Lecture 6 Applications of Rationalizability &Nash Equilibrium

14.12 Game Theory Muhamet Yildiz

Road Map

- 1. Summary
- 2. Cournot Competition
- 3. Quiz
- 4. Simplified price competition
- 5. Two common games
- 6. Partnership Games
- 7. Mixed-strategy Nash Equilibrium

Rationalizability in Cournot duopoly

- If i knows that $q_i \le q$, then $q_i \ge (1-c-q)/2$.
- If i knows that $q_i \ge q$, then $q_i \le (1-c-q)/2$.
- We know that $q_i \ge q^0 = 0$.
- Then, $q_i \le q^1 = (1-c-q^0)/2 = (1-c)/2$ for each i;
- Then, $q_i \ge q^2 = (1-c-q^1)/2 = (1-c)(1-1/2)/2$ for each i;
- ...
- Then, $q^n \le q_i \le q^{n+1}$ or $q^{n+1} \le q_i \le q^n$ where $q^{n+1} = (1-c-q^n)/2 = (1-c)(1-1/2+1/4-\ldots+(-1/2)^n)/2.$
- As $n \rightarrow \infty$, $q^n \rightarrow (1-c)/3$.

Rationalizability in Cournot oligopoly1. n = 3is not very helpful!!!2. Everybody is rational3. $=> q_i \le (1-c)/2;$ 4. Everybody is rational and knows 25. $=> q_i \ge 0$ 6. Everybody is rational and knows 47. $=> q_i \le (1-c)/2;$ 8. Everybody is rational and knows 69. $=> q_i \ge 0$

Simplified price-competition					
Firm 2 Firm 1	High		Medium	Low	
High	6,6		0,10	0,8	
Medium	10,0		5,5	0,8	
Low	8,0		8,0	4,4	
				Dutta	