
14.12 Game Theory Lecture Notes∗

Lectures 3-6

Muhamet Yildiz†

We will formally define the games and some solution concepts, such as Nash Equi-

librium, and discuss the assumptions behind these solution concepts.

In order to analyze a game, we need to know

• who the players are,

• which actions are available to them,

• how much each player values each outcome,

• what each player knows.

Notice that we need to specify not only what each player knows about external

parameters, such as the payoffs, but also about what they know about the other players’

knowledge and beliefs about these parameters, etc. In the first half of this course, we

will confine ourselves to the games of complete information, where everything that is

known by a player is common knowledge.1 (We say that X is common knowledge if

∗These notes are somewhat incomplete – they do not include some of the topics covered in the

class.
†Some parts of these notes are based on the notes by Professor Daron Acemoglu, who taught this

course before.
1Knowledge is defined as an operator on the propositions satisfying the following properties:

1. if I know X, X must be true;

2. if I know X, I know that I know X;

3. if I don’t know X, I know that I don’t know X;

4. if I know something, I know all its logical implications.
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everyone knows X, and everyone knows that everyone knows X, and everyone knows

that everyone knows that everyone knows X, ad infinitum.) In the second half, we will

relax this assumption and allow players to have asymmetric information, focusing on

informational issues.

1 Representations of games

The games can be represented in two forms:

1. The normal (strategic) form,

2. The extensive form.

1.1 Normal form

Definition 1 (Normal form) An n-player game is any list G = (S1, . . . , Sn;u1, . . . , un),

where, for each i ∈ N = {1, . . . , n}, Si is the set of all strategies that are available to
player i, and ui : S1 × . . . × Sn → R is player i’s von Neumann-Morgenstern utility

function.

Notice that a player’s utility depends not only on his own strategy but also on the

strategies played by other players. Moreover, each player i tries to maximize the expected

value of ui (where the expected values are computed with respect to his own beliefs); in

other words, ui is a von Neumann-Morgenstern utility function. We will say that player

i is rational iff he tries to maximize the expected value of ui (given his beliefs).2

It is also assumed that it is common knowledge that the players are N = {1, . . . , n},
that the set of strategies available to each player i is Si, and that each i tries to maximize

expected value of ui given his beliefs.

When there are only two players, we can represent the (normal form) game by a

bimatrix (i.e., by two matrices):

1\2 left right

up 0,2 1,1

down 4,1 3,2

2We have also made another very strong “rationality” assumption in defining knowledge, by assuming

that, if I know something, then I know all its logical consequences.
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Here, Player 1 has strategies up and down, and 2 has the strategies left and right. In

each box the first number is 1’s payoff and the second one is 2’s (e.g., u1 (up,left) = 0,

u2 (up,left) = 2.)

1.2 Extensive form

The extensive form contains all the information about a game, by defining who moves

when, what each player knows when he moves, what moves are available to him, and

where each move leads to, etc., (whereas the normal form is more of a ‘summary’ repre-

sentation). We first introduce some formalisms.

Definition 2 A tree is a set of nodes and directed edges connecting these nodes such

that

1. there is an initial node, for which there is no incoming edge;

2. for every other node, there is one incoming edge;

3. for any two nodes, there is a unique path that connect these two nodes.

Imagine the branches of a tree arising from the trunk. For example,

.

.

.
.

.
.

.

is a tree. On the other hand,

3



A

B

C

is not a tree because there are two alternative paths through which point A can be

reached (via B and via C).

A

B

C

D

is not a tree either since A and B are not connected to C and D.

Definition 3 (Extensive form) A Game consists of a set of players, a tree, an al-

location of each node of the tree (except the end nodes) to a player, an informational

partition, and payoffs for each player at each end node.

The set of players will include the agents taking part in the game. However, in many

games there is room for chance, e.g. the throw of dice in backgammon or the card draws

in poker. More broadly, we need to consider “chance” whenever there is uncertainty

about some relevant fact. To represent these possibilities we introduce a fictional player:

Nature. There is no payoff for Nature at end nodes, and every time a node is allocated

to Nature, a probability distribution over the branches that follow needs to be specified,

e.g., Tail with probability of 1/2 and Head with probability of 1/2.

An information set is a collection of points (nodes) {n1, . . . , nk} such that

1. the same player i is to move at each of these nodes;

2. the same moves are available at each of these nodes.
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Here the player i, who is to move at the information set, is assumed to be unable to

distinguish between the points in the information set, but able to distinguish between

the points outside the information set from those in it. For instance, consider the game

in Figure 1. Here, Player 2 knows that Player 1 has taken action T or B and not action

X; but Player 2 cannot know for sure whether 1 has taken T or B. The same game is

depicted in Figure 2 slightly differently.

 1 

BT

x 

2 

L R RL

Figure 1:

1 x

T B

2 

L R L R

Figure 2:

An information partition is an allocation of each node of the tree (except the starting

and end-nodes) to an information set.
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To sum up: at any node, we know: which player is to move, which moves are available

to the player, and which information set contains the node, summarizing the player’s

information at the node. Of course, if two nodes are in the same information set,

the available moves in these nodes must be the same, for otherwise the player could

distinguish the nodes by the available choices. Again, all these are assumed to be

common knowledge. For instance, in the game in Figure 1, player 1 knows that, if

player 1 takes X, player 2 will know this, but if he takes T or B, player 2 will not know

which of these two actions has been taken. (She will know that either T or B will have

been taken.)

Definition 4 A strategy of a player is a complete contingent-plan determining which

action he will take at each information set he is to move (including the information sets

that will not be reached according to this strategy).

For certain purposes it might suffice to look at the reduced-form strategies. A reduced

form strategy is defined as an incomplete contingent plan that determines which action

the agent will take at each information set he is to move and that has not been precluded

by this plan. But for many other purposes we need to look at all the strategies. Let us

now consider some examples:

Game 1: Matching Pennies with Perfect Information

1

Head

2

Head

Tail

Tail
2 Head

Tail

O

O

(-1, 1)

(1, -1)

(1, -1)

(-1, 1)

The tree consists of 7 nodes. The first one is allocated to player 1, and the next

two to player 2. The four end-nodes have payoffs attached to them. Since there are
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two players, payoff vectors have two elements. The first number is the payoff of player

1 and the second is the payoff of player 2. These payoffs are von Neumann-Morgenstern

utilities so that we can take expectations over them and calculate expected utilities.

The informational partition is very simple; all nodes are in their own information set.

In other words, all information sets are singletons (have only 1 element). This implies

that there is no uncertainty regarding the previous play (history) in the game. At this

point recall that in a tree, each node is reached through a unique path. Therefore, if all

information sets are singletons, a player can construct the history of the game perfectly.

For instance in this game, player 2 knows whether player 1 chose Head or Tail. And

player 1 knows that when he plays Head or Tail, Player 2 will know what player 1 has

played. (Games in which all information sets are singletons are called games of perfect

information.)

In this game, the set of strategies for player 1 is {Head, Tail}. A strategy of player

2 determines what to do depending on what player 1 does. So, his strategies are:

HH = Head if 1 plays Head, and Head if 1 plays Tail;

HT = Head if 1 plays Head, and Tail if 1 plays Tail;

TH = Tail if 1 plays Head, and Head if 1 plays Tail;

TT = Tail if 1 plays Head, and Tail if 1 plays Tail.

What are the payoffs generated by each strategy pair? If player 1 plays Head and 2

plays HH, then the outcome is [1 chooses Head and 2 chooses Head] and thus the payoffs

are (-1,1). If player 1 plays Head and 2 plays HT, the outcome is the same, hence the

payoffs are (-1,1). If 1 plays Tail and 2 plays HT, then the outcome is [1 chooses Tail

and 2 chooses Tail] and thus the payoffs are once again (-1,1). However, if 1 plays Tail

and 2 plays HH, then the outcome is [1 chooses Tail and 2 chooses Head] and thus the

payoffs are (1,-1). One can compute the payoffs for the other strategy pairs similarly.

Therefore, the normal or the strategic form game corresponding to this game is

HH HT TH TT

Head -1,1 -1,1 1,-1 1,-1

Tail 1,-1 -1,1 1,-1 -1,1

Information sets are very important! To see this, consider the following game.
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Game 2: Matching Pennies with Imperfect Information

1

2

Head

Tail

Head

Tail

Head

Tail

(-1, 1)

(1, -1)

(1, -1)

(-1, 1)

Games 1 and 2 appear very similar but in fact they correspond to two very different

situations. In Game 2, when she moves, player 2 does not know whether 1 chose Head

or Tail. This is a game of imperfect information (That is, some of the information sets

contain more than one node.)

The strategies for player 1 are again Head and Tail. This time player 2 has also only

two strategies: Head and Tail (as he does not know what 1 has played). The normal

form representation for this game will be:

1\2 Head Tail

Head -1,1 1,-1

Tail 1,-1 -1,1

Game 3: A Game with Nature:

Nature

Head 1/2
O
1

Left
(5, 0)

(2, 2)Right

Tail 1/2

O
2

Left
(3, 3)

Right

(0, -5)
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Here, we toss a fair coin, where the probability of Head is 1/2. If Head comes up,

Player 1 chooses between Left and Right; if Tail comes up, Player 2 chooses between

Left and Right.

Exercise 5 What is the normal-form representation for the following game:

 1 2 A 

D 

α 

δ 

(4,4) (5,2) 

(1,-5)
a 

d

(3,3)

1

Can you find another extensive-form game that has the same normal-form represen-

tation?

[Hint: For each extensive-form game, there is only one normal-form representation

(up to a renaming of the strategies), but a normal-form game typically has more than

one extensive-form representation.]

In many cases a player may not be able to guess exactly which strategies the other

players play. In order to cover these situations we introduce the mixed strategies:

Definition 6 A mixed strategy of a player is a probability distribution over the set of

his strategies.

If player i has strategies Si = {si1, si2, . . . , sik}, then a mixed strategy σi for player
i is a function on Si such that 0 ≤ σi(sij) ≤ 1 and σi(si1) + σi(si2) + · · · + σi(sik) = 1.

Here σi represents other players’ beliefs about which strategy i would play.

2 How to play?

We will now describe the most common “solution concepts” for normal-form games. We

will first describe the concept of “dominant strategy equilibrium,” which is implied by

the rationality of the players. We then discuss “rationalizability” which corresponds

to the common knowledge of rationality, and finally we discuss the Nash Equilibrium,

which is related to the mutual knowledge of players’ conjectures about the other players’

actions.
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2.1 Dominant-strategy equilibrium

Let us use the notation s−i to mean the list of strategies sj played by all the players j

other than i, i.e.,

s−i = (s1, ...si−1, si+1, ...sn).

Definition 7 A strategy s∗i strictly dominates si if and only if

ui(s
∗
i , s−i) > ui(si, s−i), ∀s−i ∈ S−i.

That is, no matter what the other players play, playing s∗i is strictly better than

playing si for player i. In that case, if i is rational, he would never play the strictly

dominated strategy si.3

A mixed strategy σi dominates a strategy si in a similar way: σi strictly dominates

si if and only if

σi(si1)ui(si1, s−i) + σi(si2)ui(si2, s−i) + · · ·σi(sik)ui(sik, s−i) > ui(si, s−i),∀s−i ∈ S−i.

A rational player i will never play a strategy si iff si is dominated by a (mixed or pure)

strategy.

Similarly, we can define weak dominance.

Definition 8 A strategy s∗i weakly dominates si if and only if

ui(s
∗
i , s−i) ≥ ui(si, s−i),∀s−i ∈ S−i

and

ui(s
∗
i , s−i) > ui(si, s−i)

for some s−i ∈ S−i.

That is, no matter what the other players play, playing s∗i is at least as good as

playing si, and there are some contingencies in which playing s∗i is strictly better than

si. In that case, if rational, i would play si only if he believes that these contingencies

will never occur. If he is cautious in the sense that he assigns some positive probability

for each contingency, he will not play si.

3That is, there is no belief under which he would play si. Can you prove this?
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Definition 9 A strategy sdi is a (weakly) dominant strategy for player i if and only if s
d
i

weakly dominates all the other strategies of player i. A strategy sdi is a strictly dominant

strategy for player i if and only if sdi strictly dominates all the other strategies of player

i.

If i is rational, and has a strictly dominant strategy sdi , then he will not play any

other strategy. If he has a weakly dominant strategy and cautious, then he will not play

other strategies.

Example:

1\2 work hard shirk

hire 2,2 1,3

don’t hire 0,0 0,0

In this game, player 1 (firm) has a strictly dominant strategy which is to “hire.”

Player 2 has only a weakly dominated strategy. If players are rational, and in addition

player 2 is cautious, then we expect player 1 to ”hire”, and player 2 to ”shirk”:4

1\2 work hard shirk

hire 2,2 =⇒ 1,3

don’t hire 0,0 ⇑ 0,0 ⇑

Definition 10 A strategy profile sd = (sd1, s
d
2, ....s

d
N) is a dominant strategy equilibrium,

if and only if sdi is a dominant strategy for each player i.

As an example consider the Prisoner’s Dilemma.

1\2 confess don’t confess

confess -5,-5 0,-6

don’t confess -6,0 -1,-1

“Confess” is a strictly dominant strategy for both players, therefore (“confess”, “con-

fess”) is a dominant strategy equilibrium.

1\2 confess don’t confess

confess -5,-5 ⇐= 0,-6
don’t confess -6,0 ⇑ ⇐=-1,-1 ⇑

4This is the only outcome, provided that each player is rational and player 2 knows that player 1 is

rational. Can you show this?
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Example: (second-price auction) We have an object to be sold through an auction.

There are two buyers. The value of the object for any buyer i is vi, which is known by

the buyer i. Each buyer i submits a bid bi in a sealed envelope, simultaneously. Then,

we open the envelopes;

the agent i∗ who submits the highest bid

bi∗ = max {b1, b2}

gets the object and pays the second highest bid (which is bj with j 6= i∗). (If two or

more buyers submit the highest bid, we select one of them by a coin toss.)

Formally the game is defined by the player set N = {1, 2}, the strategies bi, and the
payoffs

ui (b1, b2) =

⎧⎪⎪⎨⎪⎪⎩
vi − bj if bi > bj

(vi − bj) /2 if bi = bj

0 if bi < bj

where i 6= j.

In this game, bidding his true valuation vi is a dominant strategy for each player i.

To see this, consider the strategy of bidding some other value b0i 6= vi for any i. We want

to show that b0i is weakly dominated by bidding vi. Consider the case b0i < vi. If the

other player bids some bj < b0i, player i would get vi− bj under both strategies b0i and vi.

If the other player bids some bj ≥ vi, player i would get 0 under both strategies b0i and

vi. But if bj = b0i, bidding vi yields vi− bj > 0, while b0i yields only (vi − bj) /2. Likewise,

if b0i < bj < vi, bidding vi yields vi− bj > 0, while b0i yields only 0. Therefore, bidding vi
dominates b0i. The case b

0
i > vi is similar, except for when b0i > bj > vi, bidding vi yields

0, while b0i yields negative payoff vi− bj < 0. Therefore, bidding vi is dominant strategy

for each player i.

Exercise 11 Extend this to the n-buyer case.

When it exists, the dominant strategy equilibrium has an obvious attraction. In

that case, the rationality of players implies that the dominant strategy equilibrium will

be played. However, it does not exist in general. The following game, the Battle of the

Sexes, is supposed to represent a timid first date (though there are other games from

animal behavior that deserve this title much more). Both the man and the woman
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want to be together rather than go alone. However, being timid, they do not make a

firm date. Each is hoping to find the other either at the opera or the ballet. While the

woman prefers the ballet, the man prefers the opera.

Man\Woman opera ballet

opera 1,4 0,0

ballet 0,0 4,1

Clearly, no player has a dominant strategy:

Man\Woman opera ballet

opera 1,4 ⇐= ⇓ 0,0

ballet 0,0 ⇑ =⇒ 4,1

2.2 Rationalizability or Iterative elimination of strictly domi-

nated strategies

Consider the following Extended Prisoner’s Dilemma game:

1\2 confess don’t confess run away

confess -5,-5 0,-6 -5,-10

don’t confess -6,0 -1,-1 0,-10

run away -10,-6 -10,0 -10,-10

In this game, no agent has any dominant strategy, but there exists a dominated

strategy: “run away” is strictly dominated by “confess” (both for 1 and 2). Now

consider 2’s problem. She knows 1 is “rational,” therefore she can predict that 1 will not

choose “run away,” thus she can eliminate “run away” and consider the smaller game

1\2 confess don’t confess run away

confess -5,-5 0,-6 -5,-10

don’t confess -6,0 -1,-1 0,-10
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where we have eliminated “run away” because it was strictly dominated; the column

player reasons that the row player would never choose it.

In this smaller game, 2 has a dominant strategy which is to “confess.” That is, if 2

is rational and knows that 1 is rational, she will play “confess.”

In the original game “don’t confess” did better against “run away,” thus “confess” was

not a dominant strategy. However, player 1 playing “run away” cannot be rationalized

because it is a dominated strategy. This leads to the Elimination of Strictly Dominated

Strategies. What happens if we “Iteratively Eliminate Strictly Dominated” strategies?

That is, we eliminate a strictly dominated strategy, and then look for another strictly

dominated strategy in the reduced game. We stop when we can no longer find a strictly

dominated strategy. Clearly, if it is common knowledge that players are rational, they

will play only the strategies that survive this iteratively elimination of strictly dominated

strategies. Therefore, we call such strategies rationalizable. Caution: we do eliminate

the strategies that are dominated by some mixed strategies!

In the above example, the set of rationalizable strategies is once again “confess,”

“confess.”

At this point you should stop and apply this method to the Cournot

duopoly!! (See Gibbons.) Also, make sure that you can generate the rationality as-

sumption at each elimination. For instance, in the game above, player 2 knows that

player 1 is rational and hence he will not “run away;” and since she is also rational,

she will play only “confess,” for the “confess” is the only best response for any belief of

player 2 that assigns 0 probability to that player 1 “runs away.”

The problem is there may be too many rationalizable strategies. Consider the Match-

ing Pannies game:

1\2 Head Tail

Head -1,1 1,-1

Tail 1,-1 -1,1

Here, every strategy is rationalizable. For example, if player 1 believes that player

2 will play Head, then he will play Tail, and if player 2 believes that player 1 will play

Tail, then she will play Tail. Thus, the strategy-pair (Head,Tail) is rationalizable. But

note that the beliefs of 1 and 2 are not congruent.
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The set of rationalizable strategies is in general very large. In contrast, the concept

of dominant strategy equilibrium is too restrictive: usually it does not exist.

The reason for existence of too many rationalizable strategies is that we do not re-

strict players’ conjectures to be ‘consistent’ with what the others are actually doing. For

instance, in the rationalizable strategy (Head, Tail), player 2 plays Tail by conjecturing

that Player 1 will play Tail, while Player 1 actually plays Head. We consider another

concept – Nash Equilibrium (henceforth NE), which assumes mutual knowledge of con-

jectures, yielding consistency.

2.3 Nash Equilibrium

Consider the battle of the sexes

Man\Woman opera ballet

opera 1,4 0,0

ballet 0,0 4,1

In this game, there is no dominant strategy. But suppose W is playing opera. Then,

the best thing M can do is to play opera, too. Thus opera is a best-response for M

against opera. Similarly, opera is a best-response for W against opera. Thus, at (opera,

opera), neither party wants to take a different action. This is a Nash Equilibrium.

More formally:

Definition 12 For any player i, a strategy sBRi is a best response to s−i if and only if

ui(s
BR
i , s−i) ≥ ui(si, s−i),∀si ∈ Si

This definition is identical to that of a dominant strategy except that it is not for

all s−i ∈ S−i but for a specific strategy s−i. If it were true for all s−i, then SBR
i would

also be a dominant strategy, which is a stronger requirement than being a best response

against some strategy s−i.

Definition 13 A strategy profile (sNE
1 , ...sNE

N ) is a Nash Equilibrium if and only if sNE
i

is a best-response to sNE
−i = (sNE

1 , ...sNE
i−1, s

NE
i+1, ...s

NE
N ) for each i. That is, for all i, we

have that

ui(s
NE
i , sNE

−i ) ≥ ui(si, s
NE
−i ) ∀si ∈ Si.
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In other words, no player would have an incentive to deviate, if he knew which

strategies the other players play.

If a strategy profile is a dominant strategy equilibrium, then it is also a NE, but the

reverse is not true. For instance, in the Battle of the Sexes, both (O,O) and (B,B) are

Nash equilibria, but neither are dominant strategy equilibria. Furthermore, a dominant

strategy equilibrium is unique, but as the Battle of the Sexes shows, Nash equilibrium

is not unique in general.

At this point you should stop, and compute the Nash equilibrium in

Cournot Duopoly game!! Why does Nash equilibrium coincide with the rational-

izable strategies. In general: Are all rationalizable strategies Nash equilibria? Are

all Nash equilibria rationalizable? You should also compute the Nash equilibrium in

Cournot oligopoly, Bertrand duopoly and in the commons problem.

The definition above covers only the pure strategies. We can define the Nash equi-

librium for mixed strategies by changing the pure strategies with the mixed strategies.

Again given the mixed strategy of the others, each agent maximizes his expected payoff

over his own (mixed) strategies.5

Example Consider the Battle of the Sexes again where we located two pure strat-

egy equilibria. In addition to the pure strategy equilibria, there is a mixed strategy

equilibrium.

Man\Woman opera ballet

opera 1,4 0,0

ballet 0,0 4,1

Let’s write q for the probability that M goes to opera; with probability 1−q, he goes
to ballet. If we write p for the probability that W goes to opera, we can compute her

5In terms of beliefs, this correspondes to the requirement that, if i assigns positive probability to the

event that j may play a particular pure strategy sj , then sj must be a best response given j’s beliefs.
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expected utility from this as

U2 (p; q) = pqu2 (opera,opera) + p (1− q)u2 (ballet,opera)

+ (1− p) qu2 (opera,ballet) + (1− p) (1− q)u2 (ballet,ballet)

= p [qu2 (opera,opera) + (1− q) u2 (ballet,opera)]

+ (1− p) [qu2 (opera,ballet) + (1− q)u2 (ballet,ballet)]

= p [q4 + (1− q) 0] + (1− p) [0q + 1 (1− q)]

= p[4q] + (1− p) [1− q] .

Note that the term [4q] multiplied with p is her expected utility from going to opera, and

the term multiplied with (1− p) is her expected utility from going to ballet. U2 (p; q) is

strictly increasing with p if 4q > 1− q (i.e., q > 1/5); it is strictly decreasing with p if

4q < 1 − q, and is constant if 4q = 1 − q. In that case, W’s best response is p = 1 of

q > 1/5, p = 0 if q < 1/5, and p is any number in [0, 1] if q = 1/5. In other words, W

would choose opera if her expected utility from opera is higher, ballet if her expected

utility from ballet is higher, and can choose any of opera or ballet if she is indifferent

between these two.

Similarly we compute that q = 1 is best response if p > 4/5; q = 0 is best response

if p < 4/5; and any q can be best response if p = 4/5. We plot the best responses in the

following graph.
q

1

1/5

0 C 4/5 1 p

A

B

(A, B, C) are all equilibria

The Nash equilibria are where these best responses intersect. There is one at (0,0),

when they both go to ballet, one at (1,1), when they both go to opera, and there is one

at (4/5,1/5), when W goes to opera with probability 4/5, and M goes to opera with

probability 1/5.
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Note how we compute the mixed strategy equilibrium (for 2x2 games). We choose 1’s

probabilities so that 2 is indifferent between his strategies, and we choose 2’s probabilities

so that 1 is indifferent.
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