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SEIBERG–WITTEN EQUATIONS, END-PERIODIC

DIRAC OPERATORS, AND A LIFT OF ROHLIN’S

INVARIANT

TOMASZ MROWKA, DANIEL RUBERMAN, AND NIKOLAI SAVELIEV

Abstract. We introduce a gauge-theoretic integer valued lift of
the Rohlin invariant of a smooth 4-manifold X with the homol-
ogy of S1

× S3. The invariant has two terms; one is a count of
solutions to the Seiberg-Witten equations on X, and the other is
essentially the index of the Dirac operator on a non-compact man-
ifold with end modeled on the infinite cyclic cover of X. Each
term is metric (and perturbation) dependent, and we show that
these dependencies cancel as the metric and perturbation vary in
a generic 1-parameter family.

1. Introduction

We use the Seiberg-Witten equations to define an integer valued in-
variant of an oriented smooth closed 4-manifold X with the integral ho-
mology of S1×S3 that reduces mod 2 to the Rohlin invariant [42, 43, 48]
ofX. Manifolds with this homology type arise, for instance, from furling
up a homology cobordism from an integral homology sphere to itself,
hence their study should shed light on classical problems concerning
the homology cobordism group ΘH

3 of integral homology spheres and
the classical Rohlin invariant ρ : ΘH

3 → Z/2. In addition, the basic
example of such a manifold, namely S1 × S3 itself, is perhaps the sim-
plest smooth 4-manifold that might admit an exotic smooth structure,
detectable in principle by the Rohlin invariant (the Kirby–Siebenmann
invariant [22] in this dimension).

Because b2+(X) = 0, the usual count of solutions to the Seiberg-
Witten equations on X will depend on choices of metric and pertur-
bation. The main work in the paper is to define and understand a
correction term to this count, based on a study of the spin Dirac opera-
tor on a non-compact manifold with end modeled on the infinite cyclic

The first author was partially supported by NSF Grant 0805841, the second author
was partially supported by NSF Grant 0804760, and the third author was partially
supported by NSF Grant 0305946 and the Max-Planck-Institut für Mathematik in
Bonn, Germany.
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cover of X. The index of this operator is defined using Taubes’ the-
ory [51] of periodic-end operators; we extend this theory by proving a
change of index formula for 1-parameter families of such operators in
terms of version of spectral flow.

In summary, the invariant is defined as follows. The Seiberg–Witten
equations on X depend on two parameters: a Riemannian metric g and
a perturbing self-dual 2-form, written as d+β. For generic choices of
these parameters, the Seiberg–Witten moduli space M(X, g, β) consists
only of irreducible points, which can be counted with signs depending
on a choice of orientation and homology orientation on X. This count,
denoted #M(X, g, β), will generally depend on the parameters (g, β)
because reducible solutions can appear along a path connecting two
sets of generic parameters. To remedy this, we introduce an index-
theoretic correction term w (X, g, β) whose definition depends on an
understanding of the Dirac operator on a non-compact manifold with
end modeled on the infinite cyclic cover of X, using Taubes’ theory [51]
of end-periodic operators and some additional analysis. By proving that
the change in w (X, g, β) (the aforementioned spectral flow) is the same
as the change in #M(X, g, β), we arrive at the main result of this paper:

Theorem A. Let X be a smooth oriented homology oriented 4-manifold
with the integral homology of S1 × S3, and define

λ SW (X) = #M(X, g, β) − w (X, g, β).

Then λ SW (X) is independent of the choice of metric g and generic
perturbation β; moreover, the reduction of λ SW (X) modulo 2 is the
Rohlin invariant of X.

When X has the form S1 × Y for an integral homology sphere Y ,
our invariant becomes the invariant of Y studied by Weimin Chen [9]
and Yuhan Lim [25]. Indeed, our approach was inspired by their treat-
ment of a similar issue with the count of irreducibles in the Seiberg–
Witten moduli space on Y , namely, that this count can change in a
one-dimensional family of parameters. To counter this, Chen and Lim
(independently, following a suggestion of Kronheimer [12]) introduced
an index-theoretic, metric-dependent invariant of Y that jumps in the
same fashion as the above count. In fact, this ‘counter-term’ is a combi-
nation of η–invariants associated to the Dirac and odd signature oper-
ators on Y . One can say that our correction term w (X, g, β) plays the
role of this combination of η–invariants in the setting when the operators
are periodic rather than R–invariant over the end.

For an integral homology sphere Y , Lim [26] proved that the invari-
ant of Y defined in this fashion actually coincides, up to an overall
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sign, with the Casson invariant λ(Y ). The latter is defined by counting
either irreducible flat SU(2) connections on Y as in Taubes [50], or irre-
ducible SU(2) representations of its fundamental group; see Akbulut–
McCarthy [2]. The Casson invariant was extended by Furuta and Ohta [16]
to an invariant λFO (X) of smooth 4-manifoldsX with the Z[Z]-homology
of S1 × S3. This invariant counts irreducible flat SU(2) connections on
X in the sense of the Donaldson gauge theory [11]. Again, this count
corresponds to a count of irreducible SU(2) representations of π1(X);
in particular, the invariant vanishes for the homotopy S1 × S3. The
second and third authors studied λFO (X) in earlier papers [45, 43].
Now we make the following conjecture, which we have verified in many
examples.

Conjecture B. For any smooth oriented homology oriented 4-manifold
X with the Z[Z]-homology of S1 × S3, one has

λ SW (X) = −λFO (X).

If this conjecture turns out to be true, it will answer several long-
standing questions in topology, the most striking of which is the van-
ishing of the Rohlin invariant for a homotopy S1 × S3. See [43] for a
longer discussion.

Finally, we point out that Seiberg–Witten and Yang–Mills invariants
for manifolds with b2+ = 0 have also been considered by other authors.
Okonek–Teleman [39] and Teleman [52] studied these in connection with
problems about curves on complex surfaces of type VII0. The topolog-
ical setup in these papers is more general, in that b2 = b2− 6= 0, and b1

can be bigger than 1. A related preprint of Lobb–Zentner [27] treats
the case of negative definite 4-manifolds with non-zero b2 divisible by 4
and b1 = 1, and defines an invariant by counting projectively flat SU(2)
connections; Zentner [54] has subsequently shown that this invariant
actually vanishes. Recently, Frøyshov [14] has studied two numerical
invariants of a negative definite 4-manifold X with b1(X) = 1. One
invariant is the Lefschetz number of a cobordism induced map on a ver-
sion of the monopole Floer homology; its definition requires that X has
an embedded rational homology sphere Y generating H3(X;Z). The
other invariant is the h–invariant, whose definition requires that either
b2(X) = 0 or a generator of H3(X;Z) is represented by an integral ho-
mology sphere Y . It would be of interest to understand the relation of
all of these works to the present paper. We show that our definition of
the invariant λ SW (X) can be extended to negative definite manifolds X
with b2−(X) 6= 0, at least under the assumption that either b2−(X) = 1 or
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else there is a homology sphere Y generating H3(X;Z); this extension
is described in Section 10.

Here is a brief outline of the paper. We begin in Section 2 with a
description of the blown-up Seiberg–Witten moduli space introduced
in [23] to deal with reducible solutions, and establish some transversal-
ity results for 1-parameter moduli spaces that will be used later in the
paper. In Section 3, we introduce the Dirac operator on periodic-end
manifolds, and define the correction term w (X, g, β). Section 4 contains

the basic analysis of the Dirac operator on the infinite cyclic cover X̃ of a
manifold X, including its Fredholm properties when acting on weighted
Sobolev spaces L2

k,δ (X̃). The main tool here is the Fourier–Laplace

transform defined in [51] that relates this periodic Dirac operator on X̃
to a family of twisted Dirac operators on X with parameter z ∈ C∗.
We show that the inverses of this family depend meromorphically on
z, and describe the variation of the poles in a generic path of met-
rics and perturbations. In the following Sections 5 and 6, we extend
this analysis to the case of a manifold with a periodic end modeled on
X̃, establishing asymptotics for solutions to the Dirac equation and a
change of index formula. This formula is applied in Section 7 to inter-
pret the index change as a spectral flow. Finally, in Section 8, we put
together the results of the preceding sections to match the change in
w (X, g, β) with jumps in #M(X, g, β) in a generic 1-parameter family
of metrics and perturbations, and hence to prove the independence of
λ SW (X) from the choice of metric and generic perturbation. Section 9
contains the proof that λ SW (X) reduces modulo 2 to the Rohlin invari-
ant; this involves a careful choice of metric as in [44] and perturbation
that is equivariant with respect to the well-known involution in Seiberg–
Witten theory. Section 10 describes an extension of λ SW (X) to certain
negative definite manifolds X with b1(X) = 1. The final Section 11
provides some examples of explicit calculations; we remark that all of
these are in agreement with Conjecture B.

Acknowledgments: We thank Kim Frøyshov, Lev Kapitanski, Claude
LeBrun, Leonid Parnovski, and Cliff Taubes for useful discussions and
sharing their expertise. We also thank the referee for some perceptive
comments and suggestions.

2. Seiberg–Witten moduli spaces

Let X be an oriented smooth homology S1 × S3, and choose a spin
structure on X. Two different spin structures on X are equivalent
as spinc structures hence our construction will be independent of this
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choice. Fix a homology orientation on X by fixing a generator 1 ∈ Z =
H1(X;Z). In this section, we will introduce, following [23], the blown-
up Seiberg–Witten moduli space on X and investigate its dependence
on the (generic) metric and perturbation.

2.1. Definition. Given a metric g on X and a form ω ∈ Ω2
+(X, iR),

consider the triples (A, s, ϕ) comprised of a U(1)–connection A on the
determinant bundle of the spin bundle, a real number s ≥ 0, and a
positive spinor ϕ such that ‖ϕ‖L2 = 1. We will slightly abuse notation
by viewing A as a form in Ω1(X, iR) after fixing a trivialization of the
determinant bundle. The gauge group G = Map (X,S1) acts freely on
such triples by the rule u(A, s, ϕ) = (A−u−1du, s, uϕ). The (perturbed,
blown-up) Seiberg–Witten moduli space consists of the gauge equivalence
classes of the triples (A, s, ϕ) that solve the Seiberg–Witten equations

(1)

{
F+
A − s2 τ(ϕ) = ω

D+
A(X, g) (ϕ) = 0.

The fact that b2+(X) = 0 allows for the following description of the

forms ω ∈ Ω2
+(X, iR). We use the standard notation Hk for harmonic

k-forms.

Lemma 2.1. For any ω ∈ Ω2
+(X, iR) there exists a unique β ∈ Ω1(X, iR)

such that d+β = ω, d∗β = 0, and β is orthogonal to H1(X; iR) ⊂
Ω1(X, iR).

Proof. Since H2
+(X; iR) = 0, the Hodge decomposition for ω takes the

form ω = dα + d∗γ = dα + ∗dβ where β = ∗γ. Since ∗ω = ω, we
have ω = dβ + ∗dα. By the uniqueness of the Hodge decomposition,
α = β and hence ω = dβ + ∗dβ = d+β. One can of course choose
β ∈ (im d)⊥ = ker d∗, which makes it unique up to adding a harmonic
1-form in H1(X; iR). �

In other words, we have a linear isomorphism d+ : P → Ω2
+(X, iR)

with P = ker d∗ ∩ H1(X; iR)⊥. The vector space P will be referred to
as the space of perturbations. Given a perturbation β ∈ P, the Seiberg–
Witten moduli space corresponding to ω = d+β in (1) will be denoted
M(X, g, β).

2.2. Regularity. Fix an integer k ≥ 3, and define the (blown up) con-

figuration space B̃ as the Hilbert manifold of the L2
k+1 gauge equiva-

lence classes of triples (A, s, ϕ), where A is a U(1)–connection on X of
Sobolev class L2

k, s is a real number, and ϕ is a positive L2
k spinor such

that ‖ϕ‖L2 = 1. The space B̃ has an involution that sends (A, s, ϕ)
5



to (A,−s, ϕ). We define the configuration space B as the subset of B̃
where s ≥ 0.

Inside the configuration space B̃ sits the Hilbert submanifold Z̃ of
the gauge equivalence classes of triples (A, s, ϕ) with D+

A(X, g) (ϕ) = 0;

see [23, Lemma 27.1.1]. Again, Z̃ has the natural involution (A, s, ϕ) →
(A,−s, ϕ). The condition s ≥ 0 defines Z ⊂ B, a Hilbert submanifold
with boundary. The coordinate s is a product factor, and the boundary
∂Z of Z occurs at s = 0.

Let the map χ : Z̃ → Ω2
+(X, iR) be given by χ(A, s, ϕ) = F+

A −

s2 τ(ϕ), where Ω2
+(X, iR) is completed in the Sobolev L2

k−1 norm. (This
map is called ̟ in [23]). For any β in the space P completed in the
Sobolev L2

k norm, define

M̃(X, g, β) = χ−1(d+β) ⊂ Z̃.

The map χ is invariant with respect to the involution (A, s, ϕ) →

(A,−s, ϕ), hence we have an induced involution on M̃(X, g, β), and
the Seiberg–Witten moduli space M(X, g, β) defined in the previous

section is the intersection M̃(X, g, β) ∩ Z. Also define

M0(X, g, β) = M̃(X, g, β) ∩ ∂Z;

the points in M0(X, g, β) will be called reducible.

Proposition 2.2. For a generic β ∈ P, the moduli space M(X, g, β)
⊂ Z is a compact oriented manifold of dimension zero with empty
M0(X, g, β).

Proof. This is essentially contained in [23, Lemma 27.1.1]. The map

χ : Z̃ → Ω2
+(X, iR) is Fredholm of index zero, and its restriction

∂χ : ∂Z → Ω2
+(X, iR) is Fredholm of index −1. Therefore, for generic β,

M̃(X, g, β) = χ−1(d+β) is a manifold of dimension zero andM0(X, g, β)
= (∂χ)−1(d+β) is empty. The moduli space M(X, g, β) is compact, and
it is oriented as usual by the choice of orientation and homology orien-
tation on X. �

Any pair (g, β) provided by Proposition 2.2 will be called regular.
Given a regular pair (g, β), denote by #M(X, g, β) the signed count of
points in the (regular) moduli space M(X, g, β).

2.3. Regularity in families. Let gI be a smooth path of metrics on
X parameterized by I = [0, 1], and consider the parameterized configu-
ration space

B̃I =
⋃

t∈I

{t} × B̃t,

6



where B̃t stands for a copy of B̃ with respect to the metric gt. We will

follow [23, page 479] and slightly abuse notations in regarding B̃t as

independent of t and identifying B̃I with I × B̃0.

Remark 2.3. The precise identification is as follows, cf. [44, Section
3.1]. For any t ∈ I, there is a unique automorphism bt : TX → TX
that is positive, symmetric with respect to g0, and has the property that
g0(u, v) = gt(bt(u), bt(v)). The map on orthonormal frames induced by
bt gives rise to a map b̄t : S

±
0 → S±

t of spinor bundles associated with
metrics g0 and gt. This map is an isomorphism preserving the fiberwise

length of spinors. The identification I × B̃0 → B̃I is then given by
(t, A, s, ϕ) → (t, A, s, b̄t (ϕ)).

ZI

∂ZI

I

MI

Figure 1. Parameterized moduli space

Let Z̃t ⊂ B̃t be given by D+
A(X, gt) (ϕ) = 0. The spaces Z̃t may be

assembled into a Hilbert manifold

Z̃I =
⋃

t∈I

{t} × Z̃t ⊂ B̃I

over I with a natural projection π : Z̃I → I. Both B̃I and Z̃I admit an
involution sending (t, A, s, ϕ) to (t, A,−s, ϕ). The conditions s ≥ 0 and

s = 0 define respectively subbundles ZI ⊂ Z̃I and ∂ZI ⊂ ZI over I; see
Figure 1.

Let ΩI be the subspace of I× Ω2(X, iR) comprised of the pairs (t, ω)
such that ω is self-dual with respect to the metric gt. Then we have
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a fibration π : ΩI → I that can be trivialized using the maps bt as in
Remark 2.3. Consider the commutative diagram

(2)

Z̃I
χI−−−−→ ΩIyπ

yπ

I
1

−−−−→ I

where the map χI is given by χI (t, A, s, ϕ) = (t, F+t

A − s2 τt(ϕ)). The
pre-image of a section ωI = d+βI : I → ΩI under χI is the parameter-
ized moduli space

M̃I =
⋃

t∈I

{t} × M̃(X, gt, βt).

Let us also consider

MI = M̃I ∩ ZI =
⋃

t∈I

{t} ×M(X, gt, βt)

and

M0
I = M̃I ∩ ∂ZI =

⋃

t∈I

{t} ×M0(X, gt, βt).

Theorem 2.4. Let gI be a path of metrics and β0, β1 ∈ P a pair of per-
turbations such that M(X, g0, β0) and M(X, g1, β1) are regular. Then,
for a generic path βt ∈ P connecting β0 to β1, the parameterized moduli
space MI is a smooth oriented 1-manifold with oriented boundary

M(X, g0, β0) ∪ M(X, g1, β1) ∪ M0
I .

In particular,

#M(X, g1, β1) − #M(X, g0, β0) = #M0
I ,

where #M0
I stands for the signed count of points in M0

I .

Proof. Observe that χI is a Fredholm map of index zero, and choose
an arbitrary section ωI : I → ΩI that restricts to ω0 = d+β0 and ω1 =
d+β1 at the endpoints of I. According to [49, Theorem 3.1], it can be
approximated by a section, called again ωI = d+βI , that is transversal

to both ∂χI : ∂ZI → ΩI and χI : Z̃I → ΩI . Then M̃I = χ−1
I (d+βI) is a

regular oriented 1-manifold with boundary M̃(X, g0, β0)∪M̃(X, g1, β1),
and MI is a regular oriented 1-manifold whose boundary is as claimed.

�
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Any path (gI , βI) with regular endpoints provided by Theorem 2.4
will be called regular. We will wish to calculate #M0

I and eventually,
compare it with the jumps in the index of a certain differential operator;
see Theorem 8.1. The calculation of the index change will be greatly
simplified if the regular path (gI , βI) is chosen so that gI is constant
near each t ∈ I where M0(X, gt, βt) is non-empty; such a path will be
called special. In the Appendix, we will prove the following result.

Theorem 2.5. Any regular path (gI , βI) can be homotoped rel its end-
points to a special path.

2.4. The reducibles. It will be useful to have a more explicit descrip-
tion of M0

I , as much of this paper is concerned with the behavior of the
Seiberg–Witten equations at reducible points. For any choice of (g, β),
the space M0(X, g, β) consists of the gauge equivalence classes of pairs
(A,ϕ) such that F+

A = d+β, D+
A(X, g) (ϕ) = 0, and ‖ϕ‖L2 = 1. The

gauge equivalence classes [A] of connections such that F+
A = d+β form

the circle

(3) β + H1(X; iR)/H1(X; iZ).

For each [A] on this circle such that kerD+
A(X, g) 6= 0, solutions of the

equation D+
A(X, g)(ϕ) = 0 with ‖ϕ‖L2 = 1 form a sphere of dimen-

sion 2 dimC kerD+
A(X, g) − 1 and, after factoring out the residual S1

gauge symmetry, the complex projective space of (complex) dimension
dimC kerD+

A(X, g) − 1.
In particular, for any regular (g, β) the space M0(X, g, β) is empty,

which means that kerD+
A(X, g) = 0 for all points [A] on the circle (3).

Furthermore, for any pair (g, β) in a regular path (gI , βI) the space
M0(X, g, β) is at most finite, which implies that kerD+

A(X, g) 6= 0 for
at most finitely many points [A] on the circle (3), and in fact that
kerD+

A(X, g) = C at each of them.
Parametrize the circle (3) by choosing a smooth function f : X → S1

such that

(4) [ f∗(dθ)] = 1 ∈ H1(X;Z)

corresponding to our choice of homology orientation on X. Then the
above discussion can be restated as follows in terms of the family

(5) D+
A(X, g) = D+(X, g) + β − ln z · f∗(dθ) with |z| = 1.

Proposition 2.6. For any regular (g, β), all operators in the family
(5) have zero kernels. For any point (g, β) in a regular path (gI , βI), at
most finitely many of the operators (5) have non-zero kernel, and that
kernel is isomorphic to C.
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3. The correction term

Let X be an oriented smooth spin homology S1 × S3 with a fixed
homology orientation. In this section, for any regular pair (g, β), we
will introduce the correction term w(X, g, β) and will prove that it is
well defined.

3.1. End-periodic manifolds. Let Y ⊂ X be a connected spin 3-
manifold dual to the generator of H1(X;Z) so that X cut open along
Y is a spin homology cobordism W from Y to itself. Corresponding to
the isomorphism H1(X;Z) → Z is the infinite cyclic cover

(6) X̃ = . . . ∪ W−1 ∪ W0 ∪W1 ∪ . . . with all Wn =W.

By an end–periodic (spin) manifold whose end is modeled on X̃ we will

mean any manifold Z+ = Z ∪ X̃+, where Z is a smooth compact spin
manifold with spin boundary ∂Z = Y , and

X̃+ = W0 ∪ W1 ∪ W2 ∪ . . . with all Wn =W.

Any metric g onX naturally lifts to a periodic metric on X̃+ and extends
to an end–periodic metric on Z+, again called g. The same holds for
the perturbation 1–forms β ∈ P.

3.2. End-periodic Dirac operators. Given an end-periodic manifold
Z+, with any choice of metric g, perturbation 1-form β, and spin struc-
ture as above one associates the perturbed Dirac operator

(7) D+(Z+, g, β) := D+(Z+, g) + β : L2
1 (Z+, S

+) → L2(Z+, S
−).

Theorem 3.1. The operator (7) is Fredholm for any regular pair (g, β)
on the manifold X.

Proof. The operator D+(X, g)+β has zero index. Therefore, according
to Taubes [51, Lemma 4.3], the operator (7) is Fredholm if and only if
the kernels of the operators in the family (5) vanish for any choice of
smooth function f : X → S1 satisfying (4). But for a regular (g, β),
these kernels vanish by Proposition 2.6. Note that the statement of
Lemma 4.3 in [51] should read δ ∈ R rather than δ ∈ R∗ (interpreted
to mean R \ {0}), which can be confirmed by a reading of the proof of
that lemma. This typo was pointed out to us by the referee. �

In Sections 4 and 5 below, we will explain in detail the basic analytical
machinery behind Theorem 3.1 and re-prove it in more general situation;
see Corollary 5.2.

10



3.3. Definition of the correction term. Let Z+ = Z∪X̃+ be an end-
periodic manifold and (g, β) a regular pair on X so that the operator
(7) is Fredholm by Theorem 3.1. Define the correction term

w (X, g, β) = indCD
+(Z+, g, β) + sign(Z)/8.

Note that in general w (X, g, β) will be a rational number.

Proposition 3.2. The correction term w (X, g, β) is independent of the
choices of Z and Y ⊂ X, and the way g, β, and the spin structure are
extended to Z.

Proof. Given two choices, Z and Z ′ with ∂Z = ∂Z ′ = Y , we use the
excision principle – see Section 5.3 – and the index theorem to obtain

indCD
+(Z ′

+, g, β) − indCD
+(Z+, g, β) = indCD

+(−Z ∪ Z ′)

= −
1

24

∫

−Z∪Z′

p1 = −
1

8
sign(−Z ∪ Z ′) =

1

8
sign(Z)−

1

8
sign(Z ′),

which proves that w(X, g, β) is independent of the choices of Z and the
extensions.

Next, let Y and Y ′ be two choices for cutting X open, and choose
a lift of each to the infinite cyclic cover X̃. Call the lifts Y and Y ′

again. Since Y and Y ′ are both compact, one can apply the covering
translation to Y ′ sufficiently many times to ensure that Y and Y ′ are
disjoint. Both Y and Y ′ separate X̃ hence they become the boundary
components of a spin cobordism V ⊂ X̃ . We claim that the signature
of V is zero. This fact is well-known, but we do not know a precise
reference; compare [42] and [38].

To verify the claim, note that V is disjoint from its image under a
sufficiently high prime power p of the covering translation, and hence
the projection of V into the p-fold cyclic cover of X is an embedding.
But a standard argument in knot theory [18, §5] says that this p-fold
cover is a rational homology S1 × S3, so that the intersection form on
its 2-dimensional rational homology vanishes identically. It follows that
the intersection form on V vanishes as well, so the signature of V is
zero. That w(X, g, β) is independent of the choice of Y now follows by
the argument in the previous paragraph applied to Z ′ = Z ∪ V . �

4. Dirac operators on infinite cyclic covers

In the definition of the correction term w (X, g, β) in Section 3, we
were able to avoid most of the analysis on end-periodic manifolds by
simply quoting Theorem 3.1, which is essentially due to Taubes [51].
Getting a firm grip on this analysis and, in particular, on the ideas
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involved in the proof of Theorem 3.1, becomes essential once we wish
to prove that the difference #M(X, g, β)−w(X, g, β) is independent of
the choice of regular (g, β). We will study this analysis in the next four
sections.

This section is dedicated to the Fourier–Laplace transform (following
Taubes [51]) and the role it plays in establishing Fredholmness of the

Dirac operator on the infinite cyclic cover X̃ → X. The same transform
arises in related contexts; for example the terminology ‘Z–transform’
is widely used in the literature (e.g. [20]). A number of proofs in this
section are standard, and are largely omitted.

4.1. Infinite cyclic cover. Let X be an oriented smooth spin homol-
ogy S1 × S3 with a fixed homology orientation, and f : X → S1 a
smooth function satisfying (4). Let X̃ be the infinite cyclic cover as in

(6) and f̃ : X̃ → R a lift of f such that f̃(x + n) = f̃(x) + n. Here,

x 7→ x+1 stands for the covering translation X̃ → X̃. Any metric g on
X lifts to a periodic metric on X̃ again called g, and the same holds for
the spin structure.

Note that in the product case, when X = S1 × Y with the product
metric and spin structure, and Y is an integral homology 3-sphere, one
has X̃ = R× Y . The function f̃ : R× Y → R can then be chosen to be
f̃(θ, y) = θ.

4.2. Definition of the Fourier–Laplace transform. Given a spinor
u ∈ C∞

0 (X̃, S±) and a complex number µ ∈ C, the Fourier–Laplace
transform of u is defined as

ûµ(x) = eµf̃(x)
∞∑

n=−∞

eµnu(x+ n),

where x+n denotes the result of applying to x ∈ X̃ the covering trans-
lation n times. Since u has compact support, the above sum is finite.
One can easily check that ûµ(x + 1) = ûµ(x) for all x ∈ X̃. Therefore,
for every µ ∈ C, we have a well defined spinor ûµ over X. Note that the
spinor ûµ depends analytically on µ, and that for any x ∈ X, we have

(8) ûµ+2πi (x) = e 2πi f(x) ûµ(x).

In order to recover u from its Fourier–Laplace transform, we do not
need to know ûµ for all µ ∈ C; in fact, it suffices to know ûµ for µ in
just one interval of the form I(ν) = { ν + iθ | 0 ≤ θ ≤ 2π } with ν ∈ C.
The formula is as follows :

(9) u(x+ n) =
1

2πi

∫

I(ν)
e−µ(f(x)+n) ûµ(x) dµ,
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where x ∈ W0 and n is an arbitrary integer. This can be checked by
direct substitution.

4.3. The Fourier-Laplace transform in weighted Sobolev spaces.

Given δ ∈ R and an integer k ≥ 0, we will say that u ∈ L2
k,δ (X̃, S

±) if

and only if eδf̃ u ∈ L2
k (X̃, S

±), and let

‖u‖L2
k,δ

(X̃,S±) = ‖ eδf̃ u‖L2
k
(X̃,S±).

We wish to extend our definition of the Fourier–Laplace transform to
these weighted Sobolev spaces. For the sake of brevity, we will often
omit S± from our notations and write L2 (X̃) for L2 (X̃, S±), etc. The
basic observations are summarized as follows.

Proposition 4.1. For any u ∈ C∞
0 (X̃) and ν ∈ C, the restriction of the

family ûµ to the interval I(ν) belongs to the Hilbert space L2(I(ν), L2
k(X)).

Moreover, there is a constant C such that

‖ ûµ|I(ν)‖
2
L2(I(ν),L2

k
(X)) ≤ C · ‖u‖ 2

L2
k,δ

(X̃)
with δ = Re (ν).

Proposition 4.1 is proved using standard arguments of Fourier anal-
ysis (see for instance [40, page 290]) that readily extend to the end-
periodic case. It shows that, for any ν ∈ C with Re (ν) = δ ∈ R, the
assignment u 7→ ûµ|I(ν) can be uniquely extended to bounded linear
operators

(10) A(ν) : L2
k,δ(X̃) → L2(I(ν), L2

k(X)), k ∈ Z+.

The following proposition is proved using formula (9) and the Parseval
relation; see [40, page 290] and [34, Lemma 2] in the product case.

Proposition 4.2. For any ν ∈ C the operators (10) are linear isomor-
phisms.

Finally, for use in Section 6.2, it will be helpful to know that the
Fourier–Laplace transform of a spinor in a weighted Sobolev space is
holomorphic in a specific region V ⊂ C. We use the term holomorphic
to mean that the function V → L2

k(X) that assigns ûµ to µ can be
expressed as a power series in µ convergent in the L2

k(X) norm. There
are many possible statements along these lines; we will content ourselves
with the following result.

Lemma 4.3. Suppose that u ∈ L2
δ (X̃) is a smooth spinor. If u has

support in X̃+ =W0∪W1∪ . . . then ûµ is holomorphic in the half plane
Reµ < δ.
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Proof. It suffices to consider the case of a smooth spinor u ∈ L2(X̃)

with support in X̃+. To show that ûµ is holomorphic in the half plane
Reµ < 0, all we need to do is estimate, for x ∈W0, the L

2–norm of the
tail ∑

n≥N

eµn u(x+ n).

The latter norm can be estimated by
(∑

|e2µn|
)1/2

·
(∑

‖u(x+ n)‖2L2

)1/2

using the Hölder inequality. The first series here converges as long as
Reµ < 0 and approaches 0 as N → ∞, and the second is estimated
from above by ‖u‖L2(X̃). �

4.4. The Fourier–Laplace transform of perturbed Dirac opera-

tors. Let β ∈ P be a perturbation 1–form pulled back to X̃. We will be
interested in the Fredholm properties of the perturbed Dirac operator

(11) D+(X̃, g, β) := D+(X̃, g) + β : L2
1,δ (X̃, S

+) → L2
δ (X̃, S

−)

in weighted Sobolev spaces. The Fourier–Laplace transform of such
an operator is the family of operators, parameterized by µ ∈ C, ob-
tained by conjugating the operator by the Fourier–Laplace transform.
A straightforward calculation shows that the Fourier–Laplace transform
of D+(X̃, g, β) is the holomorphic family

(12) D+
µ (X, g, β) = D+(X, g, β) − µ · f∗(dθ)

of perturbed Dirac operators on X with µ ∈ C (compare with (5)).
Here, we use notation

D+(X, g, β) := D+(X, g) + β

for the perturbed Dirac operator on X. Similar formulas hold for the
full Dirac operator and for the negative chiral Dirac operator.

Proposition 4.4. The operator (11) is Fredholm if and only if the
operators D+

µ (X, g, β) are invertible for all µ with Reµ = δ.

Proof. Since D+(X, g, β) is an elliptic operator of index zero, the state-
ment follows from Taubes [51, Lemma 4.3]. �

Therefore, to understand the index theory of the perturbed Dirac
operator (11), we need to study the family (12). The subset Σ (g , β) of
the complex plane consisting of all µ ∈ C for which D+

µ (X, g, β) is not

invertible will be called the spectral set of the family D+
µ (X, g, β).

14



Lemma 4.5. The spectral set Σ (g , β) is independent of the choice of
the function f : X → S1.

Proof. For any two choices of f , the 1–forms f∗(dθ) differ by an exact
form dh, where h : X → R is a smooth function. The result now follows
from the easily verified formulaD+

µ (X, g, β)−µdh = eµhD+
µ (X, g, β) e

−µh.
�

Theorem 4.6. Let (gI , βI) be a regular path. For any t ∈ I, the spectral
set Σ (gt , βt ) is a discrete subset of the complex plane, and the inverse
of D+

µ (X, gt, βt) is a meromorphic function of µ ∈ C.

Proof. According to Proposition 2.6, the spectral set Σ (gt , βt ) is a proper
subset of C for any t ∈ I. Having noted this, abstract out the salient
features of our situation and view D+

µ (X, gt, βt) for any fixed t ∈ I as a
family of the shape

T + µA : L2
1 (X,S

+) → L2 (X,S−),

where T (the operator D+(X, gt, βt) in our case) is an index zero Fred-
holm operator, and A (Clifford multiplication by −f∗t (dθ)) is a compact
operator. Fix µ0 such that the operator T + µ0A is invertible.

Consider the operator (T+µA)(T+µ0A)
−1 : L2(X,S−) → L2(X,S−).

This is a bounded operator, and we can rewrite it as

I + (µ − µ0)A(T + µ0A)
−1 = I + (µ− µ0)K.

The operator K = A(T + µ0A)
−1 : L2(X,S−) → L2(X,S−) is compact

since both A : L2 → L2 and (T +µ0A)
−1 : L2 → L2

1 are bounded so that
their composition factors through the compact embedding L2

1 → L2.
Thus we can apply the spectral theory of compact operators to the
study of our family. For µ 6= µ0 we conclude that T +µA is invertible if
and only if ζ = −(µ−µ0)

−1 is not in the spectrum of K. The spectrum
of K is a compact subset Spec(K) of the complex plane with only 0 as
an accumulation point. Thus the spectral set is discrete.

Furthermore, the resolvent (K−ζI)−1 of a compact operator is mero-
morphic in ζ = −1/(µ−µ0) away from ζ = 0 hence the inverse of T+µA
is meromorphic in µ ∈ C. �

Corollary 4.7. Let (gI , βI) be a regular path. For any t ∈ I, the

operator D+(X̃, gt, βt) : L
2
1,δ (X̃, S

+) → L2
δ (X̃, S

−) is Fredholm for all
but a discrete set of δ ∈ R with no accumulation points.

The set of δ’s for which the above operator fails to be Fredholm may
well depend on t; this dependence is examined in more detail in the next
section.
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4.5. Spectral set as a function of t. Given a path (gI , βI) of metrics
and perturbations on X consider the parameterized spectral set

(13) ΣI =
⋃

t∈I

Σ (gt , βt ) ⊂ C.

Let t ∈ I be such that the spectral set Σ (gt , βt ) is non-empty and, for
any µj ∈ Σ (gt , βt ), consider the operator

(14) Pµj
=

1

2πi

∮

Γ
(D+(X, gt, βt)− µ · f∗t (dθ))

−1 dµ,

where Γ is a small loop in the µ–plane encircling µj once in the positive
direction.

Theorem 4.8. Let (gI , βI) be a regular path and suppose that µj ∈
Σ (gt , βt ) is such that the rank of the operator (14) is one. Then there
exist an open neighborhood U(µj) and a real ε > 0 such that the inter-
section ⋃

|t−s|<ε

Σ (gs , βs ) ∩ U (µj )

is an embedded curve.

Proof. We will use notations from the proof of Theorem 4.6 and recall
from that proof that the spectral set of T+µA coincides, up to shift and
inversion, with the spectrum of the compact operator K. The operator
(14) then takes the form

Pµj
=

1

2πi

∮

Γ
(T + µA)−1 dµ.

Write (T + µA)−1 = −(T + µ0A)
−1 ζ(K − ζI)−1 with ζ = −(µ− µ0)

−1

then, after changing coordinates,

Pµj
= (T + µ0A)

−1 1

2πi

∮

Γ′

ζ−1(K − ζI)−1 dζ = (T + µ0A)
−1ζ−1

j Πζj ,

where Γ′ is a small loop in the ζ–plane encircling ζj = −(µj−µ0)
−1 once

in the positive direction, and Πζj is the projector onto the generalized
eigenspace of K corresponding to ζj . Then rank (Πζj ) = rank (Pµj

) = 1,
and the result follows from the perturbation theory of compact opera-
tors [21, Theorem VII.1.8] �

Remark 4.9. We will show later in Proposition 7.2 that, for any special
path (gI , βI), the condition of Theorem 4.8 on the rank of the operator
(14) is automatically satisfied for all µj ∈ iR ∩ ΣI .
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5. Dirac operators on end–periodic manifolds

In this section, we extend the results obtained in Section 4 for Dirac
operators on infinite cyclic covers to Dirac operators on general mani-
folds with periodic ends. Taubes’ paper [51] is again the basic reference;
a rather different geometric application of end-periodic operators may
be found in [30].

5.1. Weighted Sobolev spaces. Let Z+ be an end-periodic manifold
as defined in Section 3.1, and f : X → S1 a smooth function satisfying
(4) lifted to a function f̃ : X̃ → R as in Section 4.1. Given δ ∈ R, extend

the function δ · f̃(x) : X̃+ → R to a smooth function h : Z+ → R. We
will say that ϕ ∈ L2

k,δ (Z+, S
±) if and only if eh ϕ ∈ L2

k (Z+, S
±), with

‖ϕ‖L2
k,δ

(Z+,S±) = ‖eh ϕ‖L2
k
(Z+,S±).

Note that different extensions h of the same function δ · f̃(x) : X̃+ →
R give equivalent norms on L2

k,δ (Z+, S
±). Also note that the maps

L2
k (Z+, S

±) → L2
k,δ (Z+, S

±) sending ϕ to ehϕ are isomorphisms.

5.2. End-periodic Dirac operators. Given an end-periodic manifold
Z+, with any choice of pair (g, β) one associates the perturbed Dirac
operator D+(Z+, g, β) : C∞(Z+, S

+) → C∞(Z+, S
−). The closures of

these operators with respect to the weighted Sobolev L2–norms,

(15) D+(Z+, g, β) : L
2
1,δ (Z+, S

+) → L2
δ (Z+, S

−),

compare with (7), are related by the commutative diagram

L2
1,δ (Z+, S

+)
D+

−−−−→ L2
δ (Z+, S

−)
yeh

yeh

L2
1(Z+, S

+)
D+−dh
−−−−−→ L2 (Z+, S

−)

whose vertical arrows are isomorphisms. In particular, over the end
X̃+, the operators D+ = D+(X̃+, g, β) and D

+ − dh = D+(X̃+, g, β)−
δf∗(dθ) are intertwined by these isomorphisms.

Proposition 5.1. The operator (15) is Fredholm if and only if the
operators D+

µ (X, g, β) are invertible for all µ with Reµ = δ.

Proof. According to Taubes [51, Proposition 4.1], it is sufficient to show
that the statement holds for the operator (11). The latter was the
subject of Proposition 4.4. �
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Corollary 5.2. Let (gI , βI) be a regular path. For any t ∈ I, the
operator D+(Z+, gt, βt) : L2

1,δ (Z+, S
+) → L2

δ (Z+, S
−) is Fredholm for

all but a discrete set of δ ∈ R with no accumulation points. This set may
depend on t but, for a fixed t, it is independent of the way the metric,
perturbation 1–form, and the spin structure are extended to Z.

For the rest of this section, we will assume that the pair (g, β) belongs
to a regular path even though it need not be regular itself. Let δ ∈ R

be such that the operator (15) is Fredholm, and denote its index by
indδD

+(Z+, g, β). Our study of this index will require the excision
principle, which we will explain next.

5.3. The excision principle. The observation that the excision prin-
ciple for operators on compact manifolds [3] (compare [11]) extends to
the non-compact setting is due to Gromov and Lawson [19]. A nice
exposition of the non-compact version is in Charbonneau’s thesis [8].

Let A1, B1, A2, and B2 be (not necessarily compact) oriented 4-
manifolds such that ∂A1 = ∂A2 = Y and ∂B1 = ∂B2 = −Y , where Y
is a compact oriented 3-manifold. Let operators

D1 : L
2(A1 ∪B1) → L2(A1 ∪B1)

D2 : L
2(A2 ∪B2) → L2(A2 ∪B2)

be (unbounded) Fredholm differential operators such that D1 = D2 on
Y . In our applications, D1 and D2 will be Dirac operators plus perhaps
zero order terms. Suppose that

D̄1 : L
2(A1 ∪B2) → L2(A1 ∪B2)

D̄2 : L
2(A2 ∪B1) → L2(A2 ∪B1)

defined as

D̄1 =

{
D1 on A1

D2 on B2
and D̄2 =

{
D2 on A2

D1 on B1

are (unbounded) Fredholm differential operators. Then

indD1 + indD2 = ind D̄1 + ind D̄2.

5.4. Properties of the index. Our first application of the excision
principle will be to show that the index of the operator (15) is well
defined. A point that we will use without further comment is that
Clifford multiplication by a real 1-form such as dh is a skew-adjoint
operator on spinors so that multiplication by a pure imaginary 1-form
like β is then self-adjoint.
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Proposition 5.3. Let δ ∈ R be such that the operator (15) is Fredholm.
Then its index indδD

+(Z+, g, β) is independent of the ways in which the

metric, spin structure, perturbation form, and function δ ·f̃ are extended
to Z.

Proof. Consider two different extensions and apply the excision principle
to the operators

D1 = D+(Z+, g1) + β1 − dh1 on Z+ = Z ∪ X̃+ and

D2 = D+(−Z+, g2) + β2 + dh2 on − Z+ = −X̃+ ∪ (−Z),

both of which are Fredholm. First, observe that

D+(−Z+, g2) + β2 + dh2 = D−(Z+, g2) + β2 + dh2

= (D+(Z+, g2) + β2 − dh2)
∗.

Therefore, indD2 = − indδ(D
+(Z+, g2) + β2). Second, the operator

D̄1 is (up to zero order terms) the Dirac operator D+ on the compact
manifold Z ∪ (−Z). In particular, ind D̄1 = 0. Finally, the manifold

−X̃+ ∪ X̃+ admits an orientation reversing involution that takes the
operator D̄2 to its adjoint, therefore, ind D̄2 = 0. The excision principle
now reads

indδ(D
+(Z+, g1) + β1)− indδ(D

+(Z+, g2) + β2) = ind D̄1 + ind D̄2 = 0,

which completes the proof. �

The next result will be helpful later when we compare the indices
indδD

+(Z+, g, β) for different values of δ. Given an end-periodic mani-

fold Z+ = Z∪X̃+, consider the end periodic manifold Z∗
+ = Z∪(−X̃−),

where

X̃− = . . . ∪ W−2 ∪ W−1 = X̃ − X̃+.

Note that this construction corresponds to the change of homology ori-
entation on X. Respectively, the function f̃ is replaced by −f̃ , and its
extension h : Z+ → R by −h : Z∗

+ → R. Note, however, that β and its
extension are unchanged.

Proposition 5.4. The operator D+(Z+, g, β) is Fredholm if and only if
D+(Z∗

+, g, β) is Fredholm, and indδD
+(Z+, g, β) = indδD

+(Z∗
+, g, β).

Proof. Apply the excision principle to the operators D1 = D+(Z+, g)
+ β − dh and D2 = D+(−Z∗

+, g) + β − dh, which are Fredholm. Since

D+(−Z∗
+, g) + β − dh = D−(Z∗

+, g) + β − dh = (D+(Z∗
+, g) + β + dh)∗,
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we conclude that indD2 = − indδ D
+(Z∗

+, g, β). The excision principle
then tells us that

indδD
+(Z+, g, β) − indδD

+(Z∗
+, g, β) = ind D̄1 + ind D̄2.

The operator D̄1 is (up to zero order terms) the Dirac operator D+ on
the compact manifold Z ∪ (−Z) hence ind D̄1 = 0. On the other hand,

D̄2 = D+(X̃, g) + β − δ f∗(dθ) hence ind D̄2 is equal to the index of

D+(X̃, g, β) : L2
1,δ (X̃, S

+) → L2
δ (X̃, S

−).

The latter index is zero which can be seen as follows. Apply the
Fourier–Laplace transform to the equation D+(X̃, g, β)(u) = 0 to obtain
D+

µ (X, g, β)(ûµ) = 0. Since all D+
µ (X, g, β) with Reµ = δ are isomor-

phisms, we conclude that ûµ = 0. Integrating over I(ν) with Re ν = δ

gives u = 0, hence, kerD+(X̃, g, β) = 0. Similarly, cokerD+(X̃, g, β) =

0 by the same argument applied to the operator D−(X̃, g, β). �

6. The change of index formula

This section is devoted to comparing the indices indδD
+(Z+, g, β)

for different values of δ ∈ R. We continue to assume that the pair (g, β)
belongs to a regular path even though it need not be regular itself.
The resulting formula (20) contains as a special case the formula of [28,
Theorem 1.2] (so in particular we provide a new and rather different
proof of the latter). The indices indD+(Z+, g, β) for different g and β
will be compared in the next section.

6.1. Reduction to an index problem on X̃. Given δ1, δ2 ∈ R,
consider a smooth function δ : X̃ → [0, 1] such that δ(x) = δ1 on Wn

with n ≤ −1 and δ(x) = δ2 on Wn with n ≥ 1. Let h(x) = δ(x) · f̃(x),

and say that ϕ ∈ L2
k; δ1,δ2

(X̃, S±) if and only if eh ϕ ∈ L2
k (X̃, S

±). In

particular, if δ1 = δ2 = δ, we get back the spaces L2
k,δ(X̃, S

±). As
before, we have the commutative diagram

L2
1; δ1,δ2

(X̃, S+)
D+

−−−−→ L2
δ1,δ2

(X̃, S−)
yeh

yeh

L2
1(X̃, S

+)
D+−dh
−−−−−→ L2 (X̃, S−)

whose vertical arrows are isomorphisms, and we conclude that

(16) D+ = D+(X̃, g, β) : L2
1; δ1,δ2 (X̃, S

+) → L2
δ1,δ2 (X̃, S

−)

is a Fredholm operator for all δ1, δ2 ∈ R away from a discrete set. We
will denote its index by indδ1,δ2 D

+(X̃, g, β).
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Proposition 6.1. For any δ1, δ2 ∈ R away from a certain discrete set
with no accumulation points,

indδ2 D
+(Z+, g, β) − indδ1 D

+(Z+, g, β) = indδ1,δ2 D
+(X̃, g, β).

Proof. This is seen by a repeated application of the excision principle,
the functions h1, h2 : Z+ → R extending δ1 · f̃(x) and δ2 · f̃(x), respec-
tively :

indδ2 D
+(Z+,g, β)− indδ1 D

+(Z+, g, β)

= ind(D+(Z+, g, β) − dh2)− ind(D+(Z+, g, β) − dh1)

= ind(D+(Z+, g, β) − dh2)− ind(D+(Z∗
+, g, β) + dh1)

= ind(D+(Z+, g, β) − dh2) + ind(D+(−Z∗
+, g, β) − dh1)

= ind(D+(X̃, g, β) − dh) = indδ1,δ2 D
+(X̃, g, β).

�

6.2. Change of index via residues. Our next goal will be to com-
pute the index indδ1,δ2 D

+(X̃, g, β) in terms of the holomorphic family
D+

µ (X, g, β) = D+(X, g, β) − µ · f∗(dθ).

Fix a smooth function ζ : X̃ → R such that 0 ≤ ζ ≤ 1, ζ = 0 on Wn

with n ≤ −1, and ζ = 1 on Wn with n ≥ 1. Let u ∈ L2
1; δ1,δ2

(X̃, S+) be

a solution of the equation D+(X̃, g, β)(u) = 0. Write

u = (1− ζ)u+ ζ u = v + w,

where v = (1 − ζ)u ∈ L2
1,δ1

(X̃, S+) and w = ζ u ∈ L2
1,δ2

(X̃, S+). A
straightforward calculation shows that

D+(X̃, g, β)(v) = −k and D+(X̃, g, β)(w) = k,

where k = dζ · u.
Since k is supported in W0, its Fourier–Laplace transform k̂µ is obvi-

ously holomorphic as a function of µ in the entire complex plane. Apply
Lemma 4.3 to w ∈ L2

1,δ2
(X̃, S+) supported in X̃+ to conclude that ŵµ

is holomorphic in the half plane Reµ < δ2. A similar argument shows
that v̂µ is holomorphic in the half plane Reµ > δ1. Hence the applica-
tion of the Fourier–Laplace transform to the above two equations yields
equations

D+
µ (X, g, β) (v̂µ) = −k̂µ and D+

µ (X, g, β) (ŵµ) = k̂µ,

that hold in the half planes Reµ > δ1 and Reµ < δ2, respectively.
The inverse Rµ of the holomorphic family D+

µ (X, g, β) is a mero-
morphic function of µ in the entire complex plane; see Theorem 4.6.
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Therefore, away from the poles of Rµ, we have the equations

v̂µ = −Rµ k̂µ and ŵµ = Rµ k̂µ.

This allows us to extend v̂µ and ŵµ to meromorphic functions in the
entire complex plane, called again v̂µ and ŵµ. Since (by Proposition 4.1)
the restriction of v̂µ to every interval I(δ1 + iα) is square integrable, we
conclude that v̂µ does not have poles on Reµ = δ1. Similarly, ŵµ does
not have poles on Reµ = δ2.

The function u = v+w with v ∈ L2
1,δ1

(X̃, S+) and w ∈ L2
1,δ2

(X̃, S+)

can now be recovered using the inverse Fourier–Laplace transform (see
(9)) :

u(x+ n) =
1

2πi

∫

I(δ2+iα)
e−µ(f(x)+n)Rµ k̂µ(x) dµ

−
1

2πi

∫

I(δ1+iα)
e−µ(f(x)+n)Rµ k̂µ(x) dµ.

Let α be any real number such that Rµ k̂µ(x) does not have poles on the
horizontal lines Imµ = α and (consequently) Imµ = α + 2π, and inte-

grate e−µ(f(x)+n)Rµ k̂µ(x) over the positively oriented contour Γ shown
in Figure 2.

α

α+ 2π

0 δ1 δ2

I(δ1 + iα) I(δ2 + iα)

J(α)

J(α+ 2π)

Figure 2. Contour Γ

Lemma 6.2. The contributions to the above contour integral from the
sides J(α) and J(α+ 2π) of Γ cancel each other.

Proof. Let µ ∈ J(α) then µ + 2πi ∈ J(α + 2π) and D+
µ+2πi(X, g, β) =

D+(X, g, β)−(µ+2πi)f∗(dθ) = e2πif(x)(D+(X, g, β)−µf∗(dθ))e−2πif(x).
Therefore,

Rµ+2πi = e2πif(x)Rµ e
−2πif(x).
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Together with the fact that k̂µ+2πi(x) = e2πif(x) k̂µ (see (8)) this implies
that

e−(µ+2πi)(f(x)+n)Rµ+2πi k̂µ+2πi(x) = e−µ(f(x)+n)Rµ k̂µ(x),

and the statement follows. �

A straightforward application of the Cauchy integral formula then
leads us to the formula

u(x+ n) =
1

2πi

∮

Γ
e−µ(f(x)+n)Rµ k̂µ(x) dµ

=
∑

j

Resµj

(
e−µ(f(x)+n)Rµ k̂µ(x)

)
,

where µj are the poles of Rµ inside the contour Γ. This formula describes
the kernel of the operator (16). The residues will be explicitly calculated
in the next section; note however that if δ1 ≤ δ2 then both functions v̂µ
and ŵµ are holomorphic inside Γ hence the kernel of the operator (16)
vanishes.

Next, the cokernel of D+(X̃, g, β) in the L2
δ1,δ2

norm on X̃ is iso-

morphic to the kernel of D−(X̃, g, β) in the L2
−δ1,−δ2

norm, and hence
can be calculated in terms of the residues as above. Again, this cokernel
vanishes whenever −δ1 ≤ −δ2, that is, δ2 ≤ δ1. Therefore, depending on
which of the weights δ1 or δ2 is larger, either the kernel or the cokernel
of the operator (16) vanishes. We will assume without loss of generality

that δ2 ≤ δ1, so that indδ1,δ2 D
+(X̃, g, β) is equal to the dimension of

the kernel of D+(X̃, g, β) described by the above residue formula.

6.3. Calculating the residues. Let µj be a pole of Rµ, and write the

Laurent series of Rµ k̂µ(x) near µj in the form

Rµ k̂µ(x) =

∞∑

ℓ=−m

bℓ(x) (µ − µj)
ℓ,

for some spinors bℓ(x). Apply the operator Dµ = D+
µ (X, g, β) to both

sides of this equality to obtain

k̂µ(x) =
∑

ℓ

Dµbℓ(x) (µ − µj)
ℓ

=
∑

ℓ

Dµj
bℓ(x) (µ − µj)

ℓ −
∑

ℓ

f∗(dθ) bℓ(x) (µ − µj)
ℓ+1.
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The fact that k̂µ is an entire function then implies that the coefficients
bℓ(x) solve the system

(17)





Dµj
b−1 = f∗(dθ) b−2,

· · ·

Dµj
b−m+1 = f∗(dθ) b−m,

Dµj
b−m = 0.

The spinors b−1, . . . , b−m determine the residues as follows. Write

e−µ(f(x)+n)Rµ k̂µ(x) = e−µj(f(x)+n) e−(µ−µj )(f(x)+n)Rµ k̂µ(x)

= e−µj(f(x)+n)
∞∑

k=0

(−1)k

k !
(f(x)+n)k (µ−µj)

k
∞∑

ℓ=−m

bℓ(x) (µ−µj)
ℓ,

so that the residue of e−µ(f(x)+n) Rµ k̂µ(x) at µj equals

e−µj(f(x)+n)
m∑

p=1

(−1)p−1 (f(x) + n)p−1 b−p(x)/(p − 1)!

Keeping in mind that f̃(x)+n = f̃(x+n) for all x ∈W0 and all integers
n, we can re-write the latter formula as

(18) e−µj f̃(x)
m∑

p=1

(−1)p−1 f̃(x)p−1 b−p(x)/(p − 1)!

Denote by d(µj) the number of linearly independent solutions of the

equation D+(X̃, g, β)(u) = 0 of the form (18). Equivalently, d(µj) is
the dimension of the vector space of solutions of system (17). Note that
kerDµj

= 0 if and only if d(µj) = 0.

Remark 6.3. Expand the meromorphic function Rµ near its pole µj
into Laurent series,

Rµ =
∞∑

ℓ=−m

Aℓ (µ − µj)
ℓ.

The equation DµRµ = I then implies that the operators Aℓ solve the
system 




Dµj
A−1 = f∗(dθ)A−2,

· · ·

Dµj
A−m+1 = f∗(dθ)A−m,

Dµj
A−m = 0
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similar to (17). In particular, if 0 6= b ∈ imA−1 so that b = A−1(a) then
setting b−j = A−j(a) gives a solution of the system (17), with b−1 = b.
Since A−1 is in fact the operator Pµj

defined in (14), we readily conclude
that

(19) rankPµj
≤ d(µj).

6.4. Change of index formula. The proof of Lemma 6.2 tells us that
the operators D+

µ+2πi (X, g, β) and D
+
µ (X, g, β) are isomorphic. We will

use this fact to write

D+
z (X, g, β) = D+(X, g, β) − ln z · f∗(dθ)

for D+
µ (X, g, β) (compare with (5)) and also d(z) for d(µ) and Pz for

Pµ if z = eµ. For any δ ≤ δ′ that make the operator (15) Fredholm, we
have the following change of index formula :

(20) indδD
+(Z+, g, β) − indδ′ D

+(Z+, g, β) =
∑

eδ<|z|<eδ′

d(z).

7. The spectral flow formula

In this section, we will describe how the index of the operator (7)
changes along a special path (gI , βI). The argument is strongly in-
tertwined with the discussion of parameterized Seiberg–Witten moduli
spaces MI in Section 2. The change of index formula (see Theorem 7.3),
which we refer to as the spectral flow formula, is much more precise than
the formula (20) of the previous section.

7.1. The reducibles. We begin by reviewing the transversality of the

intersection M0
I = M̃I ∩ ∂ZI for special paths (gI , βI). Understanding

this transversality in very concrete terms will be crucial for our discus-
sion.

Let (gI , βI) be a special path as in Theorem 2.5 that makes MI

regular and, in particular, M0
I at most finite. Suppose τ ∈ I is such

that M0(X, gτ , βτ ) is not empty. After a change of coordinates on I,
we may assume that τ = 0 and that, for all t sufficiently close to zero,
gt is constant. We will use the notations g0 = g and β0 = β.

Let [0, A, 0, ϕ] be a point in M0(X, g, β) ⊂ M0
I = (∂χI)

−1(d+βI).
The fact that ∂χI is transversal to the section d+βI means that the
linearization of the map ∂χI − d+βI : ∂ZI → Ω2

+(X, iR) at [0, A, 0, ϕ] is
a surjective linear operator. This operator will be called D. The kernel
of D, which is necessarily zero dimensional, is then the tangent space to
M0

I at [0, A, 0, ϕ].
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Using special paths allows us to avoid differentiating the metric, which
provides for a particularly simple formula for D. More precisely, the
operator D in question is the operator

D : R× Ω1(X; iR) × Γ(S+)⊥ −→ H0(X, iR)⊥ × Ω2
+(X, iR) × Γ(S−)

given by

D(v, b, ψ) = (−d∗b, d+b− v d+β̇, D+
A(X, g) (ψ) + b · ϕ),

compare with [23, Lemma 27.1.1]. Here, Γ(S+)⊥ consists of all spinors
ψ such that < ϕ,ψ >L2 = 0, and H0(X; iR)⊥ ⊂ Ω0(X, iR) consists of
all functions h : X → iR perpendicular to the subspace of constant
functions H0(X; iR) = iR. The notation β̇ means the derivative of βt
with respect to t evaluated at t = 0.

Let us change variables (v, b, ψ) to (v, a, ψ) with a = b − vβ̇. The
above operator then takes the form

D(v, a, ψ) = (−d∗a, d+a, D+
A(X, g) (ψ) + a · ϕ+ vβ̇ · ϕ)

(remember that d∗βt = 0 for all t, hence d∗β̇ = 0). In plain terms, the
vanishing of kerD means that the following system of equations on v,
a, and ψ, has a unique solution (v, a, ψ) = (0, 0, 0):

(21)





d∗a = 0,

d+a = 0,

D+
A(X, g) (ψ) + a · ϕ+ vβ̇ · ϕ = 0,

< ϕ, ψ >L2 = 0.

7.2. Harmonic functions. Before we go on to deduce our spectral flow
formula, we need to fix the function f : X → R that was built into the
definition of indD+(Z+, g, β) but has remained pretty much arbitrary
until now. We will choose f to be harmonic. The following existence
and uniqueness result for harmonic functions can be found in Eells and
Lemaire [13, Section 7].

Lemma 7.1. For any metric g on X, there exists a function f : X → S1

that is harmonic with respect to g and has the property that f∗(dθ)
represents the generator 1 ∈ Z = H1(X;Z). Moreover, such an f is
unique up to translation of S1.
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7.3. Change of index as spectral flow. Let (g0, β0) and (g1, β1) be
two regular pairs of metrics and perturbations connected by a special
path (gI , βI) as in Theorem 2.5 so that MI is regular and gI is constant
near each t ∈ I where M0(X, gt, βt) is non-empty. Choose a smooth
path of functions ft : X → S1 harmonic with respect to gt. Denote by
dt(z) the dimension of the space of solutions of system (17) correspond-
ing to the choice of metric gt and perturbation βt.

Proposition 7.2. The set of pairs (t, z) with kerD+
z (X, gt, βt) 6= 0 and

|z| = 1 is in bijective correspondence with the points in M0
I . Moreover,

for any (t, z) in this set, dt(z) = rankPz = 1.

Proof. Let τ ∈ I be such that M0(X, gτ , βτ ) ⊂ M0
I is not empty. After

changing coordinates, we will assume as in Section 7.1 that τ = 0 and
write g0 = g, ft = f , dt(z) = d(z), and β0 = β. A quadruple [0, A, 0, ϕ]
belongs to M0(X, g, β) if and only if F+

A = d+β, D+
A(X, g) (ϕ) = 0, and

‖ϕ‖L2 = 1. Up to gauge equivalence, A = β − ln z · f∗(dθ) for some
z ∈ C with |z| = 1. Therefore, D+

z (X, g, β) = D+
A(X, g), and we have

the claimed bijective correspondence.
We know from Proposition 2.6 that dimC kerD+

z (X, g, β) = 1, so that
d(z) ≥ 1. Suppose that d(z) > 1. Then the last two equations of the
system (17),

{
D+

z (X, g, β) (b−m+1) = f∗(dθ) · b−m

D+
z (X, g, β) (b−m) = 0

have a solution with b−m+1 6= 0 and b−m 6= 0. Without loss of generality,
we may assume that ‖b−m‖L2 = 1 and < b−m, b−m+1 >L2 = 0. But then
the triple (v, a, ψ) = (0,−if∗(dθ), ib−m+1) is a non-zero solution of the
system (21) with ϕ = b−m and A = β − ln z · f∗(dθ), a contradiction.
That rankPz = 1 now follows from (19). �

Let D+
z (X, gt, βt) be a family of perturbed Dirac operators as above

and consider the subset

SI = { (t, z) ∈ [0, 1] × C∗ | kerD+
z (X, gt, βt) 6= 0 }

of [0, 1]×C∗. Its projection onto the second coordinate is in essence the
parameterized spectral set ΣI defined in (13). According to Theorem 4.8
and Proposition 7.2, the set SI is just a finite family of smooth curves
near the cylinder C = { (t, z) ∈ [0, 1] × C∗ | |z| = 1 }. They will be
referred to as the spectral curves. These curves intersect the cylinder C
in finitely many points (t, z) with multiplicity one. We will show later
in Lemma 8.4 that these intersections are in fact transversal.
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Figure 3. Spectral curves

The spectral flow SF(D+
z (X, gI , βI)) along a special path (gI , βI) is

defined by counting the intersection points SI ∩ C with sign −1 if the
spectral curve is entering the cylinder C, and +1 if it is leaving.

Theorem 7.3. Let β0, β1 ∈ P be such that the pairs (g0, β0) and (g1, β1)
are regular. Then the operators

D+(Z+, g0, β0), D
+(Z+, g1, β1) : L

2
1(Z+, S

+) → L2(Z+, S
−)

are Fredholm on any periodic end manifold Z+ whose end is modeled on
X̃, and their indices differ by SF(D+

z (X, gI , βI)) for any special path of
metrics and perturbations.

Proof. Since M0(X, g0, β0) and M0(X, g1, β1) are both empty, the fam-
ilies D+

z (X, g0, β0) and D+
z (X, g1, β1) have zero kernels on the unit

circle |z| = 1 by Proposition 7.2. The operators D+(Z+, g0, β0) and
D+(Z+, g1, β1) are then Fredholm by Proposition 5.1.

Suppose that τ ∈ (0, 1) is such that not all operators D+
z (X, gτ , βτ )

with |z| = 1 have zero kernel. After changing coordinates, we will
assume that τ = 0. Let zj (j = 1, . . . ,m) be all the points in the
complex plane such that |zj | = 1 and d0(zj) = 1.

Choose ε0 > 0 so that the portions of all the spectral curves through
(0, zj), j = 1, . . . ,m, cut out by the condition 0 < |t| ≤ ε0, do not inter-
sect the cylinder C and have the property that dt(z) ≤ 1. By continuity
of spectral curves, for any small δ > 0, one can find ε > 0 such that ε <
ε0 and the intersection of SI with the cylinder { (t, z) | |t| ≤ ε, |z| = eδ }
is empty. Then we have well defined indices indδD

+(Z+, gt, βt) for all
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t ∈ [−ε, ε] and, by continuity of the index,

indδD
+(Z+, g−ε, β−ε) = indδD

+(Z+, gε, βε).

On the other hand, equation (20) provides us with the formulas

(ind− indδ)(D
+(Z+, g−ε, β−ε)) =

∑

1<|z|<eδ

d−ε(z)

and
(ind− indδ)(D

+(Z+, gε, βε)) =
∑

1<|z|<eδ

dε(z)

where d±ε(z) is zero, except at finitely many points where it is one.
Combining the three formulas above, we obtain

indD+(Z+, gε, βε)− indD+(Z+, g−ε, β−ε)

=
∑

1<|z|<eδ

dε(z)−
∑

1<|z|<eδ

d−ε(z).

One can further observe that, if d−ε(z) = 1 then (−ε, z) belongs to the
same component of SI as (0, zj) for some j; the latter contributes −1 to
the spectral flow. Similarly, if dε(z) = 1 then (ε, z) belongs to the same
component of SI at (0, zk) for some k; the latter contributes +1 to the
spectral flow. �

8. The invariant

In this section, we will define the invariant λ SW (X) and prove the
first statement of Theorem A regarding it.

8.1. The invariant. Let g be an arbitrary metric on X and choose a
regular pair (g, β) of metric and perturbation. Define

λ SW (X) = #M(X, g, β) − w (X, g, β).

Theorem 8.1. λSW (X) is independent of the choice of regular pair
(g, β).

Proof. Given two regular pairs, (g0, β0) and (g1, β1), choose a special
path (gI , βI) as in Theorem 2.5 so that the parameterized moduli space
MI is regular and the metric gt is constant near every value of t ∈ I
where M0(X, gt, βt) is non-empty. According to Theorem 2.4,

#M(X, g1, β1)−#M(X, g0, β0) = #M0
I ,

where #M0
I stands for the signed count of points in M0

I . On the other
hand, Theorem 7.3 tells us that

w (X, g1, β1)− w (X, g0, β0) = SF(D+
z (X, gI , βI)),
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a signed count of points on SI ∩ C. According to Proposition 7.2, the
points in M0

I and in SI ∩ C are in a bijective correspondence. That
the corresponding points in M0

I and SI ∩ C are counted with the same
sign is proved in the following section. �

8.2. Comparing signs. We continue with the calculation that we star-
ted in Section 7.1. To figure out the orientation of [0, A, 0, ϕ] ∈ M0

I ,
consider the path of Fredholm operators

Du(v, a, ψ) = (−d∗a, d+a, D+
A(X, g) (ψ) + ua · ϕ+ uvβ̇ · ϕ)

parameterized by u ∈ [0, 1]. It connects the operator D0 = (−d∗ ⊕ d+)⊕
D+

A(X, g) to our operator D = D1. We will compute the orientation
of [0, A, 0, ϕ] by calculating the orientation transport along Du using
the formula (1.5.9) from [37]. That formula expresses the orientation
transport as the product

(22) sign det(R0) · sign det(R1) ·
∏

u∈[0,1)

(−1)dim kerDu ,

where Ru : kerDu → cokerDu, u = 0, 1, are resonance operators defined
as the derivative (d/du)(Du−D0) evaluated at u = 0, 1, followed by the
L2 orthogonal projection π onto cokerDu.

First we observe that, for any u 6= 0, the operator Du has zero kernel,
because any non-zero solution (v, a, ψ) of the system

(23)





d∗a = 0,

d+a = 0,

D+
A(X, g) (ψ) + ua · ϕ+ uvβ̇ · ϕ = 0,

< ϕ, ψ >L2 = 0,

would give a non-zero solution (v, a, ψ/u) of system (21). Since kerD0

is even dimensional, the orientation transport is simply the sign of the
determinant of the resonance operator R0 : kerD0 → cokerD0. Of
course, both kerD0 and cokerD0 need to be oriented.

A straightforward calculation shows that kerD0 = R ⊕H1(X; iR) ∼=
R2 and cokerD0 = cokerD+

A(X, g) = C. They are canonically oriented,
the former by the choice of homology orientation and the latter by the
complex structure on cokerD+

A(X, g).
Fix an isomorphism R2 = kerD0 sending (v, c) ∈ R2 to (v, icf∗(dθ), 0)

∈ kerD0 (remember that f : X → R was chosen to be harmonic). Since

(Du − D0)(v, a, ψ) = (0, 0, ua · ϕ + uvβ̇ · ϕ), we conclude that the
resonance operator R0 : R

2 → cokerD+
A can be written as

(24) R0(v, c) = π (icf∗(dθ) · ϕ+ vβ̇ · ϕ).

30



Lemma 8.2. π(if∗(dθ) · ϕ) 6= 0.

Proof. Suppose that, on the contrary, π(if∗(dθ) · ϕ) = 0. Then there
is ψ such that if∗(dθ) · ϕ = D+

A(X, g) (ψ). Since D+
A(X, g) (ϕ) = 0, we

may assume without loss of generality that < ϕ,ψ >L2 = 0. But then
(v, a, ψ) = (0,−if∗(dθ), ψ) is a non-zero solution of the system (21), a
contradiction. �

Corollary 8.3. The spinors π(f∗(dθ)·ϕ) and π(if∗(dθ)·ϕ) = iπ(f∗(dθ)·
ϕ) form a positively oriented basis in cokerD+

A(X, g) = C.

Let us next study π(β̇ ·ϕ) ∈ cokerD+
A(X, g). Up to gauge equivalence,

A = β − ln z · f∗(dθ) for some z ∈ C with |z| = 1 so that D+
A(X, g) =

D+
z (X, g, β), and the unit spinor ϕ spans kerD+

z (X, g, β) = C. Let
(t, zt) be the spectral curve through (0, z); it is a smooth curve if t stays
sufficiently close to 0. Write ln zt = at + ict so that ln z = a0 + ic0 = ic,
and consider a path of unit spinors ϕt such that ϕ0 = ϕ and

ϕt ∈ ker(D+(X, g) − (at + ict) f
∗(dθ) + βt).

Differentiate the equation

(D+(X, g) − (at + ict) f
∗(dθ) + βt)(ϕt) = 0

with respect to t at t = 0. Since Ḋ+(X, g) = 0, we obtain

D+(X, g)(ϕ̇) + (−(ȧ+ iċ)f∗(dθ) · ϕ+ β̇ · ϕ) + (−icf∗(dθ) + β) · ϕ̇ = 0,

or, equivalently,

(25) D+
A(X, g)(ϕ̇) = (ȧ+ iċ)f∗(dθ) · ϕ− β̇ · ϕ.

Projecting onto cokerD+
A(X, g) (along the image of D+

A(X, g)), we ob-
tain

π(β̇ · ϕ) = π((ȧ+ iċ)f∗(dθ) · ϕ)

= ȧ π(f∗(dθ) · ϕ)) + ċ π(if∗(dθ) · ϕ).

Therefore, with respect to the basis of cokerD+
A(X, g) given by Corol-

lary 8.3, the resonance operator R0 has the matrix

R0 =

(
ȧ 0
ċ 1

)
.

Lemma 8.4. The operator R0 is non-singular, that is, detR0 = ȧ 6= 0.

Proof. Suppose on the contrary that ȧ = 0. Let ψ = ϕ̇+αϕ and choose
α ∈ C so that < ϕ,ψ >L2 = 0. Then (25) implies that (v, a, ψ) =
(1,−i ċf∗(dθ), ψ) is a non-zero solution of the system (21), a contradic-
tion. �
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A straightforward application of the orientation transport formula
(22) gives us the following result.

Corollary 8.5. The point [0, A, 0, ϕ] ∈ M0(X, g, β) is oriented by
sign (ȧ).

This concludes the proof of Theorem 8.1, because sign(ȧ) = ±1 is
precisely the contribution of the point (0, z) ∈ SI ∩ C corresponding to
[0, A, 0, ϕ] ∈ M0

I to the spectral flow.

9. Relation with the Rohlin invariant

Let X be an oriented spin smooth homology S1 × S3 with a fixed
homology orientation, that is, a generator 1 ∈ H1(X;Z). Choose a
connected 3-manifold Y ⊂ X dual to this generator. Note that Y is
canonically oriented, and inherits a spin structure from X. The Rohlin
invariant of X is defined as ρ(X) = sign (Z)/8 (mod 2), where Z is any
smooth compact spin manifold with spin boundary ∂Z = Y ; see [42, 43,
48]. We will show that

λ SW (X) = #M(X, g, β) − indCD
+(Z+, g, β) − sign (Z)/8

reduces mod 2 to the Rohlin invariant by arguing that first, #M(X, g, β)
is even because M(X, g, β) has quaternionic structure, and second, that
indCD

+(Z+, g, β) is even because D+(Z+, g, β) is quaternionic linear.
Neither is actually true unless we take special care of choosing proper
metrics and perturbations, as described below.

9.1. Generic metrics. Let Z+ = Z ∪ X̃+ be an end-periodic mani-
fold whose end is modeled on the infinite cyclic cover of X. For any
choice of metric g on X, the Dirac operator D+(Z+, g) : L

2
1 (Z+, S

+) →
L2 (Z+, S

−) is quaternionic linear, hence its index indCD
+(Z+, g) is

even – assuming of course that D+(Z+, g) is Fredholm. So far we know
two ways of ensuring Fredholmness. We can use Corollary 5.2 to con-
clude that D+(Z+, g) : L

2
1,δ(Z+, S

+) → L2
δ(Z+, S

−) is Fredholm for all
but a discrete set of δ ∈ R, or we can combine Propositions 2.2 and 7.2
to conclude that D+(X, g, β) : L2

1 (Z+, S
+) → L2 (Z+, S

−) is Fredholm
for generic β ∈ P. However, introducing either a weight δ 6= 0 or a per-
turbation β 6= 0 ruins the quaternionic linearity of the Dirac operator.
The paper [44] of the second and third authors provides a better way
of achieving Fredholmness by perturbing the metric alone and hence
preserving the quaternionic linearity.

Theorem 9.1. The operator D+(Z+, g) : L2
1 (Z+, S

+) → L2 (Z+, S
−)

is Fredholm for a generic choice of metric g on X.
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Note that a choice of metric g as in the above theorem only guarantees
(via Proposition 7.2) that M(X, g, 0) has no reducibles but not that it
is regular. A further perturbation β ∈ P may be needed to ensure its
regularity. If that perturbation is small enough, it will not create any
reducibles in M(X, g, β). Moreover, according to Theorem 7.3, we will
have

indCD
+(Z+, g, β) = indCD

+(Z+, g),

meaning that the index indCD
+(Z+, g, β) will be even despite the fact

that D+(Z+, g, β) may no longer be quaternionic linear.

Corollary 9.2. The index indCD
+(Z+, g, β) is even for a generic met-

ric g and a generic sufficiently small perturbation β ∈ P.

9.2. J–action. The quaternionic structures on S± lead to a natural
Z/4–action on the triples (A, s, ϕ) given by J(A, s, ϕ) = (−A, s, jϕ). It
is free because of the condition ‖ϕ‖L2 = 1, and it descends to a free

involution J : Z̃ → Z̃. The following result is straightforward, once we
observe that τ(jϕ) = −τ(ϕ) in (1).

Lemma 9.3. The map χ : Z̃ → Ω2
+(X, iR) is equivariant with respect

to J in that the following diagram commutes

Z̃
χ

−−−−→ Ω2
+(X, iR)

J

y
y−1

Z̃
χ

−−−−→ Ω2
+(X, iR)

In particular, we see that J does not act on M(X, g, β) unless β = 0.
Therefore, if we want to show that #M(X, g, β) is even for a generic
metric, we will need more elaborate perturbations. In what follows, we
adopt the approach of [32].

Let us view χ as a section of the trivial bundle E = Z̃ ×Ω2
+(X, iR) →

Z̃ given by χ ([A, s, ϕ]) = ([A, s, ϕ], F+
A − s2 τ(ϕ)). It is equivariant,

meaning that the following diagram commutes

Z̃
χ

−−−−→ E

J

y
yσ

Z̃
χ

−−−−→ E

Here, σ acts as J on the base Z̃ and as −1 on each of the fibers of E .
Taking quotient by the free action of J and σ, we obtain a section

χ′ : Z̃ ′ → E ′
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of the bundle E ′ = Z̃ ×σΩ
2
+ (X, iR) over the Hilbert manifold Z̃ ′ = Z̃/J .

Adding a small generic section ζ ′ : Z̃ ′ → E ′ makes χ′ + ζ ′ transversal

to the zero section of E ′, and also makes its lift χ + ζ : Z̃ → E an
equivariant section transversal to the zero section of E . In fact, we can

choose ζ = d+γ for a map γ : Z̃ → P which is equivariant in that
γ([−A, s, jϕ]) = −γ([A, s, ϕ]). The perturbations β ∈ P that we used

before can then be viewed as constant maps β : Z̃ → P. The perturbed
Seiberg–Witten moduli space

M(X, g, γ) = (χ + d+γ)−1(0)

is a compact regular manifold of dimension zero acted upon freely by
the involution J , cf. [32]. In particular, M(X, g, γ) consists of an even
number of points.

Proposition 9.4. For a generic metric g and a sufficiently small gene-
ric perturbations β and γ as above, the moduli spaces M(X, g, β) and
M(X, g, γ) are in bijective correspondence. In particular, the number
#M(X, g, β) is even.

Proof. In the Hilbert space of all perturbations Z̃ → P, the zero pertur-
bation corresponds to the moduli spaceM(X, g, 0) with emptyM0(X, g, 0)
by our choice of generic metric g. By continuity, there is a small ball
in this space centered at 0 such that all the perturbations η in it have
the property that M0(X, g, η) is empty. Choose β and γ sufficiently
small so that they belong to this ball, and connect β to γ by the path
ηt = (1 − t)β + tγ, 0 ≤ t ≤ 1. Along this path, all M(X, g, ηt) have
empty M0(X, g, ηt) but are not necessarily regular, except at the end-
points. Perturb this path a little rel its endpoints into η′t so that η′t
stays inside the ball, while keeping all M0(X, g, η′t) empty and making
M(X, g, η′t) regular. The parameterized moduli space

⋃

t∈[0,1]

{t} ×M(X, g, η′t)

provides an oriented cobordism between M(X, g, β) and M(X, g, γ),
and the result follows. �

10. Negative-definite manifolds with b1 = 1

The definition of the invariant λ SW (X) extends to a more general
topological setup, encountered [39, 52] in the study of non-Kähler com-
plex surfaces, particularly those of type VII0. We will present two sets
of hypotheses that yield a well-defined invariant; unfortunately, both are
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stronger than the minimal hypothesis that H1(X) = Z and b2+(X) = 0
one would hope for.

In the first situation we assume that X is a smooth oriented closed
4-manifold and that the following conditions hold:

H1(X;Z) = Z, b2+(X) = 0, b2−(X) = n, and

H3(X) is generated by an integral homology sphere Y ⊂ X.
(26)

In the second situation we assume that

(27) H1(X;Z) = Z, b2+(X) = 0, and b2−(X) = 1

but no longer make any special hypothesis about the topology of a 3-
manifold Y generating H3(X).

By Donaldson’s theorem, the intersection form of X is diagonalizable
over the integers. Let sX be a Spinc structure with c1(sX) dual to the
sum of the vectors in a diagonalizing basis, so that

(28) c1(sX)2 = sign(X) = −n.

Note that H2(X;Z) is torsion-free, hence specifying c1(sX) actually
determines sX . Any two bases diagonalizing H2(X;Z) differ by permu-
tation and change of signs of the basis elements, so there are in principle
2n−1 choices of spinc structure to consider when defining our invariant.
(The ‘charge conjugation’ of the Seiberg-Witten equations [31, Section
6.8] implies that the invariant is preserved when one reverses all of the
signs of the basis elements.) If X is an n-fold blowup of a homology
S1 × S3, then these all yield the same invariant up to sign, but we do
not know if this holds in general.

For any choice of spinc structure sX as above and any choice of metric
g on X, the index of the spinc Dirac operator D+(X, sX , g) is given by

(
c1(sX)2 − sign(X)

)
/8 = 0.

This implies that the Seiberg–Witten moduli space corresponding to
sX has formal dimension 0. An analogue of Proposition 2.2 then shows
that, for a generic perturbation β ∈ P, the perturbed Seiberg–Witten
moduli space M(X, sX , g, β) is a compact zero-dimensional manifold
with no reducibles. Choose a homology orientation on X, that is, a
generator 1 ∈ H1(X;Z), then M(X, sX , g, β) is canonically oriented,
and we denote by #M(X, sX , g, β) the signed count of its points.

As before, this count can change as the metric and perturbation
vary, so we need to define a suitable index-theoretic correction term
w(X, sX , g, β). To do this, choose a 3-manifold Y ⊂ X representing 1 ∈
H3(X;Z), and let sY be the restriction of sX to Y . If b2−(X) > 1, then
we assume as in (26) that Y is an integral homology sphere. Also choose
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a smooth oriented compact spinc manifold Z with ∂(Z, sZ ) = (Y, sY ).
Note that a simply-connected Z with ∂Z = Y will have a spinc structure
extending sY , so there are many choices for Z. As in Section 3.1, form
the end-periodic spinc manifold Z+ = Z ∪ X̃+ and extend a regular
pair (g, β) to an end-periodic pair (g, β) on Z+. Use the spin

c structure
sZ to lift sX to an end-periodic spinc structure on Z+, called sZ+

. As

in Theorem 3.1, the L2–closure of the operator D+(Z+, sZ+
, g) + β will

be Fredholm. Define the correction term to be

w (X, sX , g, β) = indC(D
+(Z+, sZ+

, g) + β) +
1

8

(
sign(Z)− c1(sZ)

2
)
.

The following proposition is an analogue of Proposition 3.2.

Proposition 10.1. Given either (26) or (27), the correction term w (X, sX , g, β)
is independent of the choice of Y ⊂ X and Z, and of the way g, β, and
the spinc structure sX are extended over Z+.

Given Proposition 10.1, the argument that proves Theorem A can be
used essentially word for word to prove the following result.

Theorem 10.2. Let X be a smooth oriented homology oriented 4-
manifold satisfying conditions (26) or (27), and sX a spinc structure
satisfying (28). Then λ SW (X, sX ) = #M(X, sX , g, β)−w(X, sX , g, β)
is independent of the choice of metric g and generic perturbation β.

Proof of Proposition 10.1 assuming (26). Given two choices, Z and Z ′

with ∂Z = ∂Z ′ = Y , we use the excision principle and the index theorem
to obtain

indCD
+(Z ′

+, sZ′
+
,g, β) − indCD

+(Z+, sZ+
, g, β)

= indCD
+(−Z ∪ Z ′, sZ ∪ sZ′)

=
1

8

(
c1(sZ ∪ sZ′)2 − sign(−Z ∪ Z ′)

)

=
1

8

(
sign(Z)− c1(sZ)

2
)
−

1

8

(
sign(Z ′)− c1(sZ′)2

)
,

which proves that w(X, sX , g, β) is independent of the choices of Z and
the extensions.

Let Y and Y ′ be two integral homology spheres carrying the generator
of H3(X;Z). Suppose first that Y ′ is disjoint from Y , and write X =
U ∪ U ′ with −Y ∪ Y ′ = ∂U . Let sU and sU ′ denote the restriction
of sX to U and U ′. To use the excision principle as in the proof of
Proposition 3.2, we need to show that

(29) c1(sU )
2 = sign(U) and c1(sU ′)2 = sign(U ′).
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We know that H2(X) = H2(U) ⊕ H2(U ′), and that the intersection
form on each summand is diagonalizable. Therefore, −c1(sU )

2 ≥ b2(U)
and −c1(sU ′)2 ≥ b2(U

′). On the other hand, c1(sX)2 = c1(sU )
2 +

c1(sU ′)2, and (29) follows.

If Y and Y ′ are not disjoint, choose lifts of Y and Y ′ to X̃. Translate
Y ′ by a sufficiently high prime power p of the covering translation to
make it disjoint from Y . Then Y and Y ′ cobound a submanifold U of X̃
which embeds into the cyclic p-fold cover X̂ → X. Since p is prime, it
follows from Smith theory (cf. [17]) that b1(X̂) = 1. Both the signature
and Euler characteristic multiply by p when passing to a cyclic p-fold
cover hence χ(X̂) = pn and sign(X̂) = −pn and, in particular, X̂ is neg-
ative definite. The argument above (with H2 replaced by H2/torsion)
now shows that (29) holds. �

Proof of Proposition 10.1 assuming (27). As in the previous proof, we
start with disjoint manifolds Y and Y ′, separating X into U and U ′.
When Y and Y ′ have nontrivial homology, the relation between the
intersection form of X and those of U and U ′ is best understood via
Novikov additivity. Following the proof of [4, Proposition 7.1], define
A ⊂ H2(X;Q) as the image of the composition

H2(U, ∂U ;Q) → H2(X,U ′;Q) → H2(X;Q),

and define A′ ⊂ H2(X;Q) similarly. The subspaces A and A′ are mutual
annihilators for the intersection form on X. Since H2(X;Q) = Q, at
least one of these subspaces must vanish; in particular, A ∩ A′ = 0. It
then follows as in [4] that

H2(X;Q) = im [H2(U, ∂U ;Q) → H2(U ;Q)]

⊕ im [H2(U ′, ∂U ′;Q) → H2(U ′;Q)],

where exactly one of the summands (say the former) is non-zero. The
projections onto the summands are given by restriction, hence c1(sU ) ∈
im [H2(U, ∂U ;Q) → H2(U ;Q)], and similarly for c1(sU ′). The latter of
course vanishes because it lives in the trivial vector space. As for the
former, c1(sU )

2 ∈ Q is well-defined and, as claimed,

c1(sU )
2 = c1(sX)2 = −1 = sign(U).

If Y and Y ′ intersect, then the argument above which allows to sep-
arate them by passing to a covering space will not work, because the
condition b2 = 1 need not hold in the covering space. Instead, we appeal
to the following principle (cf. [24, 41]): There exist a sequence of con-
nected submanifolds Y = Y0, . . . , Yn = Y ′ such that each Yi carries the
generator of H3(X), and Yi+1 is disjoint from Yi. Thus, the invariants
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defined by cutting along each Yi in turn are equal, and the independence
is proved. �

Note that the argument at the end of the second proof would not
work in the situation when b2 > 1, because there is no guarantee that
the Yi would be homology spheres.

11. Examples

In this section, we discuss the invariant λ SW (X) for mapping tori X
of finite order diffeomorphisms τ : Y → Y . We succeed in calculating
λ SW (X) explicitly for Seifert fibered homology spheres Y and a certain
natural τ associated with Y as a link of a singularity.

11.1. Mapping tori. Let Y be a closed oriented 3-manifold and τ :
Y → Y a finite order orientation preserving diffeomorphism such that
the mapping torus X = ([0, 1] × Y ) / (0, x) ∼ (1, τ(x)) is a homology
S1 × S3. Suppose that Y is equipped with a Riemannian metric g such
that τ is an isometry; then the product metric on [0, 1] × Y gives rise
to a natural metric on X which we call again g.

Proposition 11.1. The infinite cyclic cover X̃ of X is isometric to
R× Y .

Proof. The mapping torus X can be written as X = (R × Y ) / (t, x) ∼
(t+ 1, τ(x)), where the map (t, x) → (t+ 1, τ(x)) is an isometry of the
product metric. �

We conclude that a periodic end modeled on the mapping torus of
a finite order isometry is isometric to a product end. In particular,
the Dirac operator D+(Z+, g) is isomorphic over the end to d/dt +D,
where D is the self-adjoint Dirac operator on Y . According to [29],
the operator D is invertible for a generic metric g on Y , and hence the
L2–closure of D+(Z+, g) is Fredholm. Therefore,

w(X, g, 0) = w(S1 × Y, g, 0)

= indCD
+(Z+, g) +

1

8
sign(Z) = −

(
1

2
ηDir(Y ) +

1

8
η Sign(Y )

)

by the Atiyah–Patodi–Singer theorem [5], where ηDir(Y ) and η Sign(Y )
refer to the η-invariants of, respectively, the Dirac operator D and the
odd signature operator on Y .

This takes care of the correction term w(X, g, 0). The other ingredient
in calculating λ SW (X) is the signed count of points in the moduli space
M(X, g, 0). Since X admits a fixed point free action of S1 (which makes
it into a circle bundle over the orbifold Y/τ), we can employ techniques
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of [6] to identify M(X, g, 0), for a generic metric g, with Mτ (Y, g), the
equivariant Seiberg–Witten moduli space on the 3-manifold Y .

Note that using the above approach to computing λSW (X) for map-
ping tori is in general problematic because of the equivariant transver-
sality required from the metric g. However, this approach works in
at least a couple of instances. One is when τ is the identity so that
X = S1 ×Y is the product, and the other is when Y is a Seifert fibered
homology spheres and τ is a certain involution associated with Y as a
link of a singularity. These two classes of examples will be studied in
the rest of this section.

11.2. The product case. Let X = S1 × Y have the product metric.
It follows from Lim [25] that, for a generic metric g on Y , we have

(30) λ SW (S1 × Y ) = −λ(Y ),

where λ(Y ) is the Casson invariant [2]. This supports the conjecture
stated in the introduction because we know that λFO (S1 × Y ) = λ(Y );
see [45].

Remark 11.2. Our orientation convention is that λ(Σ(2, 3, 5)) = −1.
Since the metric g on Σ(2, 3, 5) has positive scalar curvature,M(Σ(2, 3, 5), g)
is empty. On the other hand, if we choose Z to be the plumbed manifold
with the (negative definite) intersection form E8 then sign(Z)/8 = −1
and indD+(Z+, g) = 0 (the latter can be found in [15, Proposition 8]).
This fixes the sign in formula (30).

11.3. Seifert fibered homology spheres. Given pairwise relatively
prime integers a1, . . . , an ≥ 1, consider the Seifert fibered homology
sphere Y = Σ(a1, . . . , an). This is an integral homology sphere which
will be viewed as a link of a Brieskorn–Hamm complete intersection
singularity with real coefficients. It is canonically oriented and admits a
fixed point free circle action. This action makes Y into an orbifold circle
bundle π : Y → F , where F is the 2–sphere with n singular points of
multiplicities a1, . . . , an. The orbifold Euler characteristic of F is given
by the formula

χ(F ) = 2−
∑

(1− 1/ak).

Let iη denote the connection form of the circle bundle and gF an orb-
ifold metric on F with constant curvature. We follow [33] and endow Y
with the metric g = η2 + π∗(gF ) and the connection ∇̊ on TY canoni-
cally induced by the Levi–Civita connection on F . Note that ∇̊ differs
from the standard Levi–Civita connection on Y used in the definition
of the Seiberg–Witten invariants.
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According to [35, Section 2.3], the metric g on Y is generic in that
kerD(Y, g) = 0, and all irreducible solutions are S1–invariant up to
gauge transformation. This implies that the moduli space M̊(Y, g) of
irreducible solutions to the Seiberg–Witten equations on Y with respect
to the metric g and the connection̊ ∇ can be identified via pullback with
two copies of the space of effective orbifold divisors over F with orb-
ifold degree not exceeding −χ(F )/2. More precisely, M̊(Y, g) contains
finitely many components C+(ε) and an equal number of components
C−(ε), both labeled by the vectors ε = (ε1, . . . , εn) such that 0 ≤ εk < ak
and ∑

εk/ak ≤ −χ(F )/2.

The components C±(ε) consist of holomorphic, respectively, anti-holo-
morphic, vortices on F . If n = 3 or n = 4, each of the components
C±(ε) is just a point.

Regarding the Seiberg–Witten moduli space M(Y, g) corresponding
to the metric g and the Levi–Civita connection, Nicolaescu [36, Theorem
3.1] showed that there is a natural bijective correspondence between
M̊(Y, g) and M(Y, g) for all metrics g on Y as above with sufficiently
short circle fibers.

Let τ : Y → Y be induced by the complex conjugation on the link
Y . Then τ is an involution that makes Y into a double branched cover
of S3 with branch set a Montesinos knot. It commutes with the pro-
jection π : Y → F and thus defines an anti-holomorphic involution on
F . In particular, it interchanges the holomorphic and anti-holomorphic
vortices C±(ε) on F so that M̊τ (Y, g) and hence Mτ (Y, g) are empty.
Therefore, for the mapping torus X of τ ,

λ SW (X) =
1

2
ηDir (Y ) +

1

8
η Sign (Y ).

The latter can be calculated explicitly in terms of either integral lattice
points or Dedekind sums; see [36]. On the other hand, λFO (X) is
equal to the equivariant Casson invariant λτ (Y ), also known as the µ̄–
invariant of Neumann and Siebenmann; see for instance [10] or [47].
Our conjecture is then equivalent to showing that

(31)
1

2
ηDir (Y ) +

1

8
η Sign (Y ) = − µ̄(Y )

for all Seifert fibered homology spheres Y = Σ(a1, . . . , an). We suc-
ceeded in checking that (31) is true by a direct calculation with Dedekind
sums; a complete proof can be found in [46].
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Appendix A. Existence of special paths

In this appendix, we verify that any regular path of metrics and
perturbations can be homotoped rel endpoints to a path (gI , βI) so that
near any points t for which M0(X, gt, βt) is non-empty, the metric is
constant. This was stated as Theorem 2.5 in Section 2.3.

Let us writeR for the space of Riemannian metrics on X, with the Ck

topology for some sufficiently large k. As in Section 2.2, form the space

Z̃R ⊂ R× B̃ consisting of quadruples (g,A, s, ϕ) with D+
A(X, g) (ϕ) =

0. The proof of Lemma 27.1.1 in [23] that shows that Z̃ is a Hilbert

submanifold of B̃ for any metric g, goes through with little change to

show that Z̃R is a Hilbert submanifold of R×B̃. The equation s = 0

defines a codimension one submanifold ∂ZR ⊂ Z̃R. The projection

(g,A, s, ϕ) → g induces submersions Z̃R → R and ∂ZR → R.
Let ΩR be the subspace ofR× Ω2(X, iR) comprised of the pairs (g, ω)

such that ω is self-dual with respect to the metric g. Projection onto
the first factor makes it into a Hilbert bundle π : ΩR → R. As such,
it is isomorphic to the parameterized perturbation space PR, which is
defined as the Hilbert bundle over R comprised of the pairs (g, β) ∈
R×Ω1(X, iR) such that d∗β = 0 and β ∈ H1(X, iR)⊥ with respect to
g. The bundle isomorphism sends (g, β) ∈ PR to (g, d+gβ) ∈ ΩR.

The above maps can be included into the commutative diagram

(32)

Z̃R
χR

−−−−→ ΩRy
yπ

R
1

−−−−→ R

where the map χR is given by χR (g,A, s, ϕ) = (g, F
+g

A − s2 τg(ϕ)).
The restriction of χR to ∂ZR will be denoted ∂χR. Note that the
commutative diagram (2) is just the pull back of the diagram (32) via
the map gI : I → R.

It follows from Theorem 2.4 that a generic path γ : I → PR connect-
ing regular values γ0 = (g0, β0) and γ1 = (g1, β1) of χR has the property
that the composite path I → PR → ΩR, which we will also call γ, is
transverse to both ∂χR and χR. We will say that γ is vertical near its
intersection point with im(∂χR) if its metric component is constant in
a neighborhood of that point.

Theorem A.1. Any generic path γ : I → PR as above can be ho-
motoped rel its endpoints to a generic path that is vertical near every
intersection point with im(∂χR).
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This theorem is a re-statement of Theorem 2.5. Its proof will have
two steps; one local, and a second involving some global arguments. The
first step is contained in the following three lemmas, all of which are
concerned with a point z ∈ ∂ZR such that (∂χR)(z) = γ0 = (g,w) ∈
ΩR, after a proper reparametrization of I.

Lemma A.2. Suppose that γ : [−1, 1] → PR is a generic path, and let
z ∈ ∂ZR be such that χR(z) = γ0. Then the differential at z of the map
∂χR : ∂ZR → ΩR is injective.

Proof. In our situation, the map χR has index zero, and its restriction
∂χR has index −1. Because of transversality to γ, the differential at
z of the map ∂χR has image of codimension one, hence it must be
injective. �

By the inverse function theorem, there is a neighborhood U of z in
∂ZR such that the restriction of ∂χR to U is an embedding into an open
ball W ⊂ ΩR. Let us write V = (∂χR)(U).

Lemma A.3. There is a unique unit vector ν ∈ Tw ΩR such that

(1) ν is vertical, that is, ν ∈ ker(Dwπ) with π : ΩR → R,
(2) R · ν ⊕ TwV = Tw ΩR, and
(3) ν = aγ′(0) + Y for some Y ∈ TwV and a > 0.

Proof. Since ∂ZR → R is a submersion, the commutativity of the dia-
gram (32) implies that the differential at w of π : ΩR → R is surjective
when restricted to TwV ⊂ Tw ΩR. Since V has codimension one in ΩR,
the result follows. �

In the proof of Proposition A.5 below, we will need an estimate saying
that the Seiberg–Witten map ∂χR is close to its derivative.

Lemma A.4. There is a constant C such that

(33) ‖ (∂χR)(z1)−Dz (∂χR)(z1 − z) ‖ ≤ C ‖ z1 − z ‖2

for ‖z1− z‖ sufficiently small. In this inequality, the distances are com-

puted in R×B̃ and R×Ω2(X, iR), respectively.

Proof. According to Taylor’s theorem for smooth functions on Banach
spaces (cf. [53, §4.5]), an estimate of the form (33) holds whenever
the second derivative of ∂χR is uniformly bounded in a ball around z.
The map ∂χR is linear in the connection A (and independent of ϕ since
z ∈ ∂ZR), so the only issue is the dependence on the metric g. Trivialize
the bundle ΩR → R using the maps bt as in Remark 2.3, and observe
that ∂χR only depends on g via the Hodge star operator. Simple linear
algebra shows that this dependence is quartic, from which the bound
follows. �

42



A similar estimate, ‖γ(t)−tγ′(0)‖ ≤ Ct2, holds for the path γ. These
three lemmas yield the local statement we need.

Proposition A.5. Suppose that γ : [−1, 1] → ΩR is a generic path in
W whose pre-image in U is a single point z with w = (∂χR)(z) = γ0.
For any sufficiently small δ > 0, there is a generic path γδ such that
γδ ∩ V = γ ∩ V and γδ crosses V vertically at w. In addition, the two
paths are homotopic by a homotopy supported in (−δ, δ).

Proof. By choosing local coordinates in the ball W near w, we can
assume that V ⊂W is a linear ball of codimension one. In particular, V
separatesW into two components, and likewise the intersection V ∩ ∂W
separates ∂W into two components. Since γ is transversal to V at w, it
must cross from one side of V to the other. Choosing W small enough,
we can assume that

(1) γ−1(W ) is a single interval (−δ, δ) for some δ > 0,
(2) a small positive multiple a+ν of the vector ν from Lemma A.3

lies on the same side of V as γ(t) for t ∈ (0, δ),
(3) a small negative multiple a−ν lies on the same side of V as γ(t)

for t ∈ (−δ, 0), and
(4) the multiples a±ν belong to ∂W .

Now we can construct a path γδ as follows. It is equal to γ outside of
(−δ, δ). From −δ to −δ/2, it follows a path in ∂W (avoiding V ∩ ∂W )
from γ(−δ) to a−ν. From −δ/2 to δ/2, it follows the vertical line from
a−ν to a+ν. Finally, from δ/2 to δ, it follows a path in ∂W (avoiding
V ∩ ∂W ) from a+ν to γ(δ). See Figure 4. �

The main issue in deriving Theorem A.1 from the above local re-
sult, which is Proposition A.5, is that a given intersection point w ∈
im(∂χR) ∩ γ may have several pre-images in ∂ZR. There are at most
finitely many such pre-images, which follows from the map χR being
proper, as proved in [23, Theorem 5.2.1].

Denote the points in (∂χR)
−1(w) by zk ∈ ∂ZR, k = 1, . . . , n. Choose

an open ball W centered at w with the property that, for each k, the
point zk has a neighborhood Uk ⊂ ∂ZR such that the restriction of ∂χR

to Uk is an embedding into W . Note that the sheets Vk = (∂χR)(Uk)
meeting at w are all embedded but they might be transverse or tangent
to each other.

Lemma A.6. If the ball W as above is chosen sufficiently small then

(∂χR)
−1(W ) ⊂

⊔

k

Uk.
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Figure 4. Local modification of γ

Proof. Suppose to the contrary that there is no such W . Then there is
a sequence of points ui ∈ ∂ZR away from the Uk with bounded energy
(again, referring to [23, Theorem 5.2.1]) and with (∂χR)(ui) converging
to w. It follows that a subsequence of the ui converges in ∂ZR, and
then of course it must converge to one of the zk. This contradiction
establishes the claim. �

Next, we claim that we may assume that all of the Vk are tangent
at their common intersection point w. Suppose that TwVi 6= TwVj for
some i 6= j. Since both of these subspaces have codimension one (cf.
the proof of Lemma A.2), they must in fact be transverse. It follows
that the intersection Vi ∩ Vj must be a codimension 2 submanifold near
w. A small perturbation of γ will then suffice to avoid all such double
point sets.

Finally, we are in the situation where at any intersection point w, all
of the finitely many Vk that meet W are tangent. It follows that the
vector ν constructed in Lemma A.3 lies on the same side of all of the
Vk, and so (if W is sufficiently small) the curve constructed by the local
deformation in Proposition A.5 meets all sheets vertically. Since the de-
formation takes place in W , no new intersections have been introduced,
and Theorem A.1 is proved.
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