
Quality Assurance in Geographically Distributed Software
Development

by

Gregorio Cruz

B.S., Civil and Environmental Engineering (1998)

Massachusetts Institute of Technology

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Master of Engineering in Civil and Environmental Engineering

at the

Massachusetts Institute of Technology

May 1999

© 1999 Massachusetts Institute of Technology
All rights reserved

A uth or-1 jr, w . 3i....... o....
Departm ent I and Environmental Engineering

i bMay 13, 1999
C ertified by

Fenioksy Pena-Mora
Assistant Pjofessor of Civil and Environmental Engineering

AI I A Thesis Supervisor
A ccepted by...........

V Andrew J. Whittle
Chairman, DepartmeniaLCommittee in Graduate Studies

MA6ACHUEATTS INSTITUTE
OF TECHNOLOGY

IIMAY 1W 8I I

Quality Assurance in Geographically Distributed Software
Development

by

Gregorio Cruz

Submitted to the Department of Civil and Environmental Engineering
on May 13, 1999,

in partial fulfillment of the requirements for the degree of
Master of Engineering in Civil and Environmental Engineering

ABTRACT

This thesis examines quality assurance standards and practices for the development of
software systems in a geographically distributed environment. The knowledge acquired
came from managing the quality process of DiSEL (Distributed Software Engineering
Laboratory), a distributed software project conducted between the Massachusetts Institute
of Technology (MIT) and Centro de Investigacion Cientifica y de Educacion Superior de
Ensenada (CICESE), a university of higher learning in Mexico.

This thesis will also identify the problems that distributed software engineering teams
face when collaborating on a project. It will be shown that as a software project becomes
distributed, the need to verify the quality of the software process increases. A special
focus will also be given to the problems that affected the performance of the Quality
Assurance Engineer (QAE) in such environment. This study found that the team must be
kept informed of all the events surrounding quality assurance and one way to do this is by
creating a repository, such as a web site, to store all quality assurance work. Thus, every
member will have access to the QAE's work throughout the software development
process, potentially increasing the performance of the whole team.

Thesis Supervisor: Feniosky Pena-Mora
Title: Assistant Professor

2

Acknowledgements

First of all, I would like to thank God. Lord, without you, nothing is possible. Thank
you for the strength that you have given me to finish my school career here at MIT. To
my parents, I would never be able to repay you for all the love, support, and guidance that
you have giving me. Dad, you are the best and I thank you for giving me the opportunity
to study in the United States. Madre, tu eres la fuerza que alimenta mi alma y la razon
por la que he bucado superarme para poder darles una vida mejor, te quiero mucho
mama. To my brother Edgar whom I would never finish thanking for taking care or mom
and dad. A mis hermanas, lupita y toia, las quiero mucho. To my girlfriend, I love you.

To my advisor, Fenioksy Pefia-Mora, thank you for all the revisions made to this thesis
and specially for pushing me to stay in school and get my master degree. Thank you to
the CDI team from whom I learned a lot about software engineering and also how to sell
and idea.

Thank you to Carlos Labrada, who became more than a friend. To Ramon Rodriguez,
Ivan Gonzale-Gallo, Antonio (Chamo) Fuentes, Juan Carlos Deniz, Emmanuela Binello,
Barabara Jimenez. Thank you all for you friendship, I would never forget you.

3

Table of Contents

TABLE OF CONTENTS.. 4

LIST OF FIGURES .. 7

LIST OF TABLES ... 7

INTRODUCTION... 9

O V ER V IEW ... 10

SOFTWARE ENGINEERING.. 1 1

Life Cycle Phases... 12

M A N A G EM EN T ... 15

FACTORS AND CRITERIA .. 19

TECHNICAL REVIEWS..22

CONCLUSION ...EL PR 25

THE DISEL PROJECT...27

T HE T EA M EN 28

OBJECTIVE c... 32

ENVIRONMENT .. 33

C om m unications... . 35

PROCESS MODEL .. 36

Application .. 37

CONCLUSION... 37

APPLYING QUALITY ASSURANCE TO DISEL 38

ROLE INTEGRATION .. 39

4

QUALITY ASSURANCE PLAN..40

Management..43

Schedule ... 46

Software Documentation..47

Technical Reviews..50

Peer R eview s ... 50
A u d its .. 5 1
W alkthroughs .. 51
Inspections... . . 56

Example of Technical Reviews Performed in DiSEL...63

Audit of Design Document v2.0 .. 64

W alkthrough on Project M anager's Plan... 65

C ON CLUSIO N .. 67

RECOM M ENDATIONS.. 69

CLASS STRUCTURE FOR DISTRIBUTED SOFTWARE PROJECTS...................................... 9

APPLICATION OF QUALITY ASSURANCE TO DISTRIBUTED PROJECTS............................72

C O N C LU SIO N .. 8 1

C O N CLU SIO N- ---....................... ... 82

BIBLIOGRAPHY ... 85

APPENDIX 1: AUDIT NOTIFICATION...87

APPENDIX 2: PREPARATION LOG..88

APPENDIX 3: WALKTHROUGH ANNOUNCEMENT......................................89

APPENDIX 4: ACTION ITEM LIST..90

APPENDIX 5: INSPECTION NOTIFICATION SHEET 91

5

APPENDIX 6: INSPECTION CHECKLIST ... 92

APPENDIX 7: AUDIT NOTIFICATION TO REVISE DESIGN DOC. V2.0..........93

APPENDIX 8: PREPARATION LOG TO REVISE DESIGN DOC. V2.0 94

APPENDIX 9: WALKTHROUGH ANNOUNCEMENT OF PM PLAN........95

6

List of Figures
FIGURE 1. SOFTWARE ENGINEERING DEVELOPMENT LIFE CYCLE PHASES........................... 13

FIGURE 2. QUALITY ASSURANCE ORGANIZATIONAL DIAGRAM ... 16

FIGURE 3. RELATIVE COST OF ERROR CORRECTION [WALLMULLER, 1994]..................... 17

FIGURE 4. SOFTWARE WITH KNOWN AND UNKNOWN ERRORS AND FAULTS 18

FIGURE 5. PROJECT O RGANIZATION ... 32

FIGURE 6. CLASSROOM ENVIRONMENT ... 35

FIGURE 7. W ATERFALL M ODEL... 36

FIGURE 8. SPIRAL M ODEL ... 36

FIGURE 9. QUALITY ASSURANCE ORGANIZATIONAL DIAGRAM 44

FIGURE 10. AUDIT NOTIFICATION SHEET .. 75

FIGURE 11. WALKTHROUGH ANNOUNCEMENT SHEET...76

FIGURE 12. INSPECTION NOTIFICATION SHEET..77

FIGURE 13. REVIEWER'S PREPARATION LOG ... 78

FIGURE 14. DOCUMENTATION SPECIALIST ACTION ITEM SHEET 79

FIGURE 15. MODERATOR'S CHECKLIST FOR INSPECTIONS .. 80

7

List of Tables
TABLE 1. FACTORS OF SOFTWARE QUALITY...20

TABLE 2. THE IMPACT OF NOT MEASURING OR NOT SPECIFYING SOFTWARE QUALITY
FA C TO R S...20

TABLE 3. CRITERIA OF SOFTWARE QUALITY FACTORS .. 22

TABLE 4. TASKS OF THE QAE DURING THE SOFTWARE DEVELOPMENT PROCESS 42

TABLE 5. INTERACTION BY QAE AND PRIMARY ROLES ... 44

TABLE 6. INTERACTION BY QAE AND SECONDARY ROLES .. 46

TABLE 7. QUALITY ASSURANCE SCHEDULE ... 47

TABLE 8. OUTLINE FOR A NEW DISTRIBUTED COURSE ... 71

8

Chapter One

1 Introduction

This thesis examines quality assurance standards and practices for the

development of software systems in a geographically distributed environment. The

knowledge acquired came from managing the quality processes of the Distributed

Software Engineering Laboratory (DiSEL), a distributed software project conducted

between the Massachusetts Institute of Technology (MIT) and Centro de Investigacion

Cientifica y de Educacion Superior de Ensenada (CICESE), a university of higher

learning in Mexico.

This thesis will also identify the problems that distributed software engineering

teams face when collaborating on a project. It will be shown that as a software project

becomes distributed, the need to verify the quality of the software process increases. A

special focus will be given to the problems that affected the performance of the Quality

Assurance Engineer (QAE) in such environment. This study found that the team must be

kept informed of all the events surrounding quality assurance and one way to do this is by

creating a repository, such as a web site, to store all quality assurance work. Thus, every

member will have access to the QAE's work throughout the software development

process, potentially increasing the performance of the whole team.

9

1.1 Overview

"We live today in a society in which the computer plays an ever increasing role

[and] one of the major elements contributing to the success of the computer is software"

[Wallmuller, 1994]. With the explosion of the Internet, software projects that used to be

local have become distributed. Having distributed teams working over the Internet has

allowed the life cycle for the development of "systems and software to drop, [making] the

evaluation of quality difficult" [Evans, 1986]. Quality is a factor that determines a

software project's success so the implications are significant.

In addition to quality, there are two other factors that contribute to the success of a

project. These two factors are time and cost. Wallmuller, in his book, states findings by

Nenz on the problems regarding the three factors mentioned above [Nenz, 1983 and

Wallmuller, 1994]. The problems are as follow:

Time factors

e Only 5 per cent of all projects are completed on time.
- More than 60 per cent of all projects have at least a 20 per cent time overrun.

Many projects are terminated altogether because of delays.

Cost factors

- Development cost increases exponentially with the complexity of software. The high
degree of integration of modern software systems, complex interfaces between
components, and the demand for adequate user friendliness and reliability
(particularly in interactive systems) also cause higher development costs.

e In many instances, 60 per cent more of the entire software cost of a product in spent
on maintenance.

e Delays can reduce market opportunities for a product and render investment
unprofitable.

10

Product quality factors

* Errors are often found too late, frequently not until the customer tries to put the
system into operation.

e The software product documentation is missing, incomplete or not up to date.
e Because of product faults more than 50 per cent of development time and effort is

spent on error detection and correction
* Quality as a development aim can often not be proved because of lack of quality

planning.

Out of the three factors described above, product quality seems to be sacrificed

more often by project managers because of their pressure to finish a project on time and

within budget. Little attention is given to software or system quality, even though it has

been proven that quality is essential for the advancement in the development of software

products, or for the integration of many systems.

In order to produce quality work within any distributed Software Engineering

project, quality assurance management must be throughout the development of the

software product. A Quality Assurance Engineer (QAE) supervises the project and

makes sure that good quality work throughout. From the Systems Engineering Phase to

the Operation and Maintenance Phase, the QAE is always making sure that the team is

following the standards of software engineering and that they are producing a software

product as stated in the software requirements document.

1.2 Software Engineering

Software engineering has enabled software systems to be developed more easily

by breaking the software development process into stages. At every stage of the software

11

development life cycle, the QAE should be able to apply standards of software

engineering. Because of the high complexity and low quality management on software

engineering projects, software systems were considered hard to make. However, thanks

to the software systems that have motivated software engineers, forced an articulation of

project goals and engineering's responsibilities, as well as helped to smooth the flow of

work, and data, software engineer have been able to integrate large software systems and

make higher quality products [Evans, 1986].

1.2.1 Life Cycle Phases

The software development life cycle is composed of several phases (Systems

Engineering, Software Requirement Analysis, Design, Implementation, Testing, and

Operation and Maintenance), each of which ends with a milestone event and each of

which produces an identifiable combination of documents or software items. These

cycles are the foundation for good software engineering projects. Below, Figure 1 shows

the most commonly used cycles executed in a waterfall model, which is the most

common software process used in software engineering.

12

Figure 1. SOFTWARE ENGINEERING DEVELOPMENT LIFE CYCLE PHASES

Systems Engineering - During this phase, the systems on which the actual software

project is going to be developed are tested to see that it complies with the standards that

are going to be used in the development of the new system. The most important part of

this phase is to check how well the hardware will be working with the software system

already in place. Not to mention how well the new system will be integrated with the old

system.

Software Requirement Analysis - At this stage of the software life cycle, the

Requirements Analysts interview the client to gather the actual requirements that will

serve as the foundation for the project. All of the requirements taken from the client are

put into the software requirements document. At the end of this stage, the software

requirements document is reviewed by the QAE. If the document meets the agreed upon

13

software standards, is written clearly and in an understandable way, then the document is

frozen and used as the basis for the design document.

Software Design - During this cycle, the Designer takes the software requirements

document that was frozen on the previous cycle and starts designing the architecture of

the system that is going to be developed. The Designer serves as the bridge between the

Requirement Analyst and the Programmers. So it is very important that the Designer

creates a good design document that can easily be implemented by the Programmers.

The Designer must also make sure that they are designing what has already been stated in

the requirements document. A good design makes testing of quality and maintenance of

software easier [Wallmuller, 1994]. Thus, it is essential that the QAE verify every phase

during the design cycle through technical reviews such as Audits (See Section 1.5). At

the end of the design cycle, the QAE will conduct a more formal technical review such as

a Walkthrough or Inspection (see Section 1.5). After the document has been review, it is

frozen and used as a baseline for the following cycle.

Implementation - During this cycle, the Programmers transform the already frozen

design document into code and the actual software systems. Based on the quality of the

design document, the programmers will have an easy or difficult implementation. To

verify that good programming is being done, peer reviews (see Section 1.5.1) are

conducted to assure the quality of the code.

14

Testing - This is the stage where the Test Engineers check the system to see that it

complies with what was stated in the requirements phase. Based on the quality of the

design document, the Test Engineers should be able to formulate test cases.

Operation and Maintenance - This is the final stage of the software engineering

development life cycle. At this stage a manual is developed. The manual will serve as a

user's guide for the system interface. The maintenance phase serves as the "introductory

training of the user" [Wallmuller, 1994].

1.3 Management

To manage the quality of Distributed Software Engineering Projects, the Quality

Assurance Engineer (QAE) must develop a Quality Assurance Plan (QAP). The QAP

will serve as the central aid for planning and checking quality assurance. This plan will

contain of the quality measures for a software project, and consequently is the ultimate

quality control reference document of the project.

To aid with the management of quality in distributed Software engineering

projects, the QAE needs to work closely with all the members of the team. In particular,

the QAE must work closely with four roles from the software engineering development

group. These roles can be seen below on Figure 2.

Test Engineer

15

Validation &
Verification Engineer

Figure 2. QUALITY ASSURANCE ORGANIZATIONAL DIAGRAM

The Validation & Verification Engineer, the Documentation Specialist, the Test

Engineer, and the Software Configuration Manager more roles primarily responsible for

assuring that the software development cycles are completed. These four roles are the

personnel who also aid the QAE in making sure that the final product is of the highest

quality. The Validation & Verification Engineer makes sure that the client's

requirements are stated in the requirements document and are followed throughout the

development of the system. The Documentation specialist keeps tracks of all the data

that is produced and he/she makes sure that everything is put into a repository. The Test

Engineers test the code from the programming to the user interface stages. The Software

Configuration Manager keeps. track of all the versions of documents and code. It is

essential that the Configuration Manager makes a plan to show how the code will be

locked and released. This will make sure that the programmers are working on the latest

version of the code.

The remaining engineering involved in the project also interact with the QAE but

not in the same manner as the primary roles. The QAE, with the help of the primary roles,

enforce the project's process. To this end, the QAE schedules several technical reviews

6

16

to verify the work that is produced by the secondary roles. This enables the QAE to track

quality assurance through the project.

As the QAE starts managing the project, he/she must pay close attention to the

early phases of the life cycle. The QAE should try to correct all of the errors found at the

beginning of the project, as they are the expensive as errors found at later stages.

Correcting errors in the later phases can cost 100 times more than at earlier stages of the

development. Figure 3 below shows the cost of fixing errors at the different cycles in a

project [Wallmuller, 1994].

Figure 3. RELATIVE COST OF ERROR CORRECTION [WALLMULLER, 1994]

For distributed teams, the time spent on the early phases of the project is

important and all the errors found should be fixed immediately. It will be expensive in

time and money for the team if they start addressing errors in the subsequent cycles.

Errors that do not get fix at the beginning will multiply and will be added to the errors

17

that are found in the later stages. As stated in Figure 4, the estimated cost to fix an error

in the requirements cycle is relative small but if they are not addressed and fixed, they

have the potential to become more problematic bugs in the system.

Requirements Correct auly
Definition

Requirements Requirements

System Correct Sys. Specifications Errors from
Specifications Specifications Errors Requirement

Design Correct Design Errors from Req,
Design Errors And Specifications

Implementation Correct Program Errors from Requiremenrts,
Implementation Errors Design and Specifications

Testing and | Correct Test Corrected Known Uncorrected
Integration A " "-_- ._ I

Figure 4. SOFTWARE WITH KNOWN AND UNKNOWN ERRORS AND FAULTS

According to Mizumo [Mizumo, 1983] and Wallmuller the creation of errors and

faults is due to an accumulation effect [Wallmuller, 1994]. Errors that are created in the

early stages are not corrected and consequently, they are passed on to the next cycles.

This is another reason why quality management needs to review every cycle in the

18

software development life cycle. Figure 4 is taken from Wallmuller's book and it shows

how errors will be carry to the next stages and will become very costly and not fixable

[Wallmuller, 1994].

1.4 Factors and Criteria

Factors are a way to evaluate the quality of a software product. Some of the

questions ask to determine factors are; Can the product be reproduced? Is the product

well documented? Can the product be used for other applications? Did the product

satisfy the requirements stated at the beginning of the project? Can other systems be built

on top of the system that is being created? These questions can help discern whether a

software product is of good quality. These factors are used as measurements to aid the

reviewers during technical reviews.

The most defined factors for stating the quality of a software projects are from a

study conducted by J. A. McCall, P.K. Richards, and G.F. Walters for the Rome Air

Development Center (RADC) [McCall, 1977]. Table 1 below shows the most commonly

know factors and a brief definition as stated by Vincent (It should be noted that Vincent's

work was based on McCalls, Richards, and Walter's work) [Vincent, 1988].

Furthermore, Table 2 below shows how the different factors are implemented into

the different software engineering life cycles and the impact they have if they are not

measured correctly. Table 2 is also drawn from Vincent book (page 24-25) where he

makes some modifications to McCall, Walters, and Richard's original study.

19

Table 1. FACTORS OF SOFTWARE QUALITY

QUALITY FACTOR DEFINITION

Correctness Extend to which a program satisfies its specifications and full fills
the user's mission objectives.

Reliability Extend to which a program can be expected to perform its
intended function with required precision.

Efficiency The amount of computing resources and code requirements by
a program to perform a funcion.

Integrity Extend to which access to software or data by unauthorized
persons can be controlled.

Usability Effort required to learn, operate, prepare input, and interpret
output of a program.

Maintainability Effort required to locate and Ix an error in an operational
program.

Testability Effort required to test a program to ensure it performs its
intended function.

Flexibility Effort required to modify an operational program.
Portability Effort required to transfer a program from one hardware

configuration and/or environment to another.
Reusability Extend to which a program can be used in other applications

related to the packaging and scope of the functions that the
program performs.

Interoperability Effort required to couple the system with another.

Instead of having three areas of life cycle phases, Development, Evaluation, and

Operation, Vincent recast these phases with the most commonly known software cycle

phases, which are Study or Analysis, Design, Development, and Operation. This is very

applicable to the system that was developed in the Distributed Software Engineering

Laboratory (DiSEL) project, which will be described in more detail on Chapter 2. DiSEL

starts with the Requirements Analysis, and then it goes through the design followed by

the implementation and testing phase. This takes care of the Study, Design and

Development cycles of the Software Engineering life cycles. The last cycle, Operation,

was not implemented because it was beyond the scope of the class.

Table 2. THE IMPACT OF NOT MEASURING OR NOT SPECIFYING SOFTWARE QUALITY FACTORS

20

SOFTWARE ENG,
LIFE CYCLE STUDY DESIGN DEVELOPMENT OPERATION

PHASES
Phases Requirements Design Code and System Transition Operation Maintenance

Factors Analysis Debug Testing

Correctness A A A E E E
Reliability A A A 1 E E
Efficiency A A A
Integrity A A A _ El
Usability El
Maintainability A \ A El [I
Testability A A El E _E

Flexibility A A [I El
Portability A A El
Reusability A A E
Interoperability A A El E_ _

Legend: = where quality Factors should - where impact of poor
be measured quality will be realized

Vincent's second alteration is made to the placement of the "Transition stage of the

Operation phase-suggesting that the impacts listed would affect the user in making a

transition to a new software system" [Vincent, 1988]. Vincent talks about the impacts

felt when making a transition from an "old software system to the product being

developed, [thus moving] the transition phase to the beginning of the operation phase"

[Vincent, 1988].

Along with the factor mentioned above, Criteria were created (see Table 3) which

are those characteristics that define the quality Factors [Vincent, 1988]. Criteria aids the

SQA in determining whether the Factor being revised is present" [Vincent, 1988].

Vincent states four reasons, gather from McCall's work, for creating Criteria for each

Factor.

1. Criteria offer a more complete, concrete definition of Factors.

21

2. Criteria common among Factors help to illustrate the interrelation between
Factors.

3. Criteria allow audit and review metrics to be developed with great ease.
4. Criteria allow us to pinpoint area of quality Factor that may not be up to a

predefined acceptable standard.

Table 3. CRITERIA OF SOFTWARE QUALITY FACTORS

Criterion Definitions
Traceability Those attibutes of the software that provide a thread from the requirements

to the implementation with respect to the specific development and
operational environment.

Completeness Those attributes of the software that provide full implementation of the
functions required.

Consistency Those attributes of the software that provide uniform design and
implementation techniques and notation.

Accuracy Those attributes of the software that provide the required precision in
calculations and outputs.

Error Tolerance Those attributes of the software that provide continuity of operation under
nonnominal conditions.

Simplicity Those attributes of the software that provide implementation of functions
in the most understandable manner.

Modularity those attributes of the software that provide a structure of highly independent
modules.

Generality Those attributes of the software that provide breadth to the functions
performed.

Expandability Those attributes of the software that provide for expansion of data storage
requirements or computational functions.

Instrumentation Those attributes of the software that provide for the measurement
of usage or identification of errors.

Self-Descriptiveness Those attributes of the software that provide explanation of the
implementation of a function.

Executive Efficiency Those attributes of the software that provide for minimum processing time.
Storage Efficiency Those attributes of the software that provide for minimum storage

requirements during operation.
Acces Control Those attributes of the software that provide for control of the access of

software and data.
Access Audit Those attributes of the software that provide for an audit of the access of

software and data.
Operability Those attributes of the software that determine operation and procedures

concemed with the operation of the software.
Training Those attributes of the software that provide transition from current operation

or initial familiarization.
Communicativeness Those attributes of the software that provide useful inputs and outputs which

can be assimilated.
Software Systems Those attributes of the software that determine its dependency on the
Independence software environment (operating systems, utilities, input/output, and

routines.)
Machine Independence Those attributes of the software that determine its dependecy on the

hardware system.
Communications Those attributes of the software that provide the use of standard protocols
Commonality and interface routines.
Data Commonality Those attributes of the software that provide the use of standard data

representations.
Conciseness Those attributes of the software that provide for implementation of a function

with a minimum amount of code.

1.5 Technical Reviews

22

Technical reviews are used in software engineering to verify the software process

of the project. The four major technical reviews most commonly used are Peer Review,

Audits, Walkthroughs, and Inspections.

Peer Reviews - Peer reviews are the most informal of all technical reviews. Peer reviews

are mainly used for checking the source code to detect errors before execution or

compilation. Nonetheless, peer reviews can also be used to verify documentation that is

being produced such as the Requirements Analysis document.

Audit - Audits serve to insure that the software is properly validated and that the process

is producing its intended results. In an audit the review leader, Quality Assurance

Engineer (QAE), is responsible for validating changes in the report. The QAE makes

sure that a notification is sent to all the participants of the Audit.

Walkthroughs - A walkthrough is an informal review that is used to evaluate most of the

stages (Requirement Analysis, Design, Testing, and Implementation) in the Software

Development Life Cycle. The main emphasis of the walkthrough is to review the process

of the different phases of the software life cycle. In a walkthrough, the primary

participants are the moderator, recorder, reviewee/author, and two to three reviewers.

During the review process, the reviewers check the documents to make sure that the

document is clear and understandable and that it is up to standards. Other types of

revisions that a reviewer can make are grammatical errors.

23

The walkthrough is basically composed of three steps that, if followed, that help

assure a successful walkthrough in which more errors are found and corrected before

moving into the next cycle. The three steps for conducting walkthroughs are planning,

conduction and follow-up.

In the planning stage, the goals are determined and everyone participating in the

review receives a notice from the moderator. This notification has all the information

necessary to prepare for the walkthrough. The moderator then determines if everyone is

prepared for the walkthrough. If they are, the moderator will allow the walkthrough to

take place. The stage when everyone meets to have the walkthrough is called the

Conduction Stage. Finally, after the walkthrough, the moderator does a follow up on the

author of the document to make sure that all of the points raised have been clarified and

corrected.

Inspections - This technical review should is as a more formal review from which more

feedback can be obtained than from Walkthroughs, Audits, or Peer Reviews. Inspections

require a higher degree of preparation of the review participants, but the benefits include

a more systematic review of the software and more controlled and less stressful meeting.

Formal software inspections are in-process technical reviews of a product conducted to

find and eliminate defects. The major difference between Walkthroughs and Inspections

is that an Inspection process involves the collection of data that can be used to give

feedback on the quality of the development and review process.

24

The participants in an Inspection are similar to the Walkthrough but on this

technical review, all of the participants go through more steps to complete the review.

These steps are those suggested by NASA's Office of Safety and Mission Assurance in

their article in the Software Formal Inspection Guidebook [NASA, 1993].

" Planning
* Overview
" Preparation
* Inspection Meeting
* Third Hour
* Rework
* Follow Up

At the Planning stage, the moderator checks the document to be revised and decides

whether it is ready to be revised. The moderator then decides whether everyone

participating in the Inspection knows the product that is being revised. If not, the

moderator will ask the author to give an Overview of his/her document. Once everyone

has been introduced to the product submitted for Inspection, the moderator prepares an

Inspection notification sheet and distributes it to the participants. This sheet contains all

the information about the Inspection. If the time allocated for the Inspection is not

enough, a third hour is called to finish the Inspection. Once the Inspection and the third

hour (if needed) are complete, the author has a specified amount of time to correct his/her

document. The moderator then does a follow up to make sure that the author has

corrected the product that was submitted for review.

1.6 Conclusion

25

This chapter gave an overview of the quality methods necessary to produce

systems that are error free. It also covered software engineering and how it has allowed

software systems to be created more systematically, faster and easier. A description of

the roles played during software engineering was also introduced to show how they add

value to producing software engineering systems.

Moreover, Section 1.3 showed the importance of managing the quality of

software systems. It introduced the roles within software engineering that help the

Quality Assurance Engineer (QAE) verify the quality of a project. Section 1.3 also

introduces how costly errors are if they are not corrected at the early stages. The longer

you wait to fix an error, the more costly it will be.

Finally, an introduction is given of how quality in software projects is checked by

performing technical reviews throughout the development process. Factors and Criteria,

which are parameters that help to evaluate how good a software product is, are used while

conducting technical reviews.

26

Chapter Two

2 The DiSEL Project

The Distributed Software Engineering Laboratory (DiSEL) allowed the Quality

Assurance Engineer (QAE) to manage the quality of a distributed Software Project.

DiSEL consisted of nine students from the Massachusetts Institute of Technology (MIT)

and four students from Centro de Investigacion Cientifica y de Educacion Superior de

Ensenada (CICESE), an Institute of higher education in Ensenada, Mexico. The project

was setup to be operated like a small company. Every member participated in every

cycle of the project as each was assigned two roles, a primary role and a secondary role

(The roles played by the members of DiSEL were similar to the ones played in

professional Software Engineering projects). Even though the members of the team were

playing their first role most of the time, they still needed to know the secondary role in

case they were asked to perform it. Every member also had a counterpart from the other

university. The time frame for DiSEL was two semesters (nine months).

In distributed projects such as DiSEL, there are many challenges that arise.

Besides software engineering problems, DiSEL participants experienced communication

problems because the project was being conducted between two different languages

27

(Spanish and English) and many cultures (Mexican, American, Indian, Turkish, Korean,

Uruguayan, and French).

Although there are many areas of research, this thesis focuses on the issues related

to Quality Assurance. Other aspects of software engineering practices such as

requirement analysis, design, implementation or communications between different

languages and cultures are beyond the scope of this research.

2.1 The Team

As mentioned above, the team consisted of nine students from MIT and four

students from CICESE. The students were assigned roles as follows. On the first of day

of classes, the students were given a test in order to show their knowledge of software

engineering. After they took the exam, the students were asked to choose two roles and

rank them in order of preference. Students were able to choose from the following roles.

* Project Manager
- Quality Assurance Engineer
- Software Configuration Manager

Documentation Specialist
e Requirement Analyst
e Designer
* Programmer
e Test Engineer

At the end of the day, the professors took the exams and the different choices from the

students. A week later, the professors announced the roles that the students would be

playing. The decision was made based on the two choices that the students had plus how

they performed on the exam. Every member of team was assigned two roles, a primary

28

and a secondary role. They also had a member from the other university within their

primary role. This would make sure that collaboration between the two universities took

place.

Since the students did not know what the jobs were for the different software

engineering roles, the professors provided definitions of all the roles in software

engineering. The definitions of the software roles are as follow.

Project Manager - "Responsible for providing overall leadership to the team," [Yang,

1998] and creating project updates through the software development cycles.

Responsible for creating the project schedule and making sure that every member of the

project is aware of the deliverables for every phase of the software life cycle.

Quality Assurance Engineer - Responsible for making sure that every member of the

project is following the standards of software engineering. Responsible for developing

the Quality Assurance Plan that will contain the schedule of all the technical reviews.

The QAE will conduct the review and will be the person who will approve the final

deliverables of every phase.

Software Configuration Manager - Responsible for identifying and defining items in

the system, controlling the change of these items throughout their life cycle, and

verifying the complete and correctness of these items [IEEE, 1997].

29

Documentation Specialist - Responsible for maintaining a repository where all the

documents and code will be stored for future use. He/she will also be the person who

will take minutes of all the projects meeting.

Requirement Analyst - This is the person responsible for interviewing the client and

gathering requirements for the project. Responsible for writing the software requirement

documents were all the specifications are clearly stated. The software requirements

documents should be detailed enough so that the test engineers can start creating the user

test cases.

Designer - Responsible for turning the requirements specified by the requirement analyst

into the design architecture. The design document should be detailed enough so that the

programmer will not have trouble in implementing the design.

Programmer - Responsible for turning the design document into actual code. Should be

able to know how to work on a code that is being used by different people since the

project will be distributed.

Test Engineer - Responsible for testing the implementation of all the code by the

different programmers.

As already mentioned above, the team members of DiSEL course were assigned

more than one role. The minor role of each member required him/her to be on call

30

whenever the other members of his/her secondary role needed extra assistance. The

project manager made sure that everyone played their own roles and if a role needed

extra assistance, the secondary roles were brought in to aid the role that was

overwhelmed with work.

Once the project got to the design phase, the responsibilities assigned to each role

changed. The designer and programmer roles were merged and two design/programmer

groups were formed. One of these groups represented the 3D Interface group and the

other group was the User Interaction Awareness group. The reason for this change was

to have more collaboration between the CICESE and MIT students. For each of the two

groups that were formed, there was at least one member from each university. This made

the communications between the two schools a requirement.

Figure 5 shows the project organization of DiSEL with the two new groups

containing the designers and programmers. To understand how primary and secondary

roles appear on Figure 5, the following method was used. Primary roles appear at the top

while secondary roles appear at the bottom.

31

Requirements
Analysis

Gregoire (MIT)

Sanjeev (MIT)
Rafael (CICESE

3D Interface
Group

Paddu (MIT)

Rafael (CICESE)
Joon (MIT)
Jaime (MIT)

Awareness
Group

Octavio (CICESE)

Kiran (MIT)

Test
Engineer

Caglan (MIT)
Joon (MIT)

Paddu (MIT)
Octavio (CICESE)

Figure 5. PROJECT ORGANIZATION

2.2 Objective

The objective for the DiSEL project was to provide experience in software

engineering practices and process in a physically distributed atmosphere to students by

making them collaborate with students from other nationalities (Mexico). Students were

expected to assume a primary and secondary role for the duration of the project. This

allowed every team member to learn more than one role. Furthermore, the leadership of

32

Project Manager

Christian (MIT)

Ricardo (CICESE)

Configuration
Manager

Sanjeev (MIT)

Caglan (MIT)

Quality Assurance
Engineer

Gregorio (MIT)
Alberto (CICESE)

Gregoire (MIT)

Documentation
Specialist

Ricardo (CICESE)

Gregorio (MIT)
Christian (MIT)

i

the roles was divided between the two participating universities (CICESE and MIT) in

order to give equal power of decision.

Throughout the project (one academic year), students were educated on the issues

and complexities involved in medium-scale software development production taking

place in a distributed environment [Yang, 1998]. At the end of the project, the group was

expected to produce a system that would facilitate the interaction between distributed

teams. There was only one restriction for the project. The DiSEL team would have to

build the new system on top of CAIRO, a system that had been created by a former MIT

PhD Student, Karim Hussein [Hussein, 1998].

In addition to learning software engineering practices, the DiSEL team was also

asked to participate in the 50K-Entrepreneur competition at MIT (MIT 50K, 1998). This

allowed the members of DiSEL to learn how to develop and sell an idea in nine months.

Thus, the students were asked to present an idea and develop a business plan to be

presented to a venture capitalist.

2.3 Environment

Even though the project asked the team members of DiSEL to go through the

whole software development cycle, DiSEL was still different than a commercial Software

Engineering project. To begin with, the students came into the project knowing little

about software engineering. Since most of the students in the DiSEL course did not

know software engineering, lectures were given every week on Tuesdays and Thursdays.

This provided the training similar to the training a professional gets once they get to their

33

jobs. The professors from both universities, Favela (CICESE) and Pena-Mora (MIT),

took turns teaching the different areas of software engineering (project manager, quality

assurance, configuration manager, analyst, designer, programmer, tester, and

documentation specialist).

For the first semester, classes were given every Tuesday. On Thursday, the

second meeting day, laboratories were carried out. During laboratories the students were

able to show how much they had learned. Also, during laboratories, updates were given

by the different management positions (project manager, quality assurance engineer, and

configuration manager).

The setup for the class for lectures and laboratories can be seen in Figure 6 below.

In it you will see how the microphones, computers, projectors and camera were setup.

Another difference between DiSEL and a real software project was the time that was

spent on the project by the students. The students would spend around ten to fifteen

hours a week working on the project, which is less than the time spent by professional

software engineers. Thus, the turn around for the students was slow and it took about six

to eight weeks for the DiSEL members to learn their roles before they could start to work

in the project's development cycles correctly.

34

Figure 6. CLASSROOM E NVIRONMENT

2.3.1 Communications

The communication between the two universities (MIT and CICESE) was

conducted over the Internet using Microsoft NetMeeting. Every Tuesday and Thursday

the Teaching Assistant would setup the MIT classroom. The equipment needed for the

setup of the classroom consisted of two video cameras, one projector, and four

microphones (See Figure 6 above). The video cameras and microphones were used to

exchange audio and video. Both, video and audio were transferred using NetMeeting.

The projector was used to project the video from the opposite university along with the

lectures or work that was being presented. The CICESE classroom did not need to be

setup since they had a dedicated room with all the equipment needed for the

communication.

35

2.4 Process Model

The process model use in DiSEL was a combination of the waterfall model (see

Figure 7) with the spiral model (see Figure 8). The waterfall model allows engineers to

have control of the project since they know the phases that follow each cycle of the

project. According to Boehm, "waterfall models have much contributed to the fact that

the process run has become disciplined, visual and controllable" [Boehm89,

Wallmuller94].

Figure 7. WATERFALL MODEL

Release

De /(ping
Scope .sonig

Competed / \ Vision/Scope
First Use Approved

Projected
Approved

Plan

Figure 8. SPIRAL MODEL

36

On the other hand the spiral model is a process model that takes risks into account

since it goes through several cycles before completing the final cycle. Boehm was the

first person that "drew attention to the importance of being in command of risk in the

development process. He considered this so important that he suggested a self-

constructed process model," the spiral model [Boehm, 1989 and Wallmuller, 1994]. By

using both models, the project manager of DiSEL knew that he would have full control of

the project.

2.4.1 Application

The project started by using the waterfall model as the members of DiSEL went

through the Systems Engineering and Software Requirements Phases. As the project got

to the design phase, the waterfall model was changed to the spiral model. Since most of

the activities within DiSEL were related to the design, implementation and testing, the

project manager decided to have three sequential cycles with each cycle producing one

version of the CAIRO. At the end of the three cycles within the spiral model, the project

went back to the waterfall model to work with the Operation ad Maintenance phase.

2.5 Conclusion

This chapter introduced the DiSEL Project by showing who the participants were,

the objective of the DiSEL project, the environment in which it was taught, and the

software process model that was used. All of these give a foundation for a similar project

to take place in other universities.

37

Chapter Three

3 Applying Quality Assurance to DiSEL

There are a lot of tasks that need to be accomplished by a Quality Assurance

Engineer (QAE) within Software Engineering projects. Having a distributed project such

as the Distributed Software Engineering Laboratory (DiSEL) increases the amount of

work that needs to be performed since the QAE needs to manage the quality process of

two or more groups distributed geographically.

The QAE conducted research to find out all the literature needed for conducting

quality assurance to software engineering projects. While reading through the literature,

little or no research was found that showed how to manage quality assurance in

distributed projects. Also, no information was found that showed how QAEs should

work while they are geographically distributed. This proved challenging as in DiSEL one

of the QAEs was at the Massachusetts Institute of Technology (MIT) and the other was at

Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), a

graduate university in Ensenada, Baja California, Mexico.

38

In this chapter I will focus on the implementation of quality assurance to a

distributed Software Engineering project, DiSEL. To accomplish this, I will rely on the

Quality Assurance Plan (QAP) that was developed by the QAE. This plan was the source

that guided the QAE throughout the software development process. But before I go into

the QAP, I will talk about how two members of the quality group integrated their work.

3.1 Role Integration

The two-person quality assurance team had one member at MIT and the other at

CICESE. This was assigned by the professors who view this distribution of team as a

form of having collaboration between the members of MIT and CICESE.

Language Barrier - All of the classes, including the laboratories, were conducted in the

English Language. Communication between the two teams was slow since it took time

for one of the QAEs to feel comfortable with the English language. When the Quality

Assurance Plan was being created, there was little feedback from one of the QAEs. The

belief is that that QAE was not comfortable with the language and it took him a while to

get use to adapt to the English requirement.

Academic Barrier - An Academic Barrier occurred because one of the QAEs had

already taken courses in software engineering while one QAE had not taken any. This

was very frustrating for the QAE who already knew the process to follow for good

quality assurance. For the QAE who had little knowledge about software engineering, it

was very frustrating since he had to work twice as much to be on the same level as the

other QAE.

39

Throughout the different stages of the project, the QAEs were always in

disagreement over of what should be the quality assurance priorities. This dissention

arose from the fact that one of the QAEs was better prepared.

Technology Barrier - The main problem with technology was that it was very hard to

get real time communication established between the two QAEs. E-mail was not enough

since one QAE was not able to check his e-mail regularly. Consequently, whenever there

was feedback given through e-mail, it was too late to be useful.

In addition, the equipment necessary for carrying out real time communications

with audio and video was not always accessible. All of these made the collaboration

between the two members of the quality team very difficult. In the end, each member of

the team started working on their own and there was no agreement about what each of the

members should be doing.

3.2 Quality Assurance Plan

The work perform by the QAE is encapsulated in the Quality Assurance Plan

(QAP). This QAP is the source that guides the QAE throughout the software

development process. It enables the QAE to perform the tasks necessary to achieve a

project of the highest quality by signaling the different functions the QAE needs to

perform during the different software cycles. The sections following focus on the QAP

since it was the main reference that aided the QAE when making sure that the software

40

process was conducted appropriately. This document will also state the problems that

came up as the QAE tried to implement different aspects of the QAP.

To create the Quality Assurance Plan (QAP), the Quality Assurance Engineer

(QAE) used the IEEE Software Engineering Standards from 1997 (IEEE, 1997). These

standards were used since they are the most commonly used standards for writing

software engineering documentation. These standards were also the ones used for the

creation of all the documents within DiSEL.

In all, the QAP serves as the central aid for planning and checking quality

assurance through out the software developing life cycle. This plan contains all the

quality measurements needed to evaluate a distributed software project, and

consequently, it describes how quality control should be implemented.

The first item that needed to be addressed by the QAE was to define the different

phases within the software project and the functions that would be performed at each

phase. Within DiSEL, there were six software phases were defined. Tables 4 below

shows these phases along with the functions that were established at the beginning of the

project by the QAE.

41

TASKS OF THE QAE DURING THE SOFTWARE DEVELOPMENT PROCESS

PHASE FUNCTIONS

Systems - Define the Quality Assurance Engineer's functions and the
Engineering Software Quality Assurance Plan.

* Review the software development plan and audit procedures done
by the Project Manager.

* Participate in the meeting with the client to obtain the software
requirements.

Requirement * Review the Software Project Manager's plan and develop audit
Analysis procedures.

* Participate in the requirement specification review.
* Implement the Software Quality Assurance Plan.
* Review tools, techniques and methodologies used in the software

development process.
Design * Participate in all the preliminary and detailed design reviews.

Review the preliminary and final design document.
* Review the preliminary and final operator's manual.

Review preliminary test plans.
Coding * Participate in some code inspections.

* Monitor use of defined tools, technologies and methodologies.
e Review final test plans.

Audit code errors for correction.
e Audit change request record tracked by the Software Configuration

Manager.
Integration - Audit baseline record established by the Software Configuration

Manager.
* Audit development records tracked by the Software Configuration

Manager.
* Witness the integration tests and acceptance test done by the Test

Engineer.
* Certify test reports.
* Audit for correction of errors encountered in the integration tests.

Operation * Review the changes proposed by the user/customer.
Maintenance - Audit the change record.

e Audit for correction of customer problems.
* Inspect updated documents: Requirements Specification,

Preliminary and Detailed Design, Operator Manual, Error and
I_ Changes record

42

I 1 I

Table 4.

Although the QAE set out to do the functions mentioned above, problems came up that

impeded the QAE from performing his work as planned. To begin with, as already stated

in Chapter 2, many of the students within DiSEL had little knowledge about software

engineering. This slowed the work process for most of the students. Consequently,

many of the documents that were expected to be finish at certain phases were not done.

Therefore, the QAE was unable to perform his work as planned. Nonetheless, creating

the table above enabled the QAE to prepare for future work as it defined the functions

that he would perform during the development stage.

3.2.1 Management

Management is the next task that the Quality Assurance Engineering (QAE)

needed to define. This allowed the QAE to structure how he would work with the

members of the team.

To manage the quality of DiSEL, the QAE set out to work closely with the

documentation specialist, test engineer, and configuration manager. This group of three

roles was assigned by the QAE as primary roles since they worked closely with each

other. The remaining roles comprised the secondary roles.

Primary Roles - As already stated above, the primary roles were the people who worked

a lot with the SQAE engineer. Figure 9 below diagrams the primary roles. All four roles

are essential for the project because they manage the project from the quality view.

43

Figure 9. QUALITY ASSURANCE ORGANIZATIONAL DIAGRAM

After identifying the primary roles, the QAE stated the interaction that needed to

be carried out in order to accomplish quality assurance within the project. Table 5

describes the interaction that was expected between the primary roles mentioned above

and the QAE.

Table 5. INTERACTION BY QAE AND PRIMARY ROLES

Table 5. INTERACTION BY QAE AND PRIMARY ROLES (CONTINUE)

44

INTERACTION

Documentation e QAE will work with the Documentation Specialist to make sure
Specialist that the documentation created during the project meets the

software standards for documentation.
The QAE will verify that the Documentation Specialist has
created a repository for all the documents produced throughout
the project for easy access.

Test Engineer The QAE will make sure that the Test Engineer's Plan is
adequate to the project and is being performed through all the
software development phases.

The QAE will work closely with the Test Engineers to make sure that
the software product is free of errors.

ROLE

ROLE JINTERACTION
Test Engineer * The TE will test the code developed by the programmers and will

trace back to the software requirements document to make sure
that the deliverables accord with the client's requirements.

- The TE will create test reports that would be audited by the QAE.
Software - The QAE will make sure that the Software Configuration
Configuration Manager's Plan is adequate to the project and is being performed
Manager through all the development phases.

e The QAE will review the changes, errors and configuration
record, to ensure that an appropriate error log is kept through
every phase of the development process, that the changes are
properly implemented, and that the baselines are saved and
products are not lost.

Once again, the QAE was unable to carry out part of the interactions that he

wanted from the primary roles. The major problem was that the documentation specialist

was on the team at the university in Mexico, Centro de Investigacion Cientifica y de

Educacion Superior de Ensenda (CICESE). Thus, it was very hard for the QAE to verify

that the documentation specialist was doing the job he was expected to do.

In addition, since the Software Configuration Manager was unable to get the

documents on time, he was unable to have a control of all the documents. This

eventually hurt the quality of the project since the QAE was unable to manage the control

versioning of documents and code.

Secondary Roles - Besides the interaction with primary roles, the QAE also needed to

state the interactions that will take place with the other roles. These roles can be seen as

secondary roles because even though the QAE interacts with them, it does not require

45

ROLF,

them to contribute to the assurance of the software product. Therefore, the interaction

between the secondary roles can be seen as external to the Quality Assurance Group. The

interaction between the QAE and the secondary roles can be seen in Table 6.

Table 6. INTERACTION BY QAE AND SECONDARY ROLES

Project The QAE reviews the development plan to ensure that it is
Manager created and followed.

The QAE will elaborate quality assurance reports that would be
included into the project manager's progress report.

Analyst * The QAE reviews the software requirement document to ensure
that is accurate and completely represents the expectations of the
customer. The software requirements documents must also be
clear enough to everybody in the developer's group, especially to
the designer who will be implementing the specifications of the
requirements and the test engineers who will be elaborating test
cases.

Designer * The QAE reviews the design document to ensure that the
designer has selected the appropriate methodology and that the
final product of design document meets the performance, design
and verification requirements.

Programmer e The QAE reviews the programming and implementation of the
system to ensure that the code produced meets the stated
requirements specification, and is: reliable, efficient, easy to
understand by human users, easy to be verified by execution,
and easy to be read and modified by a software maintainer.

Once again, the problem of not everyone being prepared slowed the process of the

project and consequently, documents were not created on time.

3.2.2 Schedule

After stating the interaction that will take place between the Quality Assurance

Engineer (QAE) and the member of the team, the QAE created a schedule of events. The

schedule of events contains the date of the event, the event itself, the documents that will

46

INTERACTION"RO0L E

be reviewed, and the people involved during these events. Table 7 below shows all the

events that were schedules starting from January 1999.

Table 7. QUALITY ASSURANCE SCHEDULE

Quality Assurance Schedule

Date: Event: Documentation Involved: Role Involved:

4-Feb-99 Presentation of QA Quality Assurance Plan. Quality Assurance Engineer.
Plan.

9-Feb-99 Walkthrough of Project Project Managers Plan. Project Manager and Quality
Managers Plan. Assurance Engineer.

11-Feb-99 Lecture on Technical Technical Review Document and Quality Assurance Engineer and
Reviews. Turn in Design Design Document v2.1. Designers.
Document v2.1.

16-Feb-99 Audit Desing Design Document v2.1. Designers and Quality Assurance
Document v2. 1. Engineer.

18-Feb-99 Update of SCM and SCM and Doc. Specialist Update Software Configuration Manager
Doc. Specialist. Document, and Code Turn in. and Documentation Specialist.
Turn in Code. Programmers.

20-Feb-99 Turn in Testing Report Testing Report v2.1 Test Engineer.
v2. 1.

25-Feb-99 Audit to Test Report Test Engineers Report v2.1 and Quality Assurance Engineer,
v2.1. Turn in Design Design Document v2.2. Test Engineer, and Designers
v2.2

2-Mar-99 Audit Design or VRML Design of VRML and Awareness Designers and Quality Assurance
and Awareness v2.2. v2.2.

4-Mar-99 Update of SCM and SCM and Doc. Specialist Update Software Configuration Manager
Doc. Specialist Document, and Code Turn in. and Documentation Specialist
Turn in Code. Programmers.

9-Mar-99 Turn Design Design Document v2.3. Designers and Quality Assurance
Document v2.3. Engineer

1 1-Mar-99 Audit Design Doc v2.3 Design Document v2.3 and Test Quality Assurance Engineer,
and Test Report v2.2. Reprot v2.2. Test Engineers and Designers.

16-Mar-99 Audit Test Report v2.3 Test Engineers Report v2.3. Quality Assurance Engineer and
Test Engineers

18-Mar-99 Update of SCM and SCM and Doc. Specialist update Software Configuration Manager
Doc. Specialist Document, and Code Turn in. and Documentation Specialist
Turn in Code. Programmers.

30-Mar-99 Walkthrough of Final Final Design Document Designers and Quality Assurance
Design Document

13-Apr-99 Walkthrough of Final Final Test Report Test Engineers and Quality
Test Report Assurance Engineer

15-Apr-99 Presentation of Manual Manual Documentation Specialist

3.2.3 Software Documentation

The next task for the Quality Assurance Engineer (QAE) was to define the

documents that would be revised along with the contents it should have. The documents

47

produced by the different members of the team are revised in order to make sure that they

are clear, understandable, comply with the IEE Software Engineering Standards, and are

inline with what the clients or market may ask to be developed.

The QAE conducted technical reviews (see Section 3.1.3) to the documents that

are stated below to assure quality.

Software Requirements - A document containing a collection of requirements gathered

from interviewing the client. These requirements must be clearly defined so that the

people involved in the remaining stages of the development software life cycle can

implement them. A Walkthrough will be conducted to verify the correctness of the

Software Requirements Document.

Design - This document serves as the bridge between requirements and the actual

implementation by the programmers. The designers must make a good design of data

structures, the architecture of the software to be built and interface modules. This

document is very important because the better the design documents, the easier it will be

for the Test Engineers to come up with test cases. Audits throughout the development of

the Top Level Design/Software Specifications will be conducted by the QAE. At the

final stage of the Design Document, a walkthrough of inspection will also be conducted

by the QAE for verification purposes.

48

Project Manager's Plan - The plan must have a vision and mission of the project. It

must also have a work plan that contains a schedule of events to accomplish both of

them. A Walkthrough will be conducted by the QAE to check compliance with the

standards in writing the Project Manager's plan.

Software Configuration Manager's Plan - The plan must state how the Software

Configuration Manager will account for version control, and change control of

documents and code produced by the team members. A Walkthrough will be conducted

by the QAE to check compliance with the standard in writing the Software configuration

Manager's Plan.

Test Engineer's Plan - This document contains the methods and means by which it is

proven that the design conforms to the requirements and the source code conforms to the

design and the requirements. A walkthrough will be conducted by the QAE to verify

compliance with the standards in writing the Test Engineer's Plan.

Test Engineer's Reports - The test engineers will create reports with the result from the

revision made to documents as well as code. Audits will be conducted by the QAE after

every revision to verify the process the Test Engineers are implementing while revising

the code.

Documentation Specialist's Plan - The plan must state the standards that the team must

follow to create HTML, Word and PowerPoint documents. The Documentation

49

Specialist must also state how he/she will be managing DiSEL's Web Repository. A

walkthrough will be conducted by the QAE to verify the standards.

3.2.4 Technical Reviews

After specifying the documents that will be revised for quality assurance, the

Quality Assurance Engineer (QAE) must define how the different technical reviews will

be conducted. Technical Reviews are the mechanisms that aided the QAE to assure

quality within the documents being produced. There are many variations to performing

Technical Reviews. Most of these approaches involve a group meeting to assess a work

product; however, some variations of reviews do not require a group meeting. The four

major technical reviews that were used in the DiSEL project were.

* Peer Reviews
* Audits
" Walkthroughs
* Inspections

3.2.4.1 Peer Reviews

Peer Reviews are the most informal of all technical reviews because the do not

involve any preparation. Peer Reviews were introduced by the Quality Assurance

Engineer (QAE) to check the programmers' code for errors, prior to execution or

compilation. However, Peer Reviews can also be used to revise documents developed by

the development team. Issues that should be revised while doing peer reviews are

correctness, misuse of variables, omitted functions, poor programming practices and

redundancy.

50

3.2.4.2 Audits

"Audits serve to insure that the software is properly validated and that the process

is producing its intended results" [Walker, 1979]. In an Audit, the review leader is

responsible for validating changes in the report and to notify the Configuration Managers

to establish a version control of the document.

The QAE performed audits throughout a development of a cycle to make sure that

the work being done was of the highest quality. Out of all the cycles, the QAE audited

the Design and Testing phase. Since the team was using the Spiral Model during those

phases, every time a new version of the Design and Testing Documents was produced,

the QAE audited them to make sure they were readable, understandable and aligned with

what the was stated in the Requirements Document.

Preparation and Conduct - Audits need to be prepared and conducted as follows. The

QAE would make the preparations of the Audit by assigning the personnel to conduct the

review. An Audit notification was then sent to the participants (see Appendix 1). Within

DiSEL, the reviewer was always the QAE. The QAE would review the document and fill

out the preparation log (see Appendix 2). This preparation log was then given to the

author of the document so he could make the appropriate changes.

3.2.4.3 Walkthroughs

A Walkthrough is an informal review that evaluates many of the documents

specified in Section 3.1.3. The goals of this informal review should be determined prior

51

to conducting the Walkthrough and are identified in the notice announcement of a

walkthrough (see Appendix 3).

The main emphasis of the Walkthrough is to review the process of the different

phases of the software life cycle. In a walkthrough, the primary participants are the

moderator, author, documentation specialist, and two to three reviewers. While

conducting a Walkthrough, some of the questions that a reviewer should have in mind

are:

e Is it up to standards? In the case of DiSEL, the standard to follow are the IEEE'
Software Engineering Standards.

e Does it do what it was supposed to do?

Other types of revisions that a reviewer can make are grammatical. This will include

"style errors, improvement in the quality of the material, and the transfer of ideas and

understanding between team members" [Evans, 1986]. Once a material has been

reviewed in a Walkthrough, the end product will serve as the baseline for the next phase

in the development process. For instance, once the Requirements Document has been

reviewed, it will serve as the baseline for the design of a software project. The documents

that were chosen to be revise using this kind of technical revision are stated above in

Section 3.2.3.

From the documents stated in Section 3.2.3, the Project Manager's Plan and the

Requirements Document were the only documents that got revised by the QAE. The

52

other documents were not revised because the process became very accelerated in which

documents were not prepare with enough time for a proper review.

Following are the Planning and Conduct stages of a Walkthrough. First the

planning of the review is stated follow by the steps that need to be followed to conduct

the Walkthrough. The person responsible for planning the Walkthrough and conducting

it will be the moderator. In DiSEL's case, the Quality Assurance Engineer played the

role of the moderator.

Planning - The moderator is the person responsible for reminding the members of the

team when a Walkthrough will be taking place well in advance. A Walkthrough notice

(see Appendix 3) that includes all the participants, the objective of the review, the date,

time and place should be sent at least one week prior to the Technical Review. The

actual review should be composed of the following members:

e Moderator
* Documentation Specialist
e Two to Three reviewers
e Author
- Supervisors

The Supervisors (Professors and Teaching Assistants) are invited to Walkthroughs when

their particular skill or knowledge sets are required. The supervisor will not attend as a

supervisor role, rather as one member of a team reviewing another member's work. The

time frame for a Walkthrough should be about 90 minutes. If additional time is required,

53

an additional Walkthrough should be schedule for another time. The date, time, and

place for the Walkthrough should be stated in the announcement sheet.

In the DiSEL project, all of the Walkthroughs were conducted during laboratory

hours on Thursday.

Conduct - At the time of the Walkthrough, the moderator will determine if all the

participants are prepared for the revision. If the team is not prepared, the moderator has

the power to re-schedule the walkthrough. If this Walkthrough is the second part of a

previous Walkthrough that was not finish, the moderator will verify that the action items

that were given in the first meeting have been resolved before continuing with the

Walkthrough.

Being the most important person in the meeting, the moderator will be responsible
for:

" Conducting the Walkthrough
* Creating an agenda that will be used during the meeting.
* "Ensuring that the review meets its objective in an efficient manner" [Evans,

1986].
* Opening and closing the meeting
* Soliciting comments from the reviewers
* Presenting any of the reviewers comments
* Monitoring discussion to ensure they are relevant to the subject

Overall, the moderator will be the person "responsible for arbitrating disagreements to

successful conclusions" [Evans, 1986]. If there is no conclusion to an item, the

Documentation Specialist writes the item in the action item list (see Appendix 4).

54

The Documentation Specialist is responsible for writing the minutes of the

meeting. As stated above, she/he will also write down the items that were not resolved

on the action item list. The Documentation Specialist is also be responsible for collecting

minor errors, such as grammar, punctuation, and style errors, that the reviewers found.

Once the Walkthrough is finished, the Documentation Specialist will read the items not

resolved to the group to verify that they are correct. The Documentation Specialist will

then give the action item list along with the minor errors collected to the author of the

document.

The reviewer will be the person who will be evaluating the document presented

for revision. For the DiSEL project, the reviewers were asked to verify that the

documents were written in accordance with the IEEE Software Engineering Standards.

In addition, they checked to see that the author of the document had stated their ideas in a

clear and concise manner. The reviewers would review the document and would put

down all errors found in a preparation log similar to the one used by Audits (see

Appendix 2).

At the time of the review, the author of the document will step through the

material while the reviewers give feedback by staying the errors they found. The author

of the document should address questions raised by the reviewers. If no solution is found

to the question raised, the Documentation Specialist will write the issue in the action item

list. "No specific solution discussion shall take place during the walkthrough" [Evans,

1986].

55

At the end of the Walkthrough, the author will take the action item list and the

minor comments made by the reviewers from the moderator. He will use this as

reference for correcting the errors. The project manager will be the person who will do a

follow-up on the author to make sure that all of the action items have been addressed and

resolved.

At the end of the review, the moderator will see if an additional Walkthrough is

needed based on whether the material is incomplete or contains too many errors. Also,

the group shall decide whether to approve or not approve the material. The

approved/not-approved status shall be noted on the action item list by the recorder in the

"new status" space. If the document is approved, it will be frozen and used as a baseline

for the next step in the developing process and it is put into the project program support

library.

3.2.4.4 Inspections

Inspections should be presented as a more formal approach that can be viewed as

work product reviews. Inspections require a high degree of preparation of the review

participants, but the benefits include a more systematic review of the software and more

controlled and less stressful meeting. "Software formal inspections are in-process

technical reviews of a product of the software life cycle conducted for the purpose of

finding and eliminating defects" (NASA, 1993). The major difference between

Walkthroughs and Inspections is that an Inspection process involves the collection of data

that can be used for feedback on the quality of the development and review process.

56

The documents that were schedule to be inspected were the final Design

Document and the manual of the system that were written. Below you will find the steps

required for the implementation on an Inspection to the documents mentioned above.

Planning - This is the "period of time [that] determine whether the product to be

inspected meets the entry criteria" [NASA, 1993]. The person responsible for planning

and carrying out the whole process of an Inspection is the moderator. The moderator

should be a person who understands the whole process of the Inspection and is aware of

the documents that are being presented. The Quality Assurance Engineer (QAE) is the

person who is recommended to play the role of the moderator.

For the planning of the Inspection, the moderator should first check the document

to see if it is up to standards. Based on whether or not the document is up to standards,

the moderator will make a decision on whether the Inspection should take place. If not,

the moderator will ask the author of the document to work more in bringing the document

to standards.

After making sure that the document is ready to be inspected, the moderator will

fill out an Inspection Announcement Sheet (see Appendix 5) that will be distributed to all

the members of the team. This sheet will contain all the information that is needed for

carrying out an Inspection. This information will contain the members of the team who

will participate (moderators, author, reader, reviewers, and documentation specialist)

during the Inspection. Also, it will state the time, date, and place of the reviews. Along

57

with the announcement of the inspection, the following material should also be

distributed to the participants.

e Background on document being inspected
Material to be inspected

* Inspector's preparation Log
* Inspection checklist (used by the moderator)

After the above material has been distributed to all the participants, the moderator

will check to see if the participants of the review are familiar with the material that is

being revised. If not, the moderator will ask for an overview to take place.

Moreover, the moderator will check the document's size to determine if it can be

revised during one review session. If not, an additional review session should be

schedule to finalize the review of the whole document. To check the whole process of

the Inspection, the moderator will be using an Inspection checklist (see Appendix 6).

This sheet will aid the moderator as he goes through the whole process of this technical

review.

Overview - An overview is "the optimal stage in which the inspections team is provided

with background information for the inspection" [NASA, 1993]. The moderator will

determine if this stage of the Inspection should take place. The moderator will decide to

schedule an overview if one or more of the following circumstances apply:

e The inspection team is not familiar with the product.
* The product is new or is being inspected for the first time.
* Inspections are new to the project.

58

This will help the team members participating in the inspection to be familiar with the

document being presented for revisions. It will also help the reviewers be more

productive by giving more feedback to the author since they have an understanding of the

product that is being revised.

Preparation - Preparation is the "key stage in which members of the inspection team

prepare individually for the inspection by reviewing and finding potential defects in the

product being inspected" [NASA, 1993]. During this stage, everyone participating in the

review should prepare himself or herself thoroughly.

The reviewers should use the preparation log (see Appendix 2) that was

distributed by the moderator to write down all the defects found, as well as the time

spent. After filling the preparation logs, the reviewers will send the logs to the

moderator. While reviewing the documents, reviewers should look at the document and

try to find general problems that are related with his or her specific area of expertise. For

instance, Designers should look at the documents from the design side while quality

assurance engineers should look at the documents from the quality side. Reviewers

should also check the documents "against higher-level work products, standards, and

interface documents to assure compliance and correctness" [NASA, 1993].

The moderator will collect all the logs from the reviewers to determine whether

the team is adequately prepared. "If the preparation logs indicate that the team is not

adequately prepared, the moderator should reschedule the inspection meeting, as a team

59

not fully prepared will waste time and will not be effective in finding defects" [NASA,

1993].

If the moderator finds that the logs show good preparation from the inspectors, he

will decide to continue with the Inspection. First he will check, though, for "trouble spots

that may need extra attention during the Inspection, common defects that can be

categorized quickly, and areas of major concern" [NASA, 1993]. By doing this, the

Inspection meeting will be more productive since good preparation from all the

participants took place.

Meeting - This is the phase of the Inspection review "where team members as a group

review the product to find, categorize, and record but not resolve defects" [NASA, 1993].

Defects that need extra time for resolution will be written as action items to be resolved

by the author.

To begin with, the moderator will call on the meeting and verify that the

Documentation Specialist is ready to take minutes. The moderator will also make sure

that all the presentable material in on-line so that everyone would be able to access it.

Especially since the DiSEL project was conducted with two sets of students who were

geographically distributed. The moderator will then introduce all the participants of the

review, "briefly describing their roles, and restating the purpose of the inspection and

product" [NASA, 1993]. The moderator will then ask the reader to present the document.

60

The reader is the person who "provides a logical reading and interpretation of the

product" [NASA, 1993]. It is recommended that the reader should not be the author.

Instead, it should be a member of the team who is involved in the next phase of the

project. For instance, if the Requirements Document is being presented for revision, then

the Designer should be the person who acts as the reader.

While the reader is presenting the document, the reviewers will be allowed to

"interrupt the reader.. .when an item containing a possible defect is read" [NASA, 1993].

The reviewer should keep the comments short and precise to the actual topic being

presented. If the moderator notices that too much time is being spent in trying to come to

a resolution to the problem, he will declare the issue unresolved and will ask that the

problem be written as an action item to be revised at a later time. This will allow the

meeting to stay within the schedule of the agenda developed by the moderator. After the

discussion by the reviewer has ended, the reading is resumed.

The Documentation Specialist, as already stated, will be the person responsible

for writing the minutes of the review, but more importantly, he will be the person who

will write the unresolved issues into an action item sheet (see Appendix 4). "The

recorder will itemize each agreed upon defect by recording its location, a brief

description, its classification, and the inspector who found it" [NASA, 1993].

At the end of the meeting, the moderator will ask the Documentation Specialist to

read back all the open issues that were written into the action item list. The people

61

involved in the review will state if they are actual problems and will also classify them by

severity (major or minor). Based on the amount of open items, the moderator will

determine if a third hour is needed to finalize the review. "If a third hour is needed, the

action items are assigned to individual inspectors at this time" [NASA, 1993].

Also, the Documentation Specialist gives a copy of the action items to the author

of the document for reference during the rework phase. The additional sheet that

contains minor defects is also given to the author.

Third Hour - This is an "additional time, apart from the inspection meeting, that can be

used for discussion, possible solutions, or closure of open issues raised in the inspection

meeting" [NASA, 1993]. Basically, if the Inspection was not finish in the time schedule,

this additional time will be used. Also, this time should be used if the author of the

document would like to discuss corrections that he/she has made to his/her work.

The third hour should not be schedule right after the Inspection. Instead, it should

be schedule a day or two after the Inspection. Everyone who participated in the

Inspection is not required to be present during the third hour.

Rework - This is the "stage when the author corrects defects found during the

inspection" [NASA, 1993]. Priority should be given to the problems that were assigned

as Major defects. "Minor defects should be resolved if cost and schedule permit"

[NASA, 1993].

62

The moderator will be responsible for making sure that the author addresses the

errors found during the revisions.

Follow-up - This session of the Inspection is seen as a "short meeting between the

moderator and author to determine if defects found during the inspection meeting have

been corrected and to ensure that no additional defects has been introduced" [NASA,

1993]. If additional help is needed to verify this process, the moderator may include

additional reviewers.

"If all the major defect have been corrected, all open issues have been resolved,

and the product has satisfied the exit criteria, then the moderator 'Passes' the product by

recording the completing of the inspection on the Inspection Summary Report" [NASA,

1993]. If the moderator finds that the necessary corrections have not been made, he will

ask the author to do more work and correct the errors that still need to be fixed.

3.2.5 Example of Technical Reviews Performed in DiSEL

This section shows concrete examples of two Technical Reviews, a Walkthrough

and an Audit, which were performed by the Quality Assurance Engineer (QAE) on the

DiSEL project. The audit was performed on the Design Document v2.0, while the

Walkthrough was performed on the Project Manager's Plan. No examples of Inspections

are given because there were no Inspections conducted during the development process.

63

3.2.5.1 Audit of Design Document v2.O

The Audit to the Design Document v2.0 was schedule for February 18, 1999

during laboratory hours (see Section 3.2.2). The purpose of the review was to verify that

the document was written in accordance with the IEEE Software Engineering Standards,

which were the standards that were follow by the DiSEL team. This was the first

revision of the Design Document. Two more Audits were schedule in the remaining of

the project. The three revisions to the Design Document are in relation to the three cycles

that DiSEL underwent while using the Spiral Model.

In order to review the document and have feedback to the Designers, the Quality

Assurance Engineer (QAE) asked for the document to be submitted on February 12,

1999. This will give the QAE six days to revise the document. The member of the team

responsible for the revision of this document was Gregoire Landel. Gregoire was the

Analyst for the team. After writing the requirements document, he was asked to help the

QAE since quality assurance was his second role. Appendix 7 shows the notification of

an audit sheet that was sent to Gregoire by the QAE, Gregorio Cruz. The notification

asked Gregoire to write down all the items that needed clarification on a preparation log.

All of the comments written by Gregoire can be found in Appendix 8.

Since there was delay in revising the document (see Appendix 8), the QAE gave

the result to the Designer personally instead of giving them during the time allocated

which was on February 18, 1999.

64

3.2.5.2 Walkthrough on Project Manager's Plan

The Walkthrough for the project manager plan was schedule for February 9, 1999.

The document was submitted to be revised so that it could be frozen and serve as the

basis for the whole project. Walkthrough forms were sent to the participants of the

review:

" Moderator: Gregorio Cruz (Quality Assurance Engineer)
e Author: Christian Manasseh (Project Manager)
e Reviewerl: Gregoire Landel (Analyst)
e Reviewer2: Padmanabha Vedam (Designer)
e Reviewer3: Alberto Mireles (Quality Assurance Engineer)
e Recorder: Ricardo Acosta (Documentation Specialist)

Appendix 9 shows one notification form that was sent to Alberto Mireles. The other

notification forms that were sent to the other participants contained the same information

that was put on Alberto's notification form. The notification sent to the recorder asked

him to use the preparation log (see Appendix 2) during the review to write down all the

action items.

The Walkthrough had been schedule so that only the reviewers could give

feedback to Project Manager. The remaining members of the team could raise their

concerns at the end of the review. While conducting the Walkthrough, the QAE found

that everyone could participate in the review by giving feedback to the author of the

document, as he was presenting his work. The approach of having everyone participate

in the Walkthrough was found after the QAE saw that the people who were not chosen to

be reviewers were as equally prepared as the reviewers.

65

Participation from all the team allowed the Project Manager to get more feedback

from all the members as he was introducing different sections of this document. All the

feedback was written into the preparation log and was given to the author of the

document. The status of the document was to be determined after the Project Manager

made corrections to his document. After correcting all the issues raised during the

revision, the QAE verified them and if they were implemented correctly, the document

would be frozen and serve as the base for the whole project.

The following comments were gather from the member of the team after the

conducting the Walkthrough.

"Walkthrough is the best tool used in QA, in terms of the involvement of
others in the group. I was able to fully understand the work being done by
the PM, where I was left with many questions before when I simply read
the document."

"Since we all do the same, and therefore we admit, all documents are full
of a lot of baloney as well as the real stuff. Although we write these to
inflate the reports, we do not tell these in class, and as a result the person
talking about his report in the Walkthrough gives a nice summary as well
as cutting the useless parts off."

"Since Walkthroughs are interactive, all questions are answered."

"Because the writer of the report comments about what he wrote, new
information is revealed at times, which helps to understand the situation
better."

"The Walkthrough has all the members of the group present, and since all
roles are pretty much interlaced, there's always bound to be some
discussions going into the domains of other roles. This ends up in the
discussion of some previously unresolved points, thus contributing to the
overall progress of the project."

66

3.3 Conclusion

This chapter showed how the learning of quality assurance was used to manage

the quality of the DiSEL project. It also showed the problems that occurred while trying

to perform all quality tasks. Examples of how Technical Reviews were performed are

also illustrated in this chapter.

Section 3.1 shows the integration of the roles and outlines the language, and

academic barriers that the team encountered while participating in this distributed project.

Section 3.2 is the section that talks about the Quality Assurance Plan (QAP)

which shows the work performed by the Quality Assurance Engineer (QAE). This

section starts by stating the importance of the QAP and why it should be developed at the

beginning of the project. The section follows by going over the management of the

project's quality and how the primary roles (Software Configuration Manager, Test

Engineer, and Documentation Specialist) were instrumental to accomplish this task. A

schedule of events that were performed by the QAE with the help of the primary roles is

shown in Section 3.2.2.

Section 3.2.3 states all the different documentation that was produced during the

development of the project and how the QAE would verify the quality of this documents.

To check the documents for quality, the QAE used the four most used software technical

reviews (Peer Reviews, Audits, Walkthroughs, and Inspection). Section 3.2.4 states a

67

definition of these reviews and also shows how each of these software technical reviews

were performed during the DiSEL project.

Section 3.2.5 gave examples of how the QAE conducted an Audit to the v2.0 of

the Design Document and a Walkthrough to the Project Manager's Plan.

Many challenges arose as the QAE tried to implement the QAP. Out of these

mistakes, the QAE came up with suggestions of how to improve a distributed project

such as DiSEL. These recommendations are stated in Chapter 4.

68

Chapter Four

4 Recommendations

This chapter contains recommendations on how to structure a distributed class

from the view of a Quality Assurance Engineer (QAE). It also has recommendations on

how the QAE should apply quality assurance to distributed software engineering projects

by making use of the Internet.

4.1 Class Structure for Distributed Software Projects

Distributed software classes such as DiSEL (Distributed Software Engineering

Laboratory) need a lot of preparation from the professors. Professors must plan the

structure of the class in advance so that the students are able to produce the work that is

asked. Trying to produce work while learning made the students uncomfortable since

they were not able to perform their software role as demanded. For instance, the

Requirements Document, which was ask to be developed early in the project, was never

completed because the Analyst was trying to learn about software requirements first. If

the Analyst had a better understanding of how to collect and write the requirements of a

system, he would have produced the document on time.

69

Careful preparation should be given to a plan that will bring all the students, both

from the Massachusetts Institute of Technology (MIT) and Centro de Investigacion

Cientifica y de Educacion Superior de Ensenada (CICESE), to a same level of

understanding about software engineering. This year, students from one university came

into the project more prepared than the other students since they had already taken

Software Engineering courses.

Students who came into the project knowing little about Software Engineering

were frustrated because the other students were already prepared to start working in a

distributed software project. Students who had taken courses in software engineering

were also frustrated because they could not make progress within the project since not all

students were ready to build a system that required knowledge of Software Engineering.

While one group of students was trying to develop a system, the other group was learning

how to develop software systems in a distributed project.

Therefore, an equal understanding of software engineering from the team needs to

be established before the team can start working on a distributed project such as DiSEL.

If there is an equal knowledge of Software Engineering, the team will be able to progress

by becoming more productive. Members of the team would produce their work on time,

allowing the other members to follow a schedule they had developed at the beginning of

the project. For instance, if the documents were submitted on time for revision, the

Quality Assurance Engineer will be able to assure the quality of the member's work as

schedule.

70

Table 8 below shows a schedule of events that could be used to teach the software

engineering process, the roles played and how they are played to all participating

students. It should be noted that the schedules of events that are shown below are taken

from the view of the QAE. The schedule used is based on this year's MIT schedule

where classes were conducted every Tuesday and Thursday. After the sessions have been

completed, the students can start working on the project. At that point, the students

should be more familiar about Software Engineering.

Table 8. OUTLINE FOR A NEW DISTRIBUTED COURSE

ICOURSE OUTYLINE

SESSION DAY DATE TOPIC READINGS ASSIGNMENTS
_____ ____________OUT DUE

1 Thursday Sept 10 Introduction
2 Tuesday Sept. 15 Software Engineering 1 AS1
3 Thursday Sept. 17 Project Management 2 AS2 ASl
4 Tuesday Sept. 22 Software Configuration 3 AS3 AS2

Manager
5 Thursday Sept. 24 Quality Assurance Engineer 4 AS4 AS3
6 Tuesday Sept. 29 Documentation Specialist 5 AS5 AS4
7 Thursday Oct. 1 Analyst 6 AS6 AS5
8 Tuesday Oct. 6 Deig1 7 A57 A56
9 Thursday Oct. 8 Pro rammer 8 A59 AS7
10 Tuesday Oct 13 Test Engineer 9 AS9 AS8
11 Thursday Oct 15 Technical Reviews 10 AS10 AS9
12 Tuesday Oct 20 Conclusion -- AS10

As already stated before, the course outline in Table 8 was created from the view of the

QAE. The first lecture should be a presentation that covers everything about software

engineering. After that session, lectures about the different roles played in software

engineering should be presented. The QAE finds that the management roles, Project

Management, Software Configuration Management, Quality Assurance Engineer, and

71

Documentation Specialist should be presented first and then the roles of the Analyst,

Designer, Programmer and Test Engineer. At the end, a session for Technical Reviews

should be presented so that all students will have an understanding of the different

technical review processes.

Assignments are given to the students after each topic is presented, starting with

Software Engineering. The assignments would consist of homework that test student's

understanding of the class that was presented. The homework should not be too long,

they should be structured to test the full understanding of the student over the topic that

was introduced. The students will bring their assignment on the following session and

for the first 30 minutes the professors will answer questions that the students have about

the assignment in order to clarify any concerns or misunderstandings.

After the presentation of all the sessions, the students should have a better

understanding of software engineering. Students will be able to apply their learning into

the project and they will be able to execute the work necessary to produce a system that is

asked for any client or a market.

4.2 Application of Quality Assurance to distributed projects

This section focuses on how to make the job of the Quality Assurance Engineer

(QAE) better when he/she is working in a distributed project. Since the team is

composed of at least two groups who are geographically distributed, the work that is

72

conducted by the QAE must be accessible by all team members at all times. To make

this happen, everything that the QAE does should be put into a Web site.

Before deciding what is going to be put on the Web site, a clarification of the

QAE's job seems necessary. The job of the QAE is to provide quality assurance to the

process of distributed Software Engineering projects, mainly to all the documents that are

being written by different members of the team. In order to assure the quality of the

documents, the QAE conducts technical reviews.

A Technical Review needs a lot of preparation and involves different members of

the team (moderator, author, reader, reviewer, and documentation specialist). As it was

presented in Chapter 3, the QAE used different forms (see Appendixes) that aided in the

preparation of all Technical Reviews (Peer Reviews, Audits, Walkthroughs, and

Inspections).

The recommendation would be to put all the forms that were used by the QAE in

DiSEL on the Web so that the QAE will not have to create the forms every time a

Technical Review takes place. After a form is filled out on-line, e-mail would be sent to

the project's e-mail list so that everyone will be aware of the review. Then the

participants chosen for the review (moderator, author, reader, reviewer, documentation

specialist) will know of the review and they can start preparing for it. After a form is

filled out, it will be saved on a database so those members of the team can access it at a

later time.

73

For the creation of the Quality Assurance Engineer's Web Page, FrontPage from

Microsoft can be used. FrontPage allows you to create the forms without knowing how

to program in HTML. FrontPage also allows you to save and call any of these forms into

a database without knowing SQL programming. For the database connection, FrontPage

uses Microsoft Access, which is a personal database that comes along with Microsoft

Office. Access control for the forms can be granted from the WinNT Operating System.

The following sections show how the different forms used by the QAE will look

over the Internet. Description of the contents of the snapshot will also be provided.

Audit Notification - Figure 10 shows how the audit notification form could be

structured using HTML code so that it can be viewed over the Internet. The form uses

drop down menus for selecting to whom the notification will be sent and from which role

the notification came from. Text boxes are used to write down the dates, time and the

place where the actual Audit will take place. Scrollable text boxes are used for writing

down the subject of the review and the comments that the person who is writing the

notification feels are important for the Audit. Only the moderator of the review should

have access to this form. Management roles such as Project Manager, and Configuration

Managers should also have access to this form.

74

,J 11htt p//veracruz cambridgeside corn/quality/audit notification sheet him

Audit Notification Sheet

..__ _ _ _ a g g.,

To: j120 Class Date: 3//9 Frm 1 uaityssurance Engineer r
Subject of Review:

The second version of the design document will be revised

KK. z

The review is tentatively scheduel for:

Date: 13/14/99..Time: 400 p.m 1-131

Alternative date (if require d): a3/1/99

Conmments

The quality assurance engineers will be members responsible for audting ~
the design documents. The designers should send their final draft of .

the document via e-mail or it should be posted in the Project Web page.
If anyone have any questions about the Audit, send an e-mail to the
quality assurance engineer

Submit ForCiewF.

Gregorin Cruz, Quality Assurance Engineer.
Copyright @ 1999 Distributed Sonware Engineering Laboratory. Al rights reserved.

Revised: April27, 1999.

Figure 10. A UDIT NOTIFICA TION SH EET

Walkthrough Announcement - Figure 11 shows how the Walkthrough Announcement

would look over the Internet. The walkthrough differs from the audit in that the

walkthrough announcement has more data that is necessary for the conducting the

review. Similar to the audit, only management roles should have access to this form.

75

ug nnouncement Microsoft Intern e t I o re

A lil] http //veracruz. cambridgeside. com/quality/walkthrough-announcement. htm

Walkthrough Announcement

To: 11.120 Class J Date: [2/2/99 From: Quality Assurance Engine

Subject of Review:

I We will be reviewing the Software Requirements Document to make sure
tht the clients requirements and specifications are clearly stated

A Walkthrough will be 12/10/99
held on:

At: 1:00 p.m. In:

Reviewers, please review the material that will be posted ont he web
before the walkthrough and prepare your conunents. If you cannot attend
the walkthrough or will not be able to review the material before time,
contact the Author and the Quality Assurance Engineering so thte
walkthrough can be reschedule or another memeber of the team can acat
as a reviewer.

Current Status of the Material: IVersion 1.0 - Not Passe d

The objective of the material is
to:

Moderator:

Recorder:

Reviewer 1:

Reviewer 2

Make sure that the
requirements are well stated.

Gregorio Cruz

Ricardo Acosta

Caglan Kuyumcu . J
A lb e r........oG ...r

Figure 11. WALKTHROUGH ANNOUNCEMENT SHEET

Inspection Notification Sheet - Figure 12 shows the Inspection notification sheet. This

form is similar to the Audit and Walkthrough notification. A difference of this review to

76

J*?r

!"R

the others is that it asks for more reviewers to be involved in the actual review. Similar

to the other notification forms, only management roles should have access to this form.

2 lnspctionNotacation Sheet - Microsoft Internet Explorer]

Inspection Notification Sheet

To: [f120Class Date: 2/239 7 From: QualityAssurance Engineer

Subject of Review: Comments:

We will review the Project Manager's Plan. Everyone who will be involved in the
revision should try it's best to prepare for
the revision. The members of the team who
will be participating are at the bottom. If

you need extra assistance, contact the
Quality Assurance Engineer

The review is tentatively scheduel for:

Date: 3/1/99 Time: 14:90 pr

Alternative date (if required): 13/3/99

Personnel assigned to the SQA Review Team for this review are:

Person:

Christian Manasseh

Jaime Solari

Gregoire Landel

Role:

Moderator

Author

Reader

Reviewer

Redewer

All of the participants listed
on the left should receive
all the documentation that
will be revised during the
technical review. The
moderator should be the
person responsible for
making sure that the
documents are delivered.

atftitFemi

Gregorin Cruz, Quality Assurance Engineer.
Copyright 0 1997 Distributed Sofiare Engineering Laboratory. All rights reserved.

Revised: April 27, 1999.

Figure 12. INSPECTION NOTIFICA TION SHEET

Preparation Log - Figure 13 shows the preparation log that is used by all the reviewers

who are participate in the different technical reviews. The form asks for the reviewer to

write down all the defects found along with the time spent. A scrollable text box is used

77

Room Number: 11-1

7-1

so that the reviewer can write down a full description of the defects found. Every

member of the team should have access to this form.

Preparation Log

Name of
Inspector: 5Gregoire Landel Ax Date: r/21/99
Subject of Review:

ISoftware Design Document V2.0 Feb 12, 1999 for VRML team. , if

fwmen f Defect Found: Time Spent:

j Sec 1.1 Visualize movement + socialfeedback (see anotaded doc.) 5 mmte

Sec 2 (paragraph 4) Please not distinct
functions of Awareness and VRML

Sec 2 (paragraph 5) Please make reference 5mnutes
to figure

Fu 1. Social feedback is not included
15 rninutes

Page 8 (bottom) unclear reference
~to "first environment. rnutes

--.---.. .. .

Gregorio Cruz, Quality Assurance Engineer.
Copyright @ 1999 Distributed Software Engineering Laboratory. All rights reserved.

Revised: April 28, 1999.

Figure 13. REVIEWER'S PREPARA TION LOG

78

;

NNOWN I 2

Action Item Sheet - Figure 14 shows the form that is used by the Documentation

Specialist to write down all the unresolved errors that were found during a review.

Management, along with the Documentation Specialist should have access to this form.

ggggiJ nhttp //veracruz.cambridgeside.com/quality/action it

Action Item Sheet

Material
prepared by:

Subject of Review:

Gregorio Cruz Date:

Project Manager's Plan. This plans needs to be frozen so that the
other members of the team can finish their own plans.

A
Person: Role:

Gregorio Cruz J Moderator

Gregorio Cruz Author

Kiran Choudary Reiewer

Vedam PadmanabhaI Reviewer

Ricardo Acosta Docurentaton Speciast

Current Status: v1.0 New Status:

Number:: ~Description of Action Item:Reouin

Section 1 needs more work.

Figure 1 needs to be mentioned in the body.

11You need to put some relationships between
the differen roles.

- u Explain more the process that will be
followed within the project. -

Change the event of 3/12/99 to 3/14/99

Figure 14. DOCUMENTATION SPECIALISTACTION ITEM SHEET

79

...................

2 /2 7 /99.....

.........................

............................

Inspection Checklist - Figure 15 shows the form that is used by Quality Assurance

Engineer (QAE) to help him create a report of the whole Inspection review. With this

form, the QAE will be able to keep the whole team inform about the Inspection Review.

Only the management roles should have access to this form.

icruz. cambridgeside. com/quality/inspe

Inspection Checklist
Moderator's
Name: Gregorio Cruz Ti|Date: |3/21/99
Subject of Review:

We are reviewing the Manual that will
important that the maual is carefully

be sent to the users. It is
check for all possible errors.

Item: Comments: f Status:

The people participating have been chosenPlanning: j~Mpe
and notification of review has been sent

Overview was no overiew schedule since the tedpeople participating were familiar with the -o-

PrearaionThe inspectors should be revising theNo-met
manual carefully

Meeting: .Not-Complete

Third Hourj N ot-ComPIete

Rework Not-CompleteF wo r. -up....... N ot-C o m p lete

Folwu:.............. et~e

..j.i

Figure 15. MODERA TOR'S CHECKLIST FOR INSPECTIONS

80

4.3 Conclusion

This chapter presented recommendations for a distributed software engineering

class and an application that would enable the Quality Assurance Engineer (QAE) to

perform his/her work more systematically, faster and easier.

Section 4.1 states that in order for the students participating in geographically

distributed software engineering class, they need to learn software engineering first. By

learning all about software engineering, students will be able to perform better within the

project.

Section 4.2 shows how the QAE how he can incorporate the forms used in

technical reviews into the Web. This will allow all members of the team to have access

from anywhere. Print Screens are given in this chapter to show how the forms would

look once they are put into a Web Page.

81

Chapter Five

5 Conclusion

The DiSEL project allowed students from MIT and CICESE to learn software

engineering and to work in distributed software development projects. The class was

schedule two times a week, one for lecturing and one for laboratory. Students

participating were assigned a primary and a secondary role. The student would always

perform the primary role while being on-call for their secondary role.

The project asked the students to develop a software system that would enable

better collaboration between geographically distributed teams. The students acted like a

start-up company and were asked to participate in the 50K Entrepreneurship competition

at MIT. This allowed them to learn how to sell an idea.

While going through the entire development software cycle, the Quality

Assurance Engineer (QAE) faced many challenges that limited his performance. Having

class members with different levels of expertise in software engineering was the first

problems encountered. Some students had worked together before while others had

never seen each other. This mix created a situation in which the students were unable to

82

collaborate together at the beginning of the project since they had different ideas about

the job that they were asked to perform. Certain students were frustrated because,

although they were eager to produce their work, they were still learning about the

software development process. One solution to this problem may be to take the first two

months of the project to teach about the software engineering process and the roles

engineers play during the development cycles. This will prepare the students for the

development of a software system in a geographically distributed atmosphere.

Not having a common repository to share all the project's data was another

problem that the QAE faced. The QAE was producing different forms (see Appendixes)

and carrying out Technical Reviews that needed to be stored in a place where the team

could have access to it. Developing web pages that will enable the QAE to have the team

up to date on quality measures would be a solution to this problem.

To create the web pages, the QAE could take advantages of FrontPage from

Microsoft. FrontPage allows a user to develop web pages and forms needed for technical

reviews without knowing HTML programming. FrontPage also has the capabilities of

sending the forms created through e-mail once they have been completed and storing

them in a database. Sending e-mail notifications will kept the team informed while

having the forms in a database will allow members of the team to revisit the QAE's work

(forms or technical reviews) at any time.

83

In all, having a better-prepared team, and a place where the team members can

share their work, will increase the success and quality of a distributed software

development project. Additionally, having a well-prepared classroom, with all the

technology (e.g., video cameras, projectors, and audio) available, will enable the

collaboration between distributed teams to increase as communication tools will be easier

to access.

84

Bibliography

[1] Boehm, B., A Spiral Model of Software Development and Enhancement, ACM
SIGSOFT Software Engineering Notes, Vol. 11, No. 4, 1986.

[2] Evans, M. W., Marciniak, J., Software Quality Assurance and Management, John
New York, Wiley & Sons, 1986.

[3] Gibson, C.F., Lifeline Systems, Inc. - The Caresystem Project, MIT Sloan School
of Management, MIT, 1999.

[4] IEEE, Software Engineering Standards, IEEE Press, 1997.

[5] Hussein, Karim., Computer supported interaction in distributed design teams,
Ph.D. Thesis, Civil & Environmental Engineering, MIT, 1998.

[6] McCall, J. A., Richards, P.K., Walters, G.F., Factors in Software Quality, Vols I-
III, Rome Air Development Centre, 1977.

[7] MIT 50K, MIT $50K Entrepreneurship Competition, MIT, http://50k.mit.edu/
Last Visited: May 13, 1998.

[8] Mizumo, Y., Software Quality Improvement, IEEE computer, March 1983, pp.
66-72.

[9] Nenz, H., Management der Software-Qualitatssicherung, Softwaretechnik-
Trends, Vol. 3-1, 1983.

[10] NASA, Software Formal Inspections Guidebook, Office of Safety and Mission
Assurance at NASA, Washington D.C., August 1993.

[11] Pressman, R. S., Software Engineering: A Practitioner's Approach. McGraw-Hill,
New York, 1997.

[12] Vincent, J., Waters, A., Sinclair, J., Software Quality Assurance, Prentice Hall,
New York, 1988.

[13] Wallace, Dolores R., Wendy W. Peng, and Laura M. Ippolito, Software Quality
Assurance: Documentation and Reviews, NISTIR 4909, National Institute of
Standards and Technology, Gaithersburg, MD 20899, September, 1992.

[14] Wallmuller, Ernest., Software Quality Assurance: A practical approach, Prentice
Hall, Englewood Cliffs, NJ, 1994.

85

[15] Walker, M., Auditing Software Developoment Projects: A Control Methodology,
Proceeding, COMPCON Spring, Silver Spring, MD: IEEE Computer Society
Press, 1979.

[16] Yang, Bob., Managing a Distributed Software Engineering Team, M.Eng Thesis,
Electrical Engineering and Computer Science, MIT, May 1998.

86

APPENDIX 1: Audit Notification

To:

From:

Subject of Review:

The review is tentatively

Date:

schedule for:

Time: Room Number:

Alternative Date (if required):

Please send a copy of the phase/review documentation to:

Comments:

87

Date:

Appendix 2: Preparation Log
Name of Inspector:

Date:

Subject of Review:

88

Number Defect Found Time Spent

Appendix 3: Walkthrough Announcement
From:

Date:

To:

Subject of Review:

A walkthrough will be held on

at in

Please review the material that will be posted on the web before the walkthrough and
prepare your comments. If you cannot attend the walkthrough or will not be able to
review the material before that time, contact the author and Quality Assurance Engineer
so the walkthrough can be reschedule or another member of the team can act as a
reviewer.

Current status of the material:

The objective of the material is to:

Moderator:

Recorder:

Material:

89

Appendix 4: Action Item List

Subject of Review:

Material prepared by:

Moderator:

Reviewers

Recorder:

Current Status

Date of Review:

Design Leader:

New Status

90

Number Description of Action Item Resolution

Appendix 5: Inspection Notification Sheet

To:

From: Date:

Subject of Review:

Comments:

Review has been schedule.

The review is

Date:

tentatively schedule for:

Time: Room Number:

Alternative Date (if required):

Please send a copy of the phase/review documentation to:

Personnel assigned to the SQA Review Team for this review are:

Person

91

A(n)

Role

Appendix 6: Inspection Checklist

Moderator's Name:

Date:

Subject of Review:

92

ITEM COMMENTS STATUS

Planning

Overview

Preparation

Inspection Meeting

Third Hour

Rework

follow-up

Appendix 7: Audit Notification to Revise Design
Doc. v2.0

To: Gregoire Landel

From: Gregorio Cruz Date: Feb 12, 1999

Subject of Review: Review the Design Document to make sure that the standards for

Writing a design document were followed.

The review is tentatively schedule for:

Date: Feb 18, 1999 Time: 4:00 p.m. Room Number: 1-131

Alternative Date (if required):

Please send a copy of the phase/review documentation to: Documentation Specialist,

Designers and Quality Assurance Engineer.

Comments: Gregoire, please verify that the design document is incorporating the

Requirements specified in the Requirements Document. Also, verify that

The document is satisfying the IEEE Software Engineering Standards.

Finally, check for grammatical errors. Try to spent at least 3 to 4 hours

On this (the whole process). E-Mail me if you have any questions. Attach

Is an action item list for you to write the items that need clarification.

93

Appendix 8: Preparation Log to revise Design Doc.
v2.0

Name of Inspector: Gregoire Landel

Date: 2/21/99 (Reading done 2/14/99)

Subject of Review: Software design document v2.0 (Feb 12, 1999) for VRML team

Total time spent (reading + writing : 1 hr 15 min)

94

Number Defect Found Time Spent

1 Section 1.1: Visualize movement + social feedback. See
annotated doc.

2 Section 2 (3 rd paragraph): 120 deg. vision

Section 2 (4h paragraph): Please not distinct functions of
AWARENESS of VRML environment.

4 Section 2 (5 th paragraph): Please make references to figure.

5 Figure 1: Social feedback is not included.

6 Page 8 (bottom): Unclear reference to "first environment"

7 Section 3.3 (Page 9): Requirements for head movement and
of avatar is not met.

8 Section 3 .3 (Page 9, bottom): Consider including several
areas for avatars.

9 Minor editorial suggestions throughout the document.

GOOD DOCUMENT!!!!!

Appendix 9: Walkthrough Announcement of PM
Plan

From: Gregorio Cruz (Quality Assurance Engineer)

Date: February 3, 1999

To: Alberto Mireles (Quality Assurance Engineer)

You will be acting as the reviewer in the Walkthrough of the Project Manager's

Plan. If you have any questions, please let me know by e-mail or in person.

Subject of Review: Freeze the Project Manager's Plan

A walkthrough will be held on February 9, 1999

at 4:00 P.M. (Eastern) in 1-131 (Design Studio of the Future)

Please review the material that will be posted on the web before the walkthrough and
prepare your comments. If you cannot attend the walkthrough or will not be able to
review the material before that time, contact the author and Quality Assurance Engineer
so the walkthrough can be reschedule or another member of the team can act as a
reviewer.

Current status of the material: Not Frozen (needs revision)

The objective of the material is to: Review the document to be sure that it is written

In accordance with the IEEE Soft. Eng. Standards.

Moderato

Recorder:

Material:

r: Gregorio Cruz

Ricardo Acosta

The material to be reviewed will be the Project Manager's Plan. The PM

Would send an e-mail very soon letting everyone know where this doc. can

Be found so you can start reviewing it. As for the IEEE standards, I'll try to

Get a copy for every as soon as possible.

95

