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Abstract

Compared to legacy retailers, online retailers have the potential to better accommodate buyer needs by

offering more service time and inventory options. One fundamental operational challenge faced by most

online businesses is designing a cost effective distribution network. Based on a fixed number of locations

with finite resources, companies strive for finding the cost minimizing formula for fulfilling each

customer order while meeting rigorous time constraints. In practice this involves allocating specific

geographies to each warehouse and defining the logistic routes serving each customer. In an attempt to

address this question, a Mixed Integer Linear Programming model has been developed as a decision-

making tool for determining the optimal carrier-destination combination at each facility. The resulting

algorithm is capable of analyzing thousands of potential shipping lanes and selecting those that minimize

overall shipping cost. Based on historical data from customer orders, the model consistently finds an

optimal network configuration yielding operational savings on the order of 1.5%. Furthermore, the

algorithm can be used to identify near-optimal solutions requiring minor tweaks on the current

configuration that produce significant economic gains. This simulation tool can be used on a regular basis

to adapt the outbound network to demand fluctuations. However, this phenomenon evinces the existence

of a fine trade-off between economic gains and operational feasibility. For that reason, a heuristic for

selecting the most robust solution is also proposed.
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1 Introduction

The purpose of this thesis is to develop an analytical approach for designing a cost effective distribution

network. The resulting decision-making tool evaluates different carrier options, shipping routes and

regional markets to produce an optimal configuration that meets customer expectations and geographic

constraints. This research has been conducted as part of an internship in collaboration with Amazon.com

and the Leaders for Global Operations program from the Massachusetts Institute of Technology. The

following is a brief overview of the company, problem statement and project goal, which will provide the

reader with the imperative background for understanding the problem at hand.

1.1 Project Overview

In 2011, the global online retail industry had revenues of $530.2 billion'. By 2016, e-commerce is

expected to be worth $1,096 billion. Just in the US, online sales are expected to increase form $142

billion in 2010 to $279 billion by 2015, representing a 10% compound annual rate2 . Similarly, in the EU

the online market will grow from E83 billion to 6134 billion during the same time period 2 . For China and

India, growth is expected to be much faster, with China overtaking the US as the biggest internet retailing

market by 2015 with $314 billion in sales 3.

In the e-commerce market, Amazon stands out as the world's leader in online retailing. In 2011, its

revenue amounted to $48.1 billion4 . For all those sales, the company incurred $4.6 billion in fulfillment

costs4. Fulfillment is defined as the process by which an order is picked, packed and shipped to the

customer. Given that fulfillment costs represent around 9.5% of total revenues while profit margins for

large online retailers are in the order of 2% to 5%5, any reduction on fulfillment costs no matter how little

will have an impact in profitability. This study looks at a portion of Amazon's supply chain, namely its

1 Global Online Retail 2011 report by MarketResearch.com.
2 Forrester Research, 2012.
3 Bloomberg News, 2011.
4 Amazon 10k, 2012.
5 Seeking Alpha, 2012.
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distribution network, and proposes analytical methodology for cutting down outbound transportation

costs. Before moving into the problem per se, it is necessary to grasp the basic context surrounding

logistics and operations of this business segment.

The operational principles of online retail businesses differ substantially from those of conventional

retailers. Principle among these is their supply chain structure. In a traditional retail business supply

chain, vendors supply distribution centers, which in turn supply physical selling points, namely stores.

Customers travel to these selling points to purchase inventory on the shelf. In this business model, as long

as there is enough inventory available, buyers are served immediately when checking out at the cash

register.

7-

Figure 1: Traditional retailer supply chain structure.

Albeit the upstream network structure is very similar, it is the downstream portion that makes an e-

commerce so different. Instead of having a central warehouse or distribution center, online retailers have

fulfillment centers which hold different items or Stock Keeping Units (SKU's) awaiting to be processed

in the form of a customer order. These fulfillment centers are generally located in strategic sites that

11
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maximize geographic coverage. In addition, inventory is usually not grouped by product family, but

rather by size, weight and popularity.

<4
<4

Figure 2: Online retailer supply chain structure.

In addition, online retail supply chains differ not only in structure but also in the way they function. First,

in the traditional retail business model, customers determine where to buy from, which often involves

visiting different locations. In contrast, online retailers can choose from where to serve an order based on

transportation costs and service times. Secondly, in online retail supply chains there is a time delay

between an order placement and its fulfillment, which again allows the retailer to decide on the optimal

fulfillment solution. Finally, customers are usually given the option to select a service class or delivery

option going from same day delivery to slower ship methods. From an operations management point of

view, all of these characteristics pose some unique challenges. Yet, at the same time, they offer some

unparalleled improvement opportunities.

Broadly speaking, there are two levers that can be used to reduce fulfillment costs. The first one controls

inventory allocation throughout the network by selecting how much inventory and what items are placed
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at each location. This non-trivial problem is outside the scope of this project. The second option concerns

how orders are served to customers, by which means and what infrastructure is required to do so. The

answers to these questions occupy the remainder of this document.

1.2 Problem Statement

Fulfillment centers use a finite number of shipping lanes to ship orders to customers. Shipping lane is

defined as an origin, destination and carrier triplet. For instance, a fulfillment center in Phoenix could

serve Los Angeles area market-segment with USPS. At an operational level, a shipping lane can be

thought of as a route carrying discrete customer orders to a particular market region. The route can be as

simple as a direct path between the fulfillment center and the regional carrier hub from which orders leave

for the final mile delivery, or it can be more complex with intermediate hubs where packages are sorted

and sent to the next stage of the process. At the same time, two ship modes can be used: air shipment and

ground shipment.

Figure 3: Schematic shipping path.

The number of shipping lanes at a particular facility is limited by the physical space as well as capacity

constraints, including labor and maximum throughput that can flow through the system. Given the large

number of destinations and the limited number of shipping lanes that can be used at a particular point in

time, deciding on which ones to operate at each fulfillment center becomes a challenging question. One

alternative consists in maximizing geographic coverage of each building by connecting it to as many

market regions as possible. Doing so would increase the likelihood of Amazon being able to serve a larger
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portion of its customers from every facility. However, this could result in an overly expensive network as

carriers with the broader coverage tend to be more costly. Conversely, another strategy is network

specialization, by which each fulfillment center focuses on certain key geographies. Alas, this option can

result in marginalization of some customers who would then turn to other online retailers. Consequently,

the optimal shipping lane allocation consists of a combination of both approaches.

To further aggravate the issue, there is a second component to be taken into account. Companies in the

online retailing market face a fierce competition. It is not enough being able to serve every customer, it is

vital to do so as fast as possible. For that reason, the challenge becomes designing an outbound

distribution network reaching the maximum number of customers in a cheap and timely manner.

Up until recently, the shipping lane allocation process consisted in simulating customer demand at every

fulfillment center to determine the cost-minimizing configuration. Such approach ignores the effect each

node has over the others, which is characteristic of networks and complex systems. While at the

individual shipment level the cost difference between using the current network configuration and an

optimal one is relatively small, with annual shipping costs of $3.99 billion6 , any small improvement on

outbound shipping cost will result in substantial bottom-line savings. Given the difficulty of setting up a

distribution network by evaluation of every node individually, there is a sizeable opportunity in reducing

shipping costs by evaluating the system as a whole.

1.3 Project Goals

This project aims to devise a new method for designing a more effective outbound network from an

economic and service time perspective. In other words, the objective is to develop a decision-making tool

capable of analyzing thousands of potential shipping lanes and selecting those that minimize overall

outbound shipping cost while meeting a demand forecast and lead time constraints, thus determining

which shipping lanes to operate at each building. This study includes a close examination of current tools

6 Amazon 10k, 2012.
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and schemes used for evaluating shipping performance as well as identifying new lanes. Ultimately,

success of the project will be measured by the model's ability to capture operating principles and

intricacies of Amazon's distribution network in order to generate a list of recommendations to improve

network performance.

1.4 Approach

The problem at hand is approached through a mixed-integer network optimization program, consisting of

a series of origin, intermediate and destination nodes. A comprehensive sensitivity analysis is conducted

in order to provide evidence that the algorithm works well. In addition, a pilot program focusing on a

smaller portion of the network is run, making possible to identify real improvement opportunities and

demonstrate the benefits of the formulation proposed. In addition, it also reveals the limitations of this

approach. For that reason, alternative heuristics and future opportunities for research are presented.

1.5 Summary

Despite its renown for developing and running a state-of-the-art supply chain, Amazon can further

enhance its operations management to deliver better results. This project pursues one particular

improvement opportunity, namely optimizing its outbound distribution network, to demonstrate the

advancement of the overall fulfillment scheme.
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2 Current Process Overview

This chapter provides a brief description of the structure and operations behind Amazon's supply chain,

starting with a general overview of its fulfillment center network, to then concluding with an analysis of

its shipping lane allocation process.

2.1 Fulfillment Center Network

Central to Amazon's strategy of enhancing customer experience are fulfillment centers, also known as

FC's. Afulfillment center is a specially designed warehouse capable of holding inventory and shipping

customer orders at the same time. This broad definition hides the fact that facilities are specialized by the

type of inventory they carry. A piano and a book require very different handling and shipping methods. In

this way, fulfillment centers are classified by physical features of the products they hold.

Another distinctive element of every fulfillment center is its geographic location. The closer a building is

to a market region, the better and cheaper service it can offer. For that reason, the outbound distribution

network structure has recently shifted from connecting every FC to as many markets as possible to a

grouping model by which delivery coverage of every building is limited to a particular area. As a result,

the US market has been broken down into different regions.

The rationale behind this division is that fulfillment centers located in a given region should only serve

that particular area, thus limiting the number of shipments across different regions. This allows Amazon

to reduce overall distances between origin and destination pairs, resulting in reduced shipping costs and

lead times. However, this approach is not without its limitations. For one, the network is unbalanced,

meaning that customers of some territories consume more than the combined fulfillment capacity of all

fulfillment centers within the region. At the same time, other regions have idle capacity and are able to

handle more volume than required by local customers. Subsequently, a purely regional strategy is not
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feasible. Some regions act as net exporters, while others have to import a considerable fraction of their

orders from other areas.

2.2 Outbound Distribution Network

As more FC's populate the national grid, overall distances to households are reduced. This constitutes an

important competitive advantage. Yet, a larger distribution network gives rise to redundancies and

inefficiencies, which hinder fulfillment performance. With a larger selection of buildings at its disposal,

Amazon can choose how to serve every market region in a more effective way. Rationalizing its network

structure will not only improve the bottom line, but it will also enhance the customer experience by

reducing transit times. In an effort to take advantage of the expanding FC network, the outbound

distribution network has moved to the regional plan described in the previous section. However, this

approach is thus far incomplete for the shipping lane allocation process has not evolved accordingly.

The current lane selecting process is governed by inventory availability. Based on the inventory mix at a

particular FC along with the geographic distribution of customer orders, shipping lanes are designated for

linking supply to demand. There have been a number of projects focused on determining the optimal

inventory allocation for each FC based on demand patterns of certain market regions. While these studies

have yielded impressive operating savings, the solution is incomplete from an overall supply chain

perspective. Indeed, these models tend to neglect the intrinsic complexity of distribution networks, overly

simplifying shipping costs or assuming lanes as an immovable given. As a result, the distribution network

is relegated to a second place in the order of operations excellence.

The optimal solution can only be found if the totality of the supply chain is analyzed at the same time,

weighing the fine trade-off between inventory holding costs and transportation costs while allowing the

model to move inventory around and create new shipping arcs. Unfortunately, stock allocation is out of

the scope of the present project. However, careful attention to this issue has been placed when

formulating this model. For that reason, customer demand is pre-assigned to a fulfillment center, which in
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turn makes possible to run several scenarios with different product mixes to evaluate the impact of

different inventory allocation policies.

As far as the process of selecting which shipping lanes to operate is concerned, it is currently done using a

simulation by which individual buildings are modeled one at a time. The program takes a demand forecast

and generates a good shipping lane allocation based on economic criteria. As mentioned earlier, this

method fails to account for the influence each node exerts on the others. As an example, two FC's could

be connected to the same carrier hub which has a limited capacity. By looking at every building

separately, potential effects of saturating the hub are ignored. Similarly, considering every fulfillment

center as an independent operation disregards the possibility of transshipments across facilities.

Furthermore, optimizing one building at a time benefits the first FC's to be evaluated, yet it forces

unnecessary constraints into subsequent ones. Therefore, a new approach evaluating all of the buildings at

once is required. Fortunately, the regional distribution network reduces the size of the problem since there

are fewer nodes to look at.

Another ongoing effort for reducing shipping costs is cutting down the number of air shipments in favor

of ground shipment. In general, it is more expensive to ship an item by air than by ground. With the

regional distribution plan, it is easier to fulfill most of the orders by truck as fulfillment centers are closer

to customers. For that reason, this project only looks into ground shipment solutions. Similarly, it is more

expensive to ship a multi-item order in multiple packages than to ship a single package from a single

location. This constitutes another reason for using the pre-assigned demand approach mentioned earlier,

as per definition it considers packages and customer orders both alike. From now on, the terms package

and customer order will be used synonymously, as both refer to the smallest unit that can be shipped from

an origin to an end destination.

Finally, there is the operational aspect of enabling a new shipping lane to be considered. Doing so

requires of a non-negligible effort from different actors within the organization. From negotiating with the
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carrier to putting into place the appropriate configuration changes in the IT systems, along with adapting

the physical space at the fulfillment center and educating the hourly associates, every recommendation

poses some implementation challenges. For that reason, every change should be robust enough to endure

for a reasonable amount of time. Otherwise it risks causing resentment and push back from the rest of the

establishment. A shipping configuration that is constantly changing can cause problems that outweigh the

sought economic benefits. This does not mean that the outbound network should not adapt to changes in

demand; on the contrary, the best configuration solution is flexible enough to absorb those fluctuations

while keeping the number of physical modifications to a minimum. This fine trade-off will be referred to

as network robustness.

2.3 Summary

Up until now, shipping lanes were allocated with a myopic view, considering nodes as independent

entities. Such course of action not only ignores dynamics of complex systems in which relationship

among separate elements cannot be understood without evaluating the network as a whole, but also results

in a sub-optimal ranking system by which some fulfillment centers enjoy a privileged position to the

detriment of the others. Regardless, influence of one node over the others should not be ignored. The crux

of the matter is developing an analytical approach capable of evaluating the entire outbound network at

once, which in turn will reveal where the improvement opportunities are concealed.
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3 Literature Review

Extensive literature has been written on the topic of distribution network design and supply chain

optimization. This brief chapter is not intended as an exhaustive review of those fields, but rather

identifies the main principles underlying the problem at hand. In addition, various approaches developed

by different authors are discussed and their applicability to the present project is evaluated.

3.1 Mixed Integer Linear Programming Approach

Mixed integer linear programming (MILP) constitutes a general framework for modeling problems

involving integer and discrete variables. In general, MILP problems belong to the NP-hard computational

class of decision problems. A special case of MILP problems is binary integer linear programming in

which decision variables can take 0 or 1 values. Generally speaking, linear optimization problems with

binary decision variables are better understood. There are several commercial applications capable of

solving this problem family in a timely manner.

Modeling a distribution network as a mixed integer linear program is not a new concept. Manzini et al.

(2006) propose the development of a decision support system platform as a response to the so called

Production Distribution Logistic System Design (PDSD) problem7 . Such tool is in fact a general MILP

applied to a generic supply chain consisting of production plants, distribution centers and customers. This

work illustrates the benefits of using an optimization approach while at the same time reveals one of its

main limitations. As mentioned earlier, MILP are NP-hard problems that require special computing

capabilities. Alas, in real life applications the size of the problem can rapidly exceed computational limits

of conventional numerical solvers. Alternatively, heuristics and local optimization algorithms can be used

as a compromise solution.

7 This problem involves dealing simultaneously with the design, management and control of logistic supply chains.
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Tsiakis and Papageorgiou (2006) developed a mixed integer linear programming model applied to a large

organization with a complex operational structure. Given a number of fixed production plants and

customer zones, the model evaluates a number of possible distribution centers and selects those that

minimize overall shipping costs while meeting various constraint types, including production caps and

quality restrictions. The resulting model constitutes a strategic decision making tool that addresses

financial and operational challenges. Despite being very similar in nature, the present project is not

concerned with which intermediate nodes to choose, but rather with which arcs to enable.

In a similar work, Melachrinoudis and Min (2007) approach the warehouse redesign problem through a

MILP formulation. A transit time constraint is introduced, which effectively identifies transportation

performance and reliability as an additional challenge to be modeled. Besides determining which facilities

to operate, the formulation develops a regional operation plan. This is, deciding what customers should be

served by which warehouses. Moreover, it also measures the sensitivity of the optimal solutions to small

changes of the network constraints. This methodology, while relevant to problem at hand, ignores the

multi-commodity problem in which customer orders fall into different lead time categories.

In a different study, Gamus et al (2009) combine a MILP approach with a neuro-fuzzy demand forecast to

optimize the design of a three-echelon supply chain. Said model successfully incorporates demand

uncertainty into a network optimization problem to capture the realities of challenges faced by most

companies. Once again, an increment on the number of elements to be modeled entails an exponential

increase on the complexity of the problem, which requires non-conventional computing capabilities. For

that reason, a simpler model accounting for all of the caveats mentioned earlier is proposed in this paper.
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3.2 Predictive Modeling

Due to the size of the problem at hand, some simplifications are adopted in order to develop an accessible

tool. Notably, some of the demand granularity is lost by aggregating customers at a meaningful cluster

level. By this, the size of the problem is considerably reduced, yet it poses additional challenges. Because

demand is no longer modeled at the customer level, some data precision is lost. Indeed, the current

approach requires that shipping costs and transit times at the cluster level consist of an average of its

individual values. Should the averaging be done on a population density basis, on an absolute number of

packages or by geographic extension? Since there is no reasonable criterion to do so, a different approach

based on statistical prediction is required.

Acimovic and Graves (2012) develop a shipping cost prediction model based on historical data. The

model looks at a sample of fulfilled demand aggregated at the zip3' level and estimates a shipping cost

function through linear regression. The resulting model consists of a series of step-wise functions that

predict shipping costs based on origin-destination distance, ship option and weight. However, for

purposes of the problem at hand, the aforementioned approach misses two important elements. First, it

does not distinguish between carriers, resulting in an average cost across all shipping methods that does

not capture the essence of the problem. Secondly, distance is measured as a straight line between FC and

customer zone, ignoring the intermediate steps that a package follows in its delivery path.

In a different study, McDonald (2011) proposes an alternative to preconfigured transit times and

advocates for a different perception of time-in-transit. Transit time is defined as the time spain

encompassing the instant an order leaves an origin facility until it reaches its final destination. Given the

uncertain nature of transportation problems, a probability measure is required. Thus far, most companies

take a quantile function approach. They are concerned with the minimum number of days required for

order to reach the customer for any given level of certainty. The new approach is based on cumulative

8 Zip3 is an aggregate of postal codes which begin with the same prefix or the same three digits. A zip3 can contain
as little as I postal code or as many as 100.
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distribution functions (cdf), which looks at the probability that a package makes it to its final destination

at any given number of days. Because of the discrete nature of transit times, this subtle difference has

important implications. The use of quantiles entails some information loss, which makes it difficult to

use. In contrast, cdf is lossless, enabling a finer trade-off between cost and surety. The same paper

proposes the use of random forest regression to predict mean transit times. This method performs well in

least square regression problems and has the advantage of running efficiently on large databases.

However, it results in cumbersome prediction expressions which are not easy to incorporate. A simpler

approach for predicting transit times is described in Section 4.3.
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4 Model Formulation

This chapter describes the mathematical formulation behind the network optimization model proposed in

this project. In addition, two prediction approaches for estimating shipping cost and transit time are

advanced and integrated within the general decision-making tool.

4.1 Network Optimization Model

The problem at hand can be modeled through a mixed integer network optimization program consisting of

a series of origin, intermediate and destination nodes. The origin node set represents the ensemble of

fulfillment centers from which orders are shipped to the next stage. The intermediate node set consists of

all of the carrier hubs, in which orders arrive, are processed and then shipped directly to the final

customer. Finally, the destination node set encompasses the different customer clusters or demand

aggregates. This grouping could be done by zip code, by state, by population density or by any other

geographic rationale.

Likewise, shipments are categorized by service class and weight range. Four services classes are

considered, each one with a different service time. They are: Next Day, Second Day, Standard and Super-

saver. Next Day and Second Day deliveries belong to the premium category. Next Day packages have a

24 hour service time, while Second Day have 48 hours. The other two service classes belong to the

standard group, which are characterized by longer delivery times. For Standard shipments it is between

three and five days. For Super-savers it is between five and eight days. Finally, weight is broken down

into four groups: light, medium-light, medium and heavy packages. The rationale behind this weight

classification is explained on Section 4.2.
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The mathematical formulation of the model relies on the following notation:

* N : Set of network nodes. The network contains FC's, carrier hubs and customer zones.

* A c NxN: Set of arcs in the network. An arc between two nodes, FC and carrier hub,

represents a shipping lane between those two nodes. Each arc has an associated per unit

shipping cost.

* K: Set of service classes. As mentioned earlier, four service classes are considered: Next Day,

Second Day, Standard and Super-saver shipment. Service class is designated by subscript m.

* W: Set of weight ranges. This set consists of four categories: Standards, SBPM, BPM and

Parcels. Weight range is designated by subscript w.

* U c N: Subset of fulfillment center nodes in the network. FC's are designated by subscript i.

* M c N: Subset of carrier hubs. Carrier hubs are designated by subscriptj.

* Z c N: Subset of customer zones in the network. Customer zones are designated by subscript

L.

* Cijlkw: Per unit cost for shipping product from FC i to customer zone / through carrier hubj in

service class k and weight range w. For instance, if service class is Second Day delivery, then

the cost parameter needs to account for the transportation cost to move product from the FC to

the carrier, plus the carrier's cost to deliver to the customer zone and to do so within the two-

day time window. This cost parameter will also account for transit time restrictions. That is, if a

given lane cannot satisfy the time requirements of a particular service class, then its cost will be

set to infinity or a very large number so the program automatically drops that particular

shipping lane.
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* DilkW: Daily demand at customer zone 1, service class k and weight range w that is to be met

from FC i.

e V Capacity at FC i measured by the number of shipping lanes available.

* Hj: Capacity at carrier hub j measured by the maximum number of packages the carrier can

handle on a single day at that particular facility.

e Maxi; , Mini1 : Maximum and minimum volume allowed on link between FC i and hubj.

* xij: Binary decision variable to denote whether shipping lane serving carrier hubj is used at FC

i. A value of 1 means the arc is active. A value of 0 the shipping lane is not used.

SYijlkw: Amount of product, measured in packages, shipped from FC i to customer zone 1

through carrier hubj satisfying service class k and weight range w.

Carrier Hubs Customer Zones

W

"pow

-- -- - - - - -. -I >

Figure 4: Schematic representation of network optimization problem.
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The network optimization problem can be represented as depicted by Figure 4. Blue arrows symbolize a

shipping lane going from FC i to carrier hubj. Through that lane, multiple packages going to a particular

destination with a given service class and weight range can flow. Each one of these flows is represented

by a dotted line, which corresponds to decision variable Yijlk..

The mathematical formulation of the network optimization problem is:

Objective function minimizes outbound shipping cost:

minj I I Cyl,yi (1)k
ieU jeM leZ keK weW

Subject to the following constraints and restrictions:

e Capacity constraints:

2xy < V
jeM

III I yulkw : Hij
IeUleZkeKweW

k > Miny x.
leZ keK weW

Ikw Max, x,
leZkeKweW

e Demand satisfaction:

ylkw 1  xY D,=kw

I yylkw = Di,,,
jE-A

Vi E U

Vj e M

Vi e U,Vj Ce M

Vi e U,Vj e M

Vi e U,Vj e M,V e Z, Vk e K, Vw e W

Vi e U, V e Z, Vk e K, Vw e W
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0 Non-negativity:

xY = 0, 1 (8)

Y ijk > 0 (9)

The objective function to be minimized is the overall shipping cost of the network. Constraint (2)

specifies the maximum number of shipping lanes available at every FC, while Constraint (3) limits the

amount of packages that can be processed by every carrier hub on a given day. Constraint (4) can be used

to specify the minimum volume required to maintain a shipping lane or open a new one. Expression (5) is

the forcing constraint, reducing volume to zero when the shipping lane is disabled. Constraint (6) forces

the algorithm to meet demand. Thus it is presumed that supply can always meet demand. Finally,

Constraint (7) forces decision variable x to take only two values (0 or 1) and Constraint (8) forces volume

to be a positive number.

Three additional considerations are worth mentioning. First, fixed costs associated with enabling a

shipping lane are negligible. However, opening a new lane is not an instantaneous process, meaning it

takes a non-negligible amount of time to create a new one. Secondly, it is legitimate to aggregate product

flows for purposes of the model, and it is not necessary to model products at a more detailed level.

Finally, this model assumes that demand can be pre-assigned to each FC. That is, for each customer zone,

service class and weight range triplet, it is possible to specify what fraction of demand will be satisfied by

each FC. This reflects how inventory is allocated across the FC's, as well as the general operating plan for

the network. Such definition of demand allows the assessment of inventory placement at a particular FC,

which in turn serves to evaluate operational costs as a whole, including transportation and inventory

holding costs. This definition overlooks how inventory is allocated across the network, which is a

complex supply chain problem in itself. For that reason the model is not allowed to select which building

will serve a particular order. Instead every order is allocated to a serving warehouse beforehand. This can

be done because historical customer orders, for which the origin is known, are used as an input. An
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additional benefit of such an approach is that it further simplifies the problem because it omits the multi-

item order splitting issue.

4.2 Cost Prediction Model

Per unit shipping cost in the system is defined in Expression (10). These cost coefficients are assigned to

every arc and include not only shipping cost but also delivery time restrictions. The second term forces

the cost coefficient to take a very large number when a particular shipping lane cannot meet a given

service time. Incorporating a time dimension into the cost coefficients results in a fast performance

heuristic, significantly reducing computing requirements.

Cijlkw = hijlkw + max(tijlkw - Tk, 0)M (10)

Where:

e hijlkw: Per unit cost for shipping one unit of product from FC i to customer zone / through

carrier hubj in service class k and weight option w.

* tijlkw: Mean transit time for shipping one unit of product from FC i to customer zone / through

carrier hubj in service class k and weight option w.

* Tk: Maximum transit time allowed for service class k. For instance, Second Day delivery is

allowed a maximum of 48 hours. Maximum transit time allowed is a requirement per se, but

instead of writing it as a constraint, it is included in the cost function (10)

* M: Large number.
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4.3 Transit Time Prediction Model

Predicted transit times follow a different approach based on cumulative distribution functions (cdf). Given

a particular origin, destination and ship method, the goal is it to determine the probability that a package

makes it to its final destination at any given number of days. One simplistic approach is to look at

historical data and evaluate the fraction of packages that made it on time. This method is synthesized in

the following expression:

fijlkw(T) = Xijlkw(T) 
(11)

Xijlkw

* XijIkw(T): Number of packages shipped to customer region 1, from FC i through carrier hub],

service class k and weight range w that made it within time T.

* Xijlkw: Total number of packages shipped to customer region 1, from FC i through carrier hubj,

service class k and weight range w.

Thereforef represents the fraction of packages shipped to customer region 1, from FC i through carrier

hubj, service class k and weight range w that made it within promised service time T. For instance, in

case of Next Day delivery, the aforementioned expression evaluates the fraction of packages that reached

their final destination in 24 hours or less. Hence, the probability that an order is fulfilled in T days is equal

to number of packages from the data sample that made it on time divided by the total number of packages

flowing through the arc. This fraction can then be compared to on-time delivery (OTD) targets set by the

organization for different service classes. Generally speaking, each service class has a targeted OTD set

by the organization. Iff(T) is greater or equal to the OTD, then the model assumes that the transit time for

the arc is T. Otherwise, it evaluates the next service class. Seemingly, it can be expressed in mathematical

notation:

if fijlkw(T) > OTD(k) then tilkw -= Tk, else tijlkw > Tk (12)
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As an example, if the fraction of packages delivered within 24 hours is smaller than the targeted Next Day

OTD, then the fraction of packages delivered within 48 hours is evaluated. If this fraction is greater than

the targeted Second Day OTD, then expected transit time of the customer region is assumed to be 48

hours. Conversely, if it is smaller than the targeted Second Day OTD, then the fraction of packages

delivered within 72 hours is evaluated against the appropriate on-time delivery metric.

The model at hand presumes that historic transit time performance is representative of future events,

which seems a legitimate assumption to make. However, more accurate predictions are obtained when

using a larger sample of historic data. Estimated transit times are used in the cost prediction formulation

discussed in the previous section to calculate cost coefficients Cilkw.

4.4 Summary

This chapter introduces a method for evaluating the entire distribution network at once, which is

consistent with project expectations. In addition, some shipping cost and transit time prediction models

are presented. Despite being somehow simplistic, they successfully capture the features and intricacies of

the problem at hand.
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5 Estimation of Coefficients

Chapter 4 presents the mathematical formulation behind the proposed optimization algorithm. However,

there is one important piece missing: the shipping cost and transit time coefficients. This section describes

a practical approach on how these parameters can be estimated. Note that in order to protect proprietary

information, data presented in this chapter is fictitious. Furthermore, some simplifying assumptions have

been adopted to preserve confidentiality. Nevertheless, the framework developed through this document

mimics the decision-making tool built for the project. Thus findings and recommendations are still

relevant for academic purposes.

5.1 Shipping Cost Coefficients

Section 4.2 introduces unit shipping cost parameter Ciik, as a function of two coefficients. On the one

hand h represents the actual shipping expenses. On the other hand, t adds a time dimension to the

allocation problem. However, estimating both coefficients is as challenging as estimating C. One possible

approach consists in running a least squares regression model using historical data on customer orders to

develop a prediction function. This section looks at the cost prediction function while transit times are

discussed in the next one.

If h is defined as an unbiased estimator of h, the objective is to minimize the residuals or error sum of

squares:

SSerror = Zi,,1,k,w(hijikw - hijlkw)2 (13)

The regression uses five attributes: FC, carrier, origin-destination distance, service class and weight. Or

alternatively:

hijlkw =f(FC, carrier, distance, service class, weight) (14)
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Using historical data, it is possible to assess the influence of each one of these parameters. Distances

between origin and destination pairs were estimated using the great circle formula with latitude and

longitude of geometric center of demand clusters as inputs. Carrier is by far the largest cost driver

followed by weight and origin-destination distance. Surprisingly, service class plays a minor role while

the FC has no significant impact whatsoever. Figure 5 is a plot of actual cost versus predicted cost. The

model accounts for 91% of variability.

zo
0

Predicted Cost P<.0001
RSq=0.91 RMSE=0.1208

Figure 5: Real shipping cost versus predicted shipping cost.

At the same time, the accuracy of the shipping cost prediction model was assessed using a different data

set from the one employed in the linear regression. Figure 6 shows expected errors for the ten carriers

included in the model. The overall mean absolute percentage error is 2.73%.
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Mean Percentage
Absolute Error

Carrier A 2.42%
Carrier B 1.42%
Carrier C 4.07%
Carrier D 2.70%
Carrier E 6.07%
Carrier F 2.84%
Carrier G 4.21%
Carrier H 7.17%
Carrier J 3.62%
Carrier I 3.60%
Overall 2.73%

Figure 6: Prediction cost model accuracy.

Plotting predicted shipping cost as a function of package weight for various carriers reveals some

meaningful insights. As weight increases, there are clear shifts on the cheapest ship option. The reason

behind such cost structure is that some carriers do not want to handle bulkier packages, thus they inflate

the price of heavier packages to remove themselves from competing at that particular market segment.

The intersection between two or more of these curbs marks a transition in the overall shipping cost

structure. Based on these results, four different weight categories were selected for the model:

* Light Packages: for little weight parcels.

* Medium-light Packages: for orders whose weight is between light and medium size parcels.

* Medium Packages: for medium size parcels.

* Heavy Packages: for bulkier parcels.
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Figure 7: Transportation cost as a function of weight for different carriers.

There are further implications to this phenomenon, notably how a strategic assignment of heavier orders

to certain carriers could result in significant savings. This will be discussed in Chapter 7.

5.2 Transit Time Coefficients

Early on, this model assumes that customer demand can be aggregated at the zip3 level without losing

significant granularity. Given a region of the US, coverage footprint for every fulfillment center can be

plotted. Figure 8 represents promised transit times for orders fulfilled by a FC using a particular carrier

hub. Albeit these service levels are quoted by the carrier, historical data reveals that on average orders

met or exceeded prevailing on-time delivery targets. Thus, they can be assumed to be representative.

Regions with the same color coding have the same expected transit time. Moreover, the darker an area is,

the longer its expected transit time.
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Figure 8: Promised transit times at postal code level.

In order to estimate actual transit times, historical data worth two months of customer orders was used.

Expected transit times are calculated using Expression (12). Figure 9 represents transit times for the same

ship method predicted with the model proposed on Section 4.3. In the first figure demand is defined at the

postal code level while in the second one it is aggregated by zip3. Upon close examination, it can be

concluded that both figures are very similar. The same analysis was carried out for every FC and ship

method combination with analogous results. Therefore, aggregating customer orders by zip3 seems like a

reasonable assumption.
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Figure 9: Estimated transit times aggregated by zip3.

Finally, the effective shipping cost C can be calculated with the estimated parameters h and t.

5.3 Summary

This section presents a possible approach for estimating shipping cost and transit time coefficients. The

next chapter introduces the abovementioned parameters into the network optimization model in order to

assess its validity.
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6 Model Validation

In this chapter, the performance of the proposed mathematical formulation is evaluated using real data

from Amazon's customer orders. Several scenarios are analyzed in order to assess the impact of each

factor to the overall dynamic resource allocation problem.

6.1 Pilot Run

For computational reasons, a subset of the outbound transportation network was selected for running a

pilot program and proving the concept of the model developed. The area selected, while still

representative of features and dependencies of the original network, includes six fulfillment centers. This

region is assumed to be a closed, self-sufficient system, in which customer orders originate and are

fulfilled within. In other words, demand is to be served by those six facilities and no shipments outside

the region are allowed. This assumption greatly simplifies the problem as the number of nodes and arcs is

considerably reduced.

The largest contributor to the size of the problem is how demand is aggregated. Modeling each customer

as a single node results in an intractable decision-making tool, hence the necessity to combine them into

clusters. Given the geographic nature of the problem, demand can be aggregated by postal code or zip3.

Choosing the first option implies dealing with approximately 7 million decision variables, whereas using

zip3's instead requires around 150,000 decision variables. As granularity of demand is increased, the

number of decision variables rapidly scales up. It is hard to determine if using a finer regional mesh

justifies the increase in complexity. Given the geographical nature of the problem, it seems legitimate to

assume that two neighboring regions could be served by the same shipping lane without incurring a

significant cost difference. Therefore the use of zip3's seems justified.

The dataset used in this analysis consists of real orders, shipments and inventory details. All this

information was compiled into a single database for which every customer order contains the fulfillment
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center serving the order, destination in form of zip3, service class, package weight and actual shipping

cost. This data was then used to simulate customer demand for various days. Using different days not

only accounts for demand variability within the period of time selected, but it also reflects the weekly

customer order pattern that characterizes this particular online retail market.

The first step into validating accuracy of the model is comparing predicted overall shipping cost of the

network with the real cost. For that, the model was constrained to use the actual network configuration,

enabling those shipping lanes currently in use and forcing the rest to be suppressed. Seven data samples

were used to introduce some variability. Each one consists of historical orders from a particular day. Once

again, data has been modified in order to protect confidential information. In the second step, the

algorithm is allowed to make at most six changes, which in practical terms provides the model with the

ability to drop six shipping lanes from the current configuration and add up to six new ones in order to

find the cheapest network set-up.

---Real cost

- - Predicted Cost

- -- Optimal Cost

Figure 10: Model performance for seven historic data samples.

The figure above represents the real cost, cost predicted by the model using the current configuration and

optimal solution for the different data samples. The network optimization model consistently undervalues
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the real shipping cost. Difference between real outbound cost and predicted cost has a mean value of

5.54%. Being a predictive model, some level of deviation is expected. The prediction error is consistent

with the systematic error produced by the cost prediction model described in Section 4.2. On the other

hand, analysis reveals that there are potential savings to be gained by implementing the optimal solution

found by the decision-making tool. Let Csim be the cost of the current configuration simulated by the

algorithm and C0P the optimal cost or lower bound. Then, the overall outbound shipping cost

improvement gap is defined as:

Csim-CP (15)
Csim

Total cost obtained through the simulation instead of the actual cost is used in order to have a common

benchmark basis. Results suggest that there is a 1.39% improvement opportunity to be gained by just

replacing four shipping lanes.

In terms of performance, the algorithm runs very fast using conventional computational resources. The

numerical solver is able to find the optimal solution in a few seconds.

6.2 Model Robustness

The soundness of the model can be assessed by measuring the change in performance of the optimal

solution when introducing a small perturbation in the system. A considerable delta would mean that the

algorithm is very unstable and of limited applicability.

The optimal solution found earlier represents the best possible performance that can be achieved because

every day has been optimized independently. Indeed, the algorithm finds the optimal network

configuration for each day. Because of demand variability, the optimal solution for one day is not the

optimal solution for the next one. In other words, the best shipping lane combination for one particular

day is not necessarily the preferred choice for the rest of the days. Since new solutions in an industrial
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project lead to changes, and changes can causes disruption to some people, altering the network

configuration every so often becomes intractable. Instead, it is more desirable to find a set of shipping

lanes to be used at all times that outperforms the current network configuration, even if this does not yield

the greatest possible savings.

Figure 11 compares expected outbound shipping cost of the current network configuration versus the

optimal shipping lane combination from a given day. The day with the most customer orders placement is

used as the baseline for which the optimal shipping lane allocation is estimated and then utilized on every

single day. The simulation is run for two weeks. Note how the proposed configuration performs just as

well if not better than the actual one. Not surprisingly, the greatest improvement corresponds the day with

the greatest volume. At the same time, it is remarkable that the proposed network also improves results

for the three subsequent days. As shown in the next chapter, this is due to the existing seasonality effect

on customer orders throughout the week. The proposed configuration represents a 0.97% improvement

over the actual scenario.

"'Current

"*Proposed

Figure 11: Expected outbound cost from using an inflexible configuration.
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These results suggest that adding a small perturbation in the system in the form of demand variability

results a small delta in performance. However, for the small difference in expected outbound costs there is

a non-negligible disparity of shipping lanes selected by the algorithm. This fact highlights the sensitivity

of the optimal solution to shifts in customer demand. As mentioned earlier, it would be difficult for

Amazon to adapt its outbound network to such variation on a regular basis. Instead, it would be more

desirable to focus on the underlying pattern of demand while overlooking the noise in the system.

A more robust model can be achieved by including a symbolic fixed cost associated with implementing

changes in the current configuration. For instance, a new term could be incorporated into the objective

function described in Expression 1, where F is the fixed cost associated with enabling a new shipping lane

and xij is the original binary decision variable. Summation of the second term includes the subset of new

shipping lanes.

min (ZI,,,k,w Cijlkw -yijik, + Z.,;. F- xi;) (16)

Including this type of expression somehow limits the solution space to those shipping lanes that

consistently yield savings outweighing the fixed cost associated with their initial setup. However, as

discussed in the next chapter, demand will always have some variability that cannot be completely

eliminated. For that reason, a classification system is proposed with the intent of guiding the decision of

which shipping lanes to enable. The crux of the matter becomes determining the combination of shipping

lanes that consistently yield the greater savings over a wide range of demand scenarios.
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6.3 Sensitivity Analysis

No optimization program performance can be validated without a proper sensitivity analysis.

Unfortunately, as noted by Guzelsoy and Ralphs (2010), duality for integer programs in not well

understood yet. Computing shadow prices and reduced costs for a MILP is in itself a NP-hard problem.

Current research efforts are focusing on generating dual functions to approximate the value function.

Consequently, an approach based on evaluating different scenarios is required.

So far the impact of demand variability and customer aggregation have been evaluated. In addition, the

associated LP relaxation problem can be solved to measure the delta between a discrete system and a

continuous one. Again, seven data samples were used. By allowing the decision variables of the LP

relaxation problem to take continues values, the algorithm is able to find better solutions. On the other

hand, an MILP solution cannot be better than the associated LP relaxation solution because discrete

numbers are a subset of real numbers. On average, the delta between both solutions is 2.43%. This

implies that the mixed integer model is quiet robust.

V 1t

MILP

%-- LP relax

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Figure 12: Optimal solution found by MILP and LP relaxation.
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Another venue worth pursuing is the effect of capacity constraints. Figure 14 represents overall shipping

cost for two fulfillment centers as a function of the number of shipping lanes available. As expected, with

wider selection of shipping lanes available, the algorithm has more flexibility for finding a better solution.

However, this phenomenon has a diminishing return behavior. Each facility has a threshold above which

enabling additional lanes does not yield significant savings. This number should be used as the theoretical

optimal solution above which building additional capacity does not report any extra benefits.

Figure 13: Overall shipping cost as a function of shipping lanes available.

Similar results are obtained when introduction different handling capacities at the carrier hubs.

6.4 Summary

Performance of the algorithm for a broad selection of scenarios suggests that the model is quiet robust. In

the next chapter, a real setting is analyzed to produce a series of recommendations yielding significant

bottom-line improvements.

44

.C

E FC1

- -FC2

1 3 5 7 9 11 13 15 17 19

Numberof shipping lanesavaliable



7 Model Results

This section employs the refined model developed throughout the duration of the project to analyze

performance of the current outbound configuration and benchmark improvement opportunities that

directly translate into potential savings. The formulation proposed in this paper has been crystallized into

a tool that looks at the network optimization problem in two successive steps. First, it identifies those new

shipping lines with the highest saving potential. Then it simulates the outbound network by enabling

those lanes and running a demand scenario. With this it is possible to obtain an estimate of the expected

operational costs produced by any configuration.

7.1 Proposed Shipping Lane Allocation Methodology

Undoubtedly, customer demand is variable by nature. This has important implications on how much

inventory and how it is allocated through the network, which in turn determines what facility can serve

any particular order. Despite variability, customer orders seem to follow a general pattern by which

demand peaks on Mondays and gradually decreases to a minimum on Sundays. For that reason, a robust

solution cannot be found by just looking at single day, but rather considering at least an entire week.

On top of seasonality, placement of customer orders also varies within a day. Because of common trends

in online buying habits, daily order placement follows a recurrent pattern by which certain time periods

concentrate a significant fraction of customer orders while others have little activity. In practical terms

this translates into most orders being placed between 8am and 7pm. This has important implications from

a logistic standpoint. While early orders are more likely to be shipped out within the same day, late ones

might not get picked until the next day. Moreover, truck departures are scheduled taking this phenomenon

into consideration in order to capture as much demand as possible within the day. However, this also

limits the operational range of certain ship options, as the later a truck departs the smaller service

footprint it can offer. On the other hand, there are other factors to take into account, such as carrier
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working calendar. Some carriers do not work on the weekends, limiting the number of available shipping

options to customers. Keeping this in mind, when checking out, Amazon customers are offered different

ship options at different prices with a promised delivery date. All of these results in several time windows

scattered throughout the week which try to accommodate customer's buying habits. From an operational

stand point, this incentive system allows Amazon to group customer orders on a timely basis, facilitating

order processing. For that reason, the data sample used hereafter consists of historical customer orders

from a random week. The dataset has been broken down into separate days. Daily demand has then been

run independently and results have been aggregated as weekly savings as shown in Figure 14. Once again,

scale on the vertical axis is omitted to preserve proprietary information.

C

0 1 2 3 4 5 6

Figure 14: Weekly fulfillment cost as a function of number of changes implemented.

Instead of looking at the global optimal solution, the model looks at incremental changes of the outbound

structure. Starting with the current network configuration, the model is allowed to make only one

modification. On the next iteration, two changes are allowed. Then three changes and so on. With this

approach it is possible to rank new shipping lanes on a potential savings basis and measure the delta

between the current configuration and the desired scenario. Results seem to suggest that by implementing

just 6 modifications in the network, expected shipping costs improve by some 1.64%. This represents the
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ideal upper bound for savings that could be achieved. However, because daily demand is run

independently, recommendations are not consistent across the week. Indeed, some new shipping lanes are

only used on a particular day, which as stated earlier poses some operational challenges.

To address this issue, a second step is included into the decision-making tool. In the first phase, the model

identifies those new shipping lanes with the highest savings potential. A simulation is then run to measure

the impact of implementing those recommendations. Given that not all proposals are used on every day of

the week, the user can decide which ones to simulate. Figure 15 illustrates a sample output of the first step

of the model. For every day of the week, top ranked six new shipping lanes are displayed with their

expected daily savings.

MHU S

FC HUB Sav FC HBSi

Wed Thu
FC HUB Savi FC HUB San

FC1 C1 $1.

FC1 C2 $600

Frkb Su
FC HUB Saul FC HUB ISavi FC HUBI S nVi

FC1 B1 $M0

FC1 C1 $100 FCS B5 $100 FC2 B12 $2,000
FC2 EB2 $M0 FC3 B4 $0

F1B3 $50 FC1 C2 $700l
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Figure 15: New shipping lanes identified in optimal solution.



Based on their frequency or number of occurrences throughout the week, recommendations can be

classified under three categories:

* Regular: this group contains new shipping lanes that are used every day of the week by the

optimal solution. Because of its consistency, recommendations that fall under this category

should be implemented whenever possible since they translate into automatic transportation

savings. Lane FC1_Dl, which is marked in blue, is a good example of this as it is selected on all

seven days.

* Average: consists of shipping lanes that are used quite often, at least four days out of the week,

yet not every day. Lanes FC2_B 1 (orange), FC3B 1 (purple) and FC4_Al (green) belong to this

category. Implementation of this type of recommendation has to be weighed against its potential

gains and effects on other existing lanes.

" Sporadic: those shipping lanes that are not selected in the optimal solution at least half of the

time are classified as sporadic. Due to its variable nature, this genre of recommendation should

only be implemented if its economic benefits outweigh its operational drawbacks. An exception

to this rule could be applied on weekends. Since some carriers do not offer service on Saturday

and Sunday, this criterion should be relaxed on those days, allowing some shipping lanes to be

enabled only then.

Shipping proposals can also be categorized according to their potential gains. The same four shipping

lanes identified above are ranked in increasing order of expected weekly savings in Figure 16. It can be

seen that it is not the lane identified as regular that yields the greatest benefits. The three average lanes

economically outperform the first one.
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Figure 16: Expected weekly savings for recommended shipping lanes.

These findings reveal an obvious trade-off between economic benefit and ease of implementation. A

flexible network, which can easily adapt to demand shifts, would offer the greatest savings potential, yet

its implementation poses some operational challenges. Notably, given the long lead-time for setting up a

new shipping lane, putting in place recommendations from this model on a daily basis becomes

unreasonable. Therefore, a more strategic approach has to be used, evaluating every proposal with

different demand scenarios as well as pondering the cost benefits with its operational feasibility, which

eventually can lead to a more robust network configuration.

Another element that has not been mentioned thus far is shipping lane replacement. Due to the problem

formulation, there are shipping lanes that get automatically dropped because they represent more

expensive ship methods than other available options. In the special case where the number of enabled

shipping lanes hits the maximum capacity of the facility, then the smallest contributors to overall savings

get dropped.

Going back to the decision-making tool, after identifying the desired changes to be implemented, the new

network configuration can be simulated by forcing some lanes to be enabled and others to be disabled.

Figure 17 shows expected benefits of implementing the same four recommendations mentioned earlier.

Expected savings from adopting the four recommendations are in the order of 1.33% relative to the

current outbound configuration.
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Figure 17: Expected outbound cost from implementing top 4 recommendations.

7.2 Carrier Hub Capacity

Besides determining the optimal network configuration, this model reveals some compelling insights, first

of which is the effect of carrier hub capacity. In section 5.1, shipping cost functions for different carriers

are plotted against weight of the package as shown in Figure 7. Above 15 pounds, two carriers, those

identified as C and G, become the most attractive option from an economic standpoint. It just so happens

that these two carriers have limited handling capacity. When running different demand scenarios using

the model, their hubs get overwhelmed, soon reaching their maximum utilization as shown in Figure 18.

As a result, a number of heavy orders that could benefit from the cheaper shipping rate offered by carriers

C and G are instead diverted to more expensive carriers.
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Figure 18: Utilization rates for several carrier hubs.

A sensitivity analysis can be used to understand the economic impact of this capacity limitation. By

incrementally increasing the number of daily packages that can be processed by both carriers and running

the model it is possible to quantify the potential gains from adding extra handling capacity. Figure 19

represents expected outbound cost of the network as a function of incremental handling capacity of

carriers C and G. For comparison, current outbound cost and the optimal solution found on the previous

section are also included. As the number of orders processed by both carriers increases, expected

outbound cost is reduced. For instance, a 60% increase in handling capacity yields savings on the order of

2.56%, which results in a significant gain compared to the 1.33% found in the optimal solution. The

2.56% figure combines both, an optimal allocation of shipping lanes per FC along with increased

handling capacity of carriers C and G. There is, however, a caveat to expanding capacity, as increasing

the number of orders processed above 80% soon reaches a point of diminishing returns. In any case,

expected savings from such an expansion have to be weighed against investment costs of increasing

capacity.
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Figure 19: Expected outbound cost as a function of carrier hub capacity.

The other interesting finding concerns service class coverage. Most of the improvement opportunities

identified by the model correspond to Standard and Super-saver order types from areas that had been

historically served by the larger carriers, which have a better overall geographic coverage but are also

more expensive. While smaller carriers cannot compete with them in the premium market except for

specific small regions, they represent a cheaper alternative for non-urgent orders.
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8 Conclusions and Recommendations

This section highlights the principal findings of this project and proposes future research venues to further

improve performance of Amazon's supply chain.

8.1 Key Findings and Conclusions

While recognizing the complexity of Amazon's outbound network, the present work shows that it is

possible to use an analytical approach for evaluating a distribution network as a whole and determining

the most cost effective configuration. Specifically, a mixed integer network optimization model can be

developed to evaluate a collection of potential shipping lanes and select those that minimize overall

shipping costs. A pilot run with a wide variety of scenarios was used to prove robustness of the

mathematical formulation, but also to evince the existence of a trade-off between economic gains and

operational feasibility. For that reason, a criterion for selecting recommendations to be implemented is

proposed, which can further be developed into a heuristic to easily evaluate and identify improvement

opportunities throughout the network.

The main drawback of the model at hand is that it does not directly incorporate the inventory allocation

dimension of the problem. Without evaluating the entire supply chain as a whole, solutions obtained by

this type of approach do not correspond to the global optimal. The decision-making tool does not consider

stock availability as a decision variable, but rather as a given. Different inventory allocation scenarios can

be analyzed, but the output will be of limited use. A model assessing the trade-off between holding costs

and shipping costs will reveal the greatest improvement opportunities.

The biggest challenge for extending this model to the entire distribution network is estimating the

appropriate shipping cost and transit time cost functions for every region, which can be quite time

consuming. However, doing so could reveal interesting system dynamics, such as the impact of

transshipments across market regions.
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Another caveat to keep in mind when enlarging the size of the network is the added complexity which

will require additional computational resources. This could limit the granularity of demand clusters

processed by the numerical solver. Nonetheless, the proposed mathematical formulation sets the

foundation for developing similar optimization models, capable of handling more complex networks.

8.2 Opportunities for Future Research

Through the course of this project, additional related challenges were identified. Despite being outside of

the scope of this work, future research could reveal interesting findings. One such opportunity is

evaluating the impact of inventory allocation throughout the network. The present model presupposes

how demand is assigned to the fulfillment centers. Indeed, early on customer demand was defined as

allotted to a particular FC in advance. In reality, there is a complex algorithm in place that looks at every

unit of inventory available at different facilities and chooses where to ship from based on economic

considerations. Allowing the model to choose from which FC to fulfill every order would provide a

baseline for evaluating total operational cost, including inventory holding cost as well as shipping cost.

By running diverse demand scenarios, it could be possible to quantify shipment savings with different

inventory mixes at a particular FC or group of facilities. Such numbers could justify a major change in

stock allocation.

Another venue worth pursuing is evaluating when to expand existing capacity at the FCs. The present

model can be used to assess the economic impact of adding extra lanes. In addition, it could also be used

to guide decision on when to employ new carriers or invest in increasing their throughput capacity. All of

these numbers would have to be weighed against the operational challenges such initiatives pose.

Finally, some tweaking would enable one to evaluate the impact of rearranging truck departures. Since

some shipping lanes are more valuable than others, it would be possible to rank and estimate the savings

of those that would yield greatest benefits. With this, coverage for different service classes could be

enhanced to reach areas that fall outside the promised delivery date limit. Ultimately, it could be possible
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to develop a heuristic or basis to quickly identify those areas that would benefit from extending service

footprint.
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