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Bertrand Competition with costly search


• N = {F1,F2,B}; F1, F2 

are firms; B is buyer


•	 B needs 1 unit of good, 
worth 6; 

•	 Firms sell the good; 
Marginal cost = 0. 

•	 Possible prices P = 
{3,5}. 

•	 Buyer can check the 
prices with a small cost 
c > 0. 

Game:

1. Each firm i chooses price 

pi; 
2. B decides whether to 


check the prices;

3. (Given) If he checks the 

prices, and p1≠p2, he buys
the cheaper one; 
otherwise, he buys from 
any of the firm with 
probability ½. 



Bertrand Competition with costly 

search


F1 
F2 

High 

Low 

High Low F1 
F2 

High 

Low 

High Low 

5/2 
5/2 
1-c 

0 
3 
3-c 

3 
0 
3-c 

3/2 
3/2 
3-c 

5/2 
5/2 
1 

5/2 
3/2 
2 

3/2 
5/2 
2 

3/2 
3/2 
3 

Check Don’t Check




Mixed-strategy equilibrium
•	 Symmetric equilibrium: Each firm charges 

“High” with probability q; 
•	 Buyer Checks with probability r.

• U(check;q) = q21 + (1-q2)3 – c = 3 - 2q2 – c;  
• U(Don’t;q) = q1 + (1-q)3 = 3 - 2q; 
• Indifference:  2q(1-q) = c; i.e., 
• U(high;q,r) = (1-r(1-q))5/2; 
• U(low;q,r) = qr3 + (1-qr)3/2 
• Indifference: r = 2/(5-2q). 



Dynamic Games of Perfect 
Information 

& 
Backward Induction 



Definitions


Perfect-Information game is a game in which all 
the information sets are singleton. 

Sequential Rationality: A player is sequentially 
rational iff, at each node he is to move, he 
maximizes his expected utility conditional on that 
he is at the node – even if this node is precluded 
by his own strategy. 

In a finite game of perfect information, the “common 
knowledge” of sequential rationality in future 
gives “Backward Induction” outcome. 
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Backward Induction

Take any pen-terminal node 

Pick one of the payoff vectors (moves) that 
gives ‘the mover’ at the node the highest payoff 

Assign this payoff to the node at the hand; 

Eliminate all the moves and the 
terminal nodes following the node 

Any non-terminal 
node 

Yes 

No 

The picked moves 



Battle of The Sexes with perfect information
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Note


• There are Nash equilibria that are different 

from the Backward Induction outcome.


•	 Backward Induction always yields a Nash 
Equilibrium. 

•	 Sequential rationality is stronger than 
rationality. 



Agenda Setting




Voting with a fixed agenda


1.	 2n+1 players 
2.	 Alternatives: x0,x1,…,xm 

3.	 Each player i has a fixed strict preference 
about alternatives: xi0 >i xi1 >i … >i xim 

4.	 There is a fixed binary agenda.

5.	 Assume: everything above is common 

knowledge 



A binary agenda 
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17th Amendment

• x0 = status quo 
• x1 = 17th amendment 
• x2 = DePew 

Amendment 

Preference profile
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Stackelberg Duopoly


Game: 
N = {1,2} firms w MC = 0;	 P


1.	 Firm 1 produces q1 units 
1 

2.	 Observing q1, Firm 2 produces 
q2 units 

3.	 Each sells the good at price 
P = max{0,1-(q1+q2)}. 

Q


1 
πi(q1, q2) = qi[1-(q1+q2)] if q1+ q2 < 1, 

0 otherwise. 



“Stackelberg equilibrium”


P 
•	 If q1 > 1, q2*(q1) = 0. 
•	 If q1 ≤ 1, q2*(q1) = (1-q1)/2. 1


•	 Given the function q2*, if q1 ≤ 1


π1(q1;q2*(q1)) = q1[1-(q1+ (1-q1)/2)] 


= q1 (1-q1)/2;


0 otherwise.

• q1* = ½. 1


• q2*(q1*) = ¼. 



1 

Sequential Bargaining


D •	 N = {1,2}

• X = feasible  

expected-utility 
pairs (x,y ∈X ) 

• Ui(x,t) = δi
txi 

•	 d = (0,0) ∈ D 
disagreement 
payoffs 

1




Timeline – 2n period

T = {1,2,…,2n-1,2n} If t is even 

If t is odd, – Player 2 offers some 
(xt,yt),– Player 1 offers some 

– Player 1 Accept or Rejects 
(xt,yt), the offer 
– Player 2 Accept or 

– If the offer is Accepted,
Rejects the offer 
the game ends yielding


– If the offer is Accepted, payoff (xt,yt),the game ends yielding 
– Otherwise, we proceed to δt(xt,yt), date t+1, except at t = 2n,

– Otherwise, we proceed when the game end

to date t+1. yielding d = (0,0). 



(0,0)
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At t = 2n-1, At t = 2n, 
•Accept iff x2n-1 ≥ δ.  •Accept iff y2n ≥ 0. 
•Offer (1−δ,δ). •Offer (0,1). 



i Continuation Value of i at t+1 =

+ 1
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Pretrial Negotiation 




Model


• Players:  1. The players bargain 

– Plaintiff using alternating 

– Defendant offers on dates 

• In court Defendant is {1,2,…,2n} offering

to pay T to Plaintiff a settlement amount 


• Cost of court s, paid by D to P. 
– CP; CD; C = CP+CD 2. On 2n+1, they go to 

• Lawyer cost per day: court.

– cp; cd; c = cp+cd


Assume: players are risk neutral and no discounting.




Backwards Induction

Date Proposer Settlement 
2n P 
2n-1 D 
2n-2 P 
2n-3 D 
2n-4 P 
2n-5 D 
… 
2 P 
1 D 



Graphically 
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