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ABSTRACT 

 

In both the Andean zone of South America and in Mesoamerica, copper-silver alloys were 

important in the production of thin, silver-colored sheet metal artifacts. This thesis examines the 

mechanical and physical properties of the copper-silver alloy system that are important to 

understanding why copper-silver alloys became central to the metallurgies that developed among 

prehistoric societies of the Andean zone and Western Mexico. These properties include their 

range of malleability, the microstructures behind their toughness, and the recrystallization and 

annealing behaviors that led to their development of silver-enriched surfaces.  

 

To determine these properties, a series of cold rolling, cold hammering, and annealing 

experiments were performed on five Cu-Ag alloys and pure copper. Results of the cold rolling 

and cold hammering experiments reported here indicate that over the copper-silver alloy 

compositional range studied, the alloys can be cold rolled without annealing to over 90% 

reduction in thickness. Similar reductions in thickness were also achieved in two alloys  

(95 wt% Cu – 5 wt% Ag and 30 wt% Cu – 70 wt% Ag) by cold hammering. The rate of work 

hardening and the Vickers Hardness Number, as functions of the percent reduction in thickness, 

are similar for alloy compositions containing between 30 wt% and 80 wt% Cu. This suggests that 

ancient metalsmiths likely annealed the copper-silver alloy artifacts intentionally to produce the 

desired silver surface color rather than for any improvement in malleability. The silver surface 

colors were important for their cultural associations. The recrystallization temperature for the 

copper-silver alloys tested (70 wt% Cu – 30 wt% Ag and 30 wt% Cu – 70 wt% Ag) is 

determined to be 500ºC given a 30 minute anneal time. 
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3 Introduction 

 This thesis determines the mechanical and physical properties of the copper-silver alloy 

system that are important to understanding why copper-silver alloys became central to the 

metallurgies that developed among prehistoric societies of the Andean zone of South America 

and western Mexico. These properties include their range of malleability, the microstructures 

behind their toughness, and the recrystallization and annealing behaviors that led to their 

development of silver-enriched surfaces. 

 Metallurgy has played an important role in the cultural, economic, and political 

development of civilizations throughout the world. Two metallurgical centers or heartlands of 

metallurgy developed independently of each other, one in the Old World, in Southwest Asia (the 

Near East), the other in the New World, the Andean zone of South America (Lechtman in press). 

Figure 1 shows what anthropologists refer to as the Andean culture area, which is coincident 

with the territory that comprised the Inka empire in the early decades of the 16
th

 century. The 

Andean zone, located on the western edge of the South American continent, covers regions 

occupied by the modern nations of Colombia, Ecuador, Peru, Bolivia, Chile and Argentina. The 

Andean heartland of metallurgy is considered to have developed in the northern reaches of what 

is today Peru. 
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Figure 1. Map of South America. The Andean culture area, coincident with the maximum extent 

of the Inka empire (hatched region on map) is located on the western edge of South America and 

covers territory occupied by the modern nations of Colombia, Ecuador, Peru, Bolivia, Chile and 

Argentina. (after D’Altroy 1992: Figure 1.1)  
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 From the Andean zone, the metallurgical tradition spread, via a maritime route as 

indicated in Figure 2, to the region anthropologists refer to as Mesoamerica, which encompasses 

central and southern Mexico, Guatemala, Belize, western Honduras, and El Salvador (Dewan 

and Hosler 2008; Hosler 1994). This transfer of technological knowledge led to the development 

of a copper-based metallurgical tradition in western Mexico between A.D. 800 and the 16
th

 

century when the Spaniards invaded and conquered the Aztec state (Hosler 1988, 1994). Figure 3 

locates the metalworking zone of western Mexico. 

 

 

Figure 2. Possible maritime transmission route of metallurgical technology from the Andean 

zone to West Mexico, via balsa raft. (after Dewan and Hosler 2008: Figure 1) 
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Figure 3. Map of Mesoamerica showing archaeological sites, the state boundaries within Western 

Mexico, and the limits of the West Mexican metal-working zone. (after Hosler 1995: Figure 1) 

 

 

 In western Mexico, metal was managed in the liquid state in order to shape it, and most 

objects were cast to achieve their final shapes. Some hammered metal artifacts have been found 

in West Mexico and include sheet metal objects made of copper-silver alloys (Hosler 1994, 

1988). In the Andes, metal was managed in the solid state, and most objects were plastically 

deformed by hammering to achieve their final shapes (Lechtman 1988). At Chan Chan, a large 

urban site on the north coast of Peru (ca. A.D. 1100 – 1470), a set of metalworker's tools, shown 

in Figure 4, made from fine-grained metamorphic rock, was excavated by John Topic (John 

Topic, personal communication). Objects made of pure elements, such as native copper, silver, 

or gold, as well as alloys of two or more of these metals have been found in the archaeological 

record in both the Andes and Mesoamerica.  
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Figure 4. A set of stone metalsmithing tools made of fine-grained metamorphic rock excavated at 

Chan Chan, Peru: (a) anvil with flat planishing stone, (b) large, heavy stone hammer, (c) two 

small stone hammers, highly polished. (courtesy of Heather Lechtman and John Topic) 

 

 

 The earliest known alloy developed in the Andes is that of copper and silver (Lechtman 

1979b, 1984a, 1984b). The copper-silver alloy was utilized for its unusually high degree of 

malleability and its toughness, developed during hammering. Equally important to the Andean 

metalsmiths were the silver-enriched surfaces that developed on the alloy surfaces after 

hammering and annealing (Lechtman 1984a, 1984b, 1988, 2007). The high malleability and 

subsequent toughening of copper-silver alloys during hammering allowed metalsmiths to 

produce objects made from very thin sheet metal such as the copper-silver plaques shown in 

Figure 5.  
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Figure 5. Two copper-silver alloy plaques from the north coast of Peru. The holes may have been 

used to attach the plaques to a wall as sheathing. (after Lothrop, Foshag and Mahler 1959: Plate 

CXXXIX) 
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The earliest copper-silver object found thus far in the Andean zone is a small bead (see Figure 6) 

from Malpaso, a coastal site in the Lurín Valley of Peru dating to about 1000 B.C. (Lechtman 

1979b).  

 
Figure 6. Bead made of hammered copper-silver alloy sheet from Malpaso, Lurín Valley, Peru. 

The bead measures approximately 20 mm in length with a maximum diameter of 6 mm. The 

sheet metal is about 0.15 mm thick. The chemical composition of the bead is about 41 wt% Cu – 

45 wt% Ag (given approximately a 15% loss of metal due to corrosion). (after Lechtman 1979b: 

Figure 6) 

 

 

 In addition to flat sheet metal objects made from copper-silver alloys, Andean 

metalsmiths produced more complex geometries from one or more pieces of sheet that were 

joined by mechanical or metallurgical means (i.e. soldering or welding). Figure 7 shows a silver-

colored Chimú (ca. 13
th

 century A.D.) cup made of copper-silver alloy sheet. The cup was 

formed by crimping together two shaped pieces of copper-silver sheet: the sheet that forms the 

bottom of the cup and the sheet that forms the cylindrical wall of the cup (see Figure 8).  
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Figure 7. Cup made of copper-silver alloy sheet from the Chimú culture, Peru (Late Intermediate 

Period: A.D. 1000 to 1476). The cup is silver in color and was formed by mechanically crimping 

the edges of a circular sheet that formed the vessel bottom over and onto the circular perimeter of 

the base of the cylindrical vessel wall (see Figure 8). (after Lechtman 1988: Figure 30.21 ) 

 

 

 

Figure 8. Photomicrograph of a cross section removed from the bottom and lower vessel wall of 

the copper-silver cup shown in Figure 7. The two sheets of metal were mechanically joined by 

crimping. In the upper right corner, the silver-enriched surfaces of the cylindrical vessel wall are 

visible along both edges of the sheet. MAG: 50; Etchant: Potassium dichromate and hydrochloric 

acid. (courtesy of Heather Lechtman) 
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 A 1975 study by Lechtman, Parsons and Young provides evidence of the use of copper-

silver alloys as solders in the assembly of thin, hammered gold sheets to produce small, hollow 

jaguar figurines. These early solder alloys were developed by Moche metalsmiths working at 

north coast Peruvian centers at about A.D 300 to 500. 
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4 Previous Research 

4.1 Properties of Cu-Ag Alloys Based on Analysis of Andean Archaeological Artifacts  

4.1.1 Composition of Cu-Ag Alloy Artifacts 

 The artifacts found in both the Andes and Mesoamerica made from Cu-Ag alloys span a 

wide range of chemical compositions. A compilation of many of the known Cu-Ag alloy artifacts 

whose compositions have been determined can be found in Appendix A.  

 A 1949 study by William Root classifies south coast, Late Intermediate Period (ca. A.D. 

1100 – 1450) Peruvian artifacts made from copper-silver alloys into two categories: artifacts 

containing less than 20 wt% Cu (Type A) and artifacts containing more than 20 wt% Cu (Type 

B). Of the 67 Cu-Ag alloy artifacts analyzed in Root's study 55 are Type A and 12 are Type B. 

The Type B artifacts generally belong to the later Ica and Chincha cultures. The Ica culture 

occupied the Ica Valley on the southern coast of Peru from about A.D. 900 to 1476 (Silverman 

1993). The Chincha culture also occupied the southern coast of Peru, but was farther north than 

the Ica, from about A.D. 1150 to 1476 (Menzel 1976). The Inka conquered the southern coast of 

Peru in A.D. 1476 (Menzel 1976).  

 Based on Root's work it appears that metalsmiths of the southern coast of Peru may have 

had a preference for high-silver content alloys, while the work of several other Andean scholars 

presents a broader compositional range of artifacts from northern Peru and Ecuador (Gordon and 

Knopf 2007; Hörz and Kallfass 2000; Lechtman 1979, 1988, 2007). For example, at the imperial 

Inka site Machu Picchu, the most commonly used copper-silver alloys contained 25-30 wt% 

silver (Gordon and Knopf 2007). A recent (2009) study carried out at the Center for Materials 
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Research in Archaeology and Ethnology (CMRAE) at MIT examined 16 metal artifacts from a 

cache excavated at an Inka fortress in the Pambamarca mountains, north of Quito, Ecuador. The 

fortress was built by the Inka in the early 1500s A.D. as they expanded their northern frontier 

into the territory of the Cayambe peoples in Ecuador. Of eleven artifacts analyzed for their 

composition, four are made of Cu-Ag alloys. One of these four utilizes a Cu-Ag alloy solder to 

join two copper members. The alloy compositions are presented in Table 1. 

 

Table 1. Compositions of Four Metal Artifacts from Pambamarca, Ecuador (Analyses courtesy 

of Heather Lechtman) 

Artifact MIT ID No. 
Composition (wt%) 

Cu Ag Sn 

tumi knife (?) 5433 96.2 3.8  –  

bent rod with conical sheet 5435 99.7 – – 

solder between rod and cone 5435 59 41 – 

MIT 5430 pouring sprue and 

runners 
5430 65.7 29.8 4.5 

sheet disc 5431 76 24 – 

 

It seems clear that by the era of the Inka empire, high-copper Cu-Ag alloys were in common use 

by north Andean metalsmiths and by smiths in the service of the Inka state.  

 In Mesoamerica, the work of Dorothy Hosler provides the majority of the chemical 

analyses determined for Cu-Ag artifacts in this region (1994). Of the 36 Cu-Ag artifacts 

analyzed, nine would be classified as Type A and 27 would be classified as Type B. Eleven 
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artifacts contain between 70 and 80 wt% Cu. Based on these data it appears that Mesoamerican 

metalsmiths may have had a preference for high-copper content Cu-Ag alloys. 

 

4.1.2 Microstructure of Cu-Ag Alloy Artifacts 

 Depending on the initial composition of the molten metal the cast ingot or object will 

exhibit one of three possible microstructures: primary Ag-rich α-phase dendrites surrounded by 

the eutectic microconstituent, primary Cu-rich β-phase dendrites surrounded by the eutectic 

microconstituent, or grains comprised of 100% eutectic microconstituent. Figure 9 shows the Cu-

Ag phase diagram and the compositional ranges for which these three different microstructures 

are present. 
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Figure 9. Cu-Ag Phase Diagram. The eutectic composition is 28.1 wt% Cu - 71.9 wt% Ag and 

the solid solubility limit of silver in copper is 8 wt% Ag (after Hansen and Anderko 1958: 18) 

 

 After smelting copper and silver from their respective ores, the ancient metalsmiths 

mixed alloy constituents in the desired ratios and melted them. The molten alloy was then poured 

into a mold and allowed to solidify. Figure 10 illustrates the cast Cu-Ag-Sn alloy sprue and 

runners from Pambamarca, Ecuador whose composition appears in Table 1 (MIT 5430).  
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Figure 10. Cast metal that solidified within a pouring sprue and runners excavated at 

Pambamarca, Ecuador. The concave upper surface, a result of the shrinkage of the molten metal 

upon solidification, and the two runners at the base indicate this artifact was the last metal to 

solidify when molten alloy was poured through a pouring sprue into a mold. The scale bar is in 

centimeters. (courtesy Heather Lechtman) 

 

 

The molten alloy passed from the casting sprue through the runners into the mold. Upon 

solidification, the solid metal sprue and runners were cut from the mold but were not discarded. 

The alloy was precious enough to be saved and included in the cache of 16 artifacts buried at the 

Pambamarca fortress. 

 By the establishment of the Inka empire in the Andes at about A.D. 1450, the alloy of 

copper and silver had been used widely, including in Ecuadorian metallurgy, for approximately 

two millennia. The fact that 4.5 wt% tin was added to the alloy analyzed in the sprue-and-runner 

certifies that the alloy was produced among the Cayambe peoples after the Inka invasion of 

Ecuador. The single source of tin (cassiterite: SnO2) in South America occurs in a rich and dense 
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ore field that runs from Bolivia through northwest Argentina. The Inka state controlled this vast 

tin source and disseminated tin or Cu-Sn bronze artifacts throughout the empire (Lechtman 

1979b). The Ecuadorian metalsmiths likely added small amounts of tin, a new material for them, 

to their existing alloys not necessarily for any advantage to the alloy's properties but perhaps 

because tin was an imperial metal (Heather Lechtman, personal communication). 

 Figure 11 shows a photomicrograph of the cast microstructure of a section removed from 

one of the runners attached to the pouring sprue shown in Figure 10.  

 

 

Figure 11. Etched photomicrograph of a section removed from a runner on the Ecuadorian 

casting shown in Figure 10. The Cu-rich β-phase dendrites are surrounded by eutectic 

microconstituent. MAG: 100; Etchant: 1:9 dilute potassium dichromate (courtesy Heather 

Lechtman) 

 

 

 Upon plastic deformation during hammering, the cast microstructure eventually develops 

thin, elongated lamellae of Ag-rich α-phase and Cu-rich β-phase material in which neither the 

original eutectic microconstituent nor the primary dendrites is discernible. The photomicrograph 
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in Figure 12 shows the heavily deformed microstructure of a cross section of metal removed 

from the copper-silver bead illustrated in Figure 6. Both the Ag-rich α-phase and Cu-rich β-phase 

lamellae are thin and highly elongated. This same heavy deformation and elongation of both the 

Ag-rich α-phase and Cu-rich β-phase lamellae is also visible in the thin sheet metal of the Chimú 

cup (see Figure 13). 

 

 

Figure 12. Photomicrograph of a cross section of metal removed from the copper-silver bead 

shown in Figure 6. Both the copper-rich β-phase (dark areas) and the silver-rich α-phase (light 

areas) have elongated in the direction of metal flow upon hammering. Both the upper and lower 

surfaces of the metal sheet exhibit silver enrichment. The cracks at the upper surface have been 

prevented from propagating through the sheet because of the presence of alternating lamellae. 

MAG: 500; Etchant: 0.2% H2Cr2O7 + 0.2% H2SO4. (after Lechtman 1979b: Figure 7) 
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Figure 13. Higher magnification photomicrograph of the mechanical join between the two 

copper-silver alloy sheets in the Chimú cup shown in Figure 8. Etching reveals the heavily 

deformed lamellar microstructure of a worked copper-silver alloy. The dark areas are the copper-

rich β-phase and the lighter regions are the silver-rich α-phase. Both phases are highly elongated 

in the direction of working as a result of the extensive deformation from cold hammering. This 

elongation is more pronounced in the bottom sheet than in the top sheet indicating that the 

bottom sheet was more heavily worked than the top one. MAG: 200; Etchant: Potassium 

dichromate and hydrochloric acid. (after Lechtman 1988: Figure 30.23) 

 

4.1.3 Toughness of Cu-Ag Alloys 

 The high toughness of the deformed Cu-Ag alloy sheets is a result of their 

microstructures. They are essentially composite materials, because they are comprised of 

alternating lamellae of two different materials: a Ag-rich α-phase and a Cu-rich β-phase. When a 

transverse crack develops in a Cu-Ag alloy sheet, the alternating lamellae prevent the crack from 

propagating through the entire thickness of the sheet which would result in catastrophic failure 

by brittle fracture. This is evident in Figure 12 where the transverse surface cracks in the 
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corroded surface zones of the bead sheet metal have been deflected laterally by the presence of 

lamellar planes of solid solution material, and they stop. The corrosion products (oxides) are 

much more brittle than the intact Cu-Ag metal. 

 

4.1.4 Development of Enriched Silver Surfaces 

4.1.4.1 Annealing and Recrystallization Process 

 During the process of hammering these copper-silver alloy objects, the metalsmiths 

annealed them in order to relieve some of the stress and work hardening produced by the cold 

hammering and to restore the malleability of the alloy sheet. When work-hardened materials are 

annealed, the deformed grains recover, recrystallize, and grow. During recovery, the internal 

residual stresses introduced by working the material are relieved. The strength and hardness of 

the material do not change significantly. At higher temperatures, during the recrystallization 

phase, new strain-free grains nucleate at the grain boundaries and within the old, deformed grains 

(see Figure 14).  
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Figure 14. Recrystallization and growth of grains in metals. The new, strain-free grains nucleate 

at the grain boundaries of the older, strained grains and grow until all they replace the old grains. 

(courtesy of Heather Lechtman) 

 

 

 The temperature at which recrystallization occurs depends on the time of annealing and 

the extent of work hardening. After the new grains have nucleated, they grow larger, eventually 

replacing the old grains if the temperature is high enough and the time of annealing is long 

enough (Abbaschian et al. 2009). During recrystallization and growth, the strength and hardness 

of the material decrease as shown in Figure 15. 
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Figure 15. The effects of annealing temperature on the tensile strength and ductility of a brass 

alloy. As the grains begin to recrystallize, the tensile strength decreases and the ductility 

increases. (after Callister 2003: Figure 7.20) 

 

 

 The recrystallization temperature is typically reported as the temperature at which 50% of 

the grains in a worked piece of metal have recrystallized after 30 minutes of annealing, and it can 

be determined from a graph of hardness vs. annealing temperature.  This thesis reports annealing 

experiments performed to determine the recrystallization temperature for two of the five Cu-Ag 

alloys (70 wt% Cu – 30 wt% Ag and 30 wt% Cu – 70 wt% Ag).  

 Literature values for the recrystallization temperature of pure Cu range from 100°C to 

150°C, depending on the amount of cold work and length of the anneal time. Currently there are 

no values reported in the literature for the recrystallization temperatures of the Cu-Ag alloy 

compositions tested in this thesis. However, the addition of 0.05 wt% Ag to pure Cu has been 
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found to increase the recrystallization temperature from 140°C to about 330°C (Davis 2001).  

Thus, the recrystallization temperatures for compositions containing between 5 wt% Ag and 70 

wt% Ag should be between 330°C and 779°C, the eutectic temperature for the Cu-Ag alloy 

system. 

 

4.1.4.2 Enriched Silver Surfaces in Artifacts 

 When copper-silver alloys containing more than about 10 wt% Ag (Lechtman 1988) are 

annealed after hammering, the copper at the surface oxidizes preferentially, forming a copper 

oxide scale. If the copper oxide scale is removed, the surface layer becomes depleted in copper 

and enriched in silver. The copper oxide can be removed by pickling the object in an acidic or 

basic solution, imparting the finished object with a silver color (Lechtman 1971, 1984b). After 

etching a polished cross section sample removed from the bead shown in Figure 12, the silver-

enriched surfaces of the thin metal sheet are visible. Figure 8 shows the silver-enriched surfaces 

of the Chimú cup. 

 A recent study by Gordon and Knopf (2007) on the mechanical properties of several 

copper-silver alloy compositions determined analytically from Inka artifacts at Machu Picchu 

suggests that the annealing exhibited in the artifact microstructures was carried out intentionally 

by the smiths in order to develop enriched silver-colored surfaces. The authors determined this 

by cold rolling and cold hammering copper-silver alloy samples and measuring their mechanical 

properties. None of the plastically deformed material developed enriched silver surfaces. Some 

samples were also annealed, however, and they did develop the silver-enriched surfaces. The 
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alloy compositions were chosen based on the compositions of several copper-silver artifacts from 

the Machu Picchu collection. 

 

4.2 Engineering Research on Properties of Cu-Ag Alloys 

 Today, Cu-Ag alloys are used to make jewelry, coins, silverware, electrodes, and solders 

for circuit boards. In jewelry and silverware the most commonly used alloy is sterling silver 

(92.5 wt% Cu – 7.5 wt% Ag) and in coins a popular alloy is coin silver (90 wt% Cu – 10 wt% 

Ag) which was used to produce American silver coins prior to 1964 and is used for 

commemorative coins today. The properties of these high-silver content alloys are well known 

(ASM International 2002a, 2002b).  A few studies have measured the mechanical and electrical 

properties of other compositions in the Cu-Ag alloy system (Broniewski 1938; Broniewski and 

Koslacz 1932; Butts 1975). Many of the materials properties, including the Brinell Hardness 

determined by Broniewski and Koslacz and shown in Figure 16, exhibit a plateau between about 

30 wt% Cu and 80 wt% Cu. Over a large compositional range, the mechanical properties of 

copper-silver alloys are quite similar. That is to say, there is no single composition for which the 

mechanical properties of a copper-silver alloy are significantly improved. This thesis investigates 

this finding with respect to the malleability of the alloys over a large compositional range. 

 The extraordinary malleability of a variety of copper-silver alloy compositions may 

suggest that these alloys approach superplastic behavior. Superplasticity has been demonstrated 

in the annealed equiaxed structure of the Cu-Ag eutectic composition (28.1 wt% Cu – 71.9 wt% 

Ag) (Cline and Lee 1970). Further investigations are required to reproduce this effect and to 
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determine under what conditions other compositions or microstructures may exhibit superplastic 

behavior. 

   

 

Figure 16. Properties of annealed silver-copper alloys at room temperature (after Rhines 1956: 

Figure 4-21) 
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5 Thesis Objectives 

 Knowledge of the mechanical and physical properties of copper-silver alloys is important 

in understanding why this binary alloy system became central to the metallurgies that developed 

among prehistoric societies of the Andean zone of South America and in Mesoamerica. This 

thesis determines the physical and mechanical properties of copper-silver alloys for five distinct 

alloys ranging from 95 wt% Cu – 5 wt% Ag to 30 wt% Cu – 70 wt% Ag and compares them to 

one another, with pure Cu as a standard. 

 The mechanical properties of copper-silver alloys that contributed to their central role in 

the ancient metallurgies of the Americas are their malleability and their toughness (the extent to 

which the alloys can be cold worked without fracture). This thesis investigates the extent to 

which copper-silver alloys can be cold worked and the hardening they develop during working as 

well as changes in microstructure that result from different processing methods.  

 The physical properties of copper-silver alloys that contributed to their central role in the 

ancient metallurgies of South America and Mesoamerica are closely related to the final color that 

develops at the surfaces of copper-silver alloy objects. This thesis investigates the 

recrystallization and annealing temperatures of the copper-silver alloy system, since these 

conditions are fundamental to the development of enriched silver surfaces – and thus the final 

color – of the finished artifacts.  
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6 Materials and Methods 

6.1 Selection of Alloy Compositions 

 The following Cu-Ag alloy compositions were chosen for analysis: 95 wt% Cu –  

5 wt% Ag, 80 wt% Cu – 20 wt% Ag, 70 wt% Cu – 30 wt% Ag, 60 wt% Cu – 40 wt% Ag,  

30 wt% Cu – 70 wt% Ag. Pure Cu was used as a standard. In the archaeological record of the 

Andes and Mesoamerica, the compositions of artifacts made of copper-silver alloys include 

nearly every composition between pure Cu and Pure Ag (Gordon and Knopf 2007; Hörz and 

Kallfass 2001; Hosler 1994; Lechtman 1979, 1988, 2007; Root 1949). Engineering data for pure 

copper, pure silver and alloys with high silver contents such as sterling (92.5 wt% Ag –  

7.5 wt% Cu) and coin silver (90 wt% Ag – 10 wt% Cu) are available in the literature. Very little 

data exist for copper-silver alloys with copper concentrations above 10 wt%. The Cu-Ag alloy 

compositions for this study were chosen deliberately to include the higher copper concentrations, 

and they correspond to compositions that have been determined commonly for ancient New 

World objects made from copper-silver alloys. Additionally, some compositions represent key 

regions of the Cu-Ag phase diagram, shown in Figure 9. For example the 30 wt% Cu –  

70 wt% Ag alloy is very close to the eutectic composition (28.1 wt% Cu – 71.9 wt% Ag), and the 

95 wt% Cu – 5 wt% Ag alloy is close to the solid solubility limit of silver in copper (92 wt% Cu 

– 8 wt% Ag). 
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6.2 Ingot Casting 

 Beginning in July 2010, six 325 ounce (9.21 kg) ingots of the compositions listed above 

were cast at Cookson Precious Metals (now part of LeachGarner) in Attleboro, MA using the 

continuous casting method. Professor Thomas Eagar provided the initial contact with 

metallurgists at Cookson Precious Metals who were interested in this project given the 

company’s expertise in precious metal production. Cookson Precious Metals carries out almost 

all of its ingot production using continuous casting methods. One of the advantages of 

continuous casting is that it minimizes the formation of porosity in the ingots. One of the 

drawbacks of continuous casting is the large grain size that accompanies slow cooling of the 

melt.  

 For each alloy composition, the pure copper and pure silver stock were mixed by weight 

in the desired ratios in a graphite crucible and then heated until at least 65° C of superheat was 

achieved. The molten metal was then poured through a ½” x 4 5/16” x 8 ¾” (1.27 cm x 10.95 cm 

x 22.23 cm) graphite die with a 4” (10.16 cm) copper cooling jacket as shown in Figure 17.  
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Figure 17. Schematic of Continuous Casting Assembly used at Cookson Co. The average cooling 

rate in the graphite die is about 281° C per minute. Solidification occurs in the ½” tall region 

near the top of the cooling jacket where the cooling rate is estimated to be about 1000° C per 

minute. There is a large thermal gradient near the top of the copper cooling jacket that causes the 

solid cast bar to shrink out of contact with the graphite die. This creates an air gap and lowers the 

thermal gradient. (courtesy of John Riskalla) 

 

 

 During melting graphite rods were inserted into the melt to prevent the molten metal from 

oxidizing and to minimize porosity in the cast ingots. Powdered charcoal was added 

continuously to the crucible, and a carbon monoxide gas jet cover was also used to cover the 

exposed surface of the melt during casting. Figure 18 shows a cast ingot before any samples 

were cut from it. Table 2 indicates the MIT sample identification numbers assigned to each of 

the ingots. 
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Figure 18. 30 wt% Cu – 70 wt% Ag alloy ingot (MIT 5476) prior to the removal of any samples 

for analysis or testing. 

 

 

 

Table 2. Cu-Ag Ingot Compositions and Identification Numbers 

MIT ID Number 
Cookson 

Bar No. 

Composition 

(wt%) 
Casting Date 

MIT 5489 10 pure Cu September 2011 

MIT 5484 9 95% Cu – 5% Ag February 2011 

MIT 5483 8 80% Cu – 20% Ag February 2011 

MIT 5482 7 70% Cu – 30% Ag February 2011 

MIT 5481 6 60% Cu – 40% Ag February 2011 

MIT 5476 1 30% Cu – 70% Ag July 2010 
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 During the first casting session in July 2010, the five alloy compositions were cast. As a 

result of a high porosity volume fraction in some of the ingots it was necessary to recast four of 

the alloy compositions (95 wt% Cu – 5 wt% Ag, 80 wt% Cu – 20 wt% Ag, 70 wt% Cu –  

30 wt% Ag, 60 wt% Cu – 40 wt% Ag). Some modifications were made to the casting procedure 

in an effort to reduce the porosity volume fractions in the ingots. Finally, the pure copper ingot 

was cast in a third casting session in September 2011. 

 

6.3 Compositional Analysis of Cast Ingots 

 Several different types of analysis were performed at Cookson Precious Metals to verify 

the copper and silver concentrations in the crucible melt and the chemical composition of the 

cast ingots. Computer Aided, Conductivity Based, End Point Titration (TIAG) was used to 

determine the concentrations of both Cu and Ag in the melt and in the ingots. Direct-Coupled 

Plasma Spectrometry (DCP) was used to determine the concentration of trace elements.  The 

compositions of the molten alloy in the crucible and the solidified ingots from the first casting 

session can found in Appendix B.  

 

6.4 Metallographic Analysis of Cast Ingots 

 Figure 19 shows the location and orientation of metallographic cross section samples 

removed from the cast ingots. The samples were mounted in Mark V Laboratory Fina-Met 

powder. These samples were then ground on a Beuhler Strip Grinder with silicon carbide grits 

240, 320, 400, and 600. Then, the samples were polished on polishing wheels using 6 μm and 1 
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μm synthetic diamond paste followed by a 0.3 μm alumina suspension. Vickers microhardness 

tests were performed on as-polished samples. Potassium dichromate or a mixture of ammonium 

hydroxide and hydrogen peroxide were used to etch the samples to reveal microstructure. The 

chemical compositions of the etchants are presented in Table 3. Photomicrographs were taken 

using a Canon EOS 60D digital SLR camera mounted on a Leica DM LM metallurgical 

microscope.  

 

 
Figure 19. Locations of samples cut from cast ingots for microstructural analysis, cold rolling, 

and cold hammering. Note: Not to Scale 
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Table 3. Etchants Used for Microstructural Analysis of Cu-Ag Alloys 

Etchant Ingredients 

potassium dichromate 

2 g K2Cr2O7 + 5 mL saturated 

NaCl solution + 8 mL  H2SO4 

(per 100 mL of distilled water) 

1:9 dilute potassium 

dichromate 

10 mL potassium dichromate 

+ 90 mL distilled water 

1:19 dilute potassium 

dichromate 

5 mL potassium dichromate + 

95 mL distilled water 

ammonium hydroxide + 

hydrogen peroxide 
NH3(aq) + H2O2 

chromium oxide 
1 g CrO3 + 1 mL H2SO4 + 250 

mL H2O 

 

 

6.5 Porosity Volume Fraction of Cast Ingots 

 In order to minimize the possibility of pores compromising the mechanical performance 

of the ingot samples a low porosity volume fraction was necessary. The porosity volume fraction 

of each of the as-cast ingots was determined using Random Walk Point Counting at a 

magnification of 200 using a Leitz Periplan GF 10XM Eyepiece (as a substitute for a crosshair 

eyepiece) on polished metallurgical samples cut from the ingots, as indicated Figure 19. Vickers 

microhardness tests and microstructural analyses were also performed on these samples. Two 

porosity volume fractions, each based on a 200 point count, were determined for each sample 

and then averaged. Table 4 presents the porosity volume fractions for the cast ingots. 
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Table 4. Average Porosity Volume Fractions of Cast Cu-Ag Ingots 

 

Ingot ID 

Number 

Cast 

No. 

Alloy 

Composition 

(wt%) 

Average Porosity 

Volume Fraction 

(%) 

Standard 

Deviation 

MIT 5480 1 95% Cu – 5% Ag 4 0 

MIT 5479 1 80% Cu – 20% Ag 5.5 0.71 

MIT 5478 1 70% Cu – 30% Ag 12 0 

MIT 5477 1 60% Cu – 40% Ag 6.5 2.12 

MIT 5476 1 30% Cu – 70% Ag 0.25 0.35 

MIT 5484 2 95% Cu – 5% Ag 3.25 0.35 

MIT 5483 2 80% Cu – 20% Ag 2.5 0.71 

MIT 5482 2 70% Cu – 30% Ag 9 0.71 

MIT 5481 2 60% Cu – 40% Ag 9.5 0.71 

 

 The porosity volume fractions for the ingots cast in July 2010 (Cast No. 1) were higher 

than desired for all alloy compositions except for the 30 wt% Cu – 70 wt% Ag (MIT 5476). 

Thus, these compositions were recast using new pure materials in February 2011 (see Table 2). 

The porosity volume fractions of the ingots from the second casting session (Cast No. 2) were 

determined using the method described above. Overall the porosity volume fractions of the 

ingots from the second casting session were lower than those from the first casting session. In the 

case of the 60 wt% Cu – 40 wt% Ag alloy, however, the porosity of the second ingot was higher 

than that of the first ingot. Due to time constraints, the 60 wt% Cu – 40 wt% Ag alloy was not 

recast a third time. 
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6.6 Cold Rolling 

 One 1” x 1” x ½ (25.4 x 25.4 x 12.7 mm) square slab was cut from each of the six ingots 

as shown in Figure 20. This square slab was then cut in half longitudinally to produce two  

1” x 1” x 0.24” (25.4 x 25.4 x 6.1 mm) square slabs (see Figure 20). The slab dimensions were 

chosen based on the safety requirements for the rolling mill and the thickness of the cast ingots. 

The square slabs were cut using an OMAX 2626 water jet. Figure 21 shows the cut square slabs 

prior to cold rolling. 
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Figure 20. Location and orientation of cold rolled square slabs and samples removed for Vickers 

microhardness tests and microstructural analysis. NOTE: Not to scale. 
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Figure 21. Square slabs cut from cast ingots prior to cold rolling. In order from left to right the 

alloy compositions are: 30 wt% Cu – 70 wt% Ag, 60 wt% Cu – 40 wt% Ag, 70 wt% Cu –  

30 wt% Ag, 80 wt% Cu – 20 wt% Ag, 95 wt% Cu – 5 wt% Ag, pure Cu.  

 

 One of the final square slabs of each alloy composition was reduced by rolling in 15% 

increments from an initial thickness of 6.1 mm to the minimum possible thickness obtained with 

a non-lubricated International Rolling Mills Model No. 175 electric rolling mill. The sample 

thickness was reduced by cold rolling until the reduction interval final thickness was reached. 

Table 5 presents the thicknesses of each of the reduction intervals. The samples were rotated 90° 

between each revolution of the rolling mill, in order to maintain equiaxed grains and to avoid any 

preferential elongation in the direction of rolling. When edge cracks deeper than 1 mm 

developed, they were removed using the water jet. 
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Table 5. Sample Thickness for Reduction Intervals Used for Cold Rolled Cu-Ag Samples 

 

Reduction in 

Thickness (%) 

Sample Thickness 

(mm) [+/- 0.1 mm] 

0 6.100 

15 5.185 

30 4.270 

45 3.355 

60 2.440 

75 1.525 

90 0.610 

 

 Once the desired thickness was reached, a portion of the sample was removed from a 

corner of the square for metallographic analysis and microhardness tests. These samples were cut 

using a Raytech Jem Saw 45 with a Raytech’s Blazer yellow diamond blade. The metallographic 

samples were then mounted and polished. Figure 20 shows the orientation of the cut samples 

with respect to the rolling direction and the orientation of the cut samples in the mounts. The 

Vickers microhardness was measured on the polished samples for each reduction interval in 

order to determine the effects of cold working on the hardness of the Cu-Ag alloys. 

Photomicrographs were taken of etched samples at each reduction interval to document changes 

in microstructure as well as any edge cracking or the development of other flaws during rolling. 

 After a metallographic sample was removed, the test slab was cold rolled to the next 

reduction interval. A second square slab of each composition was cold rolled in the same manner 

as described above to the maximum possible reduction of which the rolling mill was capable; 
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however, no samples were cut from the corners. In this way, the maximum extent of reduction, a 

measure of malleability without annealing, could be determined for each alloy composition. 

 

6.7 Hardness Testing of Cold Rolled Samples 

 Vickers microhardness determinations were measured on as-polished samples using a 

Tukon 2100B Microhardness Tester with a diamond indenter. A 100 g load was used for samples 

from alloy compositions containing more than 60 wt% Cu (MIT 5489, MIT 5484, MIT 5483, 

and MIT 5481) and a 1000 g load was used for samples from alloy compositions with less than 

or equal to 60 wt% Cu (MIT 5482 and MIT 5476). Five microhardness values were measured on 

each sample in the locations shown in Figure 22. If any of the first five values was rejected due 

to asymmetry of the indentation, additional measurements were taken until five valid 

microhardness values were obtained per sample. The average and standard deviation of the 

middle three microhardness values were calculated for a given sample. 

 

 

Figure 22. Location of Vickers microhardness tests in as-cast and cold rolled samples. NOTE: 

The geometry of each sample is rectangular but the dimensions are not necessarily the same as 

those reflected in this image. 
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6.8 Cold Hammering 

 The cold rolling experiments performed in this thesis demonstrate that greater than a 90% 

reduction in thickness can be achieved in all of the six compositions tested, but the ancient 

metalsmiths had access only to stone hammers. To demonstrate that similar reductions in 

thickness can be achieved without the use of a large rolling mill and without intermittent 

annealing, 1” x 1” x 0.24” (25.4 x 25.4 x 6.1 mm) square slabs of the alloy compositions with the 

highest and lowest silver contents (30 wt% Cu - 70 wt% Ag and 95 wt% Cu – 5 wt% Ag, 

respectively) were cold hammered by an experienced blacksmith
1
 with a 5 pound sledge hammer 

and a 1000 g Peddinghaus hammer, both with polished face. The square slabs to be hammered 

were cut using the same procedure as the slabs that were cold rolled (see Figure 20). The sample 

thickness at which the samples began to crack along the edges was recorded, after which the 

cracks were removed using a file. The final thickness of each of the samples after hammering 

was also recorded. 

 

6.9 Determination of Recrystallization Temperature 

6.9.1 Annealing 

 To determine a more specific temperature range for the recrystallization temperature of 

cold rolled alloys for two alloy compositions (70 wt% Cu – 30 wt% Ag and 30 wt% Cu –  

70 wt% Ag), six 1 cm
 
x 1 cm x 0.61 mm samples were cut from each of the two 90% reduction 

samples using a Raytech Jem Saw 45 with a Raytech’s Blazer yellow diamond blade. One 

                                                 

1
 Michael Tarkanian, a DMSE Lecturer and experienced blacksmith, performed these cold hammering experiments. 
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sample from each of the two Cu-Ag alloys was annealed for 30 minutes at six different 

temperatures (300°C, 400°C, 450°C, 500°C, 600°C, and 700°C). The samples were placed on an 

alumina tray, which was then placed in an Omegalux Benchtop muffle LMF-A550 furnace. The 

temperature was measured using an Omega DP460 thermocouple. Acceptable temperatures were 

deemed to be +/- 5°C of the desired temperatures. Table 6 presents the temperature of the 

furnace before placing the samples into the furnace and after 30 minutes of annealing, just before 

removing them from the furnace.  

 

Table 6. Furnace Temperatures for Cu-Ag Recrystallization Temperature Experiments 

 

Desired Temperature (°C) Initial Temperature (°C) Final Temperature (°C) 

300 299.7 300.6 

400 398.0 398.8 

450 446.3 447.4 

500 502.3 503.2 

600 598.0 598.6 

700 703.4 703.9 

 

 After 30 minutes of annealing, the samples were removed from the furnace and allowed 

to cool in air. Because the samples were very thin, they cooled quickly in air. There was no need 

or time to quench them. 
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6.9.2 Microhardness of Annealed Samples 

 The transverse sections of the annealed metallurgical samples were mounted in epoxy. 

These samples were then ground and polished. Vickers microhardness values were determined 

on the as-polished samples. By plotting hardness vs. annealing temperature, the recrystallization 

temperature of each of the alloys tested was determined. Photomicrographs were taken to 

document the grain recovery, recrystallization, and growth process. 
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7 Results 

7.1 Microstructural Analysis of As-cast Ingots 

 Figure 23 shows the as-cast microstructure of four of the Cu-Ag alloy compositions and 

pure Cu. As a result of the continuous casting process and the associated long cooling times, the 

grains in the cast ingots are quite large (0.5 – 2.6 mm across). The grains in the 30 wt% Cu –  

70 wt% Ag alloy, which is close to the eutectic composition, are much smaller (0.01 – 0.1 mm 

across) than those in the other ingots and can be recognized at high magnifications from the 

change in orientation of the lamellar structures (see Figure 24). In some samples grain 

boundaries are also visible as in Figure 25. Along the edges of the samples, where the ingots 

were in contact with the graphite die, the columnar grains are longer and thinner than the grains 

at the center of the ingots which are more equiaxed (see Figure 23b). In the 70 wt% Cu –  

30 wt% Ag (Figure 23d) and the 60 wt% Cu – 40 wt% Ag (Figure 23e) alloys, a silver-enriched 

and silver-colored zone is present at the surface of the sample that was in contact with the 

graphite die. The grains are much smaller in this region which consists almost entirely of eutectic 

microconstituent as a result of inverse segregation during solidification (see Figure 26).  
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Figure 23. As-cast microstructures: (a) pure Cu, (b) 95 wt% Cu – 5 wt% Ag, (c) 80 wt% Cu – 20 

wt% Ag, (d) 70 wt% Cu – 30 wt% Ag, (e) 60 wt% Cu – 40 wt% Ag. MAG: 18. Etchant: (a-d) 

1:9 dilute potassium dichromate, (e) 1:19 dilute potassium dichromate 
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Figure 24. Microstructure of as-cast 30 wt% Cu – 70 wt% Ag alloy sample. The composition is 

very close to the eutectic composition (28.1 wt% Cu – 71.9 wt% Ag), and the microstructure 

consists of a few Cu-rich β-phase dendrites surrounded by the eutectic microconstituent of 

alternating lamellae. Grains can be discerned by the changes in direction of the lamellae.  

MAG: 300; Etchant: chromium oxide 
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Figure 25. Grain boundaries in as-cast 30 wt% Cu – 70 wt% Ag alloy sample. The composition 

is very close to the eutectic composition (28.1 wt% Cu – 71.9 wt% Ag). MAG: 300;  

Etchant: chromium oxide 
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Figure 26. Inverse segregation at the surface of the as-cast microstructure of a 60 wt% Cu –  

40 wt% Ag sample. At high pressures the last liquid to solidify is pushed through the 

interdendritic spaces toward the edges of the mold where it solidifies. Because this liquid is close 

to the eutectic composition (28.1 wt% Cu – 71.9 wt% Ag), the solid that forms is mostly lamellar 

with small Cu-rich β-phase regions. MAG: 750; Etchant: 1:19 dilute potassium dichromate 

 

 

 In the pure Cu (Figure 23a) and the 95 wt% Cu – 5 wt% Ag alloy (Figure 23b) samples, 

the grain boundaries are well defined at low magnifications. The grain boundaries in the pure Cu 

are smooth, whereas there are multiple types of grain boundary in the 95 wt% Cu – 5 wt% Ag 

alloy: 1) a fine, jagged line connecting high concentrations of Ag-rich α-phase; 2) a smooth 

boundary similar to those seen in pure Cu; and 3) boundaries exhibiting characteristics of 1 and 

2. Figure 27 shows an intersection of three grains of the 95 wt% Cu – 5 wt% Ag alloy at which 

the three different grain boundary morphologies are present. Based on the phase diagram, the  
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95 wt% Cu – 5 wt% Ag alloy should be a solid solution; however, small interdendritic regions of 

Ag-rich α-phase material are present in the microstructure (see Figure 27) because of segregation 

of the alloy upon cooling from the melt. 

 

 

Figure 27. Intersection of three different types of grain boundary in a 95 wt% Cu – 5 wt% Ag 

sample that has been reduced in thickness by 15% via cold rolling. The uppermost grain 

boundary exemplifies boundaries that exhibit a very fine line connecting more heavily etched 

regions of higher Ag-rich α-phase concentration. The grain boundary on the right exhibits a 

smooth line similar to the grain boundaries in pure Cu. The grain boundary on the left exhibits 

characteristics of both types of grain boundary. MAG: 200; Etchant: 1:9 dilute potassium 

dichromate 

 

 

 In the samples with greater than 20 wt% Ag, the grain boundaries are not well defined at 

low magnifications. This occurs as the etchants used attack the alloy preferentially in response to 
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changes in segregated alloy composition rather than at the grain boundaries, thus grains can be 

differentiated most easily by the changes in orientation of the Cu-rich β-phase dendrites (see 

Figure 28). 

  

 

Figure 28. As-cast microstructure of 80 wt% Cu – 20 wt% Ag alloy. Grains can be discerned 

from the changes in orientation of the Cu-rich β-phase dendrites. MAG: 75; Etchant: 1:9 dilute 

potassium dichromate 

 

 

In some samples, partial grain boundaries are visible at higher magnifications as shown in Figure 

29.  
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Figure 29. Grain boundary in as-cast sample of 80 wt% Cu – 20 wt% Ag alloy. At lower 

magnifications the grains can be distinguished by differences in shading, but at higher 

magnifications some possible partial grain boundaries are visible within the Cu-rich β-phase 

dendrites. MAG: 750; Etchant: 1:9 dilute potassium dichromate 

 

 

In the 30 wt% Cu – 70 wt% Ag alloy, grain boundaries are visible from changes in orientation of 

the eutectic lamellae as seen in Figure 30. 
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Figure 30. Grain boundary in a sample of a 30 wt% Cu – 70 wt% Ag alloy reduced in thickness 

30% via cold rolling. A lamellar structure is present because this composition is close to the 

eutectic composition (28.1 wt% Cu – 71.9 wt% Ag). MAG: 750; Etchant: ammonium hydroxide 

+ hydrogen peroxide 

 

 

7.2 Cold Rolling 

7.2.1 Vickers Microhardness 

 Figure 31 presents a graph of the Vickers Hardness Number (VHN) plotted against the 

percent reduction achieved through cold rolling of the five Cu-Ag alloys and the pure Cu 

standard. As the amount of cold work increases, the microhardness also increases. For the five 
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alloy compositions, the microhardness increases at approximately the same rate, especially 

beyond a 15% reduction in thickness. 

 
Figure 31. Vickers microhardness vs. % reduction for cold rolled Cu-Ag alloys 

 

 

Moreover, for alloy compositions ranging between 30 and 80 wt% Cu there is little difference 

between the VHN values of the worked samples for each reduction interval (see Figure 32). This 

is in agreement with the data collected for Cu-Ag alloys by Broniewski and Koslacz (1932, 

1938). On the other hand, the VHN value for the as-cast 30 wt% Cu – 70 wt% Ag alloy, which is 

very close to the eutectic composition for Cu-Ag alloys (28.1 wt% Cu – 71.9 wt% Ag), is 

approximately twice the value for pure Cu and is higher than the as-cast microhardness values 

for any of the five alloys tested (see Figure 31). The VHN values for the 80 wt% Cu –  
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20 wt% Ag alloy are consistently higher between 15 and 75% reduction in thickness than the 

VHN values for any of the other alloys (see Figure 32). At 90% reduction, the 30 wt% Cu –  

70 wt% Ag alloy (near eutectic) reaches the same microhardness value as the 80 wt% Cu –  

20 wt% Ag alloy. 

 
Figure 32. Vickers microhardness vs. composition for cold rolled Cu-Ag alloys. For a given 

reduction interval, the values of the microhardness do not change significantly as a function of 

alloy composition for alloy compositions containing between 30 and 80 wt% Cu, although for 

reductions intervals greater than 15% reduction, the VHN values for the 80 wt% Cu –  

20 wt% Ag alloy sample are consistently higher than the VHN values for the other alloy 

compositions. 

 

7.2.2 Maximum Percent Reduction in Thickness Achieved by Cold Rolling 

 Results of the cold rolling experiments indicate that over the Cu-Ag alloy compositional 

range studied, the alloys can be cold worked without annealing to over 90% reduction in 
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thickness (see Table 7). The percent reductions in thickness achieved in these Cu-Ag samples 

correspond to the minimum separation distance achievable between the rollers of the rolling mill. 

Therefore, higher percentages of reduction may be achieved using a mill with smaller rollers, 

which would exert greater pressure on the material when the rollers are at the minimum 

separation distance. Some variations in the maximum reduction in thickness can be attributed to 

the small variations in the initial thicknesses of the cold rolled samples. 

 

Table 7. Maximum Reduction in Thickness of Cu-Ag Alloys by Cold Rolling 

Sample ID 
Composition 

(wt%) 

Maximum 

Reduction in 

Thickness (%) 

Reduction at 

Onset of Edge 

Cracking (%) 

Δ 

(%) 

MIT 5489.I.R2 100% Cu 95.1 82.0 14 

MIT 5484.I.R2 95% Cu – 5% Ag 93.0 88.5 5 

MIT 5483.I.R2 80% Cu – 20% Ag 92.6 82.8 11 

MIT 5482.I.R2 70% Cu – 30% Ag 91.7 81.7 11 

MIT 5481.I.R2 60% Cu – 40% Ag 92.1 74.6 19 

MIT 5476.I.R2 30% Cu – 70% Ag 90.7 67.0 26 

 

 Although the maximum reductions in thickness obtained in each of the alloy 

compositions and in the pure Cu standard were similar, the percent reductions at which edge 

cracks developed differed according to the concentration of silver in the alloy. By calculating Δ, 

the percent difference between the maximum reduction in thickness and the reduction in 

thickness at the onset of edge cracking, it becomes clear that, for these Cu-Ag alloy 

compositions, as the concentration of Ag increases, Δ also increases. This means that for Cu-Ag 
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alloy compositions with high Ag contents, edge cracking begins with a lesser degree of 

deformation than for alloys with lower Ag contents. High Δ values indicate a lower malleability 

with respect to edge crack formation. The malleability of the 30 wt% Cu – 70 wt% Ag alloy is 

the lowest in this regard. This makes sense because the composition is very close to that of the 

eutectic alloy, which is very tough due to its lamellar structure. One would expect the pure Cu 

sample to exhibit the lowest Δ; however, it has the third highest value of Δ.  

 

 

7.2.3 Microstructural Analysis of Cold Rolled Samples 

 Figures 33 – 41 show the microstructures of the cold rolled samples at each of 15% 

reduction intervals up to a reduction of 90% in thickness. These images demonstrate the thinning 

and elongation of the grains as a result of the cold rolling (reduction in thickness). As the amount 

of cold working increases, the grains become thinner and more elongated. In the case of the  

30 wt% Cu – 70 wt% Ag alloy, which is close to the eutectic composition, the elongation is 

primarily visible in the Cu-rich β-phase dendrites and in the lamellar eutectic microconstituent 

(Figures 38 – 41). For comparison, the as-cast microstructure of the 30 wt% Cu – 70 wt% Ag 

alloy sample is shown in Figure 24. Additionally, for those alloy compositions with higher 

porosity volume fractions, the pores also become increasingly compressed and more elongated as 

the amount of cold working increases, often appearing as thin fissures in the metal. This is 

especially evident in the 60 wt% Cu – 40 wt% Ag alloy (see Figure 37). For alloy compositions 

which exhibit primary dendrites and eutectic microconstituent, elongation occurs not only in the 

Cu-rich β-phase dendrites but is also marked in the eutectic microconstituent. Figures 43 – 49 
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show photomicrographs of the cold-rolled alloy microstructures at magnifications between 100 

and 500. 
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Figure 33. Etched Cold Rolled Microstructures for Pure Cu: (a) as-cast microstructure, (b) 15% 

reduction, (c) 30% reduction, (d) 45% reduction, (e) 60% reduction, (f) 75% reduction, (g) 90% 

reduction. MAG: 18; Etchant: 1:9 dilute potassium dichromate 



64 

 

 

Figure 34. Etched Cold Rolled Microstructures for 95 wt% Cu – 5 wt% Ag: (a) as-cast 

microstructure, (b) 15% reduction, (c) 30% reduction, (d) 45% reduction, (e) 60% reduction, (f) 

75% reduction, (g) 90% reduction. MAG: 18; Etchant: 1:9 dilute potassium dichromate 
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Figure 35. Etched Cold Rolled Microstructures for 80 wt% Cu – 20 wt% Ag: (a) as-cast 

microstructure, (b) 15% reduction, (c) 30% reduction, (d) 45% reduction, (e) 60% reduction, (f) 

75% reduction, (g) 90% reduction. MAG: 18; Etchant: 1:9 dilute potassium dichromate 
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Figure 36. Etched Cold Rolled Microstructures for 70 wt% Cu – 30 wt% Ag: (a) as-cast 

microstructure, (b) 15% reduction, (c) 30% reduction, (d) 45% reduction, (e) 60% reduction, (f) 

75% reduction, (g) 90% reduction. MAG: 18; Etchant: 1:9 dilute potassium dichromate 
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Figure 37. Etched Cold Rolled Microstructures for 60 wt% Cu – 40 wt% Ag: (a) as-cast 

microstructure, (b) 15% reduction, (c) 30% reduction, (d) 45% reduction, (e) 60% reduction, (f) 

75% reduction, (g) 90% reduction. MAG: 18; Etchant: 1:19 dilute potassium dichromate 
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Figure 38. Etched cold rolled microstructure for a 30 wt% Cu – 70 wt% Ag alloy sample reduced 

by 15% in thickness. The dark regions are the Ag-rich α-phase lamellae and the lighter regions 

are the Cu-rich β-phase lamellae. MAG: 300; Etchant: ammonium hydroxide + hydrogen 

peroxide 
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Figure 39. Etched cold rolled microstructure for a 30 wt% Cu – 70 wt% Ag alloy sample reduced 

by 30% in thickness. The dark regions are the Ag-rich α-phase lamellae and the lighter regions 

are the Cu-rich β-phase lamellae. MAG: 300; Etchant: ammonium hydroxide + hydrogen 

peroxide 
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Figure 40. Etched cold rolled microstructure for a 30 wt% Cu – 70 wt% Ag alloy sample reduced 

by 60% in thickness. The dark regions are the Ag-rich α-phase lamellae and the lighter regions 

are the Cu-rich β-phase lamellae. In this sample small grains are visible from both the changes in 

orientation of the lamellae and the etched grain boundaries. The grains have been compressed 

and elongated compared to the grains seen in Figure 25. MAG: 300; Etchant: ammonium 

hydroxide + hydrogen peroxide 
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Figure 41. Etched cold rolled microstructure for a 30 wt% Cu – 70 wt% Ag alloy sample reduced 

by 90% in thickness. The dark regions are the Ag-rich α-phase lamellae and the lighter regions 

are the Cu-rich β-phase lamellae. Grains are no longer visible. MAG: 300; Etchant: ammonium 

hydroxide + hydrogen peroxide 

 

 The as-cast microstructures show equiaxed grains of varying sizes. At 30% reduction in 

thickness, the elongation of the grains becomes evident and deformation lines are visible in most 

samples. In the pure Cu sample, at 30% reduction in thickness, the grain boundaries begin to 

deform, becoming somewhat jagged, instead of smooth, as shown in Figure 42. 
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Figure 42. Grain boundary deformation in cold worked pure Cu (30% reduction in thickness). 

The center grain boundary is beginning to deform and become jagged, while the other grain 

boundaries remain undeformed and smooth at this degree of cold working. MAG: 300: Etchant: 

1:9 dilute potassium dichromate 

 

 

 Figures 43 – 50 show the elongation of primary dendrites and of pools of eutectic 

microconstituent in the samples that have been reduced by 90% in thickness. Elongation of the 

Cu-rich dendrites is visible in all samples and the elongation of the eutectic microconstituent is 

clearly present in the 80 wt% Cu – 20 wt% Ag alloy (Figure 45). As the volume fraction of 

eutectic microconstituent increases in the alloy, the effect of the plastic deformation is to produce 

thinner and thinner lamellae of Cu-rich (β) and Ag-rich (α) phases, elongated, and strung out in 

the direction of rolling. At these extremes of plastic deformation of the as-cast microstructure, all 

evidence of grain boundaries has been lost, even at magnifications of 500 or more. In the  
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30 wt% Cu – 70 wt% Ag sample, which is composed primarily of eutectic microconstituent, 

individual lamellae are also very difficult to distinguish (see Figure 50). The elongation is more 

visible in the few Cu-rich β-phase dendrites shown in Figure 50. 

 

 

Figure 43. Pure Cu sample reduced 90% in thickness by cold rolling. The diagonal lines across 

the top and bottom grains are the deformation lines from the cold rolling. MAG: 200; Etchant: 

potassium dichromate. 
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Figure 44. 95 wt% Cu – 5 wt% Ag sample reduced 90% in thickness by cold rolling. Both the 

grains and the Ag-rich α-phase are elongated in the direction of cold rolling. Deformation lines 

are present throughout the sample but are more prevalent near the top and bottom edges (the 

surfaces in contact with the rolling mill). The grains in the center of the sample show less 

compression than the grains near the edges of the sample. MAG: 300; Etchant: 1:9 dilute 

potassium dichromate 



75 

 

 

Figure 45. 80 wt% Cu – 20 wt% Ag sample reduced 90% in thickness by cold rolling. This 

photomicrograph shows the thinning, elongation, and orientation in the direction of rolling of 

both the primary Cu-rich dendrites and the eutectic microconstituent. MAG: 300; Etchant: 1:9 

dilute potassium dichromate 

 



76 

 

 
 

Figure 46. 70 wt% Cu – 30 wt% Ag sample reduced 90% in thickness by cold rolling. This 

photomicrograph shows the thinning, elongation, and orientation in the direction of rolling of 

both the primary Cu-rich dendrites and the eutectic microconstituent. The dendrites and pools of 

eutectic microconstituent at the top of the sample show more elongation and thinning than those 

closer to the center. From the differential shading of the Cu-rich dendrites the elongation of the 

grains is also visible. MAG: 300; Etchant: 1:9 dilute potassium dichromate 
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Figure 47. 70 wt% Cu – 30 wt% Ag sample reduced 90% in thickness by cold rolling. The Cu-

rich dendrites and the eutectic microconstituent at the top of the sample show more elongation 

and thinning than those closer to the center. The formation of distinct lamellae of the Cu-rich  

β-phase and the Ag-rich α-phase is also present. MAG: 750; Etchant: 1:9 dilute potassium 

dichromate 
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Figure 48. 60 wt% Cu – 40 wt% Ag sample reduced 90% in thickness by cold rolling. The Cu-

rich dendrites and eutectic microconstituent are elongated and the dendrites near the center of the 

sample show more elongation and thinning than those at the top of the sample. From the 

differential shading of the Cu-rich dendrites the elongation of the grains is also visible. MAG: 

300; Etchant: 1:19 dilute potassium dichromate 
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Figure 49. 60 wt% Cu – 40 wt% Ag sample reduced 90% in thickness by cold rolling. 

Elongation of both the eutectic microconstituent and the Cu-rich dendrites is visible at higher 

magnifications and distinct lamellae of the Cu-rich β-phase and the Ag-rich α-phase have 

formed. MAG: 750; Etchant: 1:19 dilute potassium dichromate 
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Figure 50. Cu-rich β-phase dendrites in 30 wt% Cu – 70 wt% Ag sample: (a) as-cast, (b) 60% 

reduction, (c) 90% reduction. Dendrites in the as-cast microstructure are equiaxed and 

undeformed. As the degree of deformation increases, the dendrites become thinner and more 

elongated, until they are barely discernible from the alternating lamellae of the eutectic 

microconstituent. MAG: 300; Etchant: (a) chromium oxide, (b-c) ammonium hydroxide + 

hydrogen peroxide 
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7.3 Cold Hammering 

7.3.1 Maximum Reduction in Thickness Achieved by Cold Hammering 

 Approximately a 90% reduction in thickness was achieved in both the 95 wt% Cu –  

5 wt% Ag and the 30 wt% Cu – 70 wt% Ag samples during cold hammering (see Table 8). 

Further reductions in thickness could have been achieved had more time been available to work 

the samples. According to Michael Tarkanian, who carried out the cold hammering, neither alloy 

composition was significantly more difficult to work than the other. Edge cracking began at 

77.1% reduction in the 95 wt% Cu – 5 wt% Ag sample and at a 42.5% reduction in the  

30 wt% Cu – 70 wt% Ag sample. 

 

Table 8. Maximum Reduction in Thickness of Cu-Ag Alloys by Cold Hammering 

 

Sample ID 
Composition 

(wt%) 

Maximum 

Reduction in 

Thickness (%) 

Reduction at 

Onset of Edge 

Cracking (%) 

Δ (%) 

MIT 5484.I.H-1 95% Cu – 5% Ag 90.7 77.1 15 

MIT 5476.I.H-1 30% Cu – 70% Ag 88.8 42.5 52 

 

 Edge cracking began at lower reductions in thickness for the cold hammered samples 

than for the cold rolled samples. Cold hammering is a much more severe deformation process 

than cold rolling (Professor Thomas Eagar, personal communication). In cold rolling the same 

pressure is exerted over the entire sample, whereas in cold hammering, there is much more 

variation in the applied force, the area over which the force is applied, and the direction in which 

the force is applied. The earlier onset of edge cracking in the cold hammered samples can be 
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attributed to these differences in control over the worked area. Both the 95 wt% Cu – 5 wt% Ag 

and the 30 wt% Cu – 70 wt% Ag alloy are less malleable (higher Δ values) when cold hammered 

than when cold rolled. Nevertheless, similar percent reductions in thickness were achieved with 

both cold working processes. 

 

7.3.2 Microstructural Analysis of Cold Hammered Samples 

 Figure 51 and 52 show the microstructures of the 95 wt% Cu – 5 wt% Ag and the  

30 wt% Cu – 70 wt% Ag cold hammered samples. 
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Figure 51. 95 wt% Cu – 5 wt% Ag alloy sample reduced to 90.7% of the original thickness by 

cold hammering. Both the Cu-rich β-phase and the Ag-rich α-phase are thin and elongated. 

Deformation lines, present at the surfaces of the sample where there is more extensive 

deformation, are not present in the center of the sample. The deformation lines in this sample are 

more pronounced than the deformation lines in the 95 wt% Cu – 5 wt% Ag alloy sample reduced 

to the same thickness by cold rolling (see Figure 44). MAG: 300X; Etchant: 1:9 dilute potassium 

dichromate 
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Figure 52. 30 wt% Cu – 70 wt% Ag alloy sample reduced to 88.8% of the original thickness by 

cold hammering. The Cu-rich β-phase dendrites and the eutectic microconstituent are thin and 

elongated. Grain boundaries are not visible but remnants of some grain structure can be seen 

from slight changes in the orientation of the lamellae in the eutectic microconstituent.  

MAG: 750; Etchant: ammonium hydroxide + hydrogen peroxide 

 

7.4 Recrystallization Temperature  

 Analysis of the alloy microstructures at various annealing temperatures along with the 

relative values of the Vickers microhardness at these temperatures allows the identification of 

temperature ranges for the recovery, recrystallization, and grain growth phases for the alloys. 

Figure 53 presents a plot of Vickers microhardness vs. annealing temperature for two Cu-Ag 
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alloy compositions tested (95 wt% Cu – 5 wt% Ag and 30 wt% Cu – 70 wt% Ag). The Vickers 

microhardness values at 25º C are those of the cold rolled samples before annealing. 

 

 

Figure 53. Vickers microhardness vs. annealing temperature for two Cu-Ag alloy compositions. 

Samples were annealed for 30 minutes at each of the indicated temperatures between 300º C and 

700º C. The Vickers microhardness values at 25º C are those of the cold rolled samples before 

annealing.  

 

 
 The shape of the Vickers microhardness vs. annealing temperature curve is similar to the 

shape of the curve for tensile strength vs. annealing temperature shown in Figure 15. For 

temperatures between 0° C and 300° C, the grains are in the recovery phase. For temperatures 

between 300° C and 700° C (300° C, 400° C, 450° C , 500° C, 600° C, and 700° C), the grains 

are in the recrystallization phase during which new, strain-free grains nucleate at the grain 
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boundaries. For temperatures above 700° C, the grains are in the growth phase when they 

increase in size. Figure 54 shows the partial recrystallization of the grains in the 70 wt% Cu –  

30 wt% Ag sample annealed at 500ºC.  

 

 

Figure 54. 70 wt% Cu – 30 wt% Ag cold rolled sample (90% reduction) annealed for 30 minutes 

at 500ºC. Partially recrystallized grains are visible within the Cu-rich dendrites. In some regions 

of the eutectic microconstituent recrystallized grains are also visible. Magnification: 750; 

Etchant: 1:9 dilute potassium dichromate 

 

 

 Given the temperature span over which recrystallization occurs (here, 300 – 700° C), the 

recrystallization temperature – the temperature at which 50% of the grains have recrystallized 

after 30 minutes of annealing – can be calculated. Assuming that at 300° C the grains are at the 

end of the recovery phase (no recrystallization) and that at 700° C the grains are entering the 
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grain growth phase, and assuming also that the hardness vs. temperature curves are 

approximately linear and follow the same slope for both samples within this temperature range, 

the recrystallization temperature can be calculated as the average of the temperatures at the 

beginning and end of the recrystallization phase (300° C and 700° C). Thus for a 90% reduction 

in thickness of both the 95 wt% Cu – 5 wt% Ag and 30 wt% Cu – 70 wt% Ag alloys the 

recrystallization temperature is about 500° C given a 30 minute annealing time. Determination of 

the recrystallization temperature of these two Cu-Ag alloy compositions is important for 

understanding the development of the silver-enriched surfaces of finished Cu-Ag artifacts.  
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8 Significance of the Results within an Archaeological Context 

 Results of the cold working experiments indicate that over the broad copper-silver alloy 

compositional range studied, no annealing is required during cold hammering or cold rolling to 

achieve over 90% reductions in metal thickness. The results also indicate that the rate of work 

hardening and the VHN values are similar for alloy compositions containing between 30 and  

80 wt% Cu. The fact that copper-silver alloys exhibit similar malleability and toughness over a 

broad range of compositions may explain the wide variety of copper-silver alloy compositions 

found in archaeological artifacts. Since no single composition exhibits significantly improved 

properties over others, metalsmiths produced objects in a variety of compositions. A particular 

composition could have been determined, for example, on the basis of the relative abundances 

and availabilities of copper and silver stocks in each region. One of the factors that must have 

favored use of copper-silver alloys in object fabrication is that two requirements of the final 

metal produced could be achieved with relatively low concentrations of silver: namely, high 

malleability and toughness on one hand and development of enriched, silver-colored surfaces on 

the other. 

 In Gordon and Knopf’s (2007) study of Cu-Ag alloys, they achieved reductions in 

thickness similar to those reported here in the alloys they tested by cold rolling the metals, with 

no intermediate anneals: 68.3 wt% Cu – 29.2 wt% Ag – 2.2 wt% Sn, 74.7 wt% Cu –  

24.5 wt% Ag – 0.5 wt% Sn – 0.2 wt% As – 0.1 wt% Pb, 28 wt% Cu – 72 wt% Ag, 34 wt% Cu – 

76 wt % Ag. They report having hand hammered a 4 mm thick 68.3 wt% Cu – 29.2 wt% Ag – 
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2.2 wt% Sn alloy sample (Alloy M)
2
 to a reduction in thickness of 55% without any annealing 

(see Table 9). The same sample was hammered to a 91% reduction in thickness with three 

intermediate anneals of 500ºC each. 

 In the experimental research reported here, Michael Tarkanian, an experienced 

blacksmith, hand-hammered each of two samples measuring 6.1 x 25.4 x 25.4 mm with no 

intermediate anneals. He achieved a reduction in thickness of 90.7% with the 95 wt% Cu –  

5 wt% Ag alloy sample and a reduction of 88.8% with the 30 wt% Cu – 70 wt% Ag alloy 

sample. Michael Tarkanian also hand-hammered a 75 wt% Cu – 25 wt% Ag cylindrical pouring 

sprue with a 0.625” (11.55 mm) diameter to a 93.6% reduction in thickness with no intermediate 

anneals until he observed some edge cracks. The casting method and conditions for this pouring 

sprue differed from the conditions for the ingots used in this study. The sprue alloy was melted in 

the forge at MIT using pure Cu and Ag beads. The beads were melted in a ceramic crucible to a 

temperature of approximately 1000ºC. The molten alloy was poured through the sprue into a 

two-piece sand mold for small ingots, where it cooled and solidified. Michael Tarkanian 

hammered the cast sprue cylinder perpendicular to its long axis using first a five pound sledge 

hammer followed by a 2000 g Peddinghaus hammer, both with polished faces. 

 Table 9 presents a comparison of cold hammering Cu-Ag alloys as reported in this study 

with those published by Gordon and Knopf (2007).  

                                                 

2
 The composition of Alloy M was chosen to replicate the composition of a bar of copper-silver alloy stock from 

Machu Picchu. The composition of Alloy M is very similar to the composition of the pouring sprue (65.7 wt% Cu – 

29.8 wt% Ag – 4.5 wt% Sn) from Pambamarca, Ecuador shown in Figure 10. 
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Table 9. Comparison of Results of Cold Hammering Experiments Reported in this Study and by 

Gordon and Knopf (2007) 

Sample ID 
Composition  

(wt %) 

Maximum Reduction 

in Thickness by Cold 

Hammering without 

Annealing (%) 

Reduction at 

Onset of 

Edge 

Cracking 

(%) 

Δ (%) 

MIT 5484.I.H 95% Cu – 5% Ag 90.7 77.1 15 

MIT 5476.I.H 30% Cu – 70% Ag 88.8 42.5 52 

MIT 5490  75% Cu – 25% Ag 93.6 93.6 0 

Gordon and 

Knopf (2007) 

Alloy M 

68.3% Cu – 29.2% Ag 

– 2.2% Sn 
55* 50-55 n/a 

*The authors report achieving a 91% reduction in thickness of this sample using three 

intermediate anneals at 500ºC. 

 

 These thesis results indicate that the ancient metalsmiths were able to deform plastically 

their Cu-Ag alloys by hammering them into metal sheets as thin as those reported here. No 

intermediate annealing was required. Laboratory studies of such artifacts demonstrate that the 

thicknesses of Andean Cu-Ag alloy sheet metal are of the same order as the thicknesses achieved 

in this study by hammering. This suggests that the annealing exhibited in the microstructures of 

copper-silver alloy artifacts was for a different purpose. The ancient metalsmiths were annealing 

the copper-silver alloy objects intentionally to produce the desired silver surface color. A 

recrystallization temperature of 500ºC given a 30 minute anneal time was determined for the  

30 wt% Cu – 70 wt% Ag and the 70 wt% Cu – 30 wt% Ag alloys tested. This information will be 

helpful for an understanding of the development of the silver-enriched surfaces present on 

finished Cu-Ag artifacts from the ancient Americas. 
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 The silver surface color of a finished object was as important if not more important than 

the mechanical properties of the material of which the object was made in both Mesoamerican 

and Andean cultures. It conveyed political, economic, and cultural status and was associated with 

the powerful moon deity (Hosler 1988, 1994, 1995; Lechtman 1979b, 1984a, 1988, 2007). In 

Andean societies, silver was also associated with the left side or female aspect of the body, in 

juxtaposition to gold, which was associated with the right side or male aspect (Lechtman 2007). 

Copper was also often associated with elite and powerful women (Lechtman 2007). An alloy of 

copper and silver combines the two metals associated with females. Objects made of copper-

silver alloys conveyed the symbolism and status of the two individual metals through both the 

internal composition of the copper-silver alloy objects and through the color of their outer 

surfaces (Lechtman 1988). This, along with their extraordinary malleability and toughness over a 

broad compositional range, made copper-silver the alloys of choice throughout the Andean 

metalworking zone and in Mesoamerica.  
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9 Conclusions 

 The primary objective of this thesis was to determine the mechanical and physical 

properties of copper-silver alloys that were important to understanding why this binary alloy 

system became central to the metallurgies that developed among prehistoric societies of the 

Andean zone of South America and Mesoamerica. The development of silver-enriched surfaces 

during annealing, extraordinary malleability, and toughness of copper-silver alloys made them an 

alloy of choice throughout the Andean zone and Mesoamerica. Results of the cold rolling and 

cold hammering experiments reported here indicate that over the copper-silver alloy 

compositional range studied, the alloys can be cold rolled without annealing to over 90% 

reduction in thickness. The same is true for the two alloys (95 wt% Cu – 5 wt% Ag and  

30 wt% Cu – 70 wt% Ag) that were cold hammered. The results also indicate that the rate of 

work hardening and the Vickers Hardness Number are similar for alloy compositions containing 

between 30 and 80 wt% Cu. This suggests that ancient metalsmiths likely annealed the copper-

silver alloy artifacts intentionally to produce the desired silver surface color rather than for any 

improvement in malleability. The recrystallization temperature for the copper-silver alloys tested 

(70 wt% Cu – 30 wt% Ag and 30 wt% Cu – 70 wt% Ag) is determined to be 500ºC given a 30 

minute anneal time.  
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12 Appendix A 

 The tables on the following pages present published data for the chemical compositions 

of copper-silver alloy artifacts found throughout the Andean zone of South America and western 

Mexico. The artifact compositions encompass the entire range of compositions in the Cu-Ag 

alloy system. For the artifacts from William Root's 1949 study, the letter codes listed in the 

“Provenance” column refer to the specific sites from which the artifacts were excavated. All the 

sites are located along the southern coast of Peru. The dates corresponding to the time periods 

(i.e. Middle Ica II, Late Chincha I) listed in this same column can be found in the chronologies 

by Dorothy Menzel (1976) and Helaine Silverman (1993). The Ica culture occupied the Ica 

Valley on the southern coast of Peru from about A.D. 900 to 1476 (Silverman 1993). The 

Chincha culture also occupied the southern coast of Peru, but was farther north than the Ica, from 

about A.D. 1150 to 1476 (Menzel 1976).  

 

Key 

MAG = Museo Antropológico, Guayaquil, Ecuador 

RMG = Regional Museum, Guadalajara, Mexico 
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 For each of the alloy compositions, TIAG and DCP were performed on both the molten 

metal prior to casting and on the solidified ingot. To determine the composition of the melt, a 

glass pipette was inserted into the molten alloy before casting to retrieve a sample for analysis. 

This assay is referred to as “Pin.” To determine the compositions of the cast ingots, samples were 

drilled from two different locations on each ingot. The assay referred to as “Surface Drill” was 

drilled from the solid ingot to a depth that would include any surface enrichment. The assay 

referred to as “Center Drill” was drilled from the center of the ingot, but at a much greater depth. 


