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We present a study of the forces during free-surface water entry of spheres of varying
masses, diameters, and surface treatments. Previous studies have shown that the
formation of a subsurface air cavity by a falling sphere is conditional upon impact
speed and surface treatment. This study focuses on the forces experienced by the
sphere in both cavity-forming and non-cavity-forming cases. Unsteady force estimates
require accurate determination of the deceleration for both high and low mass ratios,
especially as inertial and hydrodynamic effects approach equality. Using high-speed
imaging, high-speed particle image velocimetry, and numerical simulation, we examine
the nature of the forces in each case. The effect of mass ratio is shown, where a
lighter sphere undergoes larger decelerations and more dramatic trajectory changes. In
the non-cavity-forming cases, the forces are modulated by the growth and shedding of
a strong, ring-like vortex structure. In the cavity-forming cases, little vorticity is shed
by the sphere, and the forces are modulated by the unsteady pressure required for the
opening and closing of the air cavity. A data-driven boundary-element-type method
is developed to accurately describe the unsteady forces using cavity shape data from
experiments.
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1. Introduction
The impact of a solid sphere with a free surface of water can create an air cavity

depending on the initial conditions and surface treatment. The forces acting on the
sphere after impact are dictated by the cavity dynamics, or lack thereof, and the
relative magnitude of the inertial force compared to the unsteady hydrodynamic forces.
Experimental measurement of these forces has proven difficult for distances greater
than one-half diameter beneath the surface because direct measurement via a force
gauge is not feasible, and indirect measurement from position data requires highly
accurate imaging and data processing techniques.

The complexity of the water entry problem has provided many opportunities for
independent study. Phenomena studied in some detail include the initially small but
fast jet that is ejected out below the sphere at the moment of impact with the free
surface (Thoroddsen et al. 2004), the cavity ripples associated with the portion of
the cavity that descends with the sphere after deep seal (cavity pinch-off) (Grumstrup,
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Keller & Belmonte 2007), and the altered cavity shape and lift forces due to the
addition of spin (Truscott & Techet 2009a,b). The hydrodynamic observations and
measurements obtained from all of these studies can be applied to various naval
hydrodynamics problems, such as the water entry of mines and the underwater
launching of torpedoes. Industrial applications include structural interactions with the
free surface such as ship slamming, extreme waves and weather on oil platforms,
sprayed adhesives, and ink-jet printing. Even the sporting industry is interested in
improving the water entry of various events, such as the water entry of swimmers and
divers, reducing the drag of swimmers near the free surface, and the entry and exit of
oars in rowing.

The majority of scientific investigations into water entry by spheres have focused
on relatively heavy steel spheres, which have a mass ratio m∗ = ρs/ρ ≈ 8, where
ρs is the density of the sphere and ρ is the density of water. As we will discuss
herein, this means that their inertial force components tend to be very large, making it
difficult to decipher the subtle unsteady hydrodynamics that occur after impact. Even
the earliest studies used steel spheres, such as the hydrophobic steel spheres imaged by
Worthington (1908) over a century ago. These images showed the classical air-cavity
and splash patterns replicated in figure 1. Later, studies of water entry were used to
design float planes impacting on the water surface (von Kármán 1929), torpedo water
entry (May & Hoover 1963), and to examine general impact characteristics (Wagner
1932) (many more water-entry studies are reviewed by Korobkin & Pukhnachov 1988).
More recent investigations by Duez et al. (2007) determined parameters necessary
for cavity formation depending on kinematic, geometric and surface properties of
the sphere. The effect of wettability on impact is addressed both numerically by
Do-Quang & Amberg (2009) and experimentally by Duez et al. (2007) and Techet
& Truscott (2011). Full characterizations of the sphere cavity dynamics are presented
in Duclaux et al. (2007), for low Bond numbers in Aristoff & Bush (2009), and
numerical estimates of cavity formation in Yan et al. (2009).

Typically, the studies that focus on the dynamics of water entry have chosen to vary
only one parameter, such as the impact speed (May & Hoover 1963), atmospheric
pressure (Gilbarg & Anderson 1948), impact angle (Asfar & Moore 1987) or surface
treatment (Duez et al. 2007), while keeping all other parameters constant; and many
studies have focused on the growth of the cavity and the pinch-off location for both
spheres (Birkhoff & Isaacs 1951; Glasheen & McMahon 1996; Lee, Longoria &
Wilson 1997; Aristoff et al. 2010) and disks (Gaudet 1998; Bergmann et al. 2009).
Studies that have directly measured forces of impact have been limited to one-half
diameter below the free surface due to experimental practicalities (Moghisi & Squire
1981). Goldman & Umbanhowar (2008) studied spheres impacting a granular medium
and measured accelerations directly using accelerometers glued to the sphere. However,
these accelerometers were hard wired to their data acquisition system, making this
experimental setup impractical for the free-fall water-entry study considered herein.
Forces below one-half diameter can be inferred from video analysis; however, it is
highly sensitive to the imaging frame rate and processing procedures. Until recently,
the imaging systems used were often relatively low speed (O(30 f.p.s.)) or the data
processing was done in an overly simplistic fashion (e.g. fitting a simple quadratic
curve to position data, thus implying a constant deceleration) or both.

Constant-deceleration models are sufficient for high-mass-ratio spheres, such as steel,
since unsteady hydrodynamic forces are small compared to the inertial forces, and
allow scientists to adequately explain the shape and evolution of the air cavity and
subsequent pinch-off. However, this assumption does not allow accurate determination
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FIGURE 1. Three spheres dropped from the same height (h= 60 cm), with the same diameter
(D = 2.54 cm), impact speed (U0 = 3.43 m s−1), and Froude number (Fr = U0/

√
gD = 6.87),

coated with the same surface treatment to be hydrophobic (note: each sphere takes on a
different static wetting angle θ > 90◦ due to the nature of the material as indicated for
each sequence). The three cases have different mass ratios, m∗ = ρs/ρ, as indicated. The
time between images is 7.1 ms for all cases, and the time to deep seal (cavity pinch-off) is
tds = 70.3, 73.1 and 72.9 ms for the acrylic, ceramic, and steel cases, respectively.

of the unsteady hydrodynamic forces acting on the sphere, especially for lower density
spheres where the deceleration is no longer constant. We present results that detail the
unsteady hydrodynamic forces acting on the sphere during descent and show that it
is not sufficient to model the sphere position as a simple quadratic equation. Using
high-speed imaging and advanced data processing techniques, we accurately measure
the components of force acting on spheres of varying surface treatments and densities.

To illustrate our findings we present seven distinct cases (figures 1–3). Table 1 gives
the details of these particular cases. The spheres studied are either treated with a
surface coating that makes them hydrophobic or cleaned such that their surfaces are
hydrophilic. Hydrophobicity is determined by the static contact angle, such that

θ > 90◦ hydrophobic, cavity-forming cases (figures 1 and 2)
θ < 90◦ hydrophilic, non-cavity-forming cases (figure 3).

It is clear from these figures that wetting angle affects cavity formation for a
constant impact speed and mass ratio, but the forces acting on the sphere from cavity
formation, or lack thereof, cannot be clearly identified from merely visual inspection.
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FIGURE 2. Film strip depicting water entry for the phenolic resin billiard ball case (see
table 1: phenolic, m∗ = 1.8, D= 57.15 mm, U0 = 5.67 m s−1, hydrophobic θ = 120◦). Images
and simulations are synchronized in time, beginning at 16 ms after impact with 16.5 ms
between each image. Time to deep seal is 98 ms.

The images also show that mass ratio has a significant effect on the cavity size for the
hydrophobic spheres and on the trajectory and descent rate for both the hydrophobic
and hydrophilic cases. We examine the variations and discuss regimes where these
changes cause significant alterations to the forces.

This study was accomplished with the use of a high-speed digital method of
gathering and analysing data. The results give a better estimation of the forces
resulting in force coefficients that vary in time. In the cavity-forming cases, the
unsteadiness is based upon the expanding and contracting cavity, which alters the
pressure field around the sphere. In the non-cavity-forming cases, the unsteadiness is
caused by the growth and shedding of ring-like vortical structures. Through the use
of high-speed imaging, high-speed particle image velocimetry (PIV), and numerical
simulation, the source and magnitude of the forcing are elucidated. The experimental
methods used herein could be applied to future studies of objects in motion to gather
force data.

2. Experimental methods
In order to determine the forces acting on the spheres after water entry, high-speed

imaging captured the sphere descent and cavity formation for a range of mass ratios
and impact velocities for both hydrophobic and hydrophilic spheres.

Impact speed was controlled by dropping the spheres from varying, discrete
heights above the free surface. The acrylic tank used for high-speed imaging was
91.4 cm × 152.4 cm × 152.4 cm and held approximately 2200 L of water, and the
glass tank used for PIV was 30 cm × 50 cm × 60 cm. The spheres were dropped
using the same release mechanism as in Techet & Truscott (2011). A high-speed
camera (IDT XS-3 CCD) was used to record each of the falling spheres. Figures 1
and 3 were recorded at 840 frames s−1 (f.p.s.) with a resolution of 756 × 1260 pixels.
The field of view was 28.66 cm × 47.77 cm, yielding a 26.4 px cm−1 magnification.
Figure 2 was recorded at 1000 f.p.s. with a resolution of 756 × 1260 pixels and
13.12 px cm−1 magnification. Data were recorded as the sphere descended, from just
before impact until the sphere left the lower portion of the camera field of view.
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FIGURE 3. Three spheres dropped from the same height (h= 60 cm), with the same diameter
(D = 2.54 cm), impact speed (U0 = 3.43 m s−1), and Froude number (Fr = U0/

√
gD = 6.87),

cleaned such that they are hydrophilic (static wetting angle θ < 90◦). No cavity is formed in
these cases. The spheres have mass ratios corresponding to the spheres in figure 1. The time
between images is 7.1 ms.

Material Mass
ratio

Diameter
(mm)

Contact angle (deg.)/
roughness r.m.s. (µm)

Impact
speed
(m s−1)

tds
(ms)

Acrylic 1.2 25.4 69◦/0.29, 100◦/2.73 3.43 70.3
Phenolic
(billiard)

1.8 57.15 79◦/0.80, 122◦/1.95 5.67 98.0

Ceramic 3.9 25.4 57◦/0.11, 118◦/2.42 3.43 73.1
Steel 7.8 25.4 70◦/0.01, 122◦/2.40 3.43 72.9

TABLE 1. Spheres used in the present study. Advancing contact angles are given with error
in the measurement of ±10◦ for hydrophilic (θ < 90◦) and hydrophobic (θ > 90◦) contact
angles respectively. r.m.s. roughness measurements are given with error in the measurement
of ±0.01 µm.

Image lighting was accomplished with backlighting by a bank of fluorescent lights to
increase contrast, and several halogen spotlights in front of the tank to illuminate the
foreground (figure 4).
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Release mechanism
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FIGURE 4. The acrylic impact tank was backlit with an array of fluorescent lights and frontlit
by bright halogen spotlights so that the sphere could be imaged by the high-speed camera
from one side. The spheres were dropped from discrete heights above the free surface.

The physical characteristics and parameters of the spheres used in this study are
presented in table 1. The results presented herein focus on the 25.4 mm acrylic,
ceramic, and steel spheres, as well as the 57.15 mm phenolic resin spheres (i.e.
billiard balls). In addition to the range of sphere densities and sizes, two distinct
surface treatments were considered: hydrophobic and hydrophilic. Hydrophobicity was
accomplished using a spray coating (WX2100TM), which was applied evenly and
allowed to dry thoroughly. The hydrophobic coating produces both a new wetting
angle and an associated surface roughness, which varies from the natural roughness
of the materials. Hydrophilicity was achieved by cleaning the spheres in a three-step
process using acetone, alcohol, and then ethanol, as described in Truscott (2009). The
cleaned spheres were kept in a dust-free container and used within 20 min. of cleaning
to ensure a uniformly hydrophilic surface.

Static wetting angles θ were measured using the static sessile drop method applied
to each sphere, taking into account the curvature of the sphere. Roughness was
measured using a Tencor P-10 Surface Profilometer. The profilometer data determined
each sphere’s surface profile, which includes both the surface roughness and the sphere
radius curvature. The sphere’s curvature was subtracted from the raw data to yield the
roughness measurement. The root mean square (r.m.s.) of each roughness measurement
is reported in table 1. This technique was also used to determine the roughness of both
the coated and uncoated spheres.

Sphere position data were acquired from the raw images using the following method.
Since the digital images were the source of the position data, it was necessary to
measure the position of the sphere with sub-pixel accuracy and to avoid ‘pixel-locking’
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(artificially chosen pixel centres when the true value is between two pixels causing
sub-pixel disparity), which would result in large errors in the inferred accelerations and
forces. We employed a cross-correlation algorithm to determine the sphere position
with sub-pixel accuracy, in a manner similar to that performed in PIV processing (e.g.
Raffel et al. 1998). A template image of the sphere was cross-correlated with each
image in the time series. The lower 1/3 of the sphere was used as a template to find
the position in each image. This ensures that the cavity does not interfere with the
accuracy of the correlation technique. The correlation peak was fitted with a Gaussian
curve to determine the peak location within approximately ±0.025 pixels (9 µm),
similar to the peak fitting implementation employed in particle imaging velocimetry
processing algorithms (e.g. Raffel et al. 1998). Thus, the accuracy of the position data
corresponds to ±0.04 % of the diameter of the 25.4 cm spheres shown in figures 1
and 3.

The sphere position and cavity data were zeroed with the free surface, making the
free surface the origin of both time and space such that the centre of the sphere was at
the undisturbed free-surface elevation at t = 0, and any inclination of the free surface
resulting from camera rotation was removed from the images. In the cavity-forming
cases, the Canny edge-finding technique was used to determine the cavity shape by
tracing the highly contrasted edges of the cavity as viewed in figure 1. These cavity
data were used to seed the potential flow model introduced in § 3.3.

Sphere velocity and acceleration are (not quite as simply) the temporal derivatives
of the measured position data. It is well known that taking derivatives of measured
data via finite differences (i.e. U(t) = 1z/1t) amplifies any measurement error that
may be present in the data. Error amplification is avoided by inferring the required
derivative from that of an analytic curve fitted to the data. Thus, finding the derivative
of experimental data amounts to fitting the analytic curve that best approximates the
true function that the data represents.

To determine the velocity and acceleration of the spheres, the position data were
fitted with a quintic smoothing spline (de Boor 1978), where the smoothing parameter
was chosen using the procedure developed by Epps, Truscott & Techet (2010). This
procedure ensures that the spline roughness is minimized, thus ensuring a smooth
curve, while simultaneously minimizing error to the measured position data. This
provides the most accurate representation of the data possible, while filtering out the
measurement error. The velocity and acceleration of the sphere are then determined
analytically from the fitted spline.

Epps et al. (2010) show good agreement between instantaneous velocities and
accelerations predicted by the smoothing spline and those estimated using local
least-squares regression (Cleveland 1979). Validation of the spline fitting procedure
comes from the fact that the spline derivatives are relatively smooth compared to the
least-square derivatives and is discussed further in the context of the results in § 3.3.

Both the cavity-forming and non-cavity-forming cases were also investigated using
high-speed PIV to gather information about the corresponding flow fields. The setup
was similar to that used for the standard high-speed imaging, but instead of using
backlighting, a laser sheet illuminated a plane along the vertical mid-line axis of the
falling sphere. The tank was seeded with 50 µm polyamide neutrally buoyant particles
that were illuminated by the 2.2 W laser (LaVision) at 532 nm; the laser was fitted
with an optical lens that produced a 20◦ fan of light. The IDT XS-3 camera was
used to image the particles in the laser sheet with a resolution of 404 × 1280 pixels
and a field of view of 8.14 cm × 25.80 cm, yielding 49.61 px cm−1 magnification
at 2020 f.p.s. PIV data were collected and processed using the LaVision DaVis
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7.2 software package. A multipass, cross-correlation processing algorithm with a final
interrogation window size of 16× 16 pixels and 50 % overlap was used for processing
all of the images. The output was a velocity field with 160× 50 vectors.

The velocity field data were further processed using the procedure described in Epps
& Techet (2007) to determine the circulation and impulse of the vortices shed from the
sphere. Circulation was computed at each time step using Stokes’ theorem

Γ =
∑

ij

ωij δA (2.1)

where ωij is the vorticity at a point (i, j), and δA = (8 px)2 = 0.163 cm2 is the area of
each PIV interrogation window. The area over which the summation occurs is bounded
by an isovorticity contour (Gharib, Rambod & Shariff 1998), where herein we chose
the isovorticity level equivalent to 25 % of the maximum circulation for each vortex.
The measurement error for the circulation (2.1) is less than 15 %, which can be seen in
the scatter in the impulse data shown in figure 12(b). This is consistent with Epps &
Techet (2007), who report 14 % uncertainty in their circulation measurement. Further,
the uncertainty in (2.1) can be examined by comparing the positive and negative vortex
patches seen in figures 11 or 13, which represent slices through two opposite halves of
the vortex ring. The magnitude of circulation of these patches is observed to be equal
to within 20 %, which follows classical laws for conservation of circulation around a
vortex ring.

3. Experimental results
Herein we consider the results of seven cases: the four hydrophobic cases from

figures 1 and 2, the three hydrophilic cases from figure 3. These representative cases
span a wide range of mass ratios, two surface coatings, and two different diameters
(table 1).

Figure 1 depicts the evolution of the cavity formation during water entry for
three hydrophobic spheres, each with different mass ratios but the same hydrophobic
coating and impact speed. It is apparent that the heaviest spheres descend fastest. The
hydrophobic acrylic sphere decelerates more rapidly and reaches pinch-off at a much
shallower depth, but a similar time, compared to the hydrophobic ceramic and steel
spheres. While the depth at which deep seal occurs is known to be an increasing
function of mass ratio, the non-dimensional time to deep seal (τ = tds (2g/D)0.5)
remains constant (Truscott & Techet 2009b). For the cases presented here, deep seal
occurs at a non-dimensional time of τ = 1.78 ± 0.0752, which is slightly larger than
those reported by Gilbarg & Anderson (1948) (τ = 1.74) and Truscott & Techet
(2009b) (τ = 1.726 ± 0.0688), but is within the error bounds of their measurements.
Further analytical treatment of cavity features for decelerating sphere impact is
discussed in Aristoff et al. (2010).

As a hydrophilic sphere passes through the free surface, the water it displaces comes
back together at the top of the sphere, creating a jet that ascends above the free
surface, but no subsurface air cavity, as shown in figure 3. This phenomenon was first
witnessed by Worthington (1908) when clean glass spheres were dropped in water, and
is theoretically explained for smooth spheres by Duez et al. (2007). Once the sphere is
underwater, the backlit video images do not reveal much about the flow field. However,
they can be used to inspect the trajectory of the spheres in time and infer forces from
position data, as discussed in the following section.
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FIGURE 5. (a) Lateral y and vertical z position of the spheres for the four hydrophobic
cases presented in figures 1 and 2 (open symbols) and the three hydrophilic cases shown
in figure 3 (filled symbols). Position is normalized by sphere diameter and every tenth data
point is plotted. The location of the sphere at pinch-off is noted by a horizontal line for each
hydrophobic case. Position measurement error is ±0.04 %D, approximately the thickness of
the lines as shown. (b) Repeatability: mean trajectory based on the radial deviation from
vertical (averaged over 10 trials); the error bars represent the 95 % confidence interval.

3.1. Trajectory, velocity, and acceleration

The y–z trajectory of each sphere is presented in figure 5(a), showing the path of the
seven cases presented in figures 1–3. Initially all of the spheres descend vertically until
about z/D ≈ −5, where several cases deviate laterally. All of the hydrophobic cases
have the same time to deep seal, as expected, but are located at different depths when
deep seal occurs. Deep seal is marked in figure 5(a) by a horizontal line for each
hydrophobic case.

After pinch-off, the hydrophobic acrylic sphere curves off to the side. The
hydrophobic steel and ceramic spheres continue on their vertical descent moments
after pinch-off, until they leave the camera field of view. From observations not
presented herein, the steel and ceramic spheres do eventually deviate from their
vertical trajectories, but this was not captured in our field of view. This deviation
is likely to be due to vortex shedding and is illustrated using PIV for the non-cavity-
forming cases in § 4.1. The cavities produced by the hydrophobic spheres prevent
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vortex shedding in the wake until the moment of deep seal, at which point vortex
shedding can then occur.

In general, all of the hydrophilic spheres have some deviation from vertical descent.
The acrylic and ceramic spheres experience the greatest lateral translation, while the
steel spheres (m∗ = 7.8) display much more subtle horizontal displacement. The acrylic
sphere (m∗ = 1.2, θ = 69◦) almost comes to a complete stop in the z-direction as it
descends; the kink in its trajectory indicates the position where the sphere changed
direction. This sudden change is due to asymmetrical vortex shedding around the
sphere, and is similar to results shown in Horowitz & Williamson (2008)’s detailed
study of rising and falling spheres with mass ratios from 0.08 to 1.41. In their
study, Horowitz & Williamson (2008) concluded that descending spheres with a mass
ratio <1.41 or rising spheres with a mass ratio >0.41 would follow an oblique
rectilinear path, meaning that they would tend to travel vertically with somewhat
constant horizontal displacement in y. However, spheres with mass ratios <0.11 would
always vibrate in a single vertical plane. Here we find that spheres with mass ratios
>1.4 have oblique rectilinear paths, and spheres with mass ratios near 1.2 seem to
vibrate as they descend, similar to those below 0.11 in Horowitz & Williamson (2008).
Further evidence of this vortex-induced oscillation is presented in the PIV results in
§ 4.1.

The variation in lateral deviation from run to run was investigated by synchronizing
two cameras to measure x and y positions and combining these data to form a radial
deviation from the vertical. Figure 5(b) shows the mean trajectory averaged over
10 trials of each 25.4 mm sphere type; the 95 % confidence intervals shown were
computed using a student’s t-distribution. These results indicate that the experiment is
very repeatable for early times (i.e. shallower depths), before cavity collapse or vortex
shedding occurs. The trajectory of the sphere after vortex shedding depends on the
direction of the shed vortex, which is random, and hence results in larger confidence
intervals. Nevertheless, the results in figure 5(a) are representative cases.

Vertical descent velocity dz/dt (figure 6), as a function of time, is calculated from
the z-position data using the spline method discussed in § 2. Data are plotted versus
non-dimensionalized time t/tds, where tds is the time to deep seal for each mass ratio.
Velocity is shown beginning with the first frame after the sphere is submerged one full
radius below the free surface. At this point the acrylic sphere has already decelerated
to almost 85 % of its initial velocity, whereas the larger-mass-ratio spheres are still
travelling near the impact speed, U0. In the case of the heavier spheres, inertial effects
dominate and hydrodynamic forces have not yet had a significant impact on the sphere
velocity. Conversely, the rapid deceleration of the acrylic sphere can be attributed
to the greater relative influence of the hydrodynamic forces compared to the inertial
forces. The rate of change of velocity appears to be relatively constant for all three
hydrophobic cases at early time steps before pinch-off. At pinch-off the rate of change
in the velocity begins to decrease, most visibly for the acrylic sphere.

The terminal velocity Ut/U0 of each sphere is shown in figure 6 for reference.
Terminal velocity is determined theoretically by balancing weight ((4/3)πR3ρsg) with
buoyancy ((4/3)πR3ρg) and steady-state drag ((1/2)ρU2

t CdπR2), which yields

Ut =
√

8
3

gR

Cd
(m∗ − 1), (3.1)

where R is the sphere radius. Here, we assume a steady-state drag coefficient of
Cd = 0.5, which is typical for the Reynolds numbers of these experiments (Ret =
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FIGURE 6. Time trace of the vertical velocity dz/dt of the hydrophobic (cavity-forming)
(a) and hydrophilic (non-cavity-forming) (b) cases derived from figure 5(a). Velocity is
normalized by impact speed U0 and plotted versus non-dimensionalized time t/tds, where
tds is the time to deep seal for each mass ratio (table 1). Terminal velocity is normalized by
impact speed Ut/U0 for each mass ratio and shown for reference. Since the acrylic spheres
decelerate rapidly, they reach terminal velocity while still in the camera field of view, whereas
the ceramic and steel spheres are out of view just after pinch-off. Every tenth time step
is plotted. (c) Repeatability: mean velocity (averaged over 10 trials) and 95 % confidence
interval.

UtD/ν ∼ 104). Terminal velocity of the four materials by increasing density are:
−0.36,−0.19,−1.39 and −2.13. Note that the acrylic sphere approaches terminal
velocity for long times (t � tds) and exhibits underdamped behaviour. The ceramic
and steel spheres exit the field of view before terminal velocity is reached for
the hydrophobic cases, but the hydrophilic ceramic sphere nears terminal velocity
within the field of view. The repeatability of the velocity measurements is presented
in figure 6(c). The hydrophobic cases are very consistent trial to trial (i.e. small
confidence intervals) for early times (before cavity pinch-off), and likewise, the
hydrophilic cases are quite repeatable for early times (before vortex shedding).

The acceleration of the spheres can be considered by taking the second derivative
of the spline fitted to the z(t) position data. Accelerations, normalized by tds/U0, are
plotted in figure 7; positive values indicate deceleration. The hydrophobic cases show a
relatively constant deceleration for early times, and then rapid changes in acceleration
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FIGURE 7. Acceleration of the spheres presented in figure 1–figure 3, plotted versus time
non-dimensionalized by the time to deep seal for each mass ratio (table 1): (a) hydrophobic
(cavity-forming); (b) hydrophilic (non-cavity-forming). Every tenth time step is plotted.
(c) Repeatability: mean acceleration (averaged over 10 trials) and 95 % confidence interval.

during cavity pinch-off. In particular, figure 7(a) shows a tremendous drop in the
acceleration of the spheres just before the cavity pinch-off event; clearly not a simple
linear deceleration as would be predicted by a third-order quadratic fit to the position
data. As will be discussed in § 5, this is due to the unsteady forces acting on the
sphere due to cavity closure.

Remarkably, the maximum decelerations are higher for all three hydrophilic cases.
This indicates a higher resistive force compared to the cavity-forming, hydrophobic
cases, which is somewhat surprising. In the sections that follow, we show that these
large forces in the hydrophilic cases are due to unsteady vortex shedding, whereas in
the hydrophobic cases, vortex shedding is suppressed, and thus the forces are lower.
Repeatability of the acceleration measurements is presented in figure 7(c); these data
show the same trend as the velocity data in figure 6(c), namely that the experimental
results are very repeatable for early times.

3.2. Forces
The accelerations calculated in the previous section can be used to determine the total
hydrodynamic force F acting on the sphere during the experiment. While one may
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be tempted to assume a model for F at this time (e.g. the classical model of the
sum of buoyancy, added mass, steady-state drag, etc.), there is no need to confine
ourselves to such a model a priori. For now, we are simply concerned with using
the experimental acceleration data to infer the total hydrodynamic force acting on the
sphere. In subsequent sections, we will develop models that demonstrate the dominant
components acting in each of the hydrophobic and hydrophilic cases.

The net upward force acting on the sphere (which produces an upward acceleration)
is the sum of the total hydrodynamic force F(t) and the weight of the sphere

mz̈(t)= F(t)− mg. (3.2)

The hydrodynamic force on the sphere is, in general, the sum of pressure forces,
viscous traction forces, and surface tension forces:

F(t)= F · k̂=
∫

S
p(−n̂ · k̂) dS+

∫
S
n̂ · T · k̂ dS+ 2πRσ cosϕ, (3.3)

where k̂ is the unit vector in the z-direction (positive upwards), n̂ is the unit normal
vector directed out of the sphere, T is the viscous stress tensor, and ϕ is the angle the
cavity makes with k̂ at the contact line (if a cavity exists). It is important to reiterate
that F is the total hydrodynamic force and not a drag force in the traditional sense.

For the experiments considered herein, typical values of the relevant non-
dimensional parameters are as follows: ρs/ρ ∼ O(1), U2/gD ∼ O(1) and Re ∼ O(104).
Under these conditions, the viscous skin friction force is small compared to the
weight of the sphere: (ρU2R2Re−1/2)/ρsgR3 ∼ (ρ/ρs)(U2/gD)Re−1/2 ∼ 10−2. Similarly,
the surface tension force is also small compared to the weight: Rσ cosϕ/ρsgR3 ∼
(ρ/ρs)(σ/ρgR2) ∼ 10−3. Thus, if the net hydrodynamic force acting on the sphere
is significant with respect to the weight of the sphere, then it is dominated by the
pressure force, which includes the unsteady added mass and hydrostatic buoyancy
forces. In the hydrophobic cases, the pressure force is modulated by the unsteady
pressure required to create the subsurface air cavity. In the hydrophilic cases, no cavity
is present, and the pressure force is modulated by the growth and shedding of vortical
structures in the wake.

Regardless of the nature of the hydrodynamic force, the total hydrodynamic force
can be inferred from the acceleration of the sphere using (3.2). The experimental
velocity and acceleration data can be used to compute the total hydrodynamic force
coefficient

CF(t)≡ F(t)
1
2ρ [U(t)]2 πR2 =

m(z̈(t)+ g)
1
2ρ [U(t)]2 πR2 (3.4)

where U ≡−ż is the instantaneous speed of the sphere.
For reference, a terminal force coefficient may be calculated when the sphere has

reached terminal velocity, where by definition, it is assumed that the hydrodynamic
force is due only to buoyancy and steady-state drag. The terminal force coefficient is
derived from (3.1) and (3.4) as

CFt =
m∗

m∗ − 1
Cd. (3.5)

The force coefficients for the seven cases are plotted in figure 8. Figures 8(a) and
8(b) compare the mass ratios for each surface treatment (hydrophobic and hydrophilic,
respectively); figure 8(c–e) compares the forces for each surface treatment at the three
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FIGURE 8. Force coefficients for the hydrophobic (a) and hydrophilic (b) spheres, plotted
versus non-dimensional time. In (c–e) the hydrophobic and hydrophilic cases for each
mass ratio (acrylic, ceramic and steel, respectively) are compared to directly highlight the
differences between the two surface treatments. The inset in (c) shows the entire time
sequence for the acrylic sphere, whereas the time-axis for (c) matches that of (d,e). Overall,
the hydrophobic spheres tend to have lower force coefficients than the hydrophilic spheres.
Horizontal lines (−−) denote the terminal force coefficient (3.5). Solid lines include all
force coefficient data points, and every tenth time step is plotted as a symbol for clarity.
(f ) Repeatability: mean force coefficient (averaged over 10 trials) and 95 % confidence
interval.

specific mass ratios considered. Terminal force coefficients of the four materials by
increasing density are: 3.07, 1.167, 0.67 and 0.57.

Comparing the hydrophobic and hydrophilic acrylic cases in figure 8(c), both CF

curves are similar up to t/tds ≈ 0.75. The force coefficient for the hydrophobic sphere
then falls before deep seal at t/tds = 1. In contrast, CF for the hydrophilic sphere rises
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steadily to a non-dimensional time t/tds ≈ 3 (see figure 8c inset), at which point the
sphere virtually stops moving in the z-direction. After this event, the force coefficient
diminishes as quickly as it rose and reaches a minimum near t/tds = 4.5. The force
coefficient for both the hydrophobic and hydrophilic cases approaches the terminal
force coefficient for times t/tds > 7 (i.e. well after cavity collapse).

The ceramic cases shown in figure 8(d) exhibit similar behaviour. The hydrophilic
(non-cavity-forming) ceramic sphere experiences larger force coefficients than its
hydrophobic (cavity-forming) counterpart. The hydrophobic ceramic sphere has a
maximum force coefficient before deep seal and a minimum after, similar to the
acrylic case. These trends hold true for even larger mass ratios (e.g. the steel case
shown in figure 8e), where the effect of the unsteady forcing becomes progressively
less apparent and the inertial term (mz̈) dominates the signal. Repeatability (figure 8f )
over 10 trials once again reveals that the experiment is very consistent for early times
(before cavity collapse or vortex shedding).

In general, the data indicate that spheres without cavities tend to have higher force
coefficients than their cavity-forming counterparts. In the following two sections, we
will show that this difference is due to unsteady vortex formation, which is not present
in the cavity-forming cases. Furthermore, the force coefficients are neither constant nor
linear for any of the sphere entry cases, yet approach linearity for the larger masses
(e.g. m∗ = 7.8).

3.3. On the estimation of forces from position data
As described in detail in Epps et al. (2010), the velocity, acceleration, and force
coefficients are derived from a smoothing spline fit to the measured position data.
This regression is necessary to prevent amplification of the measurement error when
taking the required derivatives, as happens when using simple finite differences.
In order to smooth the data, the fitted spline s(t) is allowed an ‘error tolerance’
E =∑N

i=1 |s(ti)− z(ti)|21t, such that it can pass smoothly through the data. The
amount of smoothing is characterized by the spline ‘roughness’, defined for the quintic
spline as R= ∫ |d3s/dt3|2 dt. Each of several candidate splines is shown in figure 9(a).

Figure 9 shows the effect that choosing alternative spline fits has on the position,
velocity, acceleration, and instantaneous force coefficient for the billiard ball case
(figure 2). Since the selected spline is reported in figures 5(a)–8, the choice of
spline is, in a sense, the reliability of the measurement for a particular trial. Thus,
figure 9 gives a sense of the ‘error bars’ for figures 5(a)–8. Inter-trial repeatability
can be inferred by comparing the force coefficients from different trials presented in
figures 12(a), 14(a) and 16(b).

The candidate position splines shown in figure 9(b) are indistinguishable, which
indicates that the ‘error bars’ in the position data reported in figure 5(a) are smaller
than the width of the curves shown in figure 9(b). A more quantitative estimate of
the measurement error is as follows. If the measurement error is O(ε), then the spline
error is approximately E ≈ Nε21t. For this case, N = 230, 1t = 0.001 s, and the
selected spline has E = 2.5 × 10−9 m2 s error, so ε ≈√E/(N1t)≈ 0.1 mm≈ 0.13 px,
which is equivalent to 0.2 % of the billiard ball diameter. The velocity curves in
figure 9(c) also match well, except near pinch-off, indicating high precision in the
velocity results reported in figure 6.

The acceleration and force coefficient curves in figure 9(d,e) show the largest
sensitivity to a poor choice of a smoothing spline. The orange spline has allowed
too large an error tolerance, so it does not track the data during cavity deep seal.
Conversely, the red spine is constrained too tightly to the data, so it does not properly
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deep seal.
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smooth the measurement error. The blue, purple, and black splines all closely overlay,
again indicating high precision in the results reported in figures 7 and 8. The black
spline (E = 2.5× 10−9) offers the best trade-off between roughness and error tolerance,
as it most closely follows the data without incurring roughness due to measurement
error, as discussed in Epps et al. (2010).

Comparing the force coefficients in figure 9(e), it is evident that as error tolerance
is reduced, the force coefficient rises and falls more dramatically during pinch-off.
Since the cavity closure event is quite rapid, it is anticipated that it causes a dramatic
drop in the net force acting on the sphere at the moment of pinch-off. As a thought
experiment, consider the effects of hydrostatic pressure alone. While the cavity exists,
the hydrostatic pressure force acting upwards on the bottom of the sphere is unabated.
However, in the moments after pinch-off, water rushes in above the sphere, and
hydrostatic pressure builds above the sphere. This rapid pressure increase above the
sphere reduces the net upwards hydrostatic pressure force quite rapidly after pinch-off.
Thus, it is anticipated that the total force on the sphere should fall dramatically in
the moments after pinch-off and that the instantaneous force coefficient may be nearly
singular for rapid cavity closure cases such as that shown in figure 2.

To create an ‘upper limit’ for how singular the change in total force may be during
pinch-off, consider a composite force coefficient formed by fitting two splines, one to
the position data before pinch-off and the other to the position data after pinch-off,
and then finding the force coefficients from each of these splines. Since each spline
terminates at the pinch-off time, this composite spline is not required to be continuous
through pinch-off. The composite force coefficient shown in figure 9(f ) agrees well
with the nominal force coefficient for times away from pinch-off, as expected from
the nature of the spline fitting procedure. However, the composite force coefficient
continues to rise until the time of pinch-off and then falls singularly, whereas the
nominal force coefficient smooths the forces during pinch-off (since the single spline
fit is required to be continuous through pinch-off). It is anticipated that the forces
are not truly singular, so the actual force coefficient may resemble something between
these predictions, or it may rise until pinch-off and then fall in a smooth manner in the
few moments after pinch-off.

Figure 10 shows the nominal force coefficient and composite force coefficient for
all four cases in figures 1 and 2, illustrating the effect of mass ratio. The high-
mass-ratio steel sphere experiences nearly constant force coefficients during the impact
event, whereas the low-mass-ratio acrylic sphere experiences highly unsteady force
coefficients. We revisit this in § 5.3 where we present a potential model to unravel the
nature of the unsteady forcing leading up to pinch-off (figure 19).

4. Force model: non-cavity-forming cases
4.1. PIV of non-cavity-forming cases

Using high-speed PIV, the unsteady flow field around the non-cavity-forming spheres
is now characterized, and the vortical wake signature is correlated with the forces
acting on these spheres. Since the hydrophilic acrylic spheres (m∗ = 1.2) have the
greatest decelerations and largest force coefficients, the acrylic sphere is presented
first. Figure 11 shows PIV vorticity fields for the hydrophilic acrylic sphere, and
figure 12(a) shows the force coefficient for this PIV case. Figure 12(a) also shows the
force coefficient for the backlit case from figure 3 (same data as figure 8c), showing
very good agreement in the magnitude of CF between the two cases, although the peak
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FIGURE 10. Force coefficients for each of the hydrophobic cases in figures 1 and 2 (solid
lines), as well as composite force coefficients (dashed lines).

force coefficient occurs at slightly different times, emphasizing the sensitivity of CF to
the vortex shedding event.

In this study, we took PIV and position data, showing the growth and shedding of a
vortex ring in the wake of the sphere. However, once the vortex ring is shed, the PIV
data become difficult to interpret, since the vortex ring is obscured from view of the
camera as it passes the sphere. In addition, vortex shedding occurs in three dimensions
and may be out of plane. Therefore, multiple drops were required to gather data
where the sphere and vortex ring remained in the laser plane during the entire time
series.

A qualitative illustration of the ring-like vortex formation can be seen in figure 11.
After impact the fluid is suddenly brought into motion, causing it to wrap up into
a vortical structure as it passes towards the back of the sphere. On the right-hand
side of the sphere, the circulation is counterclockwise, while the left-hand side is
clockwise. As the sphere continues its descent, a small amount of circulation is left
in the wake between 10.1 < t < 51.7 ms. Two larger vortices continue to grow in
strength until t = 74.0 ms, where the diameter of the vortex ring begins to grow
outward. This outward growth is dominated by the negative vortex (left side) moving
further to the left, while the positive vortex moves out of plane as it attempts to
navigate its way past the sphere between 75.4< t < 119.0 ms. The circulation between
the clockwise and counterclockwise circulation in figure 11 is conserved as expected
for a vortex ring; this is discussed further in § 2. However, it should be noted that the
counterclockwise vorticity begins to disappear as the sphere blocks the light from the
laser at t/tds = 1.34–2.54.

As the vortex grows out and away from the sphere, the positive vortex motion
on the sphere causes the sphere to move outward to the right in figure 11
(t/tds = 1.34–2.54). When the sphere is in the centre of the vortex ring, the flow field
motion is downward. However, as the sphere moves to the right, the counterclockwise
rotation begins to cause the sphere to move right and upward. Remarkably, this
causes the sphere to slow even more and allows the vortex ring to pass by the
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FIGURE 11. A time sequence of PIV vorticity contours for a hydrophilic (non-cavity-
forming) acrylic sphere. This sphere has a diameter of d = 25.4 mm and an impact speed
of 3.43 m s−1, consistent with the acrylic case in figure 3 (although this is a different case).

sphere (t/tds = 2.30–2.54). Eventually, the vortex ring moves ahead of the sphere, and
the positive vortex has some influence on the sphere, moving it back to the left and
down (not shown). This motion moves the sphere somewhat back onto its previous
path, as can be seen in the trajectory of the acrylic case shown in figure 5(a). The
growth of the vortex ring beyond the diameter of the sphere indicates that it has now
become detached from the sphere and that its circulation is no longer fed by the
interaction of the sphere with the fluid.
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FIGURE 12. (a) Force coefficient (3.4) for the hydrophilic acrylic spheres presented in
figures 3 and 11. The data for these two experiments compare well but the PIV case is slightly
delayed, emphasizing their sensitivity to the vortex shedding event. (b) Impulse calculated
from the PIV vorticity data (•, equation (4.1)), matches well with the theoretical prediction
(−, equation (4.3)).

Using the circulation data, we can also determine the overall change in momentum
of the fluid by determining the impulse of the vortex ring (Saffman 1995):

I(t)= ρΓ πD2
v

4
(4.1)

where Γ is the circulation (2.1) and Dv is the diameter of the ring. Figure 12(b) shows
experimental impulse data computed using (4.1), which shows increasing impulse over
time, as expected. The rate of change of vortex impulse gives rise to a hydrodynamic
force, dI/dt.

4.2. Force model
In the non-cavity-forming cases, the hydrodynamic forces acting on the sphere can be
modelled by the unsteady vortex shedding force discussed above, as well as added
mass and buoyancy:

F = dI

dt
− maz̈+ FB . (4.2)

In these unsteady cases, the dI/dt term accounts for the vortical wake generated
by the sphere, so the classical drag term ((1/2)ρU2CdπR2) is not used. Contrary to
the cavity-forming cases, here the added mass and buoyancy terms can be directly
computed. The added mass of the sphere is ma = (2/3)πR3ρ (Newman 1977), and
buoyancy is constant (FB = (4/3)πR3ρg).

Since the total force F is known from (3.2), we should be able to use our
experimental data to validate this model (4.2). However, the experimental impulse
data shown in figure 12(b) are somewhat scattered, so dI/dt cannot be precisely
computed. Nevertheless, we can solve (4.2) for the impulse required to produce the
motions observed in the experiments

I(t)=
∫ t

t0

[
F(t′)+ maz̈(t′)− 4

3πR3ρg
]

dt′, (4.3)
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FIGURE 13. Time sequence of PIV vorticity contours for a hydrophilic (non-cavity-forming)
ceramic sphere. This sphere has a diameter of d = 25.4 mm and an impact speed of
3.43 m s−1, consistent with the ceramic case in figure 3 (although this is a different case).

where t0 is the time at which the impulse begins accumulating in the vortex ring. Thus,
experimental agreement in (4.3) would validate the force model (4.2). Figure 12(b)
shows that (4.3) accurately determines the required impulse to balance the forces on
the sphere, indicating that this model works well before the first vortex shedding event.

4.3. Further model validation

In figure 13, we present a second PIV case where a hydrophilic ceramic sphere
(m∗ = 3.9) is dropped from the same height as the acrylic sphere. Initially, circulation
accumulates in the vortex ring similar to the acrylic case, since the two spheres have
the same diameter and impact speed. At later times, however, the ceramic sphere
maintains greater speeds than the acrylic, so more circulation is fed into the vortex
ring. The vortex ring is never shed from the ceramic sphere while in the field of view,
and the magnitude of its circulation continually increases as the sphere descends.

The force coefficient (3.4) and impulse (4.1) for the ceramic case are shown in
figures 14(a) and 14(b), respectively. Figure 14(b) shows good agreement between the
impulse (4.1) of the vortex ring in figure 13 and the present theory (4.3), once again
demonstrating that this model accounts for the dynamics of these cases. The force
coefficients in figure 14(a) for the present ‘PIV case’ (figure 13) show very good
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FIGURE 14. (a) Force coefficient (3.4) for the hydrophilic ceramic spheres presented in
figures 3 and 13. (b) Impulse calculated from the PIV vorticity data (•, equation (4.1)),
matches well with the theoretical prediction (−, equation (4.3)).

agreement with the backlit case (figure 3, same data as figure 8d), again demonstrating
the accuracy and repeatability of the experimental methods.

5. Force model: cavity-forming cases
5.1. PIV of cavity-forming cases

The cavity-forming hydrophobic spheres also exhibit an unsteady hydrodynamic force
coefficient. Once again, the acrylic sphere will be the subject of analysis in this
section, since the acrylic sphere exhibits more unsteady behaviour than the higher-
density-ratio ceramic and steel spheres. PIV results are presented to illustrate the
flow field behaviour around the cavity. In this experiment, the fluid was imaged
with a vertical light sheet emitted from a laser on the left side of the tank; no
shadow appears to the right of the sphere because a mirror on the right side of
the tank reflected the laser sheet back towards the sphere. The intense ‘vorticity’ at
the pinch-off depth (at the pinch-off time) is actually an artifact of reflections of
the laser sheet off the cavity surface as it collapses through the sheet, as shown in
figure 15. Overall, the cavity-forming cases exhibit very little vorticity in general and
no organized vortical structures in their wakes, as illustrated by the PIV vorticity fields
in figure 15. These results agree with Bergmann et al. (2009) who also saw little
vorticity in the presence of cavity formation. The vortical patches that are observed in
figure 15 are insignificant, given their small size and relatively low vorticity levels. For
the sake of argument, assume the small vortical patches in figure 15 are cross-sections
of toroidal vortex rings. For such a vortex ring to be significant, its circulation would
have to induce a downward vertical velocity on the order of the sphere impact speed
U0 = 3.43 m s−1. The centreline velocity induced by a vortex ring is Γ/Dv, where
the data in figure 15 show that Dv ≈ D = 25.4 mm (i.e. the sphere diameter). The
circulation is approximately Γ ≈ ω̄Av, where Av is the area of the vortical patch and ω̄
is the average vorticity level. The maximum vorticity level observed in vortical patches
that appear before pinch-off was approximately ω̄ ≈ 150 s−1. Setting ω̄Av/D ∼ U0 and
noting that the cross-sectional area of the sphere is A = πD2/4, the area of a vortical
patch required to make it significant is Av/A = 4U0/πDω̄ = 1.1. Clearly, the area of
the vortical patches observed in figure 15 is much smaller than 1.1A, indicating that
their effects are insignificant. By comparison, in the non-cavity-forming acrylic case
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FIGURE 15. Time sequence of PIV velocity vectors and vorticity contours for a hydrophobic
(cavity-forming) acrylic sphere. This sphere has a diameter of d = 25.4 mm and an impact
speed of 3.43 m s−1, consistent with the acrylic case in figure 1 (although this is a different
case). The higher levels of vorticity at t/tds = 1.01 are due to the laser reflecting off the cavity
wall during collapse.

of figure 11, the maximum vorticity level was approximately ω̄ ≈ 300 s−1, making the
required area of the vortical patches approximately 0.5A, which is clearly observed in
the later frames of figure 11.

Using (3.4), the hydrodynamic force coefficient is calculated and presented in
figure 16. Figure 16 shows good agreement between the total force coefficient
(obtained by spline fits to the measured position data via (3.4)) for the backlit trial
(figure 1) and PIV trial (figure 15). Figure 16(a) illustrates how different the two
lighting schemes are when viewed from the raw images; however, figure 16(b) shows
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FIGURE 16. (a) Differences in lighting between backlit and PIV trials for the hydrophobic
acrylic spheres presented in figures 1 and 15. (b) Force coefficients (3.4) show good
agreement between the two cases, thus demonstrating the repeatability of the experimental
and data processing methods.

how repeatable the data extraction method is for both types of lighting. This provides
validation for the experimental methods for preparing and dropping the spheres and the
numerical methods for interrogating the sphere position and fitting these data with a
smoothing spline to derive the force coefficient. Figure 16 shows that the experimental
methods used to obtain the ‘experimental’, smoothing-spline-derived force coefficient
are highly accurate and repeatable.

5.2. Potential flow cavity model
A potential flow model is now developed for the cavity-forming cases. Scaling
arguments show that viscous friction forces and surface tension forces are negligible
in cavity-forming cases (see § 3.2). Further, PIV results show that the presence of a
subsurface air cavity mitigates vortex shedding and effectively produces a potential-
flow-like field (see § 5.1). Thus, the hydrodynamic forces on the sphere reduces to
those from pressure forces

F =
∫

S
p(−n̂ · k̂) dS (5.1)

where k̂ is the unit vector in the z-direction (positive upwards) and n̂ is the unit normal
vector directed out of the sphere. In this section, a potential flow model is derived and
used to compute the unsteady, dynamic, and hydrostatic pressure forces on the sphere
during cavity-forming water-entry cases.

The potential flow cavity model described below follows that of Epps (2010). The
method is an experimental-data-driven boundary-element method, with potential flow
singularities placed near the fluid boundaries that are used to compute the flow field
and, in particular, the pressure at the sphere surface. Epps (2010) employs three-
dimensional axisymmetric potential flow singularities to model the sphere and cavity:
the sphere is accounted for using a doublet, and the cavity is modelled as a source
sheet formed by a point source (at the stagnation point) and several ring sources
centred along the path of the sphere, as illustrated in figure 17. The strengths of
the singularities are determined by enforcing the no-through-flow boundary condition
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FIGURE 17. Illustration of the potential flow model, showing the sphere at depth H. In the
sphere frame of reference, the free-stream velocity is U, and the cavity grows behind the
sphere. Source rings are shaded according to their strength: red indicates positive (sources),
and blue indicates negative (sinks). The large red dot at the centre of the sphere represents the
dipole and the origin of the sphere reference frame. The smaller red dot at the bottom of the
sphere represents the location of the point source.

at collocation points on the fluid boundaries (sphere surface and cavity surface).
This model differs from a traditional boundary-element method in that the exterior
boundaries (undisturbed free surface and tank walls) are ignored. The presence of the
undisturbed free surface could easily be modelled by including image singularities
above the surface. However, since the pressure induced by each such singularity scales
by (distance)−4, these images would have virtually no effect on the forces predicted by
the model once the sphere has descended any appreciable amount below the surface.
The same argument holds for ignoring the tank walls.

The present model differs from other recently published numerical studies of cavity
collapse (e.g. Eggers et al. 2007; Gordillo 2008; Gekle et al. 2009). These compute
the flow field using three-dimensional point sources placed along the centreline of
the cavity. In the present work, we observed the cavity shape experimentally and
thus empirically determined the desired boundary conditions on both the cavity walls
and sphere surface. In modelling these experiments, we first attempted to use this
point-source model, but we found that no distribution of three-dimensional point
sources existed that would satisfy our experimentally observed boundary conditions.
In particular, we found that point sources placed along the trajectory centreline had
too large a global effect and were unable to capture the rapid changes in boundary
shape at the sphere surface and near the pinch-off location (i.e. in regions that violated
the slender body assumption made in the above references). Therefore, the model we
implemented employs three-dimensional ring sources with radii that track the local
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cavity radius. These ring sources are able to capture the shape and evolution of the
cavity surface, as observed in our experiments.

The present model requires the following experimental data as input: depth and
speed of the sphere, H(t) ≡ −z(t) and U(t) ≡ −ż(t); and cavity geometry, Rc(x, t),
given from inspecting the cavity shapes in the raw images acquired during the
experiment.

The model assumes that viscous forces and surface tension forces are negligible,
and that the flow can be modelled as ideal, axisymmetric flow. Also, we assume
that the pressure in the cavity is atmospheric, since the dynamic pressure required to
draw air into the cavity is negligible (Gekle et al. 2010). Finally, consistent with our
experimental observations we assume that the contact line is pinned to the equator of
the sphere.

It is important to note that the potential flow model is three-dimensional, but since
it is axisymmetric, we concern ourselves only with the meridional plane. To facilitate
the algebra, two reference frames are used: the sphere frame (x, r), with origin at the
centre of the sphere, and the lab frame (z, r), with origin fixed at the undisturbed free
surface. It is assumed that the sphere did not deviate laterally during the impact event,
so the radial direction is the same for both coordinate systems. Figure 17 shows that
the axial directions are coincident êx = êz and that the mapping between the coordinate
systems is x= z+ H.

The velocity potential is modelled using three-dimensional axisymmetric
singularities located in the cavity (i.e. out of the fluid). As such, the total velocity
potential is the sum of that from a doublet, a point source, and N ring sources:

φ = φd + φp +
N∑

i=1

φsi (5.2)

as illustrated in figure 17. The total fluid velocity in the meridional plane is

u= u êx + v êr = ∂φ
∂x

êx + ∂φ
∂r

êr. (5.3)

These equations are linear in the strength of the singularities. The strength of the
doublet is set to Qd = UR3/2, as prescribed by the potential flow around a sphere
in infinite fluid. The point source and N ring sources effectively form a source sheet
that corrects for the presence of the subsurface air cavity. As such, the strength of
the point source (Qp) and N ring sources (Qs1,Qs2, . . . ,QsN ) are chosen to satisfy the
no-through-flow boundary condition in the sphere frame of reference, which is

u(x, r) · n̂(x, r)=



U cos(π− θ) on sphere

∂Rc

∂t
+ U

∂Rc

∂x√
1+

(
∂Rc

∂x

)2
on cavity (5.4)

where n̂(x, r) is the unit normal vector pointing out of the sphere/cavity. Equation (5.4)
represents a linear system of equations that can be solved, and details of the numerical
method are given in Appendix.

With the strengths of the singularities known for all time steps, the forces on the
sphere are simply found by integrating the gauge pressure over the sphere surface,
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where gauge pressure is computed by evaluating the unsteady Bernoulli’s equation in
the lab frame of reference

p− pa =−ρ ∂φ
∂t
− 1

2
ρ |u|2−ρgz (5.5)

where the three terms are the unsteady, dynamic, and hydrostatic pressures.
The instantaneous force coefficient is found by integrating the gauge pressure (5.5)

over the lower hemisphere and normalizing by the instantaneous dynamic pressure
force (1/2)ρ [U(t)]2 πR2 in the usual way:

CF =

∫ π/2
0

(p− pa) cos(π− θ) 2πR2 sin(π− θ) d(π− θ)
1
2ρ [U(t)]2 πR2 . (5.6)

This yields force components

CF = CFunsteady + CFdynamic + CFhydrostatic (5.7)

which are defined positive when the force on the sphere is directed upwards (in the
positive z-direction), causing a deceleration of the sphere.

Recently, Gekle et al. (2010) calculated that the gauge pressure in the cavity is
nearly zero. Thus, there should be zero gauge pressure on the upper hemisphere of
the sphere and at the sphere equator. However, since this model requires computing
finite differences for ∂Rc/∂t and ∂φ/∂t, the resulting gauge pressure at the sphere
equator is not necessarily zero, and the resulting unsteady force is incorrect. As a
correction to the unsteady force, the average gauge pressure within 5◦ of the equator is
computed, and this pressure coefficient is added to CFunsteady . The magnitude (typically
less than 0.1) and variation of this correction can be seen in the fluctuations of the
unsteady force coefficients shown in figure 19 below. This semi-empirical numerical
model is now used to investigate the relative contributions of the unsteady, dynamic,
and hydrostatic pressure forces.

5.3. Cavity model results and comparison

In order to illustrate some of the finer details of the cavity model, we return to the
billiard ball case. Figure 18 shows a time series of images for the billiard ball impact
case (same case as shown in figure 2), as well as the results of the potential flow
simulation. Figure 19 shows the force coefficient results predicted by the numerical
model, which compare well with the experimental (smoothing-spline-derived) CF

results from figure 8. The potential flow model correctly predicts the overall force
coefficient for all cases, validating its applicability over a wide range of mass ratios.

Figure 19 also shows the unsteady, dynamic, and hydrostatic pressure forces on the
sphere (solid red lines), as computed by the potential flow model. For comparison,
consider the canonical theoretical problem of flow around a sphere in an infinite fluid
(dashed orange lines). Upon integrating the gauge pressure on the leading half of the
sphere, one finds the following theoretical force coefficients (Milne-Thomson 1968):

CFtheoretical
unsteady

= 1
2 −

1
2

(
ρ 2

3πR3 a(t)
)

1
2ρ [U(t)]2 πR2

, (5.8)

CFtheoretical
dynamic

=− 5
8 , (5.9)
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(b)

(a)

–0.015 0 0.015–0.030 0.030

0.17 0.83 0.33 0.50 0.67 1.00

FIGURE 18. Film strip depicting water entry for the billiard ball case shown in figure 2
(m∗ = 1.8,D= 57.15 mm,U0 = 5.67 m s−1). Cavity pinch-off (deep seal) occurs between the
last frame shown here and the following frame. (a) Raw images from figure 2. (b) Potential
flow simulation, including: sphere position and cavity shape, as interrogated from the raw
images; velocity field, as computed by the potential flow model; instantaneous streamlines,
plotted in alternating colours for clarity; and ring source strength, illustrated by the cavity
shading at each depth. Images are synchronized in time.

CFtheoretical
hydrostatic

= ρgH(t)πR2

1
2ρ [U(t)]2 πR2

+
1
2

(
ρ 4

3πR3g
)

1
2ρ [U(t)]2 πR2

. (5.10)

The first term in the unsteady force equation accounts for the lab-fixed reference
frame (which was used in the model), and the second term is the added mass of half
a sphere (where a positive (i.e. upwards) sphere acceleration a(t) causes a negative
(i.e. downwards) force). The dynamic pressure force coefficient is a constant, since it
depends only on geometry; for reference, the dynamic pressure force for a complete
sphere is zero. The hydrostatic force is that given by the hydrostatic pressure acting at
the equator and the buoyancy acting on a half-submerged sphere.

Let us compare the model results (solid red lines) and theoretical forces (dashed
orange lines) shown in figure 19. The hydrostatic pressure force computed by the
model matches almost exactly with the theoretical value (5.10), as expected by
Archimedes’ principle. This indicates that sufficient resolution was used in numerically
integrating the forces in (5.6). There is also close agreement between the dynamic
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FIGURE 19. Force coefficient versus time normalized by pinch-off time for the cases in
figures 1 and 18: force coefficient (3.4) (black line) derived from one spline fit to all the
position data; composite force coefficient (3.4) (dashed black line) derived from one spline
fit to the position data before pinch-off and another spline fit to the data after pinch-off;
total force coefficient predicted by the potential flow model (5.7) (dotted blue line); unsteady,
dynamic, and hydrostatic pressure forces predicted by the model (5.5) and (5.6) (red lines);
theoretical unsteady, dynamic, and hydrostatic pressure forces (5.8)–(5.10) (orange dashed
lines); (a) acrylic; (b) billiard; (c) ceramic; (d) steel.

pressure force computed by the model and that predicted by the theory (5.9). This
indicates that the presence of the cavity does not dramatically alter the overall dynamic
pressure force on the sphere. However, the unsteady pressure force on the sphere
computed by the model is substantially different from the theoretical prediction (5.8).
This indicates that the dominant effect of the cavity’s shape and motion is to alter the
unsteady pressure force on the sphere.

Since we prescribed the doublet strength based on the sphere velocity, which is
consistent with the theoretical argument leading to (5.8), the unsteady pressure force
due to the doublet alone should agree with this theoretical result. We have verified
that these results agree within 1 % for all time steps, but these data are not shown
in figure 19 since they would simply overlay the theoretical unsteady pressure force
prediction. The effect of the single point source is negligible, so the cause of the
difference between the total model unsteady pressure force and that predicted by the
model is due to the ring sources representing the effect of the cavity.

To better understand the nature of the forces on the sphere computed by the
potential flow model, consider figure 20. The potential flow simulation in figure 20
demonstrates how the unsteady pressure force changes much more dramatically for the
low-mass-ratio acrylic sphere than it does for the high-mass-ratio steel sphere. The
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FIGURE 20. Potential flow simulation for the cases shown in figure 1: (a) acrylic: m∗ = 1.2;
(b) ceramic: m∗ = 3.9; (c) steel: m∗ = 7.8.

magnitude of the source strengths is coded in the colourmap, which is set consistent
with the billiard ball case (figure 18). For the steel case, the magnitudes of the ring
sources near the sphere are nearly constant from impact to pinch-off. In contrast for
the acrylic case, the magnitudes of the ring sources near the sphere are large at impact
but decay over the duration of the impact event and are near zero at the time of cavity
pinch-off.

Figures 18–20 together show that the unsteady force is larger than the theoretical
value for t/tds . 0.75, when a large portion of the rings in the cavity are positive-
strength sources. This can be seen in the first few frames of figure 18, where most of
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the rings in the cavity are shaded green to red. For later times, 0.75 . t/tds 6 1, the
cavity collapses, many rings are negative-strength sources (i.e. sinks that draw fluid in)
shaded green to blue in figure 18, and the unsteady force predicted by the model is
less than that predicted theoretically.

The ring source strength is determined by the growth and collapse of the
cavity. Neglecting the interaction between the rings, consider a slice of the
cavity with radius Rc(x, t) and axial length δx. The surface area of the slice is
S = 2πRcδx

√
1+ (∂Rc/∂x)2, and the volume flow rate out of the slice required by

(5.4) reduces to Qs = (∂Rc/∂t + U(∂Rc/∂x))2πRcδx. Thus, the strength of a ring will
be positive (i.e. it will be a source) if the growth rate of the cavity ∂Rc/∂t and wall
slope ∂Rc/∂x are positive. In these experiments, the rings behind the sphere equator all
start as positive sources, pushing fluid outwards as the cavity grows. After some time,
the cavity collapses for some period of time before the wall slope reaches vertical (i.e.
∂Rc/∂t < 0 while ∂Rc/∂x > 0 still). Eventually, the wall slope is sufficiently small for
the ring to become a sink. As the cavity collapses further and the wall slope turns
negative, the ring becomes an even stronger sink, drawing fluid into the cavity.

The results in figure 19 show that the unsteady pressure force on the sphere is
modulated by the presence of the ring sources in the cavity, at some axial distance
behind the sphere. It is vital that the formulation of the potential flow model utilizes
three-dimensional potential flow constructs, thus enabling ‘cross-talk’ between each
axial position along the cavity and the sphere surface. Prior works (e.g. Yan et al.
2009) have attempted to solve this problem using matched asymptotic analysis,
representing the cavity strip-wise using two-dimensional sources (inner solution)
and matching to a three-dimensional potential function describing the outer solution.
Although their model may be sufficient to describe the cavity dynamics, it may lead to
errors in representing the potential function on the sphere surface and computing the
unsteady pressure force on the sphere. While many other models accurately capture
cavity dynamics they rarely consider the forces on the spheres.

In general the instantaneous force coefficient is unsteady in time. The unsteady
forces are of the order of the fluid inertial effects, making them quite significant for
low-mass-ratio spheres. In the case of the higher-mass ratio-steel spheres, the force
coefficients are nearly constant, which suggests that a simple second-order polynomial
is sufficient to describe the sphere trajectory. However, the polynomial misses all
of the unsteady dynamics present in the low-mass-ratio cases, suggesting that the
piecewise spline fit to position is critical for analysing the forces. Data from the
theoretical cavity model reveal similar trends, further illustrating the effects of mass
ratio.

6. Conclusions

This paper presents a fully resolved examination of forces on spheres during
water entry. The study shows that these forces are quite unsteady, especially for
low-mass-ratio spheres (§ 3). The dynamics of non-cavity-forming hydrophilic spheres
and cavity-forming hydrophobic spheres are unsteady for different reasons.

In the non-cavity-forming cases, the forces on the sphere are dominated by added
mass, buoyancy, and the rate of change of impulse of a vortical wake (§ 4.1). PIV
revealed that a ring-like vortical structure forms behind the sphere, carrying with it
the impulse required to balance the change in momentum of the sphere. These PIV
data also show that vortex shedding events correlate with peaks in the force coefficient.
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Overall, the force coefficients are much larger in non-cavity-forming cases than in their
cavity-forming counterparts.

In cavity-forming cases, the cavity acts to mitigate the formation of vortices, which
allows cavity-forming spheres to maintain higher velocities after impact (§ 5.1). Here,
the forces on the sphere are dominated by the hydrostatic, dynamic, and unsteady
pressure components acting on the wetted portion of the sphere (i.e. the lower
hemisphere). These forces can be approximated as the buoyancy and dynamic pressure
acting on the leading hemisphere of a sphere, and an unsteady pressure that is
modulated by cavity growth and collapse. As the cavity collapses, the inward and
downward motion of the fluid above the sphere aids in decreasing the force coefficient
in the moments before deep seal. Perhaps the most interesting finding is that the
forces in the cavity-forming cases are considerably less than the unsteady forces in
the non-cavity-forming cases which experience increased unsteady drag due to vortex
shedding not seen in the cavity-forming case.

We present a model of the cavity as an axisymmetric source sheet (§ 5.2). Since
the model employs three-dimensional (axisymmetric) singularities, the effect that the
cavity has on the sphere surface is captured, and this model accurately describes the
unsteady nature of the forces.
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Appendix. Potential flow simulation numerical method
This appendix provides details of the numerical methods used in the potential

flow model discussed in § 5.2. The model employs a three-dimensional axisymmetric
doublet, point source, and N ring sources, which are located in a coordinate system
(x, r) that translates with the sphere, as shown in figure 17. Since the singularities are
axisymmetric, we only concern ourselves with the meridional plane. The total velocity
potential and fluid velocity in the meridional plane are given by (5.2) and (5.3), which
are reproduced here:

φ = φd + φp +
N∑

i=1

φsi, (5.2)

u= u êx + v êr = ∂φ
∂x

êx + ∂φ
∂r

êr. (5.3)

The presence of the sphere is accounted for by a doublet located at (0, 0). The
potential function and fluid velocities at field point (x, r) induced by the doublet are

φd(x, r)= Qd
x

(x2 + r2)
3/2 , (A 1)

ud(x, r)= Qd
r2 − 2x2

(x2 + r2)
5/2 , (A 2)

vd(x, r)= Qd
−3xr

(x2 + r2)
5/2 , (A 3)
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FIGURE 21. (Colour online) Illustration of a three-dimensional ring source.

where Qd = (1/2)UR3 is the strength of the doublet, as prescribed by the potential flow
around a sphere of radius R moving at instantaneous speed U ≡ U(t) in infinite fluid.

The point source and the N ring sources effectively form a source sheet that
corrects for the presence of the subsurface air cavity. Each of these singularities
enforces the no-through-flow boundary condition at a collocation point on the fluid
boundary (e.g. the point source enforces no through-flow at the stagnation point
(−R, 0)). The potential function and fluid velocities at field point (x, r) induced by a
three-dimensional point source located at (−xp, 0) are

φp(x, r)= Qp
−1

4π ((x+ xp)
2+r2)

1/2 , (A 4)

up(x, r)= Qp
x+ xp

4π ((x+ xp)
2+r2)

3/2 , (A 5)

vp(x, r)= Qp
r

4π ((x+ xp)
2+r2)

3/2 , (A 6)

where Qp is the volume flow rate out of the point source and xp = R − Rinset , where
R = 37.5 px (pixels) is the sphere radius, and we choose Rinset = 2 px herein to avoid
computing nearly infinite velocities at collocation points on the sphere surface near the
point source. (For clarity, the cavity model is presented using the dimensional units of
the images, length measured in pixels and time measured in frames elapsed, but the
final force coefficients are properly non-dimensionalized.)

The potential function and fluid velocities at field point (x, r) induced by a three-
dimensional ring source of strength Qs, radius rs, and axial position x = xs are derived
as follows (see figure 21): since the volume flow rate out of the ring source is defined
as Qs, the potential function is derived by integrating the three-dimensional point
sources of strength Qs/(2πrs) distributed about the circumference of the ring

φs(x, r)=
∫ 2π

0

−[Qs/(2πrs)]
4π ((x− xs)

2+ (r − rs cosβ)2+ (rs sinβ)2)
1/2 rs dβ. (A 7)
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After much algebra, one obtains

φs(x, r)= Qs
−K

2π2a
, (A 8)

us(x, r)= Qs
(x− xs)E

2π2c2a
, (A 9)

vs(x, r)= Qs
(r2 − r2

s − (x− xs)
2)E + c2K

4π2rc2a
, (A 10)

where

a=
√
(x− xs)

2+ (r − rs)
2, (A 11)

c=
√
(x− xs)

2+ (r + rs)
2, (A 12)

m= c2 − a2

a2
, (A 13)

K = K̄(−m)=√m+ 1 K̄

(
m

m+ 1

)
, (A 14)

E = Ē(−m)=√m+ 1 Ē

(
m

m+ 1

)
, (A 15)

and K̄ and Ē are complete elliptic integrals of the first and second kinds, respectively
(Abramowitz & Stegun 1972).

The layout of the ring sources is as follows: for ring sources in the sphere,

rs = (R− Rinset) sin θ, (A 16)
xs = (R− Rinset) cos θ, (A 17)

where we choose θ = [91◦, 96◦, . . . , 179◦] (to achieve approximately the same spacing
between these sources in the sphere as those in the cavity) and again Rinset = 2 px.

For ring sources in the cavity,

rs = Rc(xs, t)− Rinset

√
1+

(
∂Rc(xs, t)

∂x

)2

, (A 18)

xs = [1, 2, . . . ,Nc]δx, (A 19)

where we choose δx = 1 px (because it corresponded to the resolution of the cavity
radius data Rc(xs, t) and so avoided interpolation of these data), and Nc is the number
of sources in the cavity (which increases with cavity length).

The Rc(x, t) data were determined using the high-speed images from each
experiment. Raw cavity shape data were obtained using a Canny edge-detection
algorithm to yield R̃c(x, t). These raw data for each time step were then fitted
with a cubic smoothing spline to yield spatially smoothed cavity radius data,
˜̃Rc(x, t). Finally, an offset was added to the smoothed cavity radius data as a
small correction that ensured that the cavity radius intersected the sphere equator

(Rc(x, t) = ˜̃Rc(x, t) − ˜̃Rc(0, t) + R). This procedure yielded smoothed cavity shape data
and ensured that the slope ∂Rc/∂x was smooth. However, the cavity radius data were
not smoothed in time, so the temporal derivative ∂Rc/∂t still contains some noise.
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The strengths of the point source and N ring sources are found by solving the
no-through-flow boundary condition at the stagnation point (−R, 0) and N additional
collocation points (xi, ri), i= 1, . . . ,N, distributed over the sphere surface as follows:

(R cos θi,R sin θi) θ = [91◦, 96◦, . . . , 179◦] (A 20)
(xsi,Rc(xsi, t)) xs = [1, 2, . . . ,Nc]δx. (A 21)

The boundary condition (which is most easily computed in the sphere frame of
reference since the cavity radius data are tabulated as a function of distance behind the
sphere) is given by (5.4), which is reproduced here:

u(x, r) · n̂(x, r)=



U cos(π− θ) on sphere

∂Rc

∂t
+ U

∂Rc

∂x√
1+

(
∂Rc

∂x

)2
on cavity (5.4)

where the unit normal vector pointing out of the sphere/cavity is

n̂(x, r)=



cos θ êx + sin θ êr on sphere

−∂Rc

∂x
êx + êr√

1+
(
∂Rc

∂x

)2
on cavity. (A 22)

Equation (5.4) can be written as a linear system of N equations in matrix form as

As · Qs = B0 − Bd − bpQp (A 23)

such that

B0 =



U cos(π− θ) on sphere

∂Rc

∂t
+ U

∂Rc

∂x√
1+

(
∂Rc

∂x

)2
on cavity (A 24)

Bd = ud(x, r) · n̂(x, r) (A 25)
Bp = up(x, r) · n̂(x, r)= bpQp (A 26)

Bs = us(x, r) · n̂(x, r)= As · Qs (A 27)

where the through-flow velocity matrices B are all size [N, 1], the point source
influence matrix bp is size [N, 1], the point source strength Qp is a scalar, the ring
source influence matrix As is size [N,N], and the ring source strength matrix is
Qs = [Qs1, . . . ,QsN ]T. Given the experimental results, B0, Bd, bp and As are known,
and the unknowns in (A 23) are Qp and Qs.

For a given value of Qp, (A 23) can, in theory, be solved for the ring source
strengths, Qs. In practice, solving (A 23) by matrix inversion results in a non-physical
set of source strengths that do not vary smoothly over the length of the cavity. This
is due to the noise in computing ∂Rc/∂t from the experimentally measured cavity
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shape data, Rc(x, t). Although Rc(x, t) was smoothed spatially (for each time step), it
was not simultaneously smoothed temporally as well; therefore, the ∂Rc/∂t term in
B0 contained measurement error, and this noise corrupted the direct matrix inversion
method for finding Qs. Physically, the cavity shape varies smoothly in x, so source
strengths should also vary smoothly in x as well. In order to solve for the source
strengths, the following numerical method is used.

The numerical method is predicated on the fact that the total volume flow rate into
the cavity in the absence of sources must be balanced by the total volume flow rate
out of the source sheet. Since each ring source dominates the flow in its vicinity
(by construction), the volume flow rate into each slice of the cavity is approximately
balanced by the volume flow rate of the source at that station. Note that at this point,
we do not know the point source strength. We proceed with an iterative procedure,
whereby Qp is estimated, Qs is determined to satisfy (A 23), Qp is updated, and so on
until both Qp and Qs have converged.

The volume flow rate into a slice of the cavity is the through-flow velocity times the
surface area. The surface area of each slice of the cavity between control points is

S =


2πR2 sin θ δθ on sphere

2πRc

√
1+

(
∂Rc

∂x

)2

δx on cavity.
(A 28)

For a given estimate of Qp and Qs, the net inflow velocity and volume flow rate are

Bnet = B0 − Bd − bpQp − As · Qs, (A 29)

Qnet = Bnet ∗ S, (A 30)

where the ‘∗’ operator indicates element-wise vector multiplication, whereas ‘·’
indicates normal matrix multiplication. In order to obtain the next estimate for the
source strengths, these net volume inflow rates are added to the ring source strengths

Qnext
s = Qcurrent

s + Qnet . (A 31)

Since each ring source strength dominates the velocity in its vicinity, iteratively
updating Qs using (A 29)–(A 31) converges to a set of smoothly varying Qs that
satisfy the no-through-flow condition (A 23), given the current estimate for Qp.

Upon convergence of Qs, the point source strength, Qnext
p , is then set to cancel the

velocity induced by the ring sources at the stagnation point (−R, 0). This satisfies (5.4)
at the stagnation point, because the doublet strength was already chosen to balance the
free-stream velocity there. Evaluating (A 9) at (x =−R, r = 0), noting that Ē(0)= π/2
yields the velocity in the êx direction

us(−R, 0)=
N∑

i=1

Qsi

−(xsi + R)

4π ((xsi + R)2+r2
si
)

3/2 . (A 32)

Thus, the next estimate for the point source strength is

Qnext
p = us(−R, 0)4πR2

inset . (A 33)

This iterative process continues for each estimate of Qp by evaluating (A 29)–(A 31)
until Qs converges. Then Qp is updated again by (A 32) and (A 33), and a new set of
Qs is found. This procedure continues until both Qp and Qs converge, which ensures
that the no-through-flow boundary condition (5.4) is satisfied at all the control points
and at the stagnation point.
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With (Qd,Qp,Qs1,Qs2, . . . ,QsN ) known for all time steps, the gauge pressure at the
sphere surface can be computed by evaluating the unsteady Bernoulli equation in the
lab frame of reference,

p− pa =−ρ ∂φ
∂t
− 1

2
ρ |u|2−ρgz. (A 34)

The partial derivative ∂φ/∂t is computed in the lab frame of reference by a backward
finite difference

∂φ

∂t
≈ φ(R cos θ,R sin θ, t)− φ(R cos θ − H(t)+ H(t − δt),R sin θ, t − δt)

δt
. (A 35)

Note that a point x(t) relative to the sphere centre at time t was located at
x(t − δt) = x(t) − [H(t) − H(t − δt)] in reference to the sphere centre at time t − δt,
which leads to the above formulation. Numerical integration of the force coefficient
(5.6) is performed over a fine mesh of surface points (R cos θi,R sin θi), where we now
set θi = [90◦, 91◦, . . . , 180◦].
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