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1 Static Applications with Incomplete Information

These notes are about some economic applications with incomplete information. They

are meant to illustrate the common techniques in computing Bayesian Nash equilibria

in static games of incomplete information. These applications have been discussed in

Gibbons’ textbook. The notes illustrate the basic steps in analysis and fills some im-

portant details. We will consider three applications. In Cournot duopoly, I will explain

how one computes the Bayesian Nash equilibria when there is a continuum of actions

but finitely many types. The other two applications will be the first-price auction and

double auction. In these applications, there will be a continuum of actions and a con-

tinuum of types. In that case, it is not easy to compute all equilibria, and one often

considers equilibria with certain functional forms. Here, we will consider (i) symmetric,

linear equilibrium, (ii) symmetric but not necessarily linear equilibrium, and (iii) linear

but not necessarily symmetric equilibrium. I will explain what symmetry and linearity

means when we come there.

1.1 Cournot Duopoly with incomplete information

We have a Cournot duopoly with inverse-demand function

P (Q) = a−Q
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where Q = q1+q2. The marginal cost of Firm 1 is c = 0, and this is common knowledge.

Firm 2’s marginal cost c2 is its own private information. It can take values of

cH with probability θ, and

cL with probability 1− θ.

Each firm maximizes its expected profit.

Here, Firm 1 has just one type, and Firm 2 has two types. Hence, a strategy of Firm

1 is a real number q1, while a strategy of Firm 2 is two real numbers q2 (cH) and q2 (cL),

one for when the cost is cH and one for when the cost is cL.

Bayesian Nash Equilibrium We now compute a Bayesian Nash equilibrium (q∗1, q
∗
2 (cH) , q

∗
2 (cL)).

We consider each type of each firm separately. First consider the high type (cH) of Firm

2. In equilibrium, that type knows that Firm 1 produces q∗1. Hence, its production level,

q∗2(cH), solves the maximization problem

max
q2
(P − cH)q2 = max

q2
[a− q∗1 − q2 − cH ] q2.

Hence,

q∗2(cH) =
a− q∗1 − cH

2
(1)

Now consider the low type (cL) of Firm 2. In equilibrium, that type also knows that

Firm 1 produces q∗1. Hence, its production level, q
∗
2(cL), solves the maximization problem

max
q2
[a− q∗1 − q2 − cL] q2.

Hence,

q∗2(cL) =
a− q∗1 − cL

2
. (2)

The important point here is that both types consider the same q∗1, as that is the strategy

of Firm 1, whose type is known by both types of Firm 2. Now consider Firm 1. It has

one type. Firm 1 knows the strategy of Firm 2, but since it does not know which type

of Firm 2 it faces, it does not know the production level of Firm 2. It thinks that the

production level of Firm 2 is q∗2(cH) with probability θ and q
∗
2(cL) with probability 1−θ.

Hence, its strategy q∗1 solves the maximization problem
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max
q1

θ [a− q1 − q∗2(cH)] q1 + (1− θ) [a− q1 − q∗2(cL)] q1

= max
q1
{a− q1 − [θq∗2(cH) + (1− θ)q∗2(cL)]} q1.

The equality is due to the fact that the production level q2 of Firm 2 enters the payoff

[a− q1 − q2] q1 = [a− q1] q1 − q1q2 of Firm 1 linearly. The term

E [q2] = θq∗2(cH) + (1− θ)q∗2(cL)

is the expected production level of Firm 2. Hence, Firm 1 just plays a best response to

the expected production level. (We can do this when and only when the action of the

other players affect the payoff of the player linearly.) Therefore,

q∗1 =
a−E [q2]

2
=

a− [θq∗2(cH) + (1− θ)q∗2(cL)]

2
. (3)

To compute the Bayesian Nash equilibrium, we simply need to solve the three linear

equations (1), (2), and (3) for q∗1, q
∗
2(cL), q

∗
2(cH). We write⎛⎜⎜⎝

q∗1

q∗2(cH)

q∗2(cL)

⎞⎟⎟⎠ =

⎡⎢⎢⎣
2 θ 1− θ

1 2 0

1 0 2

⎤⎥⎥⎦
−1⎛⎜⎜⎝

a

a− cH

a− cL

⎞⎟⎟⎠ ,

yielding

q∗2(cH) =
a− 2cH
3

+
(1− θ)(cH − cL)

6

q∗2(cL) =
a− 2cL
3

− θ(cH − cL)

6

q∗1 =
a+ θcH + (1− θ)cL

3
.

1.2 First-price Auction

We have an object, and two bidders want to buy it through an auction. Simultaneously,

each bidder i submits a bid bi ≥ 0. Then, the highest bidder wins the object and pays
her bid. If they bid the same number, then the winner is determined by a coin toss.

The value of the object for bidder i is vi, which is privately known by bidder i. That is,
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vi is the type of bidder i. We assume that v1 and v2 are "independently and identically

distributed" with uniform distribution over [0, 1]. This precisely means that knowing

her own value vi, bidder i believes that the other bidder’s value vj is distributed with

uniform distribution over [0, 1], and the type space of each player is [0, 1]. Recall that

the beliefs of a player about the other player’s types may depend on the player’s own

type. Independence assumes that it doesn’t.

Here, the actions are bi, coming from the action spaces [0,∞); the types are vi,

coming from the type spaces [0, 1]; beliefs are uniform distributions over [0, 1] for each

type. To complete the description of the game, we also need to determine the utility

functions. The utility functions are given by

ui(b1, b2, v1, v2) =

⎧⎪⎪⎨⎪⎪⎩
vi − bi if bi > bj,
vi−bi
2

if bi = bj,

0 if bi < bj.

In a Bayesian Nash equilibrium, each type vi maximizes the expected payoff

E [ui(b1, b2, v1, v2)|vi] = (vi − bi) Pr{bi > bj(vj)}+
1

2
(vi − bi) Pr{bi = bj(vj)} (4)

over bi. Next, we will compute the Bayesian Nash equilibria. First, we consider a

special equilibrium. The technique we will use here is a common technique in computing

Bayesian Nash equilibria, and pay close attentions to the steps.

Symmetric, linear equilibrium We will now compute a symmetric, linear equilib-

rium. Symmetric means that equilibrium action bi (vi) of each type vi is given by

bi (vi) = b (vi)

for some function b from type space to action space, where b is the same function for all

players. Linear means that b is an affine function of vi, i.e.

bi (vi) = a+ cvi.

To compute symmetric, linear equilibrium, we follow the following steps.
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Step 1 Assume that we have a symmetric linear equilibrium:

b1 (v1) = a+ cv1

b2 (v2) = a+ cv2

for all types v1 and v2 for some constants a and c, that will be determined later. The

important thing here is the constants do not depend on the players or their types.

Step 2 Compute the best reply function of each type. Fix some type vi. To compute

her best reply, first note that c > 0. [This is not obvious; you need to read Gibbons and

think about it.] Then, for any fixed value bi,

Pr{bi = bj(vj)} = 0, (5)

as bj is strictly increasing in vj by Step 1. It is also true that a ≤ bi (vi) ≤ vi. [Again,

you need to figure this out!] Hence,

E [ui(b1, b2, v1, v2)|vi] = (vi − bi) Pr{bi ≥ a+ cvj}

= (vi − bi) Pr{vj ≤
bi − a

c
}

= (vi − bi) ·
bi − a

c
.

Here, the first equality is obtained simply by substituting (5) to (4). The second equality

is simple algebra, and the third equality is due to the fact that vj is distributed by uniform

distribution on [0, 1]. [If you are taking this course, the last step must be obvious to

you!] To compute the best reply, we must maximize the last expression over bi. Taking

the derivative and setting equal to zero yields

bi =
vi + a

2
. (6)

Step 3 Verify that best -reply functions are indeed affine, i.e., bi is of the form

bi = a+ cvi. Indeed, we rewrite (6) as

bi =
1

2
vi +

a

2
. (7)

We check that both 1/2 and a/2 are constant, i.e., they do not depend on vi, and they

are same for both players.
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Step 4 Compute the constants a and c. To do this, we observe that in order to

have an equilibrium, the best reply bi in (6) must be equal to b(vi):

bi = b (vi) ,

or equivalently
1

2
vi +

a

2
= cvi + a.

This must be an identity, i.e. it must remain true for all values of vi. Hence, the

coefficient of vi must be equal in both sides:

c =
1

2
.

The intercept must be same in both sides, too:

a =
a

2
.

Thus,

a = 0.

This yields the symmetric, linear Bayesian Nash equilibrium:

bi (vi) =
1

2
vi.

Any symmetric equilibrium We now compute a symmetric Bayesian Nash equilib-

rium without assuming that b is linear. We will assume that b is strictly increasing and

differentiable.

Step 1 Assume that we have a Bayesian Nash equilibrium of the form

b1 (v1) = b (v1)

b2 (v2) = b (v2)

for some increasing, differentiable function b.
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Step 2 Compute the best reply of each type, or compute the first-order condition

that must be satisfied by the best reply. To this end, compute that, given that the other

player j is playing according to equilibrium, the expected payoff of playing bi for type

vi is

E [ui (b1, b2, v1, v2) |vi] = (vi − bi) Pr{bi ≥ b(vj)}

= (vi − bi) Pr{vj ≤ b−1 (bi)}

= (vi − bi)b
−1 (bi) ,

where b−1 is the inverse of b. Here, the first equality holds because b is strictly increasing;

the second equality is obtained by again using the fact that b is increasing, and the last

equality is by the fact that vj is uniformly distributed on [0, 1]. The first-order condition

is obtained by taking the partial derivative of the last expression with respect to bi and

setting it equal to zero. To avoid confusion, let us write b∗i for the best reply. Then, the

first-order condition is

−b−1 (b∗i ) + (vi − b∗i )
db−1

dbi

¯̄̄̄
bi=b∗i

= 0.

Using the formula on the derivative of the inverse function, we re-write this as

−b−1 (b∗i ) + (vi − b∗i )
1

b0 (v)

¯̄̄̄
b(v)=b∗i

= 0. (8)

Step 3 Identify the best reply with the equilibrium action, towards computing the

equilibrium action. That is, set

b∗i = b (vi) .

Substituting this in (8), obtain

−vi + (vi − b (vi))
1

b0 (vi)
= 0. (9)

By simple algebra, we obtain

b0 (vi) vi + b (vi) = vi

and hence
d [b (vi) vi]

dvi
= vi.
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Therefore,

b (vi) vi = v2i /2 + const.

b (vi) = vi/2 + const/vi.

Since b (0) 6=∞, it must be that const = 0. Therefore,

b (vi) = vi/2.

In this case, we were lucky. In general, one obtains a differential equation as in (9),

but the equation is not easily solvable in general. Make sure that you understand the

steps until finding the differential equation well.

1.3 Double Auction

We will now consider a "double auction". Although the term refers to an auction, it is

actually about a simple bargaining problem. We have a Seller, who owns an object, and a

Buyer. They want to trade the object through the following mechanism. Simultaneously,

Seller names ps and Buyer names pb.

• If pb < ps, then there is no trade;

• if pb ≥ ps, then they trade at price

p =
pb + ps
2

.

The value of the object for Seller is vs and for Buyer is vb. Each player knows her

own valuation privately. We assume that vs and vb are independently and identically

distributed with uniform distribution on [0, 1]. [Recall from the first-price auction what

this means.] Then, the payoffs are

ub =

(
vb − pb+ps

2
if pb ≥ ps

0 otherwise

us =

(
pb+ps
2
− vs if pb ≥ ps

0 otherwise
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We will now compute Bayesian Nash equilibria. In an equilibrium we have a price

ps (vs) for each type vs of the seller and a price pb (vb) for each type vb of the buyer. In

a Bayesian Nash equilibrium, pb (vb) solves the maximization problem

max
pb

E

∙
vb −

pb + ps(vs)

2
: pb ≥ ps(vs)

¸
,

and ps (vs) solves the maximization problem

max
ps

E

∙
ps + pb(vb)

2
− vs : pb(vb) ≥ ps

¸
,

where E [x : A] is the "integral" of x on set A. ( We have E [x : A] = E [x|A] Pr (A),
where E [x|A] is the conditional expectation of x given A. Make sure that you know all

these terms!!!)

In this game, there are many Bayesian Nash equilibria. For example, one equilibrium

is given by

pb =

(
X if vb ≥ X

0 otherwise
,

ps =

(
X if vs ≤ X

1 otherwise

for some any fixed number X ∈ [0, 1]. We will now consider the Bayesian Nash equilib-
rium with linear strategies.

Equilibrium with linear strategies We will consider an equilibrium where the

strategies are affine functions of valuation, but they are not necessarily symmetric.

Step 1 Assume that we have an equilibrium with linear strategies:

pb (vb) = ab + cbvb

ps (vs) = as + csvs

for some constants ab, cb, as, and cs. We also assume that cb > 0 and cs > 0. [Notice

that a and c may be different for buyer and the seller.]
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Step 2 Compute the best responses for all types. To do this, first note that

pb ≥ ps (vs) = as + csvs ⇐⇒ vs ≤
pb − as

cs
(10)

and

ps ≤ pb (vb) = ab + cbvb ⇐⇒ vb ≥
ps − ab

cb
. (11)

We will now compute the best reply for a type vb. Given that the seller plays according

to the given equilibrium, his expected payoff from playing pb is

E [ub (pb, ps, vb, vs) |vb] = E

∙
vb −

pb + ps(vs)

2
: pb ≥ ps(vs)

¸
=

Z pb−as
cs

0

∙
vb −

pb + ps(vs)

2

¸
dvs,

where the last equality is obtained by substituting (10). By substituting ps (vs) =

as + csvs in this expression, we obtain

E [ub (pb, ps, vb, vs) |vb] =
Z pb−as

cs

0

∙
vb −

pb + as + csvs
2

¸
dvs.

After some simple algebra,1 this equation becomes

E [ub (pb, ps, vb, vs) |vb] =
pb − as

cs

µ
vb −

3pb + as
4

¶
.

To compute the best reply, we take the derivative of the last expression with respect to

pb and set it equal to zero. This yields

1

cs

µ
vb −

3pb + as
4

¶
− 3(pb − as)

4cs
= 0

1We can write the integral as

pb − as
cs

µ
vb −

pb + as
2

¶
− cs
2

Z pb−as
cs

0

vsdvs

=
pb − as

cs

µ
vb −

pb + as
2

¶
− cs
4

µ
pb − as

cs

¶2
=

pb − as
cs

µ
vb −

pb + as
2

− pb − as
4

¶
=

pb − as
cs

µ
vb −

3pb + as
4

¶
.
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Solving for pb, we obtain

pb =
2

3
vb +

1

3
as. (12)

Now we compute the best reply of a type vs. As in before, his expected payoff of

playing ps in equilibrium is

E [us (pb, ps, vb, vs) |vs] = E

∙
ps + pb(vb)

2
− vs : pb(vb) ≥ ps

¸
=

Z 1

ps−ab
cb

∙
ps + ab + cbvb

2
− vs

¸
dvb,

where the last equality is by (11) and pb (vb) = ab + cbvb. After some simple algebra,2

this becomes

E [us (pb, ps, vb, vs) |vs] =
µ
1− ps − ab

cb

¶ ∙
3ps + ab
4

− vs +
cb
4

¸
.

Once again, in order to compute the best reply, we take the derivative of the last ex-

pression with respect to ps and set it equal to zero. This yields

− 1
cb

∙
3ps + ab
4

− vs +
1

4

¸
+
3

4

µ
1− ps − ab

cb

¶
= 0,

or equivalently

−
∙
3ps + ab
4

− vs +
cb
4

¸
+
3

4
(cb − (ps − ab)) = 0.

Solving for ps, we obtain

3ps
2
= −ab

4
+ vs −

cb
4
+
3

4
(cb + ab) = vs +

ab + cb
2

.

2We write the integral asµ
1− ps − ab

cb

¶ ∙
ps + ab
2

− vs

¸
+

cb
2

Z 1

ps−ab
cb

vbdvb

=

µ
1− ps − ab

cb

¶ ∙
ps + ab
2

− vs

¸
+

cb
4

Ã
1−

µ
ps − ab

cb

¶2!

=

µ
1− ps − ab

cb

¶ ∙
ps + ab
2

− vs +
cb
4
+

ps − ab
4

¸
=

µ
1− ps − ab

cb

¶ ∙
3ps + ab

4
− vs +

cb
4

¸
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Therefore,

ps =
2

3
vs +

ab + cb
3

. (13)

Step 3 Verify that best replies are of the form that is assumed in Step 1. Inspecting

(12) and (13), one concludes that this is indeed the case. The important point here is to

check that in (12) the coefficient 2/3 and the intercept 1
3
as are constants, independent

of vb. Similarly for the coefficient and the intercept in (13).

Step 4 Compute the constants. To do this, we identify the coefficients and the

intercepts in the best replies with the relevant constants in the functional form in Step

1. Firstly, by (12) and pb (vb) = pb, we must have the identity

ab + cbvb =
1

3
as +

2

3
vb.

That is,

ab =
1

3
as (14)

and

cb =
2

3
. (15)

Similarly, by (13) and ps (vs) = ps, we must have the identity

as + csvs =
ab + cb
3

+
2

3
vs.

That is,

as =
ab + cb
3

(16)

and

cs =
2

3
. (17)

Solving (14), (15), (16), and (17), we obtain ab = 1/12 and as = 1/4.

Therefore, the linear Bayesian Nash equilibrium is given by

pb(vb) =
2

3
vb +

1

12
(18)

ps(vs) =
2

3
vs +

1

4
. (19)

In this equilibrium, we have trade iff

pb (vb) ≥ ps (vs)
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iff
2

3
vb +

1

12
≥ 2
3
vs +

1

4

iff

vb − vs ≥
3

2

µ
1

4
− 1

12

¶
=
3

2

1

6
=
1

4
.
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