Lecture 12 Repeated Games I

14.12 Game Theory Muhamet Yildiz

Road Map

1. Quiz

- 2. Finitely repeated games
 - 1. Entry-Deterrence/Chain-store paradox
 - 2. Repeated Prisoners' Dilemma
 - 3. A general result
 - 4. When there are multiple equilibria
- 3. Infinitely repeated games with observable actions
 - 1. Discounting / Present value
 - 2. Single-deviation principle
 - 3. Example

Prisoners' Dilemma, repeated twice, many times

- Two dates $T = \{0,1\};$
- At each date the prisoners' dilemma is played:

	С	D
С	5,5	0,6
D	6,0	1,1

• At the beginning of 1 players observe the strategies at 0. Payoffs= sum of stage payoffs.

Infinitely repeated Games with observable actions

- $T = \{0, 1, 2, \dots, t, \dots\}$
- G = "stage game" = a finite game
- At each t in T, G is played, and players remember which actions taken before t;
- Payoffs = Discounted sum of payoffs in the stage game.
- Call this game G(T).

The *Present Value* of a given payoff stream $\pi = (\pi_0, \pi_1, ..., \pi_t, ...)$ is $PV(\pi; \delta) = \pi_0 + \delta \pi_1 + ... + \delta^t \pi_t + ...$ The *Average Value* of a given payoff stream π is $(1-\delta)PV(\pi; \delta) = (1-\delta)(\pi_0 + \delta \pi_1 + ... + \delta^t \pi_t + ...)$ The *Present Value* of a given payoff stream π *at* t is $PV_t(\pi; \delta) = \pi_t + \delta \pi_{t+1} + ... + \delta^s \pi_{t+s} + ...$ A *history* is a sequence of past observed plays e.g. (C,D), (C,C), (D,D), (D,D) (C,C)

Single-deviation principle

- $s = (s_1, s_2, ..., s_n)$ is a SPE
- \Leftrightarrow it passes the following test
- At each history and for each player i, assume
 everybody will follow s from tomorrow on,
 - everybody except for i plays according to s today;

then i does not have an incentive to deviate today.

Incumbent:	Entrant:	
• V(Acc.) = $V_A = 1/(1-\delta);$	 Accommodated 	
• V(Fight) = $V_F = 2/(1-\delta);$	$-$ Enter $=> 1+V_{AE}$	
• Case 1: Accommodated before.	$- X => 0 + V_{AE}$	
$-$ Fight => -1 + δV_A	• Not Acc.	
$-$ Acc. $\Rightarrow 1 + \delta V_A$.	- Enter =>-1+V _{FE}	
• Case 2: Not Accommodated	$- X => 0 + V_{FE}$	
$-$ Fight => -1 + δV_F		
$-$ Acc. => 1 + δV_A		
$-$ Fight ⇔ $-1 + \delta V_F \ge 1 + \delta V_A$		
$\Leftrightarrow V_{\rm F} - V_{\rm A} = 1/(1 - \delta) \ge 2/\delta$		
$\Leftrightarrow \delta \ge 2/3.$		