
14.12 Game Theory
Fall 2004

Answers for Midterm 1, Fall 2004

1. Consider the following game:
A B C

a 3, 0 0, 3 0, x
b 0, 3 3, 0 0, x
c x, 0 x, 0 x, x

(a) The question does not ask to find all Nash equilibria. One way is to find all the pure-strategy Nash
equilibria and then use the symmetry of the game to guess a symmetric mixed-strategy Nash equilibria
and check that it is indeed a Nash equilibria. The Nash equilibria of that game are
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In the solutions, we find all the equilibria starting with the pure-strategy ones. The best responses of
player 1 are

BR1(A) = {a}
BR1(B) = {b}
BR1(C) = {c}

The best responses of player 2 are

BR2(a) = {B}
BR2(b) = {A}
BR2(c) = {C}

Hence the only pure-strategy Nash equilibrium is

(c, C)

In a mixed-strategy equilibrium, player 2 is playing A with probability p, B with probability q and C
with probability 1− p− q. The expected payoffs of player 1 are

EU1(a) = 3p

EU1(b) = 3q

EU1(c) = 1
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Hence his best responses are
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By symmetry, if player 1 is playing a with probability r, b with probability s and c with probability
1− r − s, the best responses of player 2 are
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- Let’s first look at an equilibrium where player 2 is mixing among {A,B,C} with positive probabili-
ties. In order for this strategy to be a best response it must be the case that player 1’s probabilities
are r = s = 1

3 . Player 1 is playing his three strategies with a positive probability which is a best
response to p = q = 1

3 . We conclude that (
1
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3c;
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3C) is a Nash equilibrium.

- Then look at an equilibrium where player 2 is mixing among {A,B}. This means that p+ q = 1
and the best responses of player 1 are
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Player 1 is thus mixing among {a, b}.And using the symmetry, this can be the case in equilibrium
if and only if r = s = 1

2 . We conclude that (
1
2a+

1
2b;

1
2A+

1
2B) is a Nash equilibrium.

- What about an equilibrium where player 2 is mixing between {A,C}, i.e. p ∈ (0, 1) and q = 0?
{A,C} is a best response only if s = 1

3 , b is played with a positive probability. And b is a best
response iff q ≥ 1

3 which contradicts that we are looking for an equilibrium with q = 0. By
symmetry no equilibrium exists with player 2 mixing between {B,C}.

(b) As BR1(C) = {c} and BR2(c) = {C}, (c,C) remains a Nash equilibrium when x = 2. What about
the mixed-strategy Nash equilibria

2



- If player 2 plays 13A+
1
3B +

1
3C

EU1(a) = 1

EU1(b) = 1

EU1(c) = 2

Player 1’s best response is c. Hence ( 13a+
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3C) is not a Nash equilibrium.
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Player 1’s best response is c. Hence ( 12a+
1
2b;

1
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1
2B) is not a Nash equilibrium.

2. (a) There are two subgames in this game, including the whole game itself. The normal-form representation
of the final subgame is as follows:
P1\P2 a b c
L (3,1) (0,0) (2,2)
R (0,0) (1,3) (2,2)
It is easy to check that the two pure-stratgey NE of this game are (L,c) and (R,b). The game also
has a mixed-strategy NE that is given by (1/3 L + 2/3 R, c) but we will concentrate only on the
pure-strategy subgame-perfect equilibria.
For the subgame-perfect equilibrium outcome, when we look at Player1’s decision at the first node, the
only outcomes we need to consider from the final subgame are the NE that we found above. Player1
gets a payoff of 2 if he plays X at the start of the game, no matter what the outcome is in the final
subgame (of course, the final subgame will not actually be reached if Player1 plays X at the first stage).
If he chooses E at the first node, he gets a payoff of 2 if the outcome of the final subgame is (L,c)
and a payoff of 1 if the outcome of the final subgame is (R,b). So the pure-strategy subgame perfect
equilibria of this game are: {(XR, b), (XL, c), (EL, c)}.

(b) The representation of the game in strategic-form is as follows:
P1\P2 a b c
EL 3,1 0,0 2,2
ER 0,0 1,3 2,2
XL 2,2 2,2 2,2
XR 2,2 2,2 2,2

(c) The pure-strategy NE are {( XL,b), (XR,b), (EL,c), (XL,c), (XR,c)}. Of these, from part (a), ( XL,b)
and (XR,c) are not subgame-perfect.

3. Lets refer to the two players as P1 and P2 and without loss of generality, lets assume that P1 moves first
and makes an offer (x, y) to P2. Clearly, in equilibrium, we must have y = 1− x.

(a) P2 will only accept a division that leaves him at least as well-off as his next-best option, which is a
utility of 0.
This means:

u2 = (1− x)− αx ≥ 0

or, x ≤ 1

1 + α

Since P1’s utility is strictly increasing in x, in equilibrium x = 1
1+α and y = α

1+α .
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(b) For the backward-induction outcome, we start with the final subgame where P1 or P2 each have a
probability of 1/2 of making the offer to the other player. Whichever player makes the offer must
behave exactly as in part (a). The expected utilities of each player from this second-stage is:

EU = 1/2 ∗ 0 + 1/2 ∗ ( 1

1 + α
− α ∗ ( α

1 + α
))

=
1− α

2

So in order to make P2 accept the offer in the first-stage, P1 must leave P2 with a utility in the first
stage that is at least as high as his expected utility in the second-stage.
This means:

(1− x)− αx ≥ 1− α

2

or, x ≤ 1/2

Since P1’s utility is strictly increasing in x, P1 will offer exactly 1/2 to P2 to have him accept the
first-stage offer.
The answer is not complete unless we check P1’s own utility from having P2 accept in the first-stage
or allowing the game to move to the second-stage.
When P1 offers 1/2 in the first-stage, his utility is 1−α

2 . This is the same as his expected utility from
the second-stage.
So we will have two types of equilibria in this game. In the first type of equilibrium, P1 offers (x, y)
with x = y = 1/2 to P2 in the first-stage, in which case P2 will accept his offer in the first-stage and
P1 and P2 both earn 1−α

2 . The second type of equilibria will have P1 offering any (x, y) such that
x > 1/2 and letting the game move to the second-stage, where both players earn 1−α

2 in expectation.

(c) When u2 = (1 − x) − αx ≥ 0, P2 will accept any offer between 0 & 1 so P1 maximizes his utility by
offering 0 to P2.
When the game is a two-period game as in part (b), the player making the offer in the second stage
will keep the entire dollar for himself. The utility to a player when he keeps the dollar is 1 and the
utility to a player is α, if he is offered 0 by the other player. It follows that to leave P2 indifferent
between accepting or rejecting the offer in the first-stage, P1 must offer (x, 1− x) such that:

x+ α(1− x) ≥ 1 + α

2

or, x ≤ 1/2
Like before, since P1’s utility is strictly increasing in x, P1 will offer exactly 1/2 to P2 to have him
accept the first-stage offer.
Once again, the answer is not complete unless we check P1’s own utility from having P2 accept his
offer in the first-stage or allowing the game to move to the second-stage.
When P1 offers 1/2 in the first-stage, his utility is 1+α

2 . Again, this is equal to his expected utility
from the second-stage.
So, like in part (b), we will have two types of equilibria in this game. In the first type of equilibrium,
P1 offers (x, y) with x = y = 1/2 to P2 in the first-stage, in which case P2 will accept his offer in
the first-stage and P1 and P2 both earn 1+α

2 . The second type of equilibria will have P1 offering any
(x, y) such that x > 1/2 and letting the game move to the second-stage, where both players earn 1+α

2
in expectation.
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4. (a) Note that in this game, given any bid bj from Playerj, there are two ways for Playeri to earn a positive
payoff. The first way is to bid a bid bi > bj and win 100−bi and the second way is to tie with Playerj ’s
bid and earn 100−bj

2 . Thus, the best response (BR) of Playeri to a bid bj from Playerj, is to bid

bi = bj + 1, if 100− bj − 1 >
100− bj

2
(1)

bi = bj + 1 OR bj , if 100− bj − 1 =
100− bj

2
(2)

(1) is satisfied whenever bj< 98. When bj = 98, Playeri’s best response is either 98 or 99 since they
both yield a utility of 1.
Now we can proceed with the iterative process to eliminate strictly dominated strategies.
Round 1: BRi {0, 1, 2, ..., 99} = {1, 2, 3, ..., 99}
If we assume that Player1 is rational, he will never bid 0 as this is never a best reponse to any bid b2
from Player2. So we eliminate 0.
Round 2: BRi {1, 2, 3, ..., 99} = {2, 3, 4, ..., 99}
If we assume that Player2 knows that Player1 is rational, Player2 knows that Player1 will never play 0.
A bid of 1 is a best response from Player2 only if Player1 bids 0. If we assume that Player2 is rational,
he will never play 1. So we eliminate 1.
Round 3: BRi {2, 3, 4, ..., 99} = {3, 4, 5, ..., 99}
If we assume that Player1 knows that Player2 knows that Player1 is rational and also that Player1
knows that Player2 is rational, Player1 knows that Player2 will never play 1. Since a bid of 2 by Player1
is a best reponse only to a bid of 1 by Player2, Player1 will never bid 2. So we eliminate 2.
In this way, we can iteratively eliminate all strictly dominated strategies for both player and the only
set of rationalizable strategies for both players is bi = {98, 99}, i = 1, 2. Note that from (1) and (2), a
bid of 98 is a best response to both 97 and 98 so that we cannot eliminate it.

(b) The Nash equilibrium in pure strategies will involve the only rationalizable strategies left after the
elimination in part (a): {b∗i , b∗j} = [{99, 99}, {98, 98}]
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