
14.12 Game Theory (Fall 2003)-Midterm II Solutions

1. Consider an infinite horizon bargaining game with three players N = {1, 2, 3}. In
each period t, one of the players is randomly selected to make an offer: Player 1 is
selected with probability 1

2
, each one of Players 2 and 3 is selected with probability

1
4
. The selected Player i offers a division of the cake (xt, yt, zt) where xt, yt, zt ≥ 0
and xt+ yt + zt = 1 (xt denotes player 1’s share yt denotes player 2’s share and zt
denotes player 3’s share). The two other Players j and k observe i’s offer (xt, yt, zt),
then j and k simultaneously accept or reject this offer. If both j and k accept then
the division is carried out, if at least one of them rejects then the offer is rejected
and they proceed to period t+ 1.

Players maximize discounted expected payoffs and have the common discount
factor δ ∈ (0, 1). If no offer is ever accepted, then each player receives a payoff of
zero. The selection of who makes an offer is i.i.d. across periods.

(a) (15pts) Conjecture an SPE where (as usual) players accept any division where
they receive at least δ times their continuation payoff. Write down formally
the strategy profile and verify that it is indeed an SPE by using the single
deviation property.

Solution: Denote V1, V2, V3 the payoffs to players in the beginning of each
period, before the uncertainty about who is making the offer is realized.
Clearly the game is stationary, so these continuation payoffs are the same
in the beginning of each period.

Now with probability 1
2
player 1 will be selected and he will make offer

(1 − δV2 − δV3, δV2, δV3) (why?), that will be immediately accepted. If
either player 2 or player 3 will get to make an offer (which happens with
probability 1

4
each), player 1 will be offered δV1 and will accept. Overall,

the payoff to player 1 is V1 = 1
2
(1 − δV2 − δV3) +

1
4
δV1 +

1
4
δV1. Similar

considerations for players 2 and 3 result in V2 =
1
2
δV2 +

1
4
(1 − δV1 −

δV3) +
1
4
δV2 and V3 =

1
2
δV3 +

1
4
δV3 +

1
4
(1 − δV1 − δV2). This gives a

system of three equations with three unknowns, which is easily solved
(especially if you rely on symmetry to conjecture V2 = V3). The answer
is V1 = 1

2
, V2 = V3 =

1
4
, and the offers are calculated accordingly (for

instance, if player 1 gets to make an offer, he will offer (1− δ
2
, δ
4
, δ
4
)). That

constructed strategies are indeed an SPE follows almost immediately
from construction.

(b) (10pts) For any division (x, y, z), construct an SPE where the cake is divided
according to (x, y, z) in the first period, no matter who makes the offer.
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Solution: The construction below relies heavily on that there are more
than two players and that they accept or reject the offer simultaneously.
In particular this implies that none of the players never accepting any
offer is an equilibrium (if my partner is going to reject anyway, I can do
nothing by deviating and accepting). Consequently, the following is an
SPE: whoever gets to make an offer in the first period offers (x, y, z) and
the others accept. If anyone deviates in the first period (either the offer
is different from (x, y, z) or someone rejects it) then never accept any
offer whatsoever.

2. Consider following 3× 3 stage game G:
L M R

U 5,6 2,2 2,3
M 6,3 3,4 0,3
D 2,1 1,0 0,1

In the following restrict attention to only pure strategies.

(a) (5pts) What are the SPE of G(T ) when T <∞.
Solution: The unique Nash equilibrium of the stage game is the strategy
profile (M,M). Therefore, the unique SPE of the finitely repeated game is
to play (M,M) at every stage.

(b) (10pts) What are the set feasible payoff vectors and the payoff vectors that
can be obtained in SPE of G(∞) by applying the Folk theorem with Nash
threats.
Solution:

(c) (10pts) Give the SPE trigger strategy profile that yields the payoff vector
(5, 6). What is the minimum δ for these strategies to be SPE?
Solution: Consider the following strategy profile: the players are to play
(U,L) if the play has been (U,L) at every stage in the past. Otherwise,
the players should play (M,M). To establish that this constitutes an SPE,
we apply the single deviation principle: in the ’punishment’ mode, clearly
neither player would want to deviate from playing (M,M) as this is a Nash
equilibrium of the stage game. It remains to be checked that neither player
wants to deviate from playing (U,L) given the punishment such a deviation
would trigger. Player 2, on the other hand, has no reason to deviate from
the play (U,L) as L is his best response to player 1 playing U . If player 1
deviates to M (it is clearly not beneficial for her to deviate to D) then she
increases her payoff by 1 in the current period but loses 2 in every period
thereafter as a result of the punishment. Therefore, it is not in her interest
to deviate if
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Figure 1:

1 ≥ 2δ + 2δ2 + ... = 2δ
1−δ (where we are discounting future payoffs by δ)

⇒ δ ≥ 1
3

So the given strategy profile constitutes an SPE with Nash threats for δ ≥ 1
3

(d) (20pts) Does the Folk theorem with Nash threats give an SPE of G(∞) with
payoff (6,3)? Is there an SPE of G(∞) with payoff (6,3)? If so indicate the
minimum δ for which the strategy profile you construct is an SPE. Same
question for the payoff vector (0,3) instead of (6,3).
Solution: Using Nash threats, it is not possible to sustain an equilibrium
where the per-period payoff is lower than the Nash equilibrium payoffs of the
stage game. Since the Nash equilibrium payoffs are (3,4), it is not possible to
construct an SPE where the players receive (6,3) using Nash threats alone.
The minmax payoffs are (2,1). Therefore it is possible to construct an SPE
of G(∞) that yields payoffs (6,3). Here is an example:
The game can be in two phases, C and P. In phase C, the prescribed play is
(M,L). In phase P, the prescribed play is (D,M). If either player deviates in
phase C, then they are to switch to phase P. If either player deviates in phase
P, they remain in phase P. If no deviation occurs in phase C, they remain in
phase C. If no deviation occurs in phase P, they switch to phase C. Finally,
the game begins in phase C.
We apply the single deviation principle to check if this can be an SPE. In
phase C, player two can gain a maximum of 1 point by deviating to M but
it would mean going to phase P for one period, which would cost player two
3 points relative to what she would have obtained if the play had remained
in phase C. Therefore, it is not in the interest of player 2 to deviate if 1 ≤
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δ(3− 0)⇒ δ ≥ 1
3
. On the other hand, player one cannot gain from deviation

in phase 1.
In phase P, player one gains a maximum of 2 points by deviating to M .
However, this would mean remaining in phase P an additional period before
going back to phase C, and this would cost player one 5 points. Therefore
he would not want to deviate if 2 ≤ δ(6 − 1) ⇒ δ ≥ 2

5
. In phase P, player

two gains 1 point by deviating to L or R but loses 3 points from having to
remain in phase C an additional period. Therefore, she would not deviate if
1 ≤ δ(3− 0)⇒ δ ≥ 1

3
.

Taking all these results together, neither player has an incentive to deviate
when δ ≥ 2

5
.

We have thus established that the strategy profile described here constitutes
an SPE for δ ≥ 2

5
.

It is not possible to construct an SPE with payoffs (0,3) as 0 is less than
player 1’s minmax payoff.

3. Consider the following incomplete information version of the Bertrand duopoly
game with differentiated products. There are two firms N = {1, 2} each with
zero marginal cost. Each firm i can either be of High-type with probability θ or
Low-type with probability 1− θ (the types of the firms are independently drawn
from the same distribution). The type of each firm i is private information of i.
After learning his type, each firm i simultaneously determines a price pi ≥ 0. The
demand for firm i’s product is given by

max{0, 1− pi + aHpj}

if firm i is of High-type, and by

max{0, 1− pi + aLpj}

if firm i is of Low-type, where i 6= j and aH > aL > 0. Firms maximize expected
profits.

(a) (5pts) Formulate the Bayesian game (actions, types, beliefs, and payoffs)
corresponding to the above situation. What are the strategies in this game?

Solution: there are two players and for each player two possible types.
Player i = 1, 2 of type T = L,H has beliefs (θ, 1− θ) about the distrib-
ution of the other player’s type and choses action pTi among positive real
numbers. If player i is of type T = L,H and player j is of type S = L,H,
then player i’s payoff are her profits: πTi

¡
pTi , p

S
j

¢
= pTi

¡
1− pTi + aTpSj

¢
.

A strategy of player i is a pair of prices (pLi , p
H
i ) that he can set condi-

tional on each one of his types.
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(b) (25pts) Find the BNE. (Assume that θ, aH , and aL satisfy conditions for an
interior solution.)

Solution: a BNE of this game must be a set of strategies for each player of
each possible type such that given the player’s strategies and beliefs, none
wants to deviate. To compute such equilibria, we look at fixed points of
the best response graphs of each player-type. Player i if she is of type
T does not know her competitor’s type, but she has beliefs about the
distribution of her competitor’s types. When choosing her best reponse,
she chooses the price pTi that will maximize her expected profits:

pTi
¡
pLj , p

H
j

¢
= argmax

©
θpTi

¡
1− pTi + aTpHj

¢
+ (1− θ) pTi

¡
1− pTi + aTpLj

¢ª
pTi
¡
pLj , p

H
j

¢
=

1 + aT
¡
θpHj + (1− θ) pLj

¢
2

The BNE, if it is an interior solution, must be a fixed point of the best
response graph (of all those 4 different players/types). From the symetry
of the game, we can already guess that pTi = pTj = pT for T = H,L. The
conditions for a BNE are:

pH =
1 + aH

¡
θpH + (1− θ) pL

¢
2

pL =
1 + aL

¡
θpH + (1− θ) pL

¢
2

or pH1 = pH2 = pH =
2 + (1− θ)

¡
aH − aL

¢
2 (2− (1− θ) aL − θaH)

, pL1 = pL2 = pL =
2− θ

¡
aH − aL

¢
2 (2− θaH − (1− θ) aL)

The BNE consists of the strategy profile
¡
pH1 , p

L
1 ; p

H
2 , p

L
2

¢
given above, based on beliefs

(θ, 1− θ).
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