
Unified Congestion Control for Unreliable

Transport Protocols

by

Hariharan Shankar Rahul

Bachelor of Technology (Computer Science and Engineering)
Indian Institute of Technology, Madras, India (1997)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

@ Massachusetts

August 1999

Instituteof Technology 1999. All rights reserved.

A uthor A . ..Author
Department of Electrical Engineering and Computer Science

August 13, 1999

Certified by
Hari Balakrishnan

Assistant Professor
Thesis Supervisor

Accepted by :. :?.
Arthur C. Smith

Chairman, Department Committee on Graduate Students
MASSACHUSETTS INSTITUTE

NOV 0 9M~fflfl-P n -I wuU - - - w

.H

Unified Congestion Control for Unreliable Transport

Protocols

by

Hariharan Shankar Rahul

Submitted to the Department of Electrical Engineering and Computer Science
on August 13, 1999, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science

Abstract

There is an increasing number of Internet applications that do not require reliable
data transfer, and hence do not solicit feedback from receivers in the form of acknowl-
edgments. However, receiver feedback about received and lost packets is essential for
proper network behavior in the face of congestion. In this thesis, we propose an
application-independent feedback scheme for unreliable flows running over the User
Datagram Protocol. Our scheme is lightweight, adaptive and robust in the face of
network losses. We implement our scheme in the context of an end-to-end conges-
tion management infrastructure, the Congestion Manager. The Congestion Manager
integrates congestion management across multiple transports and applications, and
exports a general programming interface that allows applications to adapt to conges-
tion. We evaluate the performance of our scheme through both simulation, as well
as wide-area measurements using our user-level implementation of the Congestion
Manager. Our feedback scheme performs efficiently across a variety of bottleneck
bandwidths, and in the presence of significant congestion and cross traffic.

Thesis Supervisor: Hari Balakrishnan
Title: Assistant Professor

2

Acknowledgments

I am deeply indebted to my advisor, Prof. Hari Balakrishnan for his guidance and

suggestions throughout the duration of this thesis. His enthusiasm for research, effi-

ciency, and excellent writing and presentation skills have been a source of inspiration.

The research described in this thesis is joint work with my advisor and Dr. Srini

Seshan of the IBM T. J. Watson Research Laboratory. I thank them for their collab-

oration and look forward to further interaction with them in the future.

Prof. John Guttag was kind enough to support me when I was still in search of

a research direction, and has been a wellspring of advice. I would like to express my

gratitude to him. I would also like to acknowledge the members of the SDS group,

especially Ulana Legedza and Dave Wetherall for helping me find my feet during my

first term at MIT.

My stay at MIT has been enriched by the many friends I have made and hope to

keep in the coming years. Bodhi Priyantha, Suchitra Raman and Elliot Schwartz have

been great officemates. I will always remember the discussions we have had, academic

and otherwise. Chandra Boyapati, Raj Iyer, Dina Katabi and Joanna Kulik made

LCS a really fun place to work and play.

I would like to thank my uncle, aunt and grandmother for providing me a home

away from home. Saving the best for last, I must express my sincerest gratitude to

my parents for always supporting, loving and believing in me. I dedicate this thesis

to them.

3

Contents

1 Introduction 8

1.1 M otivation . 8

1.2 Brief D escription . 10

1.3 Roadmap of Thesis . 11

2 Background and Related Work 12

2.1 The Need for Congestion Control . 12

2.1.1 Characteristics of Congestion Control Algorithms 14

2.1.2 Increase and Decrease Algorithms 15

2.2 Related W ork . 15

2.2.1 Router Support . 16

2.2.2 Transmission Control Protocol 17

2.2.3 Rate Adaptation Protocol . 20

2.2.4 Other Unicast Congestion Control Protocols 20

2.2.5 Multicast Congestion Control 20

2.3 Conclusion . 21

3 Congestion Feedback 22

3.1 D esign Criteria . 23

3.2 Design of the Feedback Protocol . 25

3.3 Congestion Manager . 30

3.3.1 A rchitecture . 30

3.3.2 Application Programming Interface 32

4

3.4 User-level Implementation . 36

3.4.1 Architecture of the CM . 36

3.4.2 An Example Application . 38

3.5 Summary . 39

4 Performance Evaluation 41

4.1 Simulation . 41

4.1.1 Simulation Environment . 42

4.1.2 Simulation Results . 43

4.2 Implementation Evaluation . 44

4.3 Conclusion . 47

5 Conclusions and Future Work 52

5.1 Summary 52

5.2 Future Work . 53

5

List of Figures

1-1 Rapid growth of number of hosts on the Internet with time (Data

obtained from [14]). 9

2-1 Schematic connectivity model of the Internet. Shared infrastructure

and overload causes congestion. 12

2-2 Variation of network throughput with offered load. 13

2-3 Pseudocode for congestion control and avoidance of TCP. Note that

cwnd and ssthresh are measured in bytes and TCP additionally up-

dates its estimate of the round-trip time upon ACK arrival 17

2-4 Evolution of the sender window as a function of time. 18

3-1 Schematic architecture of a generic feedback scheme. 25

3-2 Sender-side pseudocode for handling probes/responses. Each entry in

the PendingProbes Queue has three elements: seq, time and nsent. . 26

3-3 Receiver-side pseudocode for handling probes/responses. 27

3-4 Format of the probe packet. Type is PROBE (1). Sequence is the

incrementing probe sequence number. 28

3-5 Format of the response packet. Type is RESPONSE (2). ThisProbe is

the sequence number of the probe triggering the response and LastProbe

is the sequence number of the previous probe received. Count is the

number of bytes received between LastProbe and ThisProbe. 29

3-6 Sender Protocol Stack architecture with the Congestion Manager. . 31

3-7 Data structures and functions for the sender-side CM API. 34

3-8 Data structures and functions for the receiver-side CM API. 34

6

3-9 Architecture of applications and the CM daemon at the sender. . . . 37

3-10 Pseudocode for a layered adaptive audio server. Details of locking crit-

ical sections for correctness have been elided in the interest of simplicity. 40

4-1 Network topology used for simulation experiments. 43

4-2 Sequence traces of TCP and UDPCC for a bottleneck bandwidth of

200 Kbps. The lower line shows the TCP trace. 44

4-3 Sequence traces of TCP and UDPCC for a bottleneck bandwidth of

400 Kbps. The lower line shows the TCP trace. 45

4-4 UDPCC and TCP throughput as a function of bottleneck bandwidth. 46

4-5 Sequence traces of TCP and 2 UDPCC flows for a bottleneck band-

width of 200 Kbps. The upper line shows the TCP trace. The traces

for the two UDPCC flows are almost identical. 47

4-6 Sequence traces of TCP and 2 UDPCC flows for a bottleneck band-

width of 400 Kbps. The upper line shows the TCP trace. The traces

for the two UDPCC flows are indistinguishable. 48

4-7 Throughput of TCP and 2 UDPCC flows as a function of bottleneck

bandw idth. 49

4-8 Sequence traces of TCP and UDPCC for a sender on full-sail.stanford.edu.

The slightly longer line shows the TCP trace. 49

4-9 Sequence traces of TCP and UDPCC for a sender on terrorism.cs.berkeley.edu.

The relatively straight line shows the TCP trace. 50

4-10 Sequence traces of competing UDPCC flows for a sender on full-sail.stanford.edu.

The traces are virtually identical. 50

4-11 Sequence traces of competing UDPCC flows for a sender on terror-

ism.cs.berkeley.edu. The traces are indistinguishable. 51

7

Chapter 1

Introduction

1.1 Motivation

The rapid growth in the popularity of the Internet (shown in Figure 1-1 has been a

prominent trend in networking and communication in the 1990s. Many of the cur-

rently popular applications like Web transfer [3], electronic mail [26] and ftp [27]

require reliable data transfer and use the Transmission Control Protocol (TCP) [15],

which provides applications with a reliable, ordered, exactly-once byte stream ab-

straction over a network that can drop, reorder or duplicate packets. An important

consequence of using TCP as the transport protocol is that it solicits feedback from

receivers not only for reliability, but also to regulate the sending rate of sources de-

pending on congestion in the network.

However the diversity and richness of content sought by users of any public

medium, including the Internet, increases with its popularity. While the chief con-

tent type on the Internet has been hyperlinked text and images, there has been an

increase in audio and video traffic in recent times. It is anticipated that traffic due to

video and audio will constitute a significant proportion of all future Internet traffic.

These types of traffic have real-time requirements which are not well served by TCP;

delaying data for in-order delivery can often cause it to be worthless for these appli-

cation. Hence, these applications use the User Datagram Protocol (UDP) [36] which

promises best-effort delivery.

8

4.5e+07
".Jint-growth.txt"

4e+07

3.5e+07

3e+07

.8 2.5e+07 -

E 2e+07 -

z

1.5e+07 -

1e+07 -

5e+06 -

0
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

Year

Figure 1-1: Rapid growth of number of hosts on the Internet with time (Data obtained
from [14]).

Many applications that use UDP do not require per-packet reliability and hence

do not solicit feedback from receivers for this purpose. However, receiver feedback is

essential for senders to detect and adapt to network congestion. Open-loop operation

is dangerous as the stability of the Internet critically depends on traffic adapting to

network congestion, and inelastic sources can cause widespread network collapse.

Current Internet protocol stacks do not provide any convenient method for UDP

applications to detect or adapt to congestion. In many cases, application writers

are forced to implement this mechanism independently for each application or use

inappropriate protocols like TCP. The goal of our work, therefore, is to provide a

scheme to allow detection and adaptation to network congestion by applications which

do not solicit feedback. We have the following design goals for our feedback scheme.

Application independence: This will allow application writers to focus on the

mechanisms for congestion adaptation, rather than congestion detection. Addi-

tionally, a scheme which can be implemented independent of individual appli-

9

cations can exploit global knowledge, for example, it can integrate congestion

information across flows to the same destination host.

Adaptation: It is important that the feedback scheme work across and adapt to a

wide range of round-trip times and bottleneck bandwidths.

Robustness: The feedback scheme should work correctly and efficiently when control

packets are lost. This is critical as the feedback protocol is especially important

during epochs of congestion and loss in the network.

1.2 Brief Description

Our feedback scheme is designed to meet the goals listed in the previous section. It

consists of a feedback module at the sender, and a response module at the receiver

which are implemented independent of all applications. Applications notify the sender

feedback module whenever data is transmitted, and the receiver response module

whenever data is received. The sender feedback module sends periodic probes to the

receiver module and solicits responses from the receiver module. The frequency of

the probes adapts to the round-trip time of the connection. While this induces a

bias towards connections with short round-trip times, we adopt this policy in order

to mimic the behavior of TCP, which is the most widely deployed transport protocol.

Our feedback scheme can tolerate losses of both probes and responses, and reacts

correctly in the face of infrequent feedback.

We implement our feedback scheme in the context of the Congestion Manager [1],

which provides an infrastructure for unified end-to-end congestion management. It

integrates congestion information across all flows with the same destination address

and detects and reacts to congestion events by appropriately adjusting its rate esti-

mates. It exports a simple, general and flexible programming interface which exposes

congestion information. The API is designed to allow the Congestion Manager to de-

tect and react to network congestion, while giving applications maximum flexibility

in adapting to congestion.

10

The chief contributions of this thesis are:

" The design of a robust, adaptive and application-independent feedback scheme

for UDP flows.

" A user-level UNIX implementation of the Congestion Manager.

" Evaluation of our feedback scheme through simulation and wide-area Internet

experiments.

1.3 Roadmap of Thesis

The rest of this thesis is organized as follows. Chapter 2 presents some background

material in congestion management, describes related research and compares it to

our framework. Chapter 3 presents the design criteria and our feedback protocol in

Chapter 3. It also outlines the motivation and design of the Congestion Manager, as

well as the details of our user-level implementation. We evaluate the feedback scheme

through simulation studies as well as the performance of our implementation and

present the results in Chapter 4. We conclude with a summary of our contributions

and directions for future work in Section 5.

11

Chapter 2

Background and Related Work

This chapter discusses the related work in congestion control for unicast and multicast.

We begin with a description of the Internet model, motivate the need for congestion

control, and outline the basic principles in Section 2.1. Section 2.2 surveys the related

work in congestion control algorithms and protocols.

2.1 The Need for Congestion Control

Figure 2-1 schematically shows the connectivity model of the network. Individual

networks are interconnected through routers that store incoming packets and forward

them along one of several output links. The rate of outgoing packets is limited by the

bandwidth of the outgoing links which can in general be less than the bandwidth of

Figure 2-1: Schematic connectivity model of the Internet. Shared infrastructure and
overload causes congestion.

12

U

Congestion collapse occurs

Offered load (bits/second)

Figure 2-2: Variation of network throughput with offered load.

the incoming links. In order to accommodate short surges in network traffic, routers

have queues (buffers) for temporary storage of packets. Queue lengths grow when

the incoming rate exceeds the outgoing bandwidth and packets are dropped when the

router detects congestion or the queues are full. Thus there is a contention among

different flows for the shared resources of link bandwidth and router buffers. Network

congestion occurs when demand for these shared resources exceeds what is available.

Overload severely degrades network throughput as shown in Figure 2-2 which

plots throughput as a function of offered load. At low levels of load (to the left of

the knee), throughput increases linearly with offered load as the network is not fully

utilized. Throughput is maximum when the offered load is close to the bottleneck

bandwidth and plateaus as queue lengths increase at the bottleneck router. As offered

load is increased further, the throughput suddenly drops to a negligible amount at a

cliff as all competing flows send data but no useful payload reaches the receiver as

most packets are dropped.

A seemingly obvious solution to avoid network congestion is to overprovision the

network to account for the maximum possible demand. However, the observed vari-

ance in demand is too high to allow overprovisioning without greatly reducing the

13

average utilization of the network resources thus making this solution economically

infeasible [34]. As a result, it is necessary to come up with congestion control mech-

anisms to maintain the network operating point to the left of the knee, and ensure

that router queues are not overflowed. This is in addition to end-to-end flow control

which attempts to ensure that the sender sends data at most as fast as the receiver

can process it. Flow control is normally achieved by negotiation between the sender

and the receiver.

2.1.1 Characteristics of Congestion Control Algorithms

For the following discussion, we will assume that the network is shared by n users.

Time is divided into discrete slots at the beginning of which users set their load level

based on feedback during the previous slot. The offered load of the ith user during

time slot t is Xi(t). The chief criteria for any algorithm for allocation of network

resources among flows, as described in [5] are:

Efficiency: This is defined by the closeness of the total load on the resource to its

knee. If Xa denotes the desired load level at the knee, the resource is operating

efficiently as long as X(t) = EnI Xi(t) is sufficiently close to Xoai.

Fairness: When multiple users share a resource, all users in a similar class ought to

have the equal share of the bottleneck. If allocation is not exactly equal, the

degree of fairness is measured by the fairness index defined as:

F (X (t)) = (E X= t)
n(E"_I X, (t) 2)

Distributedness: This is necessary as a centralized scheme requires complete knowl-

edge of the state of the network as well as individual flows,and cannot scale to

a large network such as the Internet.

Convergence: Convergence is measured by the time taken till the system reaches

its goal state from an arbitrary starting state. The system oscillates around the

14

goal state once it is reached. Ideally, the system reaches the goal state quickly

and has a small amplitude of oscillation around it.

2.1.2 Increase and Decrease Algorithms

Chiu and Jain [5] study different controls, linear and non-linear, for adjusting the

values Xi(t) to achieve the resource management goals listed in Section 2.1. They

conclude that non-linear controls are extremely sensitive to system parameters and

hence not robust. The linear control chosen is of the form

X*~ + 1) = a + bXi(t)

In order to satisfy the goals listed in Section 2.1, it can be shown (if users are

synchronized) that the appropriate equations are:

Additive Increase: Xi(t + 1) = Xi(t) + a, a > 0

Multiplicative Decrease: Xi(t + 1) = bXi(t), 0 < b < 1

Thus, under certain assumptions, Additive-Increase/Multiplicative-Decrease (AIMD)

converges to fairness and efficiency, and is the algorithm of choice for congestion

control.

2.2 Related Work

This section discusses past work in the design of congestion control protocols. Several

congestion controlled protocols for unicast have been proposed in the literature, of

these we describe schemes which require router support, TCP [25] and Rate Adapta-

tion Protocol [30] in some detail. We also briefly discuss other proposals for unicast

congestion control, as well as multicast congestion control in Sections 2.2.4 and 2.2.5

These protocols can be window- or rate-based. Window-based protocols are gen-

erally acknowledgment-clocked; i.e., the arrival of a new acknowledgment triggers the

sending of a new packet. Thus, the number of outstanding packets in the network

is carefully controlled and can at most be equal to the window size. Moreover, the

ack-processing and packet transmission together incur the cost of only one interrupt

15

on the sender. However, window-based protocols tend to send packets in a burst.

As an alternative, protocols where the sending rate is explicitly controlled have been

proposed. However, in pure rate-based protocols, packet transmissions are triggered

solely by timers at the sender which can sometimes make it a bottleneck. More-

over, a purely rate-regulated sender could cause an unbounded number of packets

outstanding in the network.

2.2.1 Router Support

DECbit was one of the earliest congestion control schemes. In DECbit, the network

provides feedback to allow senders to adjust the amount of traffic they transmit

into the network. Routers monitor the average queue length in some defined time

interval. If the average queue length exceeds a threshold, the router sets a congestion-

indication bit in packets flowing in the forward direction. Receivers echo this bit in

their acknowledgment to the sender. The sender monitors and stores these congestion-

indication bits for a certain number of packets. If the fraction of congestion-indication

bits which are set exceeds a threshold, the window size is decreased multiplicatively,

else the window size is increased additively. The scheme is intended to ensure that the

network operates in congestion-avoidance mode to the left of the knee in Figure 2-2.

A more recent proposal suggests that routers send Explicit Congestion Notifications

(ECN) [28] to senders during periods of congestion. For example, Random Early

Detection (RED) gateways [12] can achieve this by marking packets with a certain

probability when the queue length exceeds a threshold.

Another method to ensure proper network behavior is isolation of flows using

a mechanism like fair queueing [8] so that conforming flows are not penalized by

an aggressive sender. Mechanisms such as integrated services [6] and differentiated

services [20] also attempt to provide guarantees per flow or traffic class and achieve

a similar effect. However, all these schemes rely on modifications to routers which is

a substantial change to the current infrastructure. In contrast, we focus on a scheme

which requires only end-system changes.

16

2.2.2 Transmission Control Protocol

The Transmission Control Protocol (TCP) is the most popular protocol for reliable

data transmission on the Internet today. In addition to congestion control, it also per-

forms the functions of loss recovery and connection management. In this discussion,

we will describe only the congestion control algorithms used in TCP.

Initialization:

cwnd = 1;
ssthresh = 65536; // Transition point from slow start to

// congestion avoidance

Acknowledgement Arrival:

if (cwnd < ssthresh) // Slow Start
cwnd += MSS;

else // Congestion Avoidance (Additive Increase)

cwnd += MSS*MSS/cwnd;

Duplicate Acknowledgements:

cwnd /= 2; // Multiplicative Decrease

ssthresh = cwnd;

Timeout:

ssthresh = cwnd/2;
cwnd = 1;

Figure 2-3: Pseudocode for congestion control and avoidance of TCP. Note that cwnd
and ssthresh are measured in bytes and TCP additionally updates its estimate of
the round-trip time upon ACK arrival.

TCP congestion management is based on the fundamental concepts of AIMD and

is described in the seminal paper by Van Jacobson [15]. TCP uses a sliding-window

protocol where the window determines the maximum number of packets which can be

outstanding in the network. TCP performs flow control by ensuring that the sender's

transmission window is less than the receiver's advertised window.

TCP performs congestion control by constantly adapting the window size based

17

Congestion Avoidance

Timeout

Additive Multiplicative
Increase Decrease

Congestion
Avoidance

Slow
S tart So

Start

cwnd = 1

Time

Figure 2-4: Evolution of the sender window as a function of time.

on its estimate of congestion in the network. Packet losses are assumed as indicators

of congestion in the network. This is a justifiable assumption in most modern wired

networks. There are two distinct modes in which TCP operates:

Slow Start: TCP is in slow start when a connection first starts sending data, or

restarts after an idle period. The congestion window cwnd is initialized to one

segment size. Each arriving ack increases the size of the congestion window by

a segment size (MSS). When the congestion window size exceeds a slow start

threshold ssthresh, TCP moves into the congestion avoidance phase.

Congestion Avoidance: TCP is expected to operate in congestion avoidance mode

in its steady state. The congestion window is increased by one MSS for each

successfully transmitted window. A packet loss causes halving of the congestion

window. Additionally, ssthresh is set to half the size of the congestion window

at the time of a loss. Persistent losses (detected by a timeout) reduce the

congestion window size to one MSS and cause the connection to move back into

slow start.

Figure 2-3 shows pseudocode describing the behavior of TCP. The evolution of the

18

sender window as a function of time is plotted in Figure 2-4.

The actual sender window is set to the minimum of the congestion window and

the receiver advertised window. In the steady state, TCP transmits one window of

packets every round-trip. Since the congestion window tends to the product of the

bottleneck bandwidth and round-trip delay, this implies that the long-term transmis-

sion rate of a TCP sender is equal to the bottleneck bandwidth. As described earlier,

the use of the same window for both loss recovery and congestion control couples the

two functions, and does not allow the use of TCP solely for congestion control. How-

ever, the prevalence of TCP has made it imperative that any new congestion control

algorithm or protocol is fair to existing TCP flows in the network. This has led to

the notion of TCP-friendliness [9]. The TCP-friendly equation relates the throughput

T of a TCP connection with round-trip R, sending packets of size B bytes and an

observed probability of packet loss p as:

1.5=2/3* B

It is believed that proposed protocols for congestion control should show a similar

relationship between throughput and loss probability.

However, TCP does not share control information across connections, and hence

concurrent connections to the same destination (a common case in Web traffic) com-

pete, instead of cooperating for network bandwidth. HTTP/1.1 [10] addresses this

issue by multiplexing several transfers onto a single long-lived TCP connection. How-

ever, this imposes a total order on all the packets belonging to logically different

streams, and a packet loss on one stream can stall other streams even if none of their

packets are lost. Our congestion-management infrastructure multiplexes congestion

control information across flows to the same destination, and avoids undesirable cou-

pling of logically independent streams.

19

2.2.3 Rate Adaptation Protocol

Rate Adaptation Protocol (RAP) is an end-to-end TCP friendly protocol which uses

an AIMD algorithm. It is similar to our work in that it separates network congestion-

control from application-level reliability. It is designed for unicast playback of real-

time streams and other semi-reliable rate-based applications. While the internal rate-

control algorithms used in RAP are similar to those used in our work, there are some

key differences. The receiver-side in RAP acknowledges every packet transmitted by

the sender. This might be too heavyweight for applications which do not require per-

packet reliability. Moreover, RAP performs congestion control on a per-application

basis whereas our congestion infrastructure unifies congestion information on a per-

destination basis. Additionally, RAP does not provide a convenient and general API

for applications to adapt to network congestion.

2.2.4 Other Unicast Congestion Control Protocols

Several other protocols have been proposed in the area of unicast congestion control.

However, most of them do not fairly coexist with TCP flows. There are also some

commercial media streaming players which are used over the Internet. Examples are

Real Player [29] and Microsoft Windows Media Player [19]. While these claim to

adapt to network congestion, no details or analysis are available to substantiate these

claims.

2.2.5 Multicast Congestion Control

Recently, congestion control protocols have been proposed for real-time multimedia

applications. RLM [17] describes a congestion control algorithm for layered streams.

There is also a large body of work in congestion control for reliable multicast applica-

tions [31]. Unlike these application-specific proposals, our work attempts to provide

a unified congestion-management layer and an API that allows applications to inde-

pendently adapt to congestion. The problem of scalable feedback for multicast video

distribution has been addressed in IVS [4]. The real-time transport protocol (RTP)

20

and the associated real-time control protocol (RTCP) [33] describe end-to-end trans-

port and monitoring functions for real-time streams. RTCP specifies packet formats

for sender and receiver reports, as well as methods to calculate the interval between

these packets. One key issue is that this interval is required to be at least 5 seconds,

which does not allow fine-grained adaptation to congestion by the sender. This is

unlike our scheme where the frequency of feedback adapts to the round-trip time of

the connection.

2.3 Conclusion

The chapter began with a discussion of the Internet model and motivated the need

for congestion control to prevent collapse of the network. We then presented a ba-

sic theoretical foundation of congestion-control algorithms. In Sections 2.2.1, 2.2.2

and 2.2.3, we discussed router support, TCP and RAP respectively. Section 2.2.4

discussed some other proposals for unicast congestion control and Section 2.2.5 pre-

sented proposals for multicast congestion control. We observe that many of these

current approaches have problems like coupling congestion control with loss recovery,

requiring changes in network infrastructure, or application-specificity.

21

Chapter 3

Congestion Feedback

This chapter describes the design and implementation of our feedback protocol for

congestion-controlled unreliable transports.

Senders need periodic feedback about the network state so that they can adapt

their rate of transmission. Feedback allows transmitters to increase their rate when

the network has spare capacity, and decrease it when the network is congested. As

described in Chapter 2, AIMD is used as the algorithm for updating rate estimates

whenever feedback is obtained.

Packet loss or explicit notification by routers is used as the signal of congestion by

most rate adaptation algorithms, and its absence is assumed to indicate the availabil-

ity of bandwidth. Packet drops are usually detected by obtaining acknowledgments

of packets from receivers and detecting missing packets.

Protocols like TCP utilize acknowledgments for both reliability and congestion-

feedback information. However, implementation of an acknowledgment scheme is

unnecessary for many applications which do not require per-packet reliability and

essentially desire only an estimate of the allowable transmission rate. Hence, our

goal is to design a scheme that provides application-independent feedback and can be

conveniently used for updating transmission rates.

The rest of this chapter is organized as follows. Section 3.1 elaborates on the

criteria for a good feedback scheme. We present the details of our feedback scheme

in Section 3.2. Our feedback scheme is implemented in the context of the Congestion

22

Manager, which we describe in Section 3.3. We discuss the implementation of the

Congestion Manager in Section 3.4 and summarize in Section 3.5.

3.1 Design Criteria

This section lists and describes the requirements for a good congestion feedback

scheme.

(R-1) Incremental deployment: As Figure 1-1 shows, a chief characteristic of the

Internet is its immense scale. Surveys show that there are over 43 million hosts

in the Internet, as of January 1999 [14]. Hence, there is a significant number

of legacy systems and protocol implementations on the Internet. As a conse-

quence, protocols must be designed and deployed in an evolutionary manner in

order to have an impact on the Internet [11]. There are two facets to this is-

sue: (a) developing a clear deployment path for new protocols from the current

state of the world, and (b) ascertaining that the new protocol does not interact

detrimentally with existing implementations. In our context, this implies that

our congestion feedback scheme must interact seamlessly with unmodified net-

work hosts, and must also be friendly to other congestion-controlled protocols

(e.g. TCP) widely deployed on the Internet. Furthermore, we do not require

or assume any router mechanisms such as ECN, although these are valuable as

hints.

(R-2) Network load: Our problem domain deals with applications that do not re-

quire per-packet reliability, and hence the feedback scheme requires control in-

formation which is not directly useful to such applications. The scheme would

be impractical if the traffic generated to exchange this control information be-

tween hosts is a significant proportion of all transmissions as this could poten-

tially generate network congestion. Also, the rate adaptation scheme must react

conservatively in the absence of feedback, since network congestion could have

occured.

23

(R-3) Host load: The performance of applications which do not solicit feedback

from receivers should not be adversely affected by processing related to feedback.

At the sender, this implies that the state maintained per flow should be small so

as to scale with the number of flows. Additionally, the sending of control packets

normally incurs context switching overhead and possibly timer interrupts. The

scheme should hence send as few control packets as possible to reduce this cost.

At the receiver, the arrival of each data packet updates some state information

for the flow. The arrival of each control packet also triggers an interrupt, some

processing and a control packet transmission in response. Our scheme reduces

the per-flow state as well as the processing in response to control packets at the

receiver.

(R-4) Adaptation: In the absence of router support, feedback about congestion is

normally available within a round-trip of its onset. Protocols like TCP adapt at

an interval which is a function of the mean and variance of the round-trip time.

The feedback of frequency solicited from receivers must therefore depend on

the round-trip time (unlike protocols like RTCP). In particular, the frequency

of feedback must at least be the granularity at which the congestion-control

scheme adapts to congestion. A lower frequency could cause the congestion-

control scheme to reduce its sending rate unnecessarily leading to inefficient

utilization of network resources.

(R-5) Loss resilience: Control packets that carry feedback information can be lost

in the network. The feedback protocol, in concert with the algorithm for conges-

tion control, must be able to accommodate and detect the loss of these control

packets in order to maintain network stability. Since congestion feedback is use-

ful only if it is timely, it is not worthwhile to use a reliable transport protocol

like TCP which ensures eventual arrival (often delayed) of control packets. Ad-

ditionally, a protocol like TCP imposes additional state and processing overhead

on end-hosts.

24

Sending Host

Sender

Application |

Data

Packets

Receiving Host

Receiver

Application

' Feedback - - -- ----- ---- ---- - - - - - - - - 5 FebcFeedback Control Packets Feedback

Moue h tactte ag rc ec-----Mode

Figure 3-1: Schematic architecture of a generic feedback scheme.

3.2 Design of the Feedback Protocol

This section presents the details of our protocol for application independent feedback.

Figure 3-1 describes our schematic architecture. Sender and receiver applications only

exchange data packets; they inform the feedback modules about the transmission or

arrival of data packets. The feedback modules use this information to exchange

appropriate control packets.

One possible feedback scheme is for the receiver layer to acknowledge every kIh

data packet with the total number of bytes received since the previous acknowledg-

ment. However, this is undesirable since it requires the overhead of timers at the

receiver feedback module to send an acknowledgment in case sufficient data packets

are not received. Additionally, as described in requirement R-4, these timers will

require round-trip time information which is generally not available at the receiver.

Moreover, since the sender feedback module is not guaranteed to be on the data path,

it does not have the ability to number each packet with a unique sequence number

and this scheme cannot unambiguously detect losses.

25

S1. Sender Initialization

int nxmitted, probenum;

Queue PendingProbes;

nxmitted = 0;

probenum = 0;
PendingProbes.init();

S2. Sender action on a sending nsent bytes

nxmitted += nsent;

S3. Sending a probe to the receiver

probe = <PROBE, probenum>;
Send probe;
PendingProbes.insert({seq=probenum, time=now(), nsent=nxmitted});
nxmitted = 0;
probenum++;

Set timer for next probe;

S4. Sender action on receiving a response <RESPONSE, lastprobe,
thisprobe, count>

// Delete state for probes for which responses
// will never again be received
while (PendingProbes.head().seq <= lastprobe) do
PendingProbes.delete(;

totsent = 0;

// At this point, the first entry in PendingProbes
// must have seq = lastprobe + 1
while (PendingProbes.head().seq <= thisprobe) do {

totsent += PendingProbes.head().nsent;
timesent = PendingProbes.head().time;
PendingProbes.delete();

}
totrecd = count;

rtt = now() - timesent;

Update congestion control algorithm with
totsent, totrecd, rtt;

Figure 3-2: Sender-side pseudocode for handling probes/responses. Each entry in the
PendingProbes Queue has three elements: seq, time and nsent.

26

R1. Receiver Initialization

int lastprobe, narrived;

lastprobe = -1;
narrived = 0;

R2. Receiver action on receiving nrecd bytes

narrived += nrecd;

R3. Receiver response to probe <PROBE, thisprobe>

response = <RESPONSE, lastprobe, thisprobe, narrived>;
response.send();

lastprobe = thisprobe;
narrived = 0;

Figure 3-3: Receiver-side pseudocode for handling probes/responses.

Instead, we choose to design a scheme where receivers are purely reactive, while

senders send periodic probes to elicit feedback. The frequency of probing is a function

of the round-trip time estimated for the destination. While this implies that the

sending of each probe is triggered by a timer interrupt at the sender, we believe

that this cost is acceptable since it is incurred for several packet transmissions across

multiple flows to this destination. Receivers respond to arriving probe packets with

appropriately constructed response packets. Each sender probe has a unique sequence

number, and each response packet contains the numbers of the probes to which it

replies as well as the number of bytes received in the relevant interval. The sender

feedback module can correctly associate probes and responses even in the presence of

network losses, and thereby determine (using its internal state) whether data packets

have been dropped.

Figures 3-2 and 3-3 describe the behavior of the sender and receiver respectively

(using C++-like pseudocode) upon receipt of probe and response packets. Note that

the pseudocode uses a first-in first-out Queue datatype to store the state associated

with each transmitted probe. The datatype supports the following operations:

27

0 4

Version Type Unused

Sequence

Figure 3-4: Format of the probe packet. Type is PROBE (1). Sequence is the incre-
menting probe sequence number.

init: Initialize the state of the queue.

head: Returns the element in the front of the queue.

insert: Adds an element at the rear of the queue.

delete: Removes an element from the front of the queue.

Also, the operator < ... > is used to indicate composition or decomposition of a mes-

sage into its individual elements.

The module for sender feedback maintains two integer variables nxmitted and

probenum, as well as a queue of state for unacknowledged probes. nxmitted tracks

the number of bytes transmitted by the sender since the last probe was sent and

probenum is the sequence number of the next probe packet to be transmitted. When-

ever the transmitting application informs the sender feedback module that nsent

bytes have been sent, nxmitted is incremented by the value of nsent. When the

timer associated with the probe fires, the sender stamps the outgoing probe packet

with sequence number probenum (Figure 3-4 shows the format of a probe packet).

This sequence number is logically separate from the sequence number space of the

different transports and applications using the CM. It then adds the time this probe

was sent, as well as the value of nxmitted to its queue of outstanding probe messages.

probenum is then incremented, nxmitted is set to 0 and a transmission timer for the

next probe is set.

The receiver needs to maintain two integer variables narrived and lastprobe

per transmitting host. narrived tracks the number of bytes received since the last

probe and lastprobe is the sequence number of the last probe received. Whenever

28

8

Version Type Unused

LastProbe

ThisProbe

Count

Figure 3-5: Format of the response packet. Type is RESPONSE (2). ThisProbe is the

sequence number of the probe triggering the response and LastProbe is the sequence

number of the previous probe received. Count is the number of bytes received between

LastProbe and ThisProbe.

the receiving application informs the feedback module of the arrival of nrecd bytes,

the value of narrived is incremented by nrecd. Upon the arrival of a new probe

with number thisprobe, a response packet (with the format shown in Figure 3-5)

is constructed with entries corresponding to lastprobe, thisprobe and narrived.

lastprobe is now set to thisprobe and narrived is set to 0 to maintain the invariant

properties.

Upon receipt of a response packet, the sender can determine the number of bytes

transmitted between lastprobe and thisprobe. From its queue of outstanding

probes, the sender can also estimate the round-trip time as probes are expected to

be acknowledged immediately by receivers. It can then call cm-update with the ap-

propriate parameters to update congestion information. Additionally, the sender can

delete the state associated with all probes with sequence number less than or equal to

thisprobe. This is possible since the sender now knows that future response packets

will have a value of lastprobe at least as large as the current value of thisprobe.

Note that the algorithm is resilient to losses of probes as well as responses since

each response packet unambiguously defines the set of probes it responds to, and thus

satisfies requirement R-5. The scheme also meets requirements R-2 and R-3 since it is

lightweight in terms of processing at the sender and receiver, as well as in the number

and size of control (probe and response) packets

The careful reader would have noted that the scheme is susceptible to the effects

of reordering in the network. This is inevitable as individual data and control packets

29

0 4 8 31

are not numbered and hence the scheme will interpret reordering of probe and data

packets as a transient loss. Similarly, a packet loss between two probes can be masked

by packet duplication in the network during the same epoch1 . However, we do not

believe that this is a serious concern as packet duplication is uncommon in the Internet

today [23].

3.3 Congestion Manager

We now describe the design of the Congestion Manager (CM) [1]. The CM provides

the framework for the implementation of our congestion feedback scheme described

in Section 3.2. The motivation, high-level architecture and the adaptation algorithm

of the CM are described in Section 3.3.1. We then detail the design of the CM API

in Section 3.3.2.

3.3.1 Architecture

The CM is an end-to-end framework for managing network congestion. It is motivated

by the desire to

" Efficiently multiplex concurrent flows between the same pairs of hosts such

as web connections. Since these flows share the same path, they can share

knowledge about the network state instead of competing for bandwidth.

" Enable applications which do not use TCP to adapt to congestion.

The CM unifies congestion management across all flows to a particular destination,

independent of the particular application or transport instance.

The sender architecture of the protocol stack with the CM is shown in Figure 3-

6. As the figure shows, the congestion manager integrates congestion and flow in-

formation across multiple applications and protocol instances. Currently, the CM

aggregates all flows to a particular destination address as these are highly likely to

'If the receiving application is capable of detecting duplicate packets, then it can avoid notifying
the receiver feedback module of duplicate packets to prevent this occurrence.

30

Applications Data path
- - - - - - - - Control path

HTTP FTP RTP Video RTSP Audio

I I Transport

Si UDP I Instances

- -Congestion

_ _ __ _ _ _ __ _ _ _ _ _ _ _ _ _ _ M anager

IP

Figure 3-6: Sender Protocol Stack architecture with the Congestion Manager.

share the same path. In the future, it could aggregate information on a per-subnet

or per-domain basis too.

The internal algorithm used by the CM to react to congestion is window-based

with traffic shaping. The window growth and decay follow the AIMD algorithms of

TCP shown in Figure 2-3. This is a pragmatic choice as the protocol is demonstrably

TCP-friendly. A key difference is that the CM shapes outgoing traffic to prevent

bursts of traffic. It achieves this by allowing transmission of the sender window

gradually over its estimate of the smoothed round-trip time.

An important feature of the congestion management algorithm of the CM is ex-

ponential aging to deal with infrequent feedback about network state. The different

alternatives for a sender in such a case are to:

* Stop transmission until feedback is received or the sender times out. While this

is a conservative strategy and does not adversely affect other flows, it leads to

long recovery times and can cause inefficient utilization of the network.

* Continue sending at the estimated rate until feedback is received. This is too

aggressive as it can cause the network to remain in an unstable state for extended

31

periods of time. In fact, this particular behavior has often been cited as a key

reason against rate-based protocols.

o Decay the rate by a constant factor (half in this case) for every time interval in

which no feedback is received. This allows the sender to continue transmitting

data at a conservative rate while waiting for feedback. A key parameter of

this method is the time interval between decays, a natural choice being the

smoothed round-trip time. However, this choice is inappropriate since its value

in fact increases during periods of congestion. Instead the minimum round-trip

time observed to the particular destination host is chosen as the half-life for the

rate decay. This is the method adopted in the CM.

Since the CM unifies congestion management across several flows to the same

destination, an important consideration is the policy for apportioning bandwidth

among flows. The CM currently apportions bandwidth to different flows according to

preconfigured weights, and defaults to equal sharing of available bandwidth among all

flows. However, this can be problematic in networks with differentiated or integrated

services which can differentiate between flows based on port numbers, flow identifiers

etc. The CM intends to accommodate this by incorporating some mechanism to infer

this differentiation through observed loss rates and throughputs of different flows.

3.3.2 Application Programming Interface

Since the CM unifies congestion management functionality across multiple flows with

potentially different characteristics, a key requirement is that it export a simple in-

terface that is sufficiently general to accommodate these requirements. We explain

the design considerations which motivate the API, and then describe the individual

functions.

The guiding principles in the design of the API are to:

(a) put the application in control. While it is the responsibility of the CM to

estimate congestion and available bandwidth in the network, the end-to-end

32

argument [32] and the Application Level Framing (ALF) [7] guideline suggest

that the adaptation to congestion should be performed at the application level.

The CM API achieves this by not buffering any data and only telling applica-

tions when they can send. Thus applications make non-blocking requests for

transmission which are granted using CM upcalls. This is in contrast to an API

with a single send() call like that of Berkeley sockets [35].

(b) accommodate diversity in traffic patterns. The CM API should be usable

effectively by several types of traffic, for example, TCP bulk transfers, Web

traffic, layered audio or video sources, as well as flows that are capable of trans-

mission at a continuum of rates.

(c) accommodate diversity in application styles. The CM API must suit dif-

ferent application styles, instead of forcing application writers to use a partic-

ular method. Most applications that transmit data are either synchronous or

asynchronous. Data transmission in asynchronous applications is triggered by

external events, such as file writes or frame captures. On the other hand, there

is a class of synchronous applications where data transmission is triggered by

firing of a timer. The CM exports interfaces which can be conveniently used by

both these classes of applications.

(d) learn from the application. Since some applications obtain feedback from re-

ceivers, the API provides functions for the CM to leverage this feedback instead

of independently rediscovering network conditions.

The function cmopen(daddr, dport) is called when a flow to the destination

address daddr and port dport is initiated by an application. This returns the flow

identifier id used in subsequent calls to the CM. When a flow is terminated, the ap-

plication calls cm-close (id) allowing the CM to update its internal state associated

with that flow. An application can also invoke cmquery(id, *rate, *srtt) to ob-

tain the current estimate of the round-trip time as well as its share of the bandwidth.

The CM exports two types of callbacks for use by synchronous and asynchronous

applications. Asynchronous applications make a cm-request (id) call whenever they

33

typedef int cmid_t;

Query

void cm-query(cmid-t id, double *rate, double *srtt);

Control

cmid_t

void

void
void
void

cm-open(addr daddr, int dport);

cm.request(cmidt id);

cmnotify(cmidt id, int nsent);

cm-update(cmidt id, int nrecd, int nlost, double rtt);

cmclose(cmid-t id);

Buffered transmission

void cmsend(cmidt id, char *data, int len);

Application callback

void

void

cmapp-send(cmid-t id);

cmapp-update(cmidt id, double rate, double srtt);

Figure 3-7: Data structures and functions for the sender-side CM API.

Control

cmidt cmr-open(addr saddr, int sport);
void cmrnotify(cmidt id, int nrecd);

Figure 3-8: Data structures and functions for the receiver-side CM API.

34

desire to send data. After some time interval, the CM makes an application callback

with cmapp-send(id). This callback is a grant for the application to send upto a

maximum transfer unit (MTU) [18] worth of bytes. Since the actual data buffer is

never passed as an argument in these calls, the application can decide to send different

data if it senses congestion or excess bandwidth in the network. On the other hand,

synchronous applications essentially need to set the frequency of their timers as a

function of the sustainable bandwidth of the network. Hence the CM exports an

additional callback cmapp-update(id, rate, srtt) which is invoked whenever the

CM's estimate of the bandwidth available to the flow with identifier id changes. Note

that the cmapp-update () call is also beneficial for asynchronous applications which

can use it to adaptively choose from multiple different data qualities.

Additionally, the CM sender exports a cm-notify(id, nsent) function. This is

called by applications to inform the CM that nsent bytes were sent by flow id. The

CM updates its estimates of actual data sent when this function is called.

For the sake of completeness, we also discuss the cm-update 0 function call which

applications use to provide feedback to the CM about network conditions. Note that

this thesis discusses applications that do not obtain feedback from receivers and hence

never invoke cm-update 0. The call cm-update (id, nsent, nrecd, lossmode, rtt)

informs the CM that the estimated round-trip time is rtt, nsent bytes were sent by

the flow id, of these nrecd were received. The value of lossmode can be PERSISTENT

(e.g. a TCP timeout), TRANSIENT (e.g. a TCP triple-duplicate acknowledgement),

or ECN (Explicit Congestion Notification). This function allows the CM to update its

estimates of the congestion window and round-trip time.

On the receiver side, whenever a packet with source address saddr and port sport

associated with a new flow is received, the application invokes cmr-open(saddr,

sport) which returns a flow identifier rid. When a packet of size nrecd bytes is

received on a flow with identifier rid, the receiver invokes cmrinotif y (rid, nrecd).

The CM API for the sender and receiver are summarized in Figures 3-7 and

3-8 respectively. It must be noted that while the entire API is discussed here for

completeness, the rest of the thesis will focus on applications which do not incorporate

35

any feedback. In particular, these kinds of applications will not use the cm-update

call and hence the CM must incorporate mechanisms to obtain the feedback.

3.4 User-level Implementation

This section discusses our user-level implementation of the Congestion Manager. We

choose to implement the CM at user-level since it achieves (a) rapid prototyping and

(b) portability across flavors of Unix. Additionally, a kernel implementation normally

requires privileged access to a machine before it can be installed and deployed.

The CM at the sender requires to schedule probe and data transmissions. This can

be achieved by writing the application in polling or interrupt mode. Polling ensures

that transmissions are scheduled at the exact time at the cost of loading the processor

with constant and often unproductive loop checks. On the other hand, writing the

application to be triggered by timer interrupts significantly reduces processor load,

but can cause several scheduled events to miss their deadlines. Thus, while polling is

detrimental to host performance, it can produce better network performance, whereas

interrupts have the opposite effect. However, since a user process has no control over

when it is scheduled by the operating system, a polling-based system can potentially

miss several deadlines too. Hence, the CM is predominantly implemented using timer

interrupts with judicious use of polling where delays are expected to be short.

We describe the internal architecture of the CM sender and receiver in Sec-

tion 3.4.1, and an example application in Section 3.4.2.

3.4.1 Architecture of the CM

The CM sender and receiver are implemented as daemons, one of each per end-host.

Applications link to a CM library which exports the CM API.

The CM library registers applications to receive callbacks for cmapp-send and

cmapp-update using USR1 and USR2 interrupts respectively, which are raised by the

CM sender daemon. The library also allows applications to invoke the API functions

on the CM daemons in a manner similar to regular functions. When an API function

36

CM Sender
Daemon

Figure 3-9: Architecture of applications and the CM daemon at the sender.

is invoked, the parameters are written by the library implementation in a region of

shared memory and the CM daemon is woken up by a write on a well-known socket.

The CM daemon then updates its internal state and writes return parameters back in

shared memory. Meanwhile, the application blocks on a read on another well known

socket till it is woken up by a socket write by the daemon. This event occurs when

the daemon has executed the library function and written the return values in shared

memory. The library implementation can now read these values and return them to

the application.

The CM sender daemon is composed of three intercommunicating modules which

together implement the CM functionality described in Sections 3.2 and 3.3. They

37

are:

(a) Congestion Controller: This calculates the total sustainable rate between the

end-hosts based on its estimate of congestion in the network. For applications

without feedback, it obtains these estimates using the feedback protocol imple-

mented in the Feedback module described below.

(b) Scheduler: This module uses the estimate of available bandwidth from the Con-

gestion Controller and apportions it among the different flows. Application

transmissions are scheduled by this module and applications are notified using

callbacks.

(c) Feedback: This component schedules the transmission of probes and updates

the Congestion Controller module upon receipt of responses from the receiver.

These modules communicate with each other through well-known interfaces as speci-

fied in [2]. The architecture of the sender-side functionality of the CM is depicted in

Figure 3-9.

The CM receiver functionality is likewise implemented as a library that allows

receivers to invoke the cmr-open() and cmrnotify() functions on the CM receiver

daemon. The CM receiver daemon additionally implements the response functionality

to provide feedback to senders whenever probes arrive.

3.4.2 An Example Application

In this section, we describe the sequence of steps executed when a sample application

uses the CM API. The application we describe is a layered audio server. These servers

have multiple encodings whose quality is usually proportional to their data rates, and

the goal is to provide the best sustainable audio quality to clients. Thus, they need

to estimate the available bandwidth in the network in order to use an appropriate

encoding. We consider a case where the audio client does not provide feedback to the

audio server.

38

Figure 3-10 presents pseudocode for a simple layered audio server. When the

server first receives a request from a client, it invokes the cm-open 0 function allowing

the CM sender daemon to set up the internal state associated with this flow. The

cm-open() call also implicitly registers the application for cmapp-update () callbacks.

It then uses the cm-query() function to obtain its share of the bandwidth estimated

by the CM. This allows the server to choose an initial encoding which can be sustained

by the network. Subsequently, the CM calls the cmapp-update () function whenever

the share of bandwidth available to the application changes. This can happen either

due to the increase and decrease algorithms built into the CM, or the addition or

removal of flows (decided by the Scheduler module). The server can implement the

callback function to choose the best possible source encoding with a data rate less

than the CM estimate. The implementation shown always chooses the best possible

encoding when cmapp-update is invoked. Another implementation might decide to

impose a minimum time interval between rate changes to reduce variations in buffering

requirements at the receiver. Thus, while the reaction to congestion is implemented

in the CM, applications can adapt to it in a variety of ways.

The audio client notifies the CM receiver whenever it receives a packet from the

server. Simultaneously, the Feedback module of the CM sender daemon sends probe

packets to the CM receiver. It then passes the information from the elicited responses

to update the Congestion Control module which can recalculate its rate and round-

trip time estimates.

3.5 Summary

This chapter described the design of a congestion feedback protocol and its imple-

mentation in the context of the CM. This protocol uses probes by an active sender

and responses from a reactive receiver, and is adaptive, lightweight and resilient to

network losses. We also discussed the chief design components and a user-level im-

plementation of the Congestion Manager.

39

Global declarations

struct {
int rate; // Rate in bits per second
double inter-pkt-time; // Time between packets in ms

} Encoding;

Encoding codes[NUMCODES];// The list of server encodings in ascending
// order of rates

Encoding currentcode = codes[0];
cmidt id;

Server code

id = cm-open(daddr, dport); // Initialize CM state

// Seed the server with an appropriate initial encoding.
// This assumes that codes[O].rate is always
// lesser than the rate returned by cm-query
cm.query(&rate, &srtt);
for (nt i = 0; i < NUMCODES; i++)
if (codes[il.rate <= rate) currentcode = codes[i];
else break;

while (TRUE) { // Main loop
double nexttime = currenttime() + current-code.inter-pkt-time;
wait(next-time); // Block till nexttime

}

Timer Handler

// Called when wait is unblocked at nexttime
void timeout() {

int pktsize = (currentcode.rate * currentcode.inter.pkt-time)/8000;
Send packet of size pktsize bytes from encoding currentcode;
cmnotify(id, pktsize);

}

cmapp-update()

void cmapp-update(cmid-t id, double rate, double srtt) {
for (nt i = 0; i < NUM_CODES; i++)

if (codes[i].rate <= rate) currentcode = codes[i];
else return;

}

Figure 3-10: Pseudocode for a layered adaptive audio server. Details of locking critical
sections for correctness have been elided in the interest of simplicity.

Chapter 4

Performance Evaluation

Chapter 3 described the design and implementation of our feedback scheme. In

this chapter, we evaluate the behavior of our feedback scheme through simulation

as well as performance measurements in real networks. Section 4.1 describes the

simulation environment and the results of our simulations. The performance of our

UNIX implementation is evaluated in Section 4.2.

4.1 Simulation

Simulation is an excellent aid to research in networking, and we have employed it to

understand our feedback scheme. The chief advantages of simulation which are not

achievable in experiments on the Internet are:

Repeatability: The conditions of links and routers on the Internet changes con-

stantly, and hence experimental conditions can never be reproduced exactly

when testing an implementation. However, a simulator allows all parameters

to be accurately controlled so that the effect of changes in individual variables

can be studied.

Fine-grained control: Simulation allows us to vary the parameters of the network

such as topology, bottleneck bandwidth and latencies to understand the impact

of their variation on our scheme. This is not achievable with the Internet.

41

Section 4.1.1 describes our choice of simulator and our enhancements to it. We then

elaborate on our experiments in Section 4.1.2.

4.1.1 Simulation Environment

We use the UCB/LBNL/VINT network simulator ns (Version 2) [21] for our exper-

iments. ns is a discrete event-driven simulator initiated as a version of REAL [16].

ns is primarily written in C++ [37] with MIT's Object Tcl (OTcl) [38] used as a

command and configuration language. It has an object-oriented architecture which

allows modular addition of new components, and augmentation of functionality of

existing components using inheritance. Simulations are configured and executed in

OTcl which is an object-oriented extension of the Tool Command Language (Tcl) [22].

This is achieved easily because of the coupling between C++ and OTcl objects using

split objects. Instance variables in the two languages can be bound, thus ensuring

that they expose the same state in both realms.

The simulator ns provides abstractions for network links, queues and nodes. It

also has implementations of several popular network protocols and applications (e.g.

TCP and its variants, telnet, ftp), router algorithms (e.g. Drop-tail, RED) and

traffic models (e.g. Exponential, Pareto, Constant Bit Rate, Web). New protocols

and applications are obtained by inheriting from the Agent and Application classes

respectively, and possibly reimplementing the send and recv methods. Agent and

Application are split objects to allow their instantiation and access in OTcl.

We have implemented the CM in ns with a round-robin scheduler which apportions

bandwidth equally among all flows to a particular destination. We have developed

Prober and Responder classes inherited from the class Agent. Objects belonging to

these classes are dynamically instantiated and connected whenever a flow to a new

destination address was opened. We have also implemented a congestion-controlled

UDP class (UDPCC) class UdpCCApp as a split object inherited from Application.

The UDPCC application registers with the CM for cm-appupdate callbacks and trans-

mits at the maximum rate allowed by the CM for this flow. The application sends

packets of a fixed size, and hence the inter-packet time varies when the rate is changed.

42

CBR, Web Servers and clients

Node with CM

O\ 7nDestination
Bottlenec Destinatio

Regular node

Figure 4-1: Network topology used for simulation experiments.

As the name implies, the flow is unreliable since acknowledgments are not solicited

and congestion-controlled because the sending rate is determined by the CM.

4.1.2 Simulation Results

Figure 4-1 depicts the network topology used for our simulations. We perform our

experiments in the presence of significant constant bit-rate (CBR) and web cross

traffic. All reported values are the average of 10 iterations.

We now compare the performance of the UdpCCApp class with that of the Newreno

variant of TCP [13]. Figures 4-2 and 4-3 depict sequence traces of regular TCP and a

UDPCC application for bottlenecks of 200 kbps and 400 kbps respectively1 (Feedback

is solicited using 4 probes per round trip time). These traces show that the UDPCC

application using the CM closely emulates the performance of regular TCP. Figure 4-4

also shows the relative performance of TCP and UDPCC applications for a range of

bottleneck bandwidths. The results show that UDPCC and TCP show comparable

throughputs over a wide range of bandwidths and that the feedback scheme is quite

robust in the face of cross-traffic. Additionally, packet traces show that both probe

and response packets are dropped during congestion epochs and the congestion-control

scheme reacts appropriately in the presence of infrequent feedback.

'bps denotes bits per second and Bps denotes Bytes per second

43

Sequence number plots for TCP and UDPCC (200 Kbps bottleneck)

700 i i i i 1out.enq.tr.audio.21.4.24.8"
"out.enq.tr.tcp.20.0.24.

600

500
Ca

CL

E 400

300

X

200 -

100
8 10 12 14 16 18 20 22 24 26 28 30

Time (seconds)

Figure 4-2: Sequence traces of TCP and UDPCC for a bottleneck bandwidth of 200
Kbps. The lower line shows the TCP trace.

We also compare the performance of a pair of UDPCC streams with a competing

TCP stream in the presence of competing cross-traffic. The results for the topology

of Figure 4-1 with bottleneck bandwidths of 200 kbps and 400 kbps are shown in

Figures 4-5 and 4-6 respectively. Since the CM combines state across all flows to

a particular destination, the two UDPCC flows behave like a single flow, and are

expected to consume approximately as much bandwidth as the single TCP connection

from the other node. Additionally, since the CM round-robin scheduler apportions

the estimated bandwidth equally between the two UDPCC flows, they should deliver

approximately the same throughput. The experimental data shown in Figure 4-7

shows this over a range of bottleneck bandwidths.

4.2 Implementation Evaluation

While simulation is an excellent aid, implementation is essential especially in the

context of Internet research for the following reasons:

44

Sequence number plots for TCP and UDPCC (400 Kbps bottleneck)
900

"out.enq.tr.tcp.20.0.24.0" +
"out. enq.tr.audio.21.4.24.8" x

800

700
CU)

a

600

a)

500 -

400 -

10 12 14 16 18 20
Time (seconds)

Figure 4-3: Sequence traces of TCP and UDPCC for a bottleneck bandwidth of 400
Kbps. The lower line shows the TCP trace.

Insufficient knowledge: The topology and link properties on the Internet con-

stantly change with time and span a very large range. There is also a variety

of protocol implementations with significantly different features and bugs. An

absence of a good traffic model is another reason why it is difficult to simulate

the Internet. These issues are elaborated in greater detail in [24].

System effects: While a simulator isolates the implementation of our scheme from

operating system vagaries, in reality, effects like the timer granularity and pro-

cess scheduling by the operating system have an important influence on the

behavior of our scheme. For example, most operating systems have a clock

granularity of 10 ms. This implies that a timer-driven sender transmitting 1500

byte packets cannot transmit at greater than 1.5 MBps. Additionally, if the

operating system does not schedule the sending application at the appropriate

time, future transmissions are delayed.

45

Bottleneck Bandwidth UDPCC Throughput TCP Throughput
(kbps) (kbps) (kbps)

200 67.6 72.8
400 173.2 148.4
600 207.2 199.2
800 284.8 329.6
1000 312.8 358.4
1200 454.4 450.0
1400 468.8 527.2

Figure 4-4: UDPCC and TCP throughput as a function of bottleneck bandwidth.

We have developed interoperating user-level implementations of the CM for BSD/OS

3.0 and Linux 2.0.35, and performed wide-area experiments over the Internet back-

bone using hosts in Stanford University and University of California at Berkeley. As

described earlier, a key performance issue we faced in the user-level implementation

was that we did not have control over the process scheduling or timer granularity of

the operating system. While the process scheduling issue could be resolved by appro-

priately setting the priority of the sending process, this requires privileged access to

the system and is hence not a universal solution. Instead, we decided to compensate

for missed deadlines (due to late timer firing or scheduling) by sending packets in

small bursts whenever the sender actually could transmit data. While this is not

completely desirable, we rationalized this behavior by verifying that TCP too tends

to send short bursts of packets when growing its window.

Figures 4-8 and 4-9 show the sequence traces for competing TCP and UDPCC

flows between sources at Stanford and Berkeley, and a destination at MIT. Both

the flows show approximately the same throughput. However, the UDPCC trace is

not as smooth as the TCP trace in either case. We believe that this happens since

UDPCC has much more infrequent feedback (2 probes per round-trip) than TCP (an

acknowledgment every alternate packet). Over 10 iterations, the average throughputs

of UDPCC and TCP to Stanford were 2.87 Mbps and 2.93 Mbps respectively. The

UDPCC and TCP throughputs to Berkeley were 0.51 Mbps and 0.57 Mbps respec-

46

Sequence number plots of 1 TCP and 2 UDPCC connections (200 Kbps bottleneck)
240

" outen trui 1. 8"out.enq.tr.audio.21.4.24.8"
"out.enq.tr.audio.21 .5.24.9"

220 - "out.enq.tr.tcp.20.24 " -

200

180

.2 160 s
a)
M
E 140

120

C
80 --

60 - O-

40 I I I I I I I
8 10 12 14 16 18 20 22 24 26 28 30

Time (seconds)

Figure 4-5: Sequence traces of TCP and 2 UDPCC flows for a bottleneck bandwidth
of 200 Kbps. The upper line shows the TCP trace. The traces for the two UDPCC
flows are almost identical.

tively.

We also performed wide-area experiments with two competing UDPCC flows and

the results are shown in Figures 4-10 and 4-11. These experiments were performed at

different times than the previous set of experiments. The throughput from Berkeley

averaged over 10 iterations was 0.181 Kbps and 0.183 Kbps respectively, while that

from Stanford averaged 0.635 Kbps and 0.634 Kbps respectively. We see that the two

sending UDPCC applications achieve almost the same throughput in both cases. This

is because the round-robin scheduler of the CM apportions the estimated bandwidth

equally among all the participating flows.

4.3 Conclusion

In this chapter, we presented the results of simulation and implementation of our feed-

back scheme. We evaluated the efficiency of our scheme by comparing its throughput

47

Sequence number plots for 1 TCP and 2 UDPCC connections (400 Kbps bottleneck)

out. enq.tr.audio.21.4.24.8" +
'out.enq.tr.audio.21.5.24.9" x

"out.enq.tr.tcp.20.0.24.0" _

600

550

500

450

400

350

300

250

200

150

100

50
22 24 26 28 30

Figure 4-6: Sequence traces of TCP and 2 UDPCC flows for a bottleneck bandwidth
of 400 Kbps. The upper line shows the TCP trace. The traces for the two UDPCC
flows are indistinguishable.

with competing TCP flows, and its fairness by comparing the throughput of com-

peting UDPCC flows. The results demonstrate that the feedback scheme allows

applications to compete fairly and efficiently with existing transports on the Internet.

48

.4

W

(1)
0

C

4a)
M

8 10 12 14 16 18 20
Time (seconds)

Bottleneck UDPCC1 Throughput UDPCC2 Throughput TCP Throughput
(kbps) (kbps) (kbps) (kbps)

200 30 32 66
400 71 76 146
600 106.4 101.2 221.2
800 148.4 143.3 322.4
1000 182.4 174.4 400.4
1200 243.6 235.2 453.2
1400 262.4 258.0 523.2

Figure 4-7: Throughput of TCP and 2 UDPCC flows as a function of bottleneck
bandwidth.

Sequence number plots for TCP and UDPCC (full-sail.stanford.edu)
8e+06 I[cbr.072999.0314" +

"tcp.072999.0314" x

7e+06

6e+06 I
E

C

ci)

5e+06

4e+06

3e+06

2e+06 -

1 e+06 -

0 -
0 5 10 15 20 25

Time (seconds)

Figure 4-8: Sequence traces of TCP and UDPCC for a sender on full-sail.stanford.edu.
The slightly longer line shows the TCP trace.

49

Sequence plots for TCP and UDPCC (terrorism.cs.berkeley.edu)

400000 -

200000 --

0
0 5 10 15 20 25

Time (seconds)

Figure 4-9: Sequence traces of TCP and UDPCC for a sender on terror-
ism.cs.berkeley.edu. The relatively straight line shows the TCP trace.

Sequence number plots for 2 UDPCC applications (full-sail.stanford.edu)

5 10 15 20
Time (seconds)

Figure 4-10: Sequence traces of competing UDPCC flows for a sender on full-
sail.stanford.edu. The traces are virtually identical.

50

1.6e+06

1.4e+06

1.2e+06

1e+06

800000

600000

a)
-D
E
C
a)
C-)
Ca)
0~a)
U)

a)n
E
C

a)
0
C
a)

0~
a)
U)

1.6e+06 -

1.4e+06 -

1.2e+06 -

1e+06 -

800000 -

600000 -

400000 -

200000 -

0
0 25

0)n
E
C
'p
0
C
0)

0~
0)

(I)

700000

600000

500000

400000

300000

Sequence number plots for 2 UDPCC applications (terrorism.cs.berkeley.edu)

200000 -

100000 -

01/ 00
0 5 10 15 20 25

Time (seconds)

Figure 4-11: Sequence traces of competing UDPCC flows for a
ism.cs.berkeley.edu. The traces are indistinguishable.

30

sender on terror-

51

Chapter 5

Conclusions and Future Work

We conclude our thesis with a summary of our contributions and directions for future

work.

5.1 Summary

This thesis solves the problem of designing a congestion feedback scheme for appli-

cations that do not require reliable packet transmissions. A feedback scheme that is

independent of individual applications frees programmers from reimplementing such

a framework for every application, and allows them to focus on encoding application

data to adapt to network congestion.

We proposed an end-to-end scheme for congestion feedback based on periodic

probes from a sender module to solicit congestion information responses from re-

ceivers. Applications only need to notify the sender or receiver module when data is

either transmitted or received. The scheme is designed to operate with relatively low

overhead on the network and end-hosts, and is robust in the face of losses of both

probe and response packets. It also adapts to the round-trip time of the flow in order

to mimic the behavior of TCP.

We implemented our feedback module in the context of an end-to-end conges-

tion management infrastructure, the Congestion Manager. The Congestion Manager

provides unified congestion control across multiple applications and transports, and

52

exports an API which allows applications to adapt to congestion without having to

monitor and understand individual congestion events. We evaluated the performance

of our feedback scheme through simulations in the VINT ns simulator, as well as

wide-area Internet experiments.

The chief contributions of our work are:

An application-independent congestion feedback scheme for UDP flows. We

draw on the principles of protocols like TCP, RAP and RTCP to design a feed-

back protocol that is lightweight, general and resistant to network losses.

User-level implementation of a Congestion Manager. Applications link to a

library which implements the CM API and allows them to implement mecha-

nisms for adaptation to congestion when it is detected by the CM.

Evaluation of the feedback scheme. We simulated the performance of our scheme

across a variety of bottleneck bandwidths and in the presence of cross traffic.

We also performed transfers across the Internet backbone using our user-level

implementation. Our scheme shows fair and efficient performance against com-

peting TCP connections. It also allows fair sharing of the estimated bandwidth

amongst multiple UDP flows using the CM.

5.2 Future Work

We now outline a few directions for future work based on the work described in this

thesis.

A kernel implementation of the Congestion Manager. In Chapter 4, we out-

lined the problems associated with a user-space implementation, despite its

portability and ease of prototyping. The issues of coarse-grained timers and in-

appropriate scheduling can be addressed effectively by a kernel implementation.

This should, in turn, enhance application performance.

Feedback frequency. In this thesis, we used sender probes at a frequency of 2 or

4 probes per round trip. It would be interesting to understand the impact of

53

this frequency on end-to-end performance. Additionally, it might be possible to

adapt this frequency dynamically to network conditions.

Receiver modifications. Our current feedback protocol requires some modifica-

tions to receivers in order to function correctly. A scheme that requires even

fewer or no modifications to receivers might have greater chances of adoption

and deployment.

54

Bibliography

[1] H. Balakrishnan, H. S. Rahul, and S. Seshan. An Integrated Congestion Manage-

ment Architecture for Internet Hosts. In Proc. A CM SIGCOMM '99, September

1999. To appear.

[2] H. Balakrishnan and S. Seshan. The Congestion Manager. Internet Draft, IETF,

June 1999. Expires Dec 1999.

[3] T. Berners-Lee et al. The World Wide Web. Communications of the ACM,

37(8):76-82, Aug 1994.

[4] J.C Bolot, T. Turletti, and I. Wakeman. Scalable Feedback for Multicast Video

Distribution in the Internet. In Proc. A CM SIGCOMM, London, England, Aug

1994.

[5] D-M. Chiu and R. Jain. Analysis of the Increase and Decrease Algorithms for

Congestion Avoidance in Computer Networks. Computer Networks and ISDN

Systems, 17:1-14, 1989.

[6] D. Clark, S. Shenker, and L. Zhang. Supporting Real-Time Applications in an

Integrated Services Packet Network: Architecture and Mechanisms. In Proc.

A CM SIGCOMM, August 1992.

[7] D. Clark and D. Tennenhouse. Architectural Consideration for a New Generation

of Protocols. In Proc. A CM SIGCOMM, September 1990.

55

[8] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulations of a Fair-

Queueing Algorithm. Internetworking: Research and Experience, V(17):3-26,

1990.

[9] K. Fall and S. Floyd. Promoting the use of End-to-End Congestion Control in

the Internet. IEEE/A CM Transactions on Networking, 7, August 1999.

[10 R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext

H TTP/1.1, Jan 1997. RFC-2068.

[11] S. Floyd. Internet Research: Comments on Formulating the

ftp://ftp.ee.lbl.gov/papers/assumptions.ps, 1998. Unpublished manuscript.

[12] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion

Avoidance. IEEE/A CM Transactions on Networking, 1(4), August 1993.

[13] J. C. Hoe. Improving the Start-up Behavior of a Congestion Control Scheme for

TCP. In Proc. ACM SIGCOMM '96, August 1996.

[14] Internet Software Consortium. http://www.isc.org/dsview.cgi?domainsurvey/

report.html, 1999.

[15] V. Jacobson. Congestion Avoidance and Control. In Proc. ACM SIGCOAIM 88,

August 1988.

[16] S. Keshav. REAL: A Network Simulator. Technical Report 88/472, Computer

Science Division, Univ. of California at Berkeley, 1988.

[17] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven Layered Multicast.

In Proc A CM SIGCOMM, August 1996.

[18] J. Mogul and S. Deering. Path MTU Discovery, Nov 1990. RFC-1191.

[19] Intelligent Streaming. http://www.microsoft.com/windows/windowsmedia/

features/intellistream/default.asp, 1998.

56

Transfer Protocol

Problem.

[20] K. Nichols, V. Jacobson, and L. Zhang. A Two-bit Differentiated Services Ar-

chitecture for the Internet. Internet Draft, IETF, November 1997.

[21] ns-2 Network Simulator. http://www-mash.cs.berkeley.edu/ns/, 1998.

[22] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Publishing Company,

Reading, MA, 1994.

[23] V. Paxson. End-to-End Internet Packet Dynamics. In Proc. ACM SIGCOMM

'97, September 1997.

[24] V. Paxson and S. Floyd. Why We Don't Know How to Simulate the Internet.

In Proc. Winter Simulation Conf., 1997.

[25] J. B. Postel. Transmission Control Protocol. Information Sciences Institute,

Marina del Rey, CA, September 1981. RFC-793.

[26] J. B. Postel. Simple Mail Transfer Protocol. Information Sciences Institute,

Marina del Rey, CA, August 1982. RFC-821.

[27] J. B. Postel and J. Reynolds. File Transfer Protocol (FTP). Information Sciences

Institute, Marina del Rey, CA, Oct 1985. RFC-821.

[28] K.K. Ramakrishnan and S. Floyd. A Proposal to Add Explicit Congestion No-

tification (ECN) to IPv6 and to TCP. Internet Draft draft-kksjf-ecn-00.txt,

November 1997. Work in progress.

[29] SureStream[tm] - Delivering Superior Quality and Reliability. http://

www.real.com/devzone/library/whitepapers/surestrm.html, 1998.

[30] R. Rejaie, M. Handley, and D. Estrin. RAP: An End-to-end Rate-based Con-

gestion Control Mechanism for Realtime Streams in the Internet. In Proc. IEEE

INFOCOM '99, 1999.

[31] Reliable Multicast Research Group. http://www.east.isi.edu/RMRG/, 1997.

57

[32] J. Saltzer, D. Reed, and D. Clark. End-to-end Arguments in System Design.

ACM Transactions on Computer Systems, 2:277-288, Nov 1984.

[33] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport

Protocol for Real- Time Applications. RFC, Jan 1996. RFC-1889.

[34] S. Shenker. Fundamental Design Issues for the Future Internet. IEEE Journal

on Selected Areas in Communications, 13(7):1176-1188, Sep 1995.

[35] W. R. Stevens. UNIX Network Programming. Addison-Wesley, Reading, MA,

1992.

[36] W. R. Stevens. TCP/IP Illustrated, Volume 1. Addison-Wesley, Reading, MA,

Nov 1994.

[37] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,

MA, 1997.

[38] D. Wetherall and C. Lindblad. Extending Tcl for Dynamic Object-Oriented

Programming. In Proc. Tcl/Tk Workshop, July 1995.

58

