who prefer such a pairing (according to their candidate’s de-
clared preferences) to their own partners under μ. In the Gale-Shapley paper,
they show that their matching algorithm will always lead to an outcome that
is ‘stable’ (for the declared preferences); i.e. there is no possible blocking pair.
Therefore, if candidate i prefers μ over μM , it is not possible to obtain μ using
the Gale-Shapley algorithm for any preference si declared by candidate i.

To show that that matching μ will be ‘blocked’ under preferences
³
ti, {sj}j 6=i

´
:

Let M 0 be the group of candidates who prefer μ to μM ; by assumption M 0 in-
cludes candidate i but it may also include other candidates. Denote by μ (M 0)
and μM (M

0) the group of positions to which the candidates in M 0 are matched
under μ and μM respectively. There are two cases that we need to consider sep-
arately (the following is based on the the proof of the ‘Blocking Lemma’ from
‘Two-sided Matching’ by Roth and Sotomayer).

• Case 1: μ (M 0) 6= μM (M
0). Choose w in μ (M 0) − μM (M

0). That is, w
is a position matched to a candidate in M 0 under μ but not under μM .
Say w = μ (m0). Because m0 ∈M 0, m0 prefers w to the position to which
he was matched under μM . Then m0 must have applied to w under μM
and been rejected; so it must be that w prefers μM (w) = m to m0. Since
w /∈ μM (M

0), m /∈M 0. So m prefers w to μ (m). So (m,w) ‘blocks’ μ.

• Case 2: μM (M
0) = μ (M 0) = W 0. Let w be the last position in W 0 to

receive an application from a member of M 0 under μM . Since all the
positions in W 0 have rejected candidates in M 0, it must be that w had
some applicant m engaged when it received this last application.Then, we
claim (m,w) is the blocking pair. First, m /∈M 0; otherwise he would apply
to some other position in W 0 after being rejected by w, and this would
contradict the assumption that w is the last position inW 0 to receive such
an application. So m is worse off under μ than under μM . Also, since
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m applies to w (and is rejected) before being matched with μM (m), he
prefers w to μM (m). Therefore, he also prefers w to μ (m). On the other
hand, m was the last candidate to be rejected by w; therefore, she must
have rejected μ (w) before she rejected m. Therefore, she prefers m to
μ (w). So (m,w) blocks μ as claimed.
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