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14.12 Game Theory

Muhamet Yildiz

Fall 2005


Solution to Homework 6 

Answer to Problem 1 

(a) Suppose player	 j bids bj (vj) =  a + cvj . Let  ui (vi, vj , bi) be player i’s 
payoff when player j is playing this strategy, and player i has a valuation 
vi and bids bi. Then 

ui (vi, vj , bi) = (vi − bi) if  vj <
bi − a 

c 
1 1 

=	
2
(vi − bi) +  

2
(a + cvj) if  vj = 

bi − a 

c 

= (a + cvj) if  vj >
bi − a 

c 

Therefore, expected payoff to player i from bidding bi when his valuation 
1

0
ui (vi, v, bi) dF (v)is vi equals 

where F (v) is the cummulative distribution function for player j’s valua-
tion vj . Since vj has a uniform distribution over [0, 1], F (v) =  v. Then 
the expected payoff can be written as 

bi−a

c
 1 

0 

(vi − bi) dv + (a + cv) dv 
bi−a 

c 

1 

= (vi − bi) 
bi − a 

+ av + 
c (v)2 

c 2 bi−a 

c � � � �� � �� 
c bi − a c bi − a

= (vi − bi) 
bi − a 

+ a + − a + 
c 2 c 2 c 

c a + bi bi − a
= (vi − bi) 

bi − a 
+ a + − 

c 2 2 c 

1 
� 

bi − a	 c 
= (2vi − 3bi − a) +  a +

2 c 2 

Setting the first-order condition with respect to bi equal to zero, we obtain 

−3 (bi − a) + (2vi − 3bi − a) = 0  

1 
=⇒ bi = 

3
(vi + a) 

1 



Therefore, if player j bids bj (vj) =  a + cvj , then player i’s best response 
ais to bid bi (vi) =  3 + 1 vi. In a symmetric Bayesian Nash equilibrium, 3

bj (v) ≡ bi (v). 
a	 v 

=⇒ + ≡ a + cv
3 3 

1 
=⇒ c =

3 
, a  = 0  

Therefore, both players 1 and 2 playing b (v) =  1 v is a symmetric, linear 3
Bayesian Nash equilibrium. 

(b) Suppose player	 j bids b (vj), where b (.) is a strictly increasing, differ-
entiable function. Let ui (vi, vj , bi) be player i’s payoff when player j is 
playing this strategy, and player i has a valuation vi and bids bi. Then 

ui (vi, vj , bi) = (vi − bi) if  vj < b−1 (bi)

1 1


=	
2
(vi − bi) +  b (vj) if  vj = b−1 (bi)2 

= b (vj) if  vj > b−1 (bi) 

Following the reasoning in part (a), the expected payoff to player i equals 

� b−1(bi) � 1 

(vi − bi) dv + b (v) dv 
0	 b−1(bi) 

= (vi − bi) b−1 (bi) + [h (vj)]
1 
b−1(bi) � 

b−1 (bi) 
� 

= (vi − bi) b−1 (bi) +  h (1) − h 

where h (v) is defined such that h′ (v) =  b (v).


Setting the first-order condition with respect to bi equal to zero, and

∗writing bi for the best reply, we obtain 

∗	 ∗ � � db−1 (bi )∗ ∗	 ∗ −b−1 (bi ) + (vi − bi ) 
db−1 (bi ) − h′ b−1 (bi ) = 0∗dbi	 dbi 

∗ 1 ∗ 
� ∗ 

�� 
=⇒ −b−1 (bi ) +  

b′ (b−1 (bi )) 
� 
vi − bi − b b−1 (bi ) = 0∗ 

∗	 ∗For a symmetric equilibrium, we must have b = b (vi) =⇒ b−1 (bi ) =  vi.i 

Hence, 
1 −vi + [vi − 2b (vi)] = 0 

b′ (vi) 

=⇒ b′ (vi) +  
2b (vi) = 1 (1)  

vi 

2 



� 

� � 

� � � � 

� � 

� � 

(c) For notational simplicity, replace vi with v in (1). Multiplying throughout 
(1) with v2, we obtain 

2b′ (v) v 2 + 2b (v) v = v 

2=⇒ 
d � 

b (v) v 2
� 
= v 

dv 

=⇒ b (v) v 2 = v 2dv 

3 

=⇒ b (v) v 2 = 
v

+ c
3 

v c 
=⇒ b (v) =  + 

v23 

For b (v) to be strictly increasing for v ∈ [0, 1], we require c = 0. Therefore, 

v 
b (v) =  

3 

Answer to Problem 2 

(a) To compute a symmetric Bayesian Nash equilibrium, we compute the best 
response function for player i when all other individuals j �= i adopt a 
strategy bj (vj) =  a + cvj . 

If player i bids bi when her valuation is vi, then her expected payoff equals 

[vi − bi] Pr  max bj (vj) < bi 
j �=i 

Note that we can ignore the case where maxj=� i bj (vj) =  bi as this occurs 
with zero probability. Now, 

Pr max bj (vj) < bi = Pr  max a + cvj < bi 
=i j �j � =i 

bi − a
= Pr  max vj < 

j �=i c � �n−1
bi − a 

= 
100c 

Therefore, we can write player i’s expected payoff from bidding bi as � �n−1 

[vi − bi] 
bi − a 

100c 

a n−1which is maximised at bi = n + vi. n 
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Therefore, in a symmetric equilibrium, we must have 

a n − 1 
� 

+ vi ≡ a + cvi 
n n 

n − 1 
=⇒ a = 0, b  = 

n 

Therefore, the strategy profile bi (vi) =  n 
n−1 

� 
vi, i = 1..n is a symmetric, 

linear Bayesian Nash equilibrium. 

(b) The equlibrium payoff to a player with valuation vi equals 

[vi − bi (vi)] Pr max bj (vj) < bi (vi) 
j �=i 

� � � � � � � 
n − 1 

� 
n − 1 

� 
n − 1 

� 

= vi − vi Pr max vj < vi 
n j �=i n n 

vi = Pr max vj < vi 
n j �=i 

vi vi 
�n−1 

= 
n 100


(vi)
n


= 
n (100)n−1 

(c) If n=80, then the expected payoff to a player with valuation v equals 
(v)80 

80(100)79 
. This is the cost that a player with valuation v would be willing 

to incur to play the game. This expression is increasing in v. Therefore, 
the higher is one’s valuation, the ‘luckier’ the player is. And the difference 
in expected payoff between the ‘luckiest’ and ‘least lucky’ player equals 

10080 

− 0
80 × 10079 

100 
= 

80 

Answer to Problem 3 
Throughout this question, we will refer to XC’s strategies as (X,Y) where X 

= Action taken by XC if tXC = good and Y =Action taken by XC if tXC = 
bad, with X, Y =A (Advertisement ), NA (No Advertisement). Likewise, we 
will refer to the consumer’s strategy as (x, y) where x = consumer’s action if he 
observes A and y = consumer’s action if he observes NA, with x, y = B (Buy), 
D (Don’t). 

a) See graph attachment. 
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b) Separating Equilibria: Suppose that (A, NA) is the strategy adopted by 
XC. In this case, (B, D) is a best response by the representative consumer and 

NAthe beliefs are {µA = 1, µ = 0}.Good Good 

Let’s check XC’s best response to (B, D). Clearly, if tXC = good he still 
prefers A since R >  c. If  tXC =bad, XC prefers D since r − c <  0. Therefore, 

NAthe equilibria is given by { (A, NA), (B, D)} , {µA = 1, µ = 0}Good Good 

c) Pooling Equilibria: Suppose both types of player XC play NA. The repre-
sentative consumer will learn nothing from the signal and its beliefs about types 

NAremain unchanged.{µNA = 0.6, µ = 0.4}. Then, when the representative Good Good 

consumer observes no advertisement, its expected payoff from buying is more 
than its expected payoff from don’t buying: (0.6)(1) + (0.4)(−1) = 0.2 > 0. 
Therefore, the representative consumer buys. 

We still need to specify the consumer’s beliefs if it were to observe the signal 
A. Note that it is not possible to do so using Bayes’ rule as neither type sends 
this signal in equilibrium. If µA > 0.5 he prefers to buy, and if µA < 0.5Good Good 

he does not want to buy. In this case, XC will not want to deviate whatever 
are the beliefs of the consumer. The good type gets R if he does not deviate 
which is bigger than what he gets if he deviates, R − c or −c. (depending on 
the consumer decision when he observes A). The bad type also does not want 
to deviate since r is bigger than r − c or −c. Therefore, the equilibria are given 

NAby { (NA, NA), (B, B)}, {µA > 0.5, µ = 0.6} and { (NA, NA), (D, B)},Good Good 
NA{µA < 0.5, µ = 0.6}.Good Good 

d) In this case the separating equilibria in b) is no longer an equilibria since 
the bad type would want to deviate and pretend he is a good type by advertising 
and getting r − c instead of 0. 

The pooling equilibria in c) is still an equilibria. But we have also an-
other pooling equilibria where both players decide to advertise (A,A). In this 
case, the consumer will learn nothing when he observes advertisement and his 

Abeliefs about types remain unchanged.{µA = 0.6, µ = 0.4}. There-Good Good 

fore, his expected payoff from B is more than its expected payoff from D, 
(0.6)(1) + (0.4)(−1) = 0.2 > 0. Thus, he will decide to buy if observes ad-
vertisement. We cannot apply the Bayes’ rule consumer’s beliefs if it were to 
observe the signal NA because neither type sends this signal in equilibrium. If 
µNA > 0.5 he buys, and if µNA < 0.5 he does not want to buy. We can find Good Good 

the range of beliefs for which neither type will deviate from playing A. In order 
for XC to not deviate, we need the consumer to not buy if it receives signal NA 

NA. Thus we need that µ < 0.5. Therefore, the equilibria is given by { (A,A),Good 
NA(B, NB)} and {µA = 0.6, µ < 0.5}.Good Good 

Answer to Problem 4 (Gibbons, ex. 4.10) 
The strategy of player 2 is to buy if v2 � p and sell if v2 < p  
As for player 1: 
Max  psPr(v2 > p) + [v1 − p ∗ (1 − s)] Pr(v2 < p) 

p 

or, equivalently, 
Max  ps(1 − p) + [v1 − p(1 − s)] p 

p 
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First-order condition then yields: 
v1+s p(v1) =  2 

It is also obvious that player 2 strategy is optimal. 
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