
MIT Open Access Articles

Composite Social Network for Predicting Mobile Apps Installation

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Wei Pan, Nadav Aharony, Alex Pentland. "Composite Social Network for Predicting
Mobile Apps Installation". Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence. AAAI Publications, 2011.

As Published: http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3729

Publisher: AAAI Publications

Persistent URL: http://hdl.handle.net/1721.1/80765

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/80765

Composite Social Network for Predicting Mobile Apps Installation

Wei Pan and Nadav Aharony and Alex (Sandy) Pentland
MIT Media Laboratory

20 Ames Street
Cambridge, Massachusetts 02139

Abstract

We have carefully instrumented a large portion of the
population living in a university graduate dormitory by
giving participants Android smart phones running our
sensing software. In this paper, we propose the novel
problem of predicting mobile application (known as
“apps”) installation using social networks and explain
its challenge. Modern smart phones, like the ones used
in our study, are able to collect different social net-
works using built-in sensors. (e.g. Bluetooth proximity
network, call log network, etc) While this information
is accessible to app market makers such as the iPhone
AppStore, it has not yet been studied how app mar-
ket makers can use these information for marketing re-
search and strategy development. We develop a simple
computational model to better predict app installation
by using a composite network computed from the dif-
ferent networks sensed by phones. Our model also cap-
tures individual variance and exogenous factors in app
adoption. We show the importance of considering all
these factors in predicting app installations, and we ob-
serve the surprising result that app installation is indeed
predictable. We also show that our model achieves the
best results compared with generic approaches.

Introduction
Recent research projects have demonstrated that social net-
works correlate with individual behaviors, such as obe-
sity (Christakis and Fowler 2007) and diseases (Colizza et
al. 2007), to name two. Many large-scale networks are ana-
lyzed, and this field is becoming increasing popular (Eagle,
Macy, and Claxton 2010) (Leskovec, Adamic, and Huber-
man 2007).

We are interested in studying the network-based predic-
tion for mobile applications (referred as “apps”) installation,
as the mobile application business is growing rapidly (Elli-
son 2010). The app market makers, such as iPhone App-
Store and Android Market, run on almost all modern smart
phones, and they have access to phone data and sensor data.
As a result, app market makers can infer different types of
networks, such as the call log network and the bluetooth
proximity network, from phone data. However, it remains an

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

unknown yet important question whether these data can be
used for app marketing. Therefore, in this paper we address
the challenge of utilizing all different network data obtained
from smart phones for app installation prediction.

It is natural to speculate that there are network effects in
users’ app installation, but we eventually realize that it was
very difficult to adopt existing tools from large-scale social
network research to model and predict the installation of cer-
tain mobile apps for each user due to the following facts:

1. The underlying network is not observable. While many
projects assume phone call logs are true social/friendship
networks (Zhang and Dantu 2010), others may use what-
ever network that is available as the underlying social net-
work. Researchers have discovered that call network may
not be a good approximation (Eagle and Pentland 2006).
On the other hand, smart phones can easily sense multiple
networks using built-in sensors and software: a) The call
logs can be used to form phone call networks; b) Blue-
tooth radio can be used to infer proximity networks (Ea-
gle and Pentland 2006); c) GPS data can be used to in-
fer user moving patterns, and furthermore their working
places and affiliations (Farrahi and Gatica-Perez 2010);
d) Social network tools (such as the Facebook app and the
Twitter app) can observe users’ online friendship network.
In this work, our key idea is to infer an optimal composite
network, the network that best describes app installation,
from multiple layers of different networks easily observed
by modern smart phones, rather than assuming a certain
network as the real social network explaining app instal-
lation.

2. Analysis for epidemics (Ganesh, Massoulié, and Towsley
2005) and Twitter networks (Yang and Leskovec 2010)
is based on the fact that network is the only mechanism
for adoption. The only way to get the flu is to catch the
flu from someone else, and the only way to retweet is
to see the tweet message from someone else. For mobile
app, this is, however, not true at all. Any user can simply
open the AppStore (on iPhones) or the Android Market
(on Android phones), browse over different lists of apps,
and pick the one that appears most interesting to the user
to install without peer influence. One big challenge, which
makes modeling the spreading of apps difficult, is that one
can install an app without any external influence and in-

formation. One major contribution of this paper is that we
demonstrate it is still possible to build a tool to observe
network effects with such randomness.

3. The individual behavioral variance in app installation is
so significant that any network effect might possibly be
rendered unobservable from the data. For instance, some
geek users may try and install all hot apps on the market,
while many inexperienced users find it troublesome even
to go through the process of installing an app, and as a
result they only install very few apps.

4. There are exogenous factors in the app installation behav-
iors. One particular factor is the popularity of apps. For in-
stance, the Pandora Radio app is vastly popular and highly
ranked in the app store, while most other apps are not. Our
model takes this issue into account too, and we show that
exogenous factors are important in increasing prediction
precision.
Classic diffusion models such as Granovetter’s

work (Granovetter and Soong 1983) are applicable to
simulation, but lack data fitting and prediction powers.
Statistical analysis used by social scientists such as matched
sample estimation (Aral, Muchnik, and Sundararajan
2009) are only for identifying network effects and mech-
anism. Recently works in computer science for inferring
network structure assume simple diffusion mechanism,
and are only applicable to artificial simulation data on
real networks (Gomez Rodriguez, Leskovec, and Krause
2010) (Myers and Leskovec 2010). On the other hand, our
work addresses the above issues in practical app marketing
prediction. On the mobile-based behavioral prediction side,
The closest research is the churn prediction problem in
mobile networks (Richter, Yom-Tov, and Slonim 2010),
which uses call logs to predict users’ future decisions of
switching mobile providers. To our knowledge, we don’t
see other related works for similar problems.

Data
We collected our data from March to July 2010 with 55 par-
ticipants, who are residents living in a married graduate stu-
dent residency of a major US university. Each participant
is given an Android-based cell phone with a built-in sens-
ing software developed by us. The software runs in a pas-
sive manner, and it didn’t interfere the normal usage of the
phone.

Our software is able to capture all call logs in the exper-
iment period. We therefore obtained a call log network be-
tween all participants by treating participants as nodes and
the number of calls between two nodes as weights for the
edge in-between. The software also scans near-by phones
and other Bluetooth devices every five minutes to capture
the proximity network between individuals. The counts on
the number of Bluetooth hits are used as edge weights sim-
ilar to the call log network as done in Eagle et al (Eagle
and Pentland 2006). We have also collected the affiliation
network and the friendship network by deploying a survey,
which lists all the participants and ask each one to list their
affiliations (i.e. the academic department), and rate their re-
lationships with everyone else in the study. We believe for

app market makers the affiliation network can also be in-
ferred simply by using phone GPS/cell tower information
as shown by Farrahi et al(Farrahi and Gatica-Perez 2010).
However, this is not the focus of this work, and here we sim-
ply use survey data instead. Though the friendship network
is also collected using surveys, we suggest that the app mar-
ket makers can obtain the friendship network from phones
by collecting data from social networking apps such as the
Facebook and Twitter apps. We summarize all the networks
obtained from both phones and surveys in Table 1. We re-
fer to all networks in Table 1 as candidate networks, and
all candidate networks will be used to compute the optimal
composite network. It should be noted that all networks are
reciprocal in this work.

We want to emphasize the fact that the network data we
used in Table 1 are obtainable for app market makers such as
Apple iTunes Store, as they have access to phone sensors as
well as user accounts. Therefore, our approach in this paper
can be beneficial to them for marketing research, customized
app recommendation and marketing strategy making.

Our built-in sensing platform is constantly monitoring the
installation of mobile apps. Every time a new app is in-
stalled, this information will be collected and sent back to
our server within a day. Overall, we receive a total of 821
apps installed by all 55 users. Among them, 173 apps have
at least two users. For this analysis, we only look at app in-
stallations and ignore un-installations. We first demonstrate
statistics for all of the apps in the study: In Fig. 1(a), we plot
the distribution of number of users installing each app. We
discover that our data correspond very well with a power-
law distribution with exponential cut. In Fig. 1(b), we plot
the distribution of number of apps installed per user, which
fits well with an exponential distribution.

Fig. 1(a) and 1(b) illustrate detailed insight into our
dataset. Even with a small portion of participants, the distri-
bution characteristic is clearly observable. We find that apps
have a power-law distribution of users, which suggests that
most apps in our study community have a very small user
pool, and very few apps have spread broadly. The exponen-
tial decay in Fig. 1(b) suggests that the variance of individ-
ual user is significant: There are users having more than 100
apps installed, and there are users having only a couple of
apps.

Model
In this section, we describe our novel model for capturing
the app installation behaviors in networks. In the following
content, G denotes the adjacency matrix for graph G. Each
user is denoted by u ∈ {1, ..., U}. Each app is denoted by
a ∈ {1, ..., A}. We define the binary random variable xau to
represent the status of adoption (i.e. app installation): xau =
1 if a is adopted by user n, 0 if not.

As introduced in the previous section, the different social
relationship networks that can be inferred by phones are de-
noted by G1, ...,GM . Our model aims at inferring an opti-
mal composite network Gopt with the most predictive power
from all the candidate social networks. The weight of edge
ei,j in graph Gm is denoted by wmi,j . The weight of an edge

Network Type Source Notation
Call Log Network Undirected,Weighted # of Calls Gc

Bluetooth Proximity Network Undirected,Weighted # of Bluetooth Scan Hits Gb

Friendship Network Undirected,Binary Survey Results (1: friend; 0: not friend) Gf

Affiliation Network Undirected,Binary Survey Results (1: same; 0: different) Ga

Table 1: Network data used in this study.

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x (# of Users per App)

y= x
α
, α=−1.98

(a)

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

x (# of Apps Installed per User)

P
r(

X
 ≥

 x
)

y = e
β x

, β= −0.04

(b)

Figure 1: Circles are real data, and lines are fitting curves. Left: Distribution of number of users for each app. Right: Distribution
of number of apps each user installed.

in Gopt is simply denoted by wi,j .

Adoption Mechanism
One base idea of our model is the non-negative accumulative
assumption, which distinguishes our model from other linear
mixture models. We define Gopt to be:

Gopt =
∑
m

αmGm,where ∀m,αm ≥ 0. (1)

The intuition behind this non-negative accumulative as-
sumption is as follows: if two nodes are connected by a cer-
tain type of network, their app installation behaviors may or
may not correlate with each other; On the other hand, if two
nodes are not connected by a certain type of network, the
absence of the link between them should lead to neither pos-
itive or negative effect on the correlation between their app
installations. As shown in Table 2 in the experiment session,
our non-negative assumption brings significant performance
increase in prediction. Non-negative assumption also makes
the model stochastic and theoretically sound. We treat bi-
nary graphs as weighted graphs as well. Since α1, ..., αM
is the non-negative weights for each candidate network in
describing the optimal composite network. We later refer
to the vector (α1, ..., αM) as the optimal composite vector.
Our non-negative accumulative formulation is also similar
to mixture matrix models in machine learning literature (El-
Yaniv, Pechyony, and Yom-Tov 2008).

We continue to define the network potential pa(i):

pa(i) =
∑

j∈N (i)

wi,jx
a
j , (2)

where the neighbor of node i is defined by:

N (i) = {j|∃m s.t. wmi,j ≥ 0}. (3)

The potential pa(i) can also be decomposed into poten-
tials from different networks:

pa(i) =
∑
m

αm (
∑

j∈N (i)

wmi,jx
a
j)︸ ︷︷ ︸

pma (i)

, (4)

where pma (i) is the potential computed from one single can-
didate network. We can think of pa(i) as the potential of
i installing app a based on the observations of its neighbors
on the composite network. The definition here is also similar
to incoming influence from adopted peers for many cascade
models (Kempe, Kleinberg, and Tardos 2003).

Finally our conditional probability is defined as:

Prob(xau = 1|xau′ : u′ ∈ N (u)) = 1− exp(−su − pa(u)),
(5)

where ∀u, su ≥ 0. su captures the individual susceptibility
of apps, regardless of which app. We use the exponential
function for two reasons:

1. The monotonic and concave properties of f(x) = 1 −
exp(−x) matches with recent research (Centola 2010),
which suggests that the probability of adoption increases
at a decreasing rate with increasing external network sig-
nals.

2. It forms a concave optimization problem during maxi-
mum likelihood estimation in model training.

As shown in the experiment section and based on our expe-
riences, this exponential model yields the best performance.

Model Training
We move on to discuss model training. During the train-
ing phase, we want to estimate the optimal values for the
α1, ..., αM and s1, ..., sU . We formalize it as an optimiza-
tion problem by maximizing the sum of all conditional like-
lihood.

Given all candidate networks, a training set composed of
a subset of apps TRAIN ⊂ {1, ..., A}, and {xau : ∀a ∈
TRAIN, u ∈ {1, ..., U}}, we compute:

arg max
s1,...,sU ,α1,...,αM

f(s1, ..., sU , α1, ..., αM),

Subject to: ∀u, su ≥ 0,∀m,αm ≥ 0 (6)

where:

f(s1, ..., sU , α1, ..., αM)

= log

[∏
a∈TRAIN

∏
u:xa

u=1

Prob(xau = 1|xau′ : u′ ∈ N (u))

∏
u:xa

u=0

(
1− Prob(xau = 1|xau′ : u′ ∈ N (u))

)]

=
∑

a∈TRAIN

 ∑
u:xa

u=1

log(1− exp(−su − pa(u))

−
∑

u:xa
u=0

(su + pa(u))

 (7)

(8)

This is a concave optimization problem. Therefore, global
optimal is guaranteed, and there exist efficient algorithms
scalable to larger datasets (Boyd and Vandenberghe 2004).
We use a MATLAB built-in implementation here, and it usu-
ally take a few seconds during optimization in our experi-
ments.

Compared with works on inferring networks (Gomez Ro-
driguez, Leskovec, and Krause 2010) (Myers and Leskovec
2010), our work is different as we compute Gopt from ex-
isting candidates networks. In addition, we don’t need any
additional regularization term or tuning parameters in the
optimization process.

We emphasize that our algorithm doesn’t distinguish the
causality problem (Aral, Muchnik, and Sundararajan 2009)
in network effects: i.e.,we don’t attempt to understand the
different reasons why network neighbors have similar app
installation behaviors. It can either be diffusion (i.e. my
neighbor tells me), or homophily (i.e. network neighbors
share same interests and personality). Instead, our focus is
on prediction of app installation, and we leave the causality
problem as future work.

Virtual Network for Exogenous Factors
Obvious exogenous factors include the popularity and qual-
ity of an app. The popularity and quality of an app will
affect the ranking and review of the app in the App-
Store/AppMarket, and as a result higher/lower likelihood of
adoption. We can model this by introducing a virtual graph

Gp, which can be easily plugged into our composite network
framework.Gp is constructed by adding a virtual node U+1
and one edge eU+1,u for each actual user u. The correspond-
ing weight of each edge wU+1,u for computing pa(u) is Ca,
where Ca is a positive number describing the popularity of
an app. In our experiment, we use the number of installations
of the app in this experimental community as Ca. We have
been looking at other sources to obtain reliable estimates for
Ca, but we found that the granularity from public sources to
be unsatisfying. In practice for app market makers, we argue
that Ca can be easily obtained accurately by counting app
downloads and app ranks.

The exogenous factors also increase accuracy in measur-
ing network effects for a non-trivial reason: Considering
a network of two nodes connected by one edge, and both
nodes installed an app. If this app is very popular, then the
fact that both nodes have this app may not imply a strong
network effect. On the contrary, if this app is very uncom-
mon, the fact that both nodes have this app implies a strong
network effect. Therefore, introducing exogenous factors
does help our algorithm better calibrate network weights.

Experiments
Our algorithm predicts the probability of adoption (i.e. in-
stalling an app) given its neighbor’s adoption status. pi ∈
[0, 1] denotes the predicted probability of installation, while
xi ∈ {0, 1} denotes the actual outcome. The most com-
mon prediction measure is the Root Mean Square Error

(RMSE =
√

1
n

∑n
i=1(pi − xi)2). This measure is known

to assess badly the prediction method’s ability (Goel et al.
2010). Since in our dataset most users have installed very
few apps, a baseline approach can simply predict the same
small pi and still achieve very low RMSE.

For app marketing, the key objective is not to know the
probability prediction for each app installation, but to rank
and identify a sub-group of individuals who are more likely
to appreciate and install certain apps compared with aver-
age users. Therefore, we mainly adopt the approach in rank-
aware measures from information retrieval practices (Man-
ning et al. 2008). For each app, we rank the likelihood of
adoption computed by prediction algorithms, and study the
following factors:

a) Mean Precision at k (MP-k): We select the top k indi-
viduals with highest likelihood of adoption as predicted
adopters from our algorithms, and compute precision at k
(# true adopters among k predicted adopters

k). We average precisions
at k among all apps in the testing set to get MP-k. On
average each app has five users in our dataset. Therefore,
the default value for k is five in the following text. MP-
k measures algorithm’s performance on predicting most
likely nodes.

b) Optimal F1-score (referred later simply as F1 Score). The
optimal F1-score is computed by computing F1-scores
(2×precision×recall

precision+recall)for each point on the Precision-Recall
curve and selecting the largest F1 value. Unlike MP-k, the
optimal F1 score is used to measure the overall prediction
performance of our algorithms. For instance, F1 = 0.5

suggests the algorithm can reach a 50% precision at 50%
recall.

Prediction using Composite Network
To begin with, we illustrate different design aspects for our
algorithm.

To demonstrate the importance of modeling both net-
works and individual variances in our model, we here
demonstrate the prediction performance with five configu-
rations using a 5-fold cross-validation: a) to model both in-
dividual variance and network effects; b) to model both indi-
vidual variance and network effects, but exclude the virtual
network Gp capturing exogenous factors; c) to model with
only individual variance (by forcing αm = 0 in Eq. 6), d) to
model with only network effects (by forcing su = 0,∀u),
and e) to model with network effects while allowing the
composite vector to be negative. The results are illustrated
in Table 2.

We find the surprising results that app installations are
highly predictable with individual variance and network in-
formation as shown in Table 2. In addition, Table 2 clearly
suggests that all our assumptions for the model are indeed
correct, and both individual variance and network effects
play important roles in app installation mechanism, as well
as the exogenous factors modeled by Gp.

We also notice that while accuracy almost doubles, it is
often impossible to realize this improvement using RMSE.
Therefore, we will not RMSE for the rest of the work.

0

0.1

0.2

0.3

0.4

0.5

R
an

do
m

G
a

G
f

G
b

G
c

O
ur

 A
pp

ro
ac

h

F
1
 S

c
o
re

Figure 2: We demonstrate the prediction performances using
each single network here. For comparison, we also show the
result of random guess, and the result using our approach,
which combines all potential evidence.

We now illustrate the prediction performance when our
algorithm is only allowed to use one single network. The
results are shown in Fig. 2. We find that except the affilia-
tion network, almost all other networks predict well above
chance level. The call log network seems to achieve the best
results. We conclude that while network effects are strong in
app installations, a well-crafted model such as our approach
can vastly increase the performance by computing the com-
posite network and counting other factors in.

Prediction Performance
We now test the performance of our model with some other
implementations for predictions. As there is no other closer

work related to app prediction with multiple networks, we
here compare prediction performance with some alternative
approaches we can think of.

Since it is practically difficult to observe every user app
installation behaviors, in our experiments we also want to
test the performance of each algorithm when the test set is
small. In particular, we evaluate the performance of differ-
ent implementations with two approaches for cross valida-
tion: 1) Normal-size training set: We randomly choose half
of all the apps in the dataset as the training set, and test on
the other half of the dataset. 2) Small-size training set: We
randomly choose only 20% of all the app installations in our
dataset as the training set, and test on the the rest 80% apps.
In both cases, we repeat the process for five times for cross
validation and take average of the results.

For our algorithm, we feed it with networks
Gp, Ga, Gb, Gf and Gc obtained by phones and sur-
veys as described previously. For SVM, we apply two
different approaches in predictions:
• We don’t consider the underlying network, but simply use

the adoption status of all other nodes as the features for
each node. We test this approach simply to establish a
baseline for prediction. We refer it as “SVM-raw”.

• We compute the potential pma (i) for each candidate net-
work Gm, and we use all the potentials from all candi-
date networks as features. Therefore, we partially borrow
some ideas from our own model to implement this SVM
approach. We refer this approach as “SVM-hybrid”.

We use a modern SVM implementation (Chang and Lin
2001), which is capable of generating probabilistic predic-
tions rather than binary predictions.

We also replace Eq. 5 with a linear regression model by
using pma (i),∀m together with # of apps per user (instead
of learning su in our MLE framework) as independent vari-
ables. We call this approach “Our Approach (Regression)”
in the following text to distinguish the difference. We also
force the non-negative accumulation assumption in the re-
gression setting.

Results for both the normal-size training set and the small-
size training set are shown in Table 3, and we discover that
our algorithm outperforms other competing approaches in
all categories. However, we notice that with many our model
assumptions, generic methods can also achieve reasonably
well results. Performance on half of the users that are less
active in app installation is also shown. Because this group
of users are very inactive, they may be more susceptible to
network influence in app installation behaviors. We notice
that our algorithm performs better in this group with more
than 10% improvement over other methods.

Predicting Future Installations
In app marketing, one key issue is to predict future app in-
stallations. Predicting future app adoption at time t in our
model is equivalent to predicting installation with part of the
neighbor adoption status unknown. These unknown neigh-
bors who haven’t adopted at time t may or may not adopt at
t′ > t. Though our algorithm is trained without the informa-
tion of time of adoption, we show here that the inferred in-

RMSE MP-5 F1 Score
Net.+ Ind. Var. + Exogenous Factor 0.25 0.31 0.43

Net. + Ind. Var. 0.26 0.29 0.42
Ind. Variance Only 0.29 0.097 0.24

Net. Only (non-negative) 0.26 0.24 0.37
Net. Only (allow negative) 0.30 0.12 0.12

Table 2: The performance of our approach under five different configurations. We observe that modeling both individual vari-
ance and networks are crucial in performance as well as enforcing non-negative composition for candidate networks as in Eq.
1.

Methods Using 20% as Training Set Using 50% as Training Set Using 50% as Training Set
All Users All Users Low Activity Users
MP-5 F1 Score MP-5 F1 Score MP-5 F1 Score

Our Approach 0.28 0.46 0.31 0.43 0.20 0.43
SVM-raw 0.17 0.26 0.24 0.32 0.14 0.27

SVM-hybrid 0.14 0.29 0.27 0.30 0.16 0.30
Our Approach (Regression) 0.27 0.42 0.30 0.41 0.18 0.39

Random Guess 0.081 0.17 0.081 0.17 0.076 0.14

Table 3: Prediction performance for our algorithm and competing methods is shown.

dividual variance su and composite vector (α1, ..., αM) can
be used to predict future app adoption.

We here apply the following cross-validation scheme to
test our algorithm’s ability in predicting future installations:
For the adopters of each app, we split them to two equal-size
groups by their time of adoption. Those who adopted earlier
are in G1, and those who adopted later are in G2. The train-
ing phase is the same as the previous section; In the testing
phase, each algorithm will only see adoption information for
subjects in G1, and predict node adoption for the rest. The
nodes in G2 will be marked as non-adopters during predic-
tion phase.

Results from cross validation are shown in Table 4. We
notice that our algorithm still maintains the best perfor-
mance and limited decrease in accuracy compared with Ta-
ble 3. Since the number of adopted nodes are fewer than
those in Table 3, we here show MP with smaller k in Table
4.

MP-k F1 Score
k = 3 k = 4 k = 5

Our Approach 0.18 0.16 0.15 0.35
SVM-hybrid 0.15 0.13 0.12 0.32

Our(Regression) 0.17 0.15 0.14 0.33
Random 0.045 0.045 0.045 0.090

Table 4: MP-k and F1 scores for predicting future app in-
stallations are shown above.

Notice in Table 4 that the random guess precision is re-
duced by half. Therefore, even the precision here is 30%
lower than in Table 3, it is mainly due to the fact that nodes
in G1 are no longer in the predicting set. Our accuracy is
considerable as it is four times better than random guess.

Predictions With Missing Historical Data
In practice, sometimes it is not possible to observe the app
installation for all users due to privacy reasons. Instead, for
app market markers they may only be allowed to observe and
instrument a small subset of a community. We here want to
study if it is still possible to make some prediction in app
installations under such circumstance.

To formally state this problem, we assume that all the
nodes 1, ..., U are divided into two groups. The observable
group G1 and the unobservable group G2. During cross val-
idation, only nodes in the observable group are accessible to
our algorithms in the training process, and nodes in the un-
observable group are tested with the prediction algorithms.
Therefore, for our algorithm, even the individual variance
su, u ∈ G1 is computed in the training process, we will not
have su′ , u′ ∈ G2 for Eq. 5 in the testing phase. We illustrate
the prediction precision results in Fig. 3. It seems that even
trained on a different set of subjects without calibrating users
variance, the composite vector learned by our algorithm can
still be applied to another set of users and achieve 80% over
random guess.

Conclusion
Our contributions in this paper include a) We show the data
of a novel mobile phone based experiments on the app in-
stallation behavior; b) We illustrate that there are strong net-
work effects in app installation patterns even with tremen-
dous uncertainty in app installation behavior; c) We show
that by combining measurable networks using modern smart
phones, we can maximize the prediction accuracy; d) We de-
velop a simple discriminative model which combines indi-
vidual variance, multiple networks and exogneous factors,
and our model provides prediction accuracy four times bet-
ter than random guess in predicting future installations.

Future works include the causality problem in studying

50% 20%
0

0.05

0.1

0.15

0.2

Percentage of All Subjects Used for Training

M
P

Our Approach

SVM−hybrid

Our Approach(Regression)

Random Guess

Figure 3: The MP from our approach and two comparison
approaches. We here set k for MP to be the average number
of users in G2 for each testing app.

network phenomena and a temporal model for app adoption.
We believe the former one can be done with a much care-
fully crafted lab experiments. For the latter one, we have
attempted multiple temporal adoption models but failed.We
suspect that the mechanism of temporal diffusion of apps is
very complicated, and we leave this as a future work.

Though our convex optimization framework is fast and
reasonably scalable, it should be noted that still the proposed
method in this paper may not be suitable to handle data from
billions of cell phone users. Potential solutions include di-
viding users into small clusters and then conquering, and
sampling users for computation. The scalability problem re-
mains a future work.

Acknowledgements
The authors want to thank Cory Ip for her remarkable efforts
in managing the study, Dr. Riley Crane and Yves-Alexandre
de Montjoye for helpful discussions, and the anonymous
reviewers for their valuable comments. This research was
sponsored by AFOSR under Award Number FA9550-10-1-
0122. The views and conclusions contained in this document
are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of
AFOSR or the U.S. Government.

References
Aral, S.; Muchnik, L.; and Sundararajan, A. 2009. Distin-
guishing influence-based contagion from homophily-driven
diffusion in dynamic networks. Proceedings of the National
Academy of Sciences 106(51):21544.
Boyd, S., and Vandenberghe, L. 2004. Convex optimization.
Cambridge Univ Pr.
Centola, D. 2010. The Spread of Behavior in an Online
Social Network Experiment. science 329(5996):1194.
Chang, C.-C., and Lin, C.-J. 2001. LIBSVM: a library for
support vector machines. Software available at http://
www.csie.ntu.edu.tw/˜cjlin/libsvm.
Christakis, N., and Fowler, J. 2007. The spread of obesity in
a large social network over 32 years. New England Journal
of Medicine 357(4):370.
Colizza, V.; Barrat, A.; Barthelemy, M.; Valleron, A.; and
Vespignani, A. 2007. Modeling the worldwide spread of

pandemic influenza: Baseline case and containment inter-
ventions. PLoS Medicine 4(1):95.
Eagle, N., and Pentland, A. 2006. Reality mining: sensing
complex social systems. Personal and Ubiquitous Comput-
ing 10(4):255–268.
Eagle, N.; Macy, M.; and Claxton, R. 2010. Network diver-
sity and economic development. Science 328(5981):1029.
El-Yaniv, R.; Pechyony, D.; and Yom-Tov, E. 2008. Bet-
ter multiclass classification via a margin-optimized single
binary problem. Pattern Recognition Letters 29(14):1954–
1959.
Ellison, S. 2010. Worldwide and U.S. Mobile Applications,
Storefronts, and Developer 20102014 Forecast and Year-
End 2010 Vendor Shares: The ”Appification” of Everything.
Farrahi, K., and Gatica-Perez, D. 2010. Probabilistic
Mining of Socio-Geographic Routines From Mobile Phone
Data. Selected Topics in Signal Processing, IEEE Journal of
4(4):746–755.
Ganesh, A.; Massoulié, L.; and Towsley, D. 2005. The effect
of network topology on the spread of epidemics. In INFO-
COM 2005. 24th Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings IEEE,
volume 2, 1455–1466. IEEE.
Goel, S.; Reeves, D.; Watts, D.; and Pennock, D. 2010. Pre-
diction without markets. In Proceedings of the 11th ACM
conference on Electronic commerce, 357–366. ACM.
Gomez Rodriguez, M.; Leskovec, J.; and Krause, A. 2010.
Inferring networks of diffusion and influence. In Proceed-
ings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, 1019–1028. ACM.
Granovetter, M., and Soong, R. 1983. Threshold models of
diffusion and collective behavior. The Journal of Mathemat-
ical Sociology 9(3):165–179.
Kempe, D.; Kleinberg, J.; and Tardos, É. 2003. Maximizing
the spread of influence through a social network. In Proceed-
ings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, 137–146. ACM.
Leskovec, J.; Adamic, L.; and Huberman, B. 2007. The
dynamics of viral marketing. ACM Transactions on the Web
(TWEB) 1(1):5.
Manning, C.; Raghavan, P.; Schutze, H.; and Corporation,
E. 2008. Introduction to information retrieval, volume 1.
Cambridge University Press Cambridge, UK.
Myers, S., and Leskovec, J. 2010. On the convexity of latent
social network inference. Arxiv preprint arXiv:1010.5504.
Richter, Y.; Yom-Tov, E.; and Slonim, N. 2010. Predicting
customer churn in mobile networks through analysis of so-
cial groups. In Proceedings of the 2010 SIAM International
Conference on Data Mining (SDM 2010).
Yang, J., and Leskovec, J. 2010. Modeling Information Dif-
fusion in Implicit Networks.
Zhang, H., and Dantu, R. 2010. Discovery of Social Groups
Using Call Detail Records. In On the Move to Meaningful
Internet Systems: OTM 2008 Workshops, 489–498. Springer.

