Lecture 11 Applications of SPE & Single deviation-principle

> 14.12 Game Theory Muhamet Yildiz

Road Map

- 1. Battle of the sexes with outside option
- 2. Bank Runs
- 3. Single-deviation principle
 - 1. Infinite-horizon bargaining
- 4. Quiz/Evaluations
- 5. Some repeated games

Single-Deviation principle

- Assume that the game is "continuous at infinity."
- $s = (s_1, s_2, ..., s_n)$ is a SPE
- \Leftrightarrow it passes the following test
- for each information set, where a player i moves,
 - fix the other players' strategies as in s,
 - fix the moves of i at other information sets as in s;
 - then i cannot improve her conditional payoff at the information set by deviating from s_i at the information set only.

Timeline $-\infty$ period

 $T = \{1, 2, ..., n-1, n, ...\}$

If t is odd,

- Player 1 offers some (x_t, y_t) ,
- Player 2 Accept or Rejects the offer
- If the offer is Accepted, the game ends yielding $\delta^{t}(x_{t},y_{t})$,
- Otherwise, we proceed to date t+1.

If t is even

- Player 2 offers some (x_t, y_t) ,
- Player 1 Accept or Rejects the offer
- If the offer is Accepted, the game ends yielding payoff $\delta^t(x_t, y_t)$,
- Otherwise, we proceed to date t+1.

Proof

- Single-deviation principle:
- Take any t; i offers, j accepts/rejects.
- At t+1, j will get $1/(1+\delta)$.
- Hence, it is a best response for j to accept an offer iff she gets at least $\delta/(1+\delta)$.
- Given this, i must offer $\delta/(1+\delta)$.

Quiz Simultaneously, each student bids a number in {1,2,3}. i gets					
$U_i = 20(2 + 2min_j bid_j - bid_i)$					
	min	1	2	3	
	bid				
	1	60	-	-	
	2	40	80	-	
	3	20	60	100	
			I		

Prisoners' Dilemma, repeated twice, many times

- Two dates $T = \{0,1\};$
- At each date the prisoners' dilemma is played:

• At the beginning of 1 players observe the strategies at 0. Payoffs= sum of stage payoffs.

A general result

- G = "stage game" = a finite game
- $T = \{0, 1, ..., n\}$
- At each t in T, G is played, and players remember which actions taken before t;
- Payoffs = Sum of payoffs in the stage game.
- Call this game G(T).

Theorem: If G has a unique subgame-perfect equilibrium s^* , G(T) has a unique subgameperfect equilibrium, in which s^* is played at each stage.