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Master of Science

Abstract

The competition in the aircraft engine industry has led to the design of highly loaded
components while reducing manufacturing costs and fuel consumption. One way to achieve
those goals is to raise the pressure ratio across each stage of the engine's compressor by
reducing the stability margin that keeps the rotor blades from stalling. To avoid this, it is
important to understand how the compressor goes into stall or surge and what is the effect
of design changes on compressor performance.

A study on the stability of a two-stage high-speed compressor has been implemented.
The original goal was first to determine which one of the two stages is the most unstable and
then to determine if the rotor tip leakage flow of the most unstable stage was responsible
for setting the compressor stability. This is then to be followed by a delineation of proposed
design changes that can potentialy enhance the stability behavior of the 2-stage compressor.
The approach essentialy involved applying time-accurate 2-D as well as 3-D CFD codes
developed by Hoying and the three-dimensional compressor model which consists of a row-
by-row body force representation of a multi-stage compressor developed by Gong. During
the course of the study, the CFD codes developed by Hoying has been appropriately modified
so that it can be used for the present compressor configuration with variable annulus. The
CFD code was used to compute the flow in each individual blade-row for use in formulating
the row-by-row body force representation of the two-stage high-speed compressor. It was
found that the first stage was the most unstable. An eleven blade passage calculation of
the flow in the rotor of the first stage was initiated with the objective of determining if it
was the rotor tip leakage flow that set the stability limit of the compressor. This consisted
of determining the pressure rise characteristics of the rotor in isolation based on a single
blade passage calculation. This is followed by initiating the calculation of the flow field in
a 11-blade passage grid for a set of throttle openings in the neighborhood of the throttle
setting at stall. The lack of additional computational resources needed for the completion
of the required multi-blade passage calculations constrained us to limit the scope of the
work reflected in the original stated goal.

Thesis Supervisor: Dr. Choon S. Tan
Title: Senior Research Engineer, Dept. of Aeronautics and Astronautics
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CHAPTER 1

INTRODUCTION

1.1 Background

Aircraft engine companies maintain their competitive edge by striving to design engines

according to a certain number of criteria: reduced weight, reduced complexity, improved

fuel consumption/thrust ratio, lower emissions among others. The effort to reduce weight

in particular is impacting the number of stages of the compressor or the turbine of modern

engines. The goal is to develop a higher-pressure ratio compressor with less blade rows.

This also means lower manufacturing costs and fewer parts. A limiting factor in the design

of such higher performance compressors is the onset of aerodynamic instabilities that limits

the engine useful operating range. This is the reason why designers have to introduce a

safety margin for the placement of the operating point on the compressor performance map.

As we can see in Figure 1-1, inlet distortions can have an impact on the surge line. This

effect requires a higher stall margin. In order to find the most adequate surge margin, it

is essential to understand what are the parameters impacting the surge line and what are

the mechanisms leading to instability. The scope of this thesis is to assess the feasibility

of integrating the stability analysis into the compressor design loops. Creating a tool to

assess the performance of a compressor stage or a group of stages in terms of stability even

before it is made has the potential to reduce the development time by reducing the number

of iterations during the design of high performance compressors.

In this chapter, we will undertake a review of the current status of compressor insta-
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Figure 1-1: Compressor performance map and the effects of inlet distortions [21].

bilities and the models for stability assessment. This is then followed by a delineation of

the contributions of this thesis.

1.2 A Review on Compressor Instabilities

1.2.1 Three Types of Compressor Instabilities

Based on observations, three types of instabilities can be defined when the operating point

crosses the surge line: progressive stall, abrupt stall and surge (Figure 1-2). Progressive

stall can happen when the compressor operates at a speed below the design speed. As the

flow coefficient is reduced, the pressure rise decreases gradually. Figure 1-3(a) shows the

patterns of the low flow rate regions that increases in size as the flow coefficient decreases.

A sudden pressure drop at the peak of the pressure rise characteristic characterizes abrupt

stall. The shape of the curve is due to a sudden stalling of an important portion of the row

which instantly drops the pressure rise (Figure 1-3(b)). The stalling impacts every stage

of the compressor. Unlike progressive stall, the non-linearity of this pattern prevents the

operating point from going back and forth on the same line. To recover to a stable state,

the flow rate has to be increased past the point of instability, hence the observed hysteresis.

20



a) progressive stall

hysteresis

-- --- - - --

b) 'abrupt' stall

/

c) surge

Figure 1-2: Three types of compressor instability characterized in terms of the respective pressure
rise characteristics.

low flow rate regions

a) part span stall cells b) full span stall cell

Figure 1-3: Three typical instability patterns in compression systems.

Surge appears when the conditions allow the compressor to be coupled with the combustor

to become a resonator. The flow then oscillates axially, back and forth along the entire

length of the engine. This can result in the propagation of the flame to engine intake and

exhaust.

1.2.2 The Onset of Instability

The formation of compressor instabilities consists of three stages: (1) inception; (2)devel-

opment; and (3) fully stalled flow pattern. If we want to have a good understanding of

these instabilities, it is critical to focus on their onset. The point where the system no

21
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longer damps the disturbances defines the last operating point. These disturbances could

be associated with phenomena such as casing boundary layer, tip leakage flow, boundary

layer separation or a combination of any of these. The final form of instability can be either

rotating stall or surge. In some cases, rotating stall can lead to surge [9].

1.2.3 Rotating Stall propagation

Emmons [8] was the first to delineate the mechanism that underlies the propagation of

rotating stall pattern around the annulus as shown in Fig 1-4 . The high blockage created

inside one blade passage redistributes the flow upstream of the row. This creates a high

incidence angle ahead of the stall propagation direction and a low incidence behind. The

result is the stalling of the blades that are ahead of the disturbance and a reduced loading

on those behind which recover from previous stall. The stalling pattern moves in the same

direction as the rotor but at a lower speed . Therefore, in the absolute frame the arrow for

the propagation of stall would be in the direction opposite to that of the rotor. Cumpsty

and Greitzer [5] have modeled the rotating stall propagation as a result of the balance

between the unsteady inertial effects in rotors and those in stationary components. They

could correctly predict the measured speed of rotating cells showing that inertial effects

have a major impact on the propagation mechanism. Longley [15] demonstrated that flow

redistribution upstream of the row also contributes to the rotating speed of the stall cells

in addition to the inertial effects.

1.2.4 Stall inception types

Experiments have distinguished two types of stall inception: modal waves and spikes. Modal

waves is a linear phenomenon which is characterized by exponentially growing disturbance

waves whose length scale is in the order of the annulus of the rotor. Its rotating speed

ranges between 20% and 50% of the rotor speed. It is possible to record velocity traces by

probes placed around the annulus during the development of the instability (Figure 1-5).

These waves span the axial extent of the compressor and they have little variation from hub

to tip. They can be detected by sensors at any location within the compressor. The Moore-

Greitzer model [19] can predict the pre-stall modal waves observed in experiments. Spikes

22



direction of
stall propagation

7, 174

7 17stall cell

\compressor
blade row

Figure 1-4: Emmons's rotating stall cell propagation mechanism.

are defined as localized short wavelength non-linear disturbances. They are associated with

"short wavelength stall inception". As for modal waves, Figure 1-6 shows the velocity traces

during a compressor stalling through spikes. The formation of one or several spike-shaped

finite amplitude disturbances in the tip region of a particular stage starts the process. After

three or five rotor revolutions, the disturbance develops into a full span stall cell. The initial

rotating speed of this type of disturbances is around 70% of the rotor speed and as it evolves

into a fully developed stall cell, the speed decreases to the final value of 0.2-0.4 rotor speed.

1.3 Review on short wavelength stall inception experiments

1.3.1 Effect of Inlet Distortion

Longley et al [16] have studied the impact of rotating inlet distortions on compressor stability

and found that there are two types of compressor responses. Either there is one resonance

peak corresponding to a minimum of stall margin when inlet distortion is rotating at 0.4

rotor speed (Fig 1-7(a)) or there are two resonance peaks at 0.3 times the rotor speed and
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0.75 times the rotor speed (Fig 1-7(b)). In the first case, the compressor stalls through

modal waves while in the second it stalls through spikes. Therefore each compressor has

a characteristic stall pattern which corresponds to two stall inception mechanisms. The

rotating stall disturbances can have a different impact on the stall margin depending on the

compressor.

1.3.2 Conditions for short wavelength stall inception

Camp and Day [1, 2] have experimented one compressor with different IGV stagger angles.

They observed that the stall points line up at a constant rotor tip incidence whenever the

compressor stalls by spike inception(Fig 1-8). It is therefore possible for one stage to stall

either by modes or by spikes depending on the IGV stagger angle. They noticed that as

the compressor was more loaded, it had the trend to stall by spikes rather than by modes

and the first stage played a key role in the inception pattern.

Their conclusion was the existence of a unique rotor tip incidence as a short wavelength

stall criterion (Fig 1-9). If this incidence is reached on the negative slope portion of the

pressure rise characteristic, the compressor will stall by spikes, if not it will stall by modes

at the peak of the pressure rise characteristic.

1.4 Review of compressor stability models

From the point of view of the designer, it is crucial to adequately describe the stability of

the compressor so as to be able to predict the stability margin. A concise review of the

state of compressors stability models is given in the following.

1.4.1 Maximum of the characteristic as an instability criterion

This criterion proposed by Dunham [7] was that compressor instability occur at the peak

of the total-to-static pressure rise characteristic corresponding to the zero slope. Figure 1-

10 shows the effect of the compression system on a small perturbation of the axisymetric

flow field. If the operating point is on the negative slope portion of the pressure rise

25
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Figure 1-7: Two types of compressor resonance response to rotating inlet distortions.
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Figure 1-10: Influence of slope of compressor pressure rise characteristic on stability of distur-
bances.

characteristic and the flow gets accelerated locally, it results in a bigger pressure rise and

this slows the flow and vice versa. This portion of the characteristic is declared stable. On

the positive slope portion of the characteristic, if the flow accelerates locally, the effect is

now a decreased pressure rise, which accelerates the flow even further. This portion of the

characteristic is unstable. Dunham's model doesn't take into account the rotational effects

of these disturbances while it has been shown in later models [4, 20] that it can slightly

impact the instability point.

1.4.2 The Moore-Greitzer model

Using a lumped compressor representation with an axisymetric pressure rise charac-

teristic, Moore was able to accurately model the rotating speed of stall cells. He could also

reproduce the zero-slope criterion of total-to-static pressure rise characteristic as the neutral

stability point. Moore and Greitzer [19] have developed an approximate theory for general

post-stall transients in axial compression systems. Their model was able to describe the

strong coupling between surge-like and rotating-stall-like oscillations. They have carried

out calculations for post-stall transients which involved the growth or decay of stall cells

and they found that the instantaneous rotating stall-cell amplitude has a significant effect

on the instantaneous compressor pumping characteristic and therefore on the overall system

response.
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Figure 1-11: Vorticity contours in the blade passage flow.

1.4.3 CFD models

Since rotating stall phenomena like part-span stall and short-wavelength stall inception are

three-dimensional and non-linear in nature, 2-D linear models are inadequate for delineat-

ing flow features associated with such instabilities. Current availability of computational

resources now permits the solution of Navier-Stokes equations for potential resolution of

technical issues connected with 3-D stalling behavior.

1.4.4 Donald Hoying's model

Hoying developed a code called RS3, which performs this kind of calculations. This is one of

the codes that will be used to study the instability behavior of the compressor examined in

this thesis. Using this code, Hoying et al [13], found that the tip leakage vortex position in

the blade passage is critical for the development of stall cells in the tip region. Computing

the flow field at the tip region for several settings of the throttle, it is possible to show the

trajectories of the tip clearance vortices as the flow coefficient reduces (Fig 1-11) . The

rotor blade geometry used for this calculation was the one of the E 3 rotor with 3.0% tip

clearance. Figure 1-12 shows how the clearance vortex trajectory becomes perpendicular to

the axial direction.

The presence of a solid boundary induces an upstream self-induced velocity associated
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Figure 1-12: Trajectories of the tip clearance vortex for the E 3 rotor with 3.0% tip clearance for
different flow coefficients.

with the vortex that can be explained by the idea of an image vortex as shown in Figure 1-

13. There is a balance between the mean flow velocity and the velocity associated with the

vortex that determines their trajectory. If the vortices impact the adjacent blade behind

the leading edge, a local perturbation of the mean flow will not affect this equilibrium in

the long term. But if the trajectory of the vortices is perpendicular to the mean flow,

the system stands on a bifurcation point. If there is a small perturbation in the upstream

flow, the tip leakage vortices will move forward in the blade passage leading to an unstable

flow situation. The criterion based on the results of Hoying's computational experiments

has been inferred under the assumptions and approximations for which his computations

have been implemented. This criterion has been under contention recently. The weakness

in Hoying's calculations was the assumption of inviscid casing walls. Recent experiments

and calculations by Seitz [22], Van Zante [26] and Vo [27] appear to indicate the impact of

casing boundary layer on the behavior of tip vortex and stall inception. More recently Vo

has called into questions the manner in which the computed solutions in [11] and [12] have

been interpreted.

1.5 Technical objectives

Nowadays, engine companies cannot afford as many iterations in the design of their com-

pressors as they did 10 years ago. Their goal is to have a successful design in one design

iteration. A primary objective of this study is to suggest and explore a framework for im-
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plementing a compressor stability analysis during the design process of a new compressor.

The geometry used for the study is a research compressor from an engine manufacturer.

At the time of this study, the compressor has not been built and the only data available

were taken from axisymetric calculations. The analysis of the key design characteristics

that affect the instability point and its inception type will yield a set of recommendations

for future modifications in the design of a more stable compressor. In addition, we would

like to determine if this compressor would experience spike-inception rotating stall and if

the trajectory of tip leakage vortices is a key feature that triggers the inception of stall or

if it is only a result of the instability.

1.6 Overall approach

The first step of the process is to modify Hoying's code so it can be used to calculate flow

in compressor flow path with varying hub. The modified code will be used to generate the

pressure rise characteristics of each of the four blade rows. These computed results will

then be used to develop the row-by-row body force representation of the compressor so as

to enable the implementation of Gong's type of stability calculations [11].

With the body force representation, the stability behavior can be assessed for changes

in operating conditions as well as design parameters.

In parallel with the stability assessments based on body force representation of com-

pressor, 2-D calculations are implemented to provide conditions for the implementations of
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3-D calculations based on Hoying's rs3 code for establishing the peak of the pressure rise

characteristic and the corresponding throttle position. This is then followed by the imple-

mentation of an 11-blade-passage unsteady 3-D flow simulation to determine the detailed

flow features responsible for initiating the stalling of the compressor
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CHAPTER 2

PRELIMINARY 2D CALCULATIONS

2.1 Introduction

As the 2 stage High Pressure ratio compressor constitutes an experimental compressor that

has not been built, we have no experimental data. Axisymmetric calculations have been

carried out to generate the speed line. Midspan 2D calculations have been implemented to

generate the pressure rise characteristic for each blade row. As it is a high-speed compressor,

there is a possibility to have flow choking in the blade passage. The tool used for this

set of calculations is the two-dimensional, time accurate, explicit Navier-Stokes flow solver

developed by Donald Hoying called RS2. We will first give a concise description of this CFD

code and the input data needed for implementing the calculations ( computational grid,

boundary conditions and the variables used to non dimensionalize the results ). Computed

results are then described and their implications discussed.

2.2 Characteristics of RS2

The RS2 code is based on the use of:

1. Finite difference discretization.

2. Fourth-order spatial accuracy and third-order temporal accuracy.

3. Dispersion Relation Preserving (DRP) scheme (Tam and Web [25]).
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4. r,-c turbulence model.

5. Wall functions (Chieng and Launder [3]).

6. Non-reflecting inlet and exit boundary conditions (Giles [10]).

The phenomena appearing during the rotating stall involve a large range of length

scales. As the flow under investigation is unsteady, the code has to deal also with a large

range of time scales. The study of rotating stall requires codes that can preserve the

dispersive characteristics of wave-like phenomena. Such codes will accurately simulate the

propagating speed of any frequency detected in experiments. These frequencies can be high

for events associated with short wavelength stall inception and low in the case of modal wave

stall inception. In order to reduce dissipative and dispersive errors of his model, Hoying

implemented a Dispersion Relation Preserving scheme. The details of the implementation

can be found in Hoying [12].

Assuming that the viscous effects of the flow are confined in the region close to the blade,

Hoying decided for computational cost reasons to use two superimposed grids: an underlying

H-grid where the Euler equations are solved and a 0-grid around each blade where the

Reynolds-Average Navier-Stokes equations are solved. An example of the computational

domain used is shown in the Figure 2-1. A standard two equation r-E turbulence model is

implemented using the following constants:

C, = 0.09, C1 = 1.44, C2 = 1.92, oK 1.0, o 1.3 (2.1)

Launder and Spalding [14] have found those coefficients to be appropriate for free shear

flows and flows near solid boundaries.

In order to further reduce the computational grid needed and therefore the time of

calculations the model uses wall functions to model the inner portion of the blade boundary

layers where the shear stress is constant. The first near wall grid point can be located

at y+ ~ 30-150. The solid wall boundary conditions are modified by the wall functions

such that the correct viscous stress is calculated without the necessity of computing the
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Figure 2-1: Schematic of the computational domain and boundary conditions.

boundary layer flow details at the wall.

At the exit and the inlet of the computational domain, non-reflective boundary condi-

tions developed by Giles [10] are used.

2.3 Non-Dimensionalization

The reference variables used in the non-dimensionalization of the problem are:

" Length : blade spacing (s)

" Velocity : rotor tip speed (UR)

" Density : free stream density (po)

* Temperature : free stream temperature (TOO)

e Viscosity : free stream viscosity (Poo)

" Pressure: poU2

" Energy : U
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Figure 2-2: Example of the O-grid used.

2.4 Computational Grid

As alluded to in the above there are two overlapping H and 0 grids. The H-grid has uniform

spacing in the two directions in order to simplify the calculation of numerical derivatives.

The H-grid characteristics are chosen in order to simulate an inlet and an outlet duct. The

O-grid is generated by an elliptic partial differential equation method developed by Steger

and Sorenson [24]. This method allows for high-density grid around the leading and the

trailing edge of the blade for resolving high gradients in those regions. The lines of the

O-grid are perpendicular to the surface of the blade, which helps to simplify the numerical

evaluation of normal derivatives. The factor that limits the number of points for the O-grid

was the CFL number for which the code would diverge. The trade-off between computer

time and convergence for the first rotor of the geometry led us to choose a grid of 157 points

around the blade surface and 13 nodes radially. The H-grid has 81 points in the azimuthal

direction and 449 points in the axial direction. Figure 2-2 shows the O-grid for the first

rotor.

2.5 Variable hub radius

The original version of RS2 has been written for low speed compressors where the hub

geometry had a constant radius. The present compressor's geometry has a varying hub

radius. Thus the code has to be modified accordingly as described in the next sections.
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2.5.1 Quasi-Three-Dimensional Navier-Stokes Equations

In order to express the quasi-three dimensional viscous compressible flow along the ax-

isymetric surfaces defined by the streamlines, we need to use an axisymmetric coordinate

system (m,) which rotates with the blade row; m is given as:

dn 2 = dz 2 + dr 2 (2.2)

If we denote r the radius and h

m, the Navier-Stokes equations may

the streamline thickness which are known functions of

be expressed in the following form:

a(rhU) +(rhF) O(hG)
+ am+ o

_D(rhN)
am±

D(hS)
o+rhK (2.3)

where

p

PV.

pVr

pE I,F j

0

0111

012r

R4

PVm

PVm2 +P

pVmVor

Vm(pE + p)

I

I
0

012

J22r

S4

pWo

PVmWo

(pVoWo + p)r

Wo (pE + p) + rQp

I
0

K 2

0

0

I,
I

(2.4)

(2.5)

These equations have been reimplemented in the code. Since the preliminary axisy-

metric calculations could show the streamlines of the flow, one could implement in the

code a function giving the local radii and streamline thickness to be used in the preceding

equations. Figure 2-3 shows a 0 constant cut of the calculation domain and two of the
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Figure 2-3: Streamline thickness.

streamlines. These streamlines are calculated as interpolations of the hub and tip lines.

The hub line is given by the industrial design and contains changes of slopes for indus-

trial reasons therefore the interpolated lines used to calculate the streamline thickness also

contain these changes of slope even if they are not physical.

2.6 Comments on implementation

2.6.1 Method used

This first set of calculations was designed to give us an idea of the flow behavior in each of

the blade rows of this research compressor and in particular their pressure-rise characteristic.

First we have to get the steady-state flow. The rotating speed is set to the design value

of: 1208.8 rad/sec. The backpressure is set by the throttle. As the throttle is reduced the

backpressure rises and the mass flow reduces. We can then obtain operating points that will

give us the operating pressure rise characteristic. It is important to stress that the change

of throttle was continuous during the calculation since we have first reached a steady state.

It is not possible to determine if the flow fields obtained are steady states but are affected

by transient effects. However by stopping the change of back-throttle during the calculation

one can show the difference between the transient point and the steady-point is less than

1% of the pressure ratio.
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2.6.2 Boundary Conditions at Inlet of Computational Domain

The code implements inlet and outlet boundary conditions that prevent waves to be non-

physically reflected on the boundaries of the domain. Donald Hoying validated his code

for low-speed subsonic rotors but the situation being examined here is for a transonic com-

pressor. As such the inlet boundary conditions was modified to account for the consistent

propagation of flow information in the transonic flow situation.

2.7 Results

Figure 2-4 shows the static pressure ratio vs. the inlet mass flow. The first steady state

point corresponding to a fully opened throttle gives a pressure ratio of 1.2 at a mass flow

of 0.65. As the throttle is reduced, points are lining up almost vertically. If we look at

Figure 2-5, we notice a normal shock in the blade passage and therefore the inlet conditions

are not dependent on the throttle position. When the throttle is further reduced, the shock

moves upstream and then vanishes. We can plot the Mach number field at the peak of the

pressure rise characteristic in Figure 2-6 and we notice that the back 20% of the suction

side are stalled. If we zoom in on that region and plot the velocity vectors in Figure 2-7 we

see a recirculation region.

Figure 2-8 shows the Mach number during the transient to stall. We notice the separa-

tion region on the suction side of the blade and the recirculation region behind the trailing

edge of the blade. There is an increase in the blockage of the flow in the blade passage.

Calculations have been carried out for each row of the compressor geometry and their

computed characteristics are plotted in Figures 2-9, 2-10, 2-11, 2-12. The bottom line shown

in the figures represents a computational transient before the calculation actually converges

to the first steady state solution. Upon reducing the throttle, the pressure ratio increases to

a value corresponding to the peak of the pressure rise characteristic, and then drops until

a critical mass flow has been reached when the calculation becomes unstable.

39



Pressure rise characteristic for the rotor #1
1.6

1.4-

1.2-

0

Cc

0 0.8-
2

0.6-

0.4-

0.2-

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Non-dimensionalized Mass Flow

Figure 2-4: Static Pressure Ratio for rotor 1.

Figure 2-5: Mach number field for rotor 1.
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Figure 2-6: Mach number field for rotor 1 at the Peak of the Pressure Rise Characteristic.

Figure 2-7: Recirculation region on the suction side of the Trailing Edge.

Figure 2-8: Mach number field for rotor 1 at stall.
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Figure 2-10: Pressure Rise Characteristic for Stator1
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Figure 2-11: Pressure Rise Characteristic for Rotor2
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Figure 2-12: Pressure Rise Characteristic for Stator2

2.8 Summary

In this chapter, we presented computed results from the use of the 2-D version of Hoying's

code: RS2. We have added a new feature to the code allowing it to compute flow in flow

path with varying hub radius. The 2-D equations implemented had to be adapted to take

into account the variation of the streamline thickness.

The implementation of inflow boundary conditions was modified for transonnic flow

situations. The results showed the presence of a shock wave in front of the blade row and

a recirculation region on the back of the suction side of blades.
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CHAPTER 3

3D BODY FORCE REPRESENTATION OF

BLADE ROW FOR STABILITY

CALCULATION

3.1 Introduction

The 3D Navier-Stokes viscous solver allow us to simulate a wide range of length scales and

the details of stall inception. The downside of such a solver is that the computation time re-

quired prohibits any parametric study on a practical basis. Thus a low order computational

model that could reproduce the overall stability behavior of a compressor is needed. In this

the method developed by Yfang Gong [11] is adopted. We will explain the key features of

this method and demonstrate how it can potentially be used to implement a parametric

analysis of the stability of our geometry.

3.2 The Blade Force Model

The compression system consists of an inlet and an outlet ducts, blade rows, a plenum and

a throttle. Figure 3-1 shows the key elements in a compression system model.

The flow in the ducts and gaps is described by the unsteady three-dimensional inviscid

Euler equations as:
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Figure 3-1: Compression system model and the blade row modeling
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or rVoVr VVr

_ rV 2 + rP/p _ _ V+ PIP _

Each of the rows is represented by an appropriate body force representation (ie. infinite

number of blade assumption). Thus the effects of the flow events within the blade passage

can only be reflected in the body force representation. Flow events with length scale larger

than a blade pitch can be described by such a model. Therefore, at each circumferential

position, the flow is considered as axisymmetric and the pressure rise and turning due to

the blade is reproduced by a body force field. Since we have an infinite number of blades,

each circumferential position is independent from its neighbor and the three dimensional

flow field is composed of an infinite number of axisymmetric flow fields as show in figure 3-1.

The governing equations for the blade region are:
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(Fx, Fo, Fr) =F(V(x, 0, r), x, r)

where

(3.2)

(3.3)

It is important to stress that this body force representation is dependent on local

flow conditions in order to simulate flow redistribution within a blade row that happen

during short wavelength disturbances. The flow properties which impact the body force

distribution are the local Mach number M, deviation angle AO and Reynolds number Re.

Therefore the force can be expressed as

hF
2 = f(M, A#, Re)

pV 2

with h is the local spacing of the blade passage as shown in Figure 3-2

For high Reynolds number flow, the body force can be expressed as:

hF
2 = f(M, A3)

pV 2 (3.4)

The model splits the body force into two parts (Marble [18]): F, is the normal pro-
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Figure 3-2: The flow in a blade passage is modeled as a flow in a straight channel locally.

jection of the force relative to the flow direction and F, is the projection parallel to the

flow direction in the relative frame. Therefore it is possible to formulate each component

according to its physical basis. While F, accounts for the work done by the blade row to

the fluid through the pressure difference between the pressure and suction sides, F, reflects

the effects of the viscous force. The body force can therefore be expressed as:

hF~
pV2 = fn(M, A3)
pV 2

hFk= f, (M, A)#) (3.5)

Eventually, the body force model relies on two coefficients Kn(A#, M) and K,(A#, M)

through

F"'" - K (3M) V(Vcosa+Vsina)(Vcosa-Vsina)
h V

(3.6)

=Kn(A#, M ) V,
Fn,O= - (h V (Vxcosa+Vsina)(Vocosa-Vxsina)

and
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Fp~x - Kp(A, M) VV
h

FO - VM)VvO (3.7)
h

K,(zA#, M)Vr
Fp,r - VVr

h

Gong used coefficients that were based on data from measurements on NASA Rotor 35

K = 4.2 - 3.3 * a

KP = 0.04

but it has been necessary to conduct a parametric analysis to adapt these parameters to

the present high-speed geometry. The criteria used is to choose the coefficients so as to

match the maximum pressure ratio obtained from the axisymetric calculations. The details

of such a procedure are presented in appendix A.

The fluid in the plenum is considered as uniform and isentropic and its dynamic are

governed by the following equation:

dP y P
d = - (mc - mt) (3.8)di p Vpienum

with me denoting the flow rate from the compressor and mt the mass flow rate through

the throttle and Vpenum the volume of the plenum. The throttle pressure drop is given as :

P - Pambient = Kig? (3.9)
pU

2

Since the situation examined here is unrelated to compressor surge, the plenum volume

has been set to zero. The equations become:
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Pexit - Pambient = Kt92 (3.10)
pU 2

where Pexit is the static pressure at the exit of the computational domain.

3.3 Stage pressure characteristics

3.3.1 Introduction

It is important to stress that we have only carried out axisymmetric calculations for use in

determining the operating point at which the compressor would become unstable. Therefore,

non-linear phenomena like 'spikes' have not been simulated as was done in Gong's thesis.

For this study, we define our stability limit to be the peak of the pressure rise characteristic.

3.3.2 Evaluation of coefficients Kn and Kp

From Appendix A, the new set of coefficients for correlating the body force terms of the

local flow conditions is:

K = 0.8 * (4.2 - 3.3 * a)

K, = 0.005

3.3.3 Most unstable row

In a mismatched compressor the influence of downstream stable stage limits the extent of

stall cells. Therefore, there is a possibility that the first stage of our geometry would become

unstable before the second one. We wanted to determine if this was the case here. Running

two axisymetric calculations on the two stages, we could compare the mass flow for the

peaks of the pressure rise characteristics. The first stage included the first rotor and the

first stator whereas the second stage was defined by the first stator followed by the second
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Pressure rise characteristic for stage #1
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Figure 3-3: Pressure rise characteristic for the first stage.

rotor and the second stator.

Since the mass flow at the peak of the pressure rise characteristic of the first stage is

higher than that of the second stage, the first stage tends to stall earlier than the second

one. Therefore it is the most unstable stage of the compressor. It is deduced from this

observation that the focus of the effort should be on the first stage stability behavior.

3.4 summary

For the two stage high speed compressor, the first stage appears to be more unstable than

the second stage. In the next chapter, the stability behavior of the first rotor will be

examined using an unsteady 3D flow solver to determine the role of the rotor tip clearance

flow on setting compressor stability.
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Figure 3-4: Pressure rise characteristic for the first stage.
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CHAPTER 4

3D SIMULATIONS AND TIP LEAKAGE

VORTEX INFLUENCE ON STABILITY

4.1 Introduction

The 2D calculations presented in chapter 2 show the flow behavior under the assumption

of strip theory. We could calculate the pressure rise characteristic and determine the con-

ditions under which a particular blade row would stall at a given spanwise position of each

blade. We would like to be able to analyze the behavior of one complete row using the 3D

version of Donald Hoying's solver: RS3. The contributions of such calculations are to better

understand the mechanism involved in the tip region at the inception of the rotating stall.

The effects inside this region are associated with three-dimensional flow and thus require

the use of a 3D viscous flow solver. Under the condition for which the results of chapter

3 were obtained, the first stage would be more unstable relative to the second stage. As

such, we will apply the solver for simulating flow in the first rotor of 2-stage high-speed

compressor.
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4.2 The 3D solver RS3

4.2.1 Solver equations

The solver implements the three-dimensional Navier-Stokes equations in rotational cylin-

drical coordinates

( P

Pwx

Pwo

Pwr

Et'

(4.1)

j

Pwx

pwx + p - I1

PWxWO - "12

Pwxwr - r13

E wx + pwx - qx - Fiiwx - 12WO - Fi3wr

PwO

PWxWO - F12

PW2 +p - F22

POwOWr - F23

E wo + pwo - gO - F12Wx - F22WO - F23Wr

(4.2)

I

(4.3)
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PWr

PWxWr - IP13

G = PWOWr - IF23  (4.4)

2
PWr + P - IF3 3

Etwr + pwr - qr - r13Wx - F23WO - F33Wr

0

0

S= -pwowr + 2Qrpwr + r 23  (4.5)

pwO + p - 2Qrpwo + Q2r 2p - 22

Q 2 r 2 Pwr

Closure is obtained using the following relations,

2 2 2)

Et =p e+ WXWo+Wr (4.6)
2

9T kOT (47
qx = k gT = gr = k (4.7)ax r 80 or

T - -1) e (4.8)
R

p = (-y - 1) pe (4.9)

where k, -y, and R are fluid dynamic constants.

4.2.2 Grid construction

The three-dimensional grid consists of stacking the two-dimensional 0 and H grid similar

to those used for RS2. One change has been made from the original method though.

Originally the 0 grids for hub to tip were first calculated and each intermediate O-grid
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Figure 4-1: Rotor geometry for the 3D calculations.

was calculated with a linear interpolation of these. Since the blade geometry has a strong

spanwise variation, the grid generation method has been modified accordingly to deal with

the present geometrical configuration. Figure 4-1 shows the geometry used for the first 3D

calculations.

4.2.3 Choice of blade number

An important choice that has to be made is the number of blades. It is indeed not possible to

simulate the entire row of blades as the computational resources needed would be enormous.

This is the reason why we need to choose a lower number of blades according to some

constraints. We need to know if the row is going to stall either by modes or by 'spikes'

. Therefore, we need to be able to capture the harmonics of the modal type stall. If we

wanted to capture the first harmonic, we would need to simulate the whole row; thus we

chose to use Longley criterion [15] that requires a computational domain with 11 blades if

we want to capture the 6th harmonic of the modal type of stall inception. Fig 4-2 shows

such a computational domain.
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Figure 4-2: Computational domain with 11 blades.

4.2.4 Protocol of implementing the computational Experiments

The goal of these calculations is to have the rotor row operating at or near stall so that the

inception and the development of instabilities can be studied. For this, we need to know

where the instability point of the row stands. Since we cannot afford to determine this

instability point by carrying out a calculation with 11 blades because of a huge computa-

tional time needed, it has become necessary to implement a preliminary set of calculations

to determine what throttle position would trigger the instability. In a manner similar to the

2D calculation, the throttle is set to 1.0 at the beginning of the calculation until it reaches

a steady state. Then it is possible to change the throttle by discrete decrement and each

time we must get a steady state. Fig 4-3 shows the average mass flow going through the

system every 10 iterations. It gives us a good idea of the convergence of the calculations.

We want to determine the impact of tip leakage vortices on the inception of stall.

According to Donald Hoying's hypothesis, tip leakage vortices going forward of the blade

passage can trigger rotating stall. However, this hypothesis has been questionned by Duc

Vo and the phenomenon needs to be further studied to determine the manner for which

tip clearance flow triggers compressor stall. The goal of this first set of calculations is to

calculate a steady state of the flow for which the tip leakage vortex is lined up with the

leading edges of the blades.
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Figure 4-3: Mass flow convergence for 1 blade passage.

4.3 Single blade passage calculations

This first set of calculations consists of single blade passage calculations for determining

the conditions when the rotor is operating near stall. These conditions are then adopted

for use in the 11 blade passage simulation.

4.3.1 Before stall

First, we need to obtain a steady state flow situation prior to compressor stalling. With a

throttle open to 65 % of the maximum throttle setting, we can see on figure 4-4 that the

flow vectors are not showing a separation on the suction side of the blades. There is a region

of low mach number on the suction side of the blade passage but the flow is still attached

and therefore we can say that the mid span region is unstalled for a throttle setting equal

to 65% of the exhaust surface.

The computed results of Figure 4-5 is a contour on a r-9 plane at 95% of the blade

span. The vorticity contour shows the path of the tip leakage vortices. which for this case

are dowstream of the leading edge plane. It can be noticed that the impact of these vortices

on the suction side of the next blade are located downstream of the leading edge. According
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Figure 4-4: Mach number and flow vectors at mid-span for a throttle setting at 0.65

to Donald Hoying hypothesis, this fact indicates that the blade row is on the stable portion

of the pressure rise characteristic. Therefore we can further reduce the throttle to reach the

peak of this characteristic.

4.3.2 Critical point

For a throttle set to 57% of the maximum throttle setting, Figure 4-6 shows the Mach

number distribution on an r-9 plane at 95% of the span of the rotor. We can clearly see that

there is a well-defined limiting line going from one leading edge to another. This separates

the upstream clean flow from the flow between the blades that include tip clearance flow.
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Figure 4-5: Vorticity plot at 95% of the span for a throttle setting at 0.65

Figure 4-6: Mach number contour at 95% span in a r-9 plane for a throttle setting at 0.57
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Figure 4-7: Vorticity plot at 95% of the span for a throttle setting at 0.57

4.4 The multi-blade passages calculations

4.4.1 Steady state problem

The preceding calculation allowed us to determine the throttle position for the potential

inception of flow instabilities. We can now proceed with the 11 blade passage calculations

to determine the conditions for which the rotor would stall.

We first set the calculation to reach a steady-state with a throttle fully-opened be-

fore we reduce it to a setting corresponding to the instability point. Using the available

computational resources at MIT Gas Turbine Laboratory, it took four weeks to reach a

steady-state point.

Figure 4-8 shows the static pressure contour on a mid-span plane. We notice that the

static pressure is lower at the exit of the rotor than at its inlet. We must analyse the flow

to determine the cause of such a static pressure drop. Figure 4-9 shows the velocity vectors

at the leading edge of a rotor blade. We notice a separation bubble on the pressure side of
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Figure 4-8: Pressure plot for a cut at mid-span.

the rotor blade. This bubble creates a high blockage at the inlet of the blade passage. This

could be the cause of the static pressure decrease.

4.4.2 problem analysis

To understand what is the cause of the negative angle of incidence on the leading eadge of

the rotor blade, we checked the differences between the 1 blade passage and the 11 blade

passage calculations. Beside the number of blade, we kept the same boundary conditions,

the same rotational speed of the rotor and the same inlet pressure and inlet incidence angles.

To be able to do a calculation on a large grid representing 11 blade passage, it was

necessary to reduce the number of grid points in the azimuthal direction thus changing

the grid aspect ratio. This could have been a reason for the change in the computed flow

behavior between the two calculations.

To check this assumption, we have decided to run another 1 blade passage calculation

with the same grid characteristics as that used in the 11 blade passage. Figure 4-10 shows
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Figure 4-9: Velocity vector at the leading edge of the rotor for a cut at mid-span.

that the same phenomenon appear at the leading edge as a transient. Figure 4-11 shows

the leading edge flow at a later time and we can notice that the bubble has disappeared.

This phenomenon was not present for the first one blade passage calculation. Therefore this

study implies that grid resolution and the aspect ratio of the cells can have an influence on

the solution behavior as it approaches the equilibrium state.

4.4.3 Summary

In this chapter, we implemented a 1-blade-passage calculation to estimate the right throttle

position to be set for the following 11-blade-passage calculation. Having found a value of

0.57, we could run the next calculation but the negative flow angle at the leading edge of the

rotor created a high blockage region and we had to stop the calculation. Running another

1-blade-passage calculation, we found that the grid density and aspect ratio had an impact

on the results of the calculations obtained using Hoying's code. The lack of additional com-

putational resources put a constraint on the completion of the 11-blade passage calculation

for delineating the fluid dynamic process that set the compressor stall.
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Figure 4-10: Velocity vector during transient

Figure 4-11: Velocity vector after transient
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CHAPTER 5

CONCLUSIONS

The goal of this study is to demonstrate the feasibility of implementing a complete

stability analysis within the design loop of a multistage compressor. To accomplish this,

two computational models developed in the Gas Turbine Laboratory have been used. The

first one, developed by Yifang Gong, is a row-by-row body force representation that allows

the stability behavior of a multi-stage compressor to be analyzed. The second model was

developed by Donald Hoying. It computes the 3-D features of the flow in a multi-blade

passage of an isolated blade row. The approach would consist of first implementing a 3-D

or a set of 2-D calculations for each of the blade row to establish the row-by-row body force

representation of a multi-stage compressor. The latter is then used to determine the most

unstable stage. Finally a multi-blade passage calculation is carried out for the rotor of the

most unstable stage with the objective of determining the flow event responsible for setting

compressor stall.

5.1 Summary and conclusions

An attempt was made to assess the feasability of implementing a multi-stage compres-

sor stability analysis during the course of its design. This involves the application of two

computational methodology : (1) Gong's computational model which consists of a blade-

row-by-blade-row representation of a compressor for stability analysis, (2) Hoying's 3-D

flow solver for implementing single blade passage calculation as well as multi-blade passage

calculation. The original plan was to use the single blade-passage calculation from (2) to
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establish the blade-row-by-blade-row body force representation of the compressor in (1)

followed by its use to determine the most unstable stage. A multi-blade passage calcu-

lation was then to be implemented for the rotor of the most unstable stage to determine

the conditions that set the compressor stability. The computed results were then to be

used to redesign the compressor to improve its stability behavior. However only a subset

of the calculations of the originally proposed calculations have been implemented due to

constraints imposed by time and the available computational resources. These are: (i) A

set a 2-D single blade passage calculations at discrete spanwise locations for each of the

four blade rows. (ii) Use of Gong's methodology to determine the most unstable stage

based on axisymmetric calculations. (iii) Use of Hoying's code to implement a set of single

blade passage calculations and one 11-blade passage calculations. The 3-D 11-blade pas-

sage calculations was implemented to determine the role of tip leakage vortex in setting the

compressor stability. This was based on Hoying's hypothesis which has since be called into

question by Duc Vo [27].

(i) and (ii) brought us the conclusion that the first stage was the most unstable and

that was the reason why we focused our efforts on this stage in (iii). During the course of

implementing (iii), we discovered the impact of the grid resolution and the cells aspect ratio

on the the outcome of the calculations. The comparison made between two calculations

with identical boundary and initial conditions but different grids raised the issue of the

sensitivity of the computed results based on the selected grid resolution and distribution.
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APPENDIX A

BODY FORCE MODEL COEFFICIENTS

At the time this thesis is written, the research compressor of this study has not been

built yet. This is the reason why we have but little information about its behavior. However,

the axisymetric calculations, already done on it, have led to an estimation of a portion of

each row's pressure rise characteristic and efficiency. Since the coefficients of Gong's model

have been calibrated with the data of Rotor 35 from GE. It has been necessary to conduct a

parameter analysis of the coefficients in order to adapt the model to our case. The criterion

chosen here is maximum static pressure ratio reached by the pressure rise characteristic.

The original coefficients used by Yfong Gong are

K = 4.2 - 3.3 * a

Kp = 0.04

Coefficient K, governs the viscous influence on the flow. The first idea is to analyze

its influence on the pressure rise characteristic shown on figure A-1.

Coefficient K governs the amount of flow turning due deviation angle between the

local direction of the flow and the local metal angle. Multiplying this coefficient by the

variable A allows us to understand the influence of this parameter on the pressure rise

characteristic of the row (Fig. A-2).

Comparing these parametric studies to previous calculations led us to choose a new set

of coefficients, which have been implemented in the model. They are:
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K, 0.8 * (4.2 - 3.3 * a)

Kp = 0.005
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