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Dense granular materials display a complicated set of flow proper-
ties, which differentiate them from ordinary fluids. Despite their
ubiquity, nomodel has been developed that captures or predicts the
complexities of granular flow, posing an obstacle in industrial and
geophysical applications. Here we propose a 3D constitutive model
for well-developed, dense granular flows aimed at filling this need.
The key ingredient of the theory is a grain-size-dependent nonlocal
rheology—inspired by efforts for emulsions—in which flow at
a point is affected by the local stress as well as the flow in neigh-
boring material. The microscopic physical basis for this approach
borrows from recent principles in soft glassy rheology. The size-
dependence is captured using a single material parameter, and the
resulting model is able to quantitatively describe dense granular
flows in an array of different geometries. Of particular importance,
it passes the stringent test of capturing all aspects of the highly
nontrivial flows observed in split-bottom cells—a geometry that
has resisted modeling efforts for nearly a decade. A key benefit of
the model is its simple-to-implement and highly predictive final
form, as needed for many real-world applications.

Granular materials are ubiquitous in day-to-day life, as well as
central to important industries, such as geotechnical, energy,

pharmaceutical, and food processing. In fact, granular matter is
second only to water as the most handled industrial material (1),
but unlike water, dense granular flows are substantially more
complex (2–10). In particular, slowly flowing granular media
form clear, experimentally robust features, most notably, shear
bands, which can have a variety of possible widths and decay
nontrivially into the surrounding quasi-rigid material. However,
these behaviors remain poorly understood and have not been
rationalized with a universal continuum model, posing a costly
problem in industry. Quantitatively describing and predicting
dense, well-developed granular flows with a constitutive model
that may be applied in arbitrary configurations remains a major
open challenge.
For many years, mechanicians and materials engineers have

approached granular materials modeling from a soil mechanics
perspective, grounded in the principles of continuum solid me-
chanics, invoking various yield criteria and plastic flow relations
(11, 12). In contrast, over the past two decades, a resurgence of
interest in granular media has arisen among physicists, primarily
drawing upon statistical and fluid dynamical approaches (13, 14).
More recently, drawing upon both schools of thought, granular
rheologists have made progress combining a fluid-like, rate-
dependent flow approach with an appropriate yield criterion.
Backed by numerous experiments and a coherent dimensional
argument, the key result is the dimensionless relation μ = μ(I),
consistent with the seminal work of Bagnold (15), which has
become a well-regarded basis for modeling well-developed
granular flows in simple shear (9, 16), where μ = τ/P for shear
stress τ and normal pressure P, and I = _γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ρs=P

p
is the inertial

number for shear strain-rate _γ, grain diameter d, and grain
density ρs. The inertial number operates as a normalized shear
rate and represents the ratio of the macroscopic time of applied
deformation to the microscopic time of the particle motion.
The relation μ = μ(I) may be inverted and expressed as a

strain-rate formula. Empirical fits to numerical experiments (16)
indicate the result is Bingham-like,

_γ = _γlocðP; μÞ=
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P=ρsd2
p

ðμ− μsÞ=b if μ> μs;
0 if μ≤ μs;

[1]

for dimensionless constant b and static yield value μs. We refer to
_γlocðP; μÞ as the local rheology because it directly relates the local
stress state to the local state of strain rate. The above may be
extended to three dimensions by presuming incompressibility
and codirectionality of the strain rate and Cauchy stress tensors
(17, 18).
The 3D version has had success in describing both uniform and

fast (10−3 . I . 10−1), dense flows; however, problems arise for
slow (I. 10−3), nonuniform flows. Under these circumstances, the
one-to-one μ = μ(I) relation is violated (19), and the local rhe-
ology gives poor flow predictions (20). Specifically, contrary to
Eq. 1, flow is observed for μ < μs in the presence of a strain-rate
gradient (19). Whereas the local model predicts a sharp flow
cutoff to occur where μ = μs, an exponential-type decay profile,
scaled by the particle size, is typically observed in the quasi-static
region where μ < μs (3, 8–10, 19, 21, 22). Moreover, a strongly
flow-rate-independent stress response emerges where μ < μs in
a fashion inconsistent with Eq. 1. (9, 19, 21, 22). These flow fea-
tures are signatures of finite-size effects, arising due to a finite
grain size compared with that of the flow environment.
Motivated by these shortcomings, significant effort has gone

into developing physically nonlocal models for granular flow. Ap-
proaches include integral equations representing a self-activated
process (23), theories of partial fluidization governed by a Ginz-
berg–Landau order parameter (24), Cosserat plasticity-based
models (25), extensions of kinetic theory to the slow-flow re-
gime (26, 27), and the stochastic flow rule (28). Each of these
models displays a “diffusive” character—although invoking dif-
ferent physical hypotheses, each accomplishes the essential qual-
itative goal of spreading sharply varying flow features on the basis
of grain size. This notion has been understood for decades to be an
important missing piece in granular flow modeling (29, 30). What
ultimately distinguishes such models, hence, are the details of the
diffusive process that is claimed to be underlying the flow. Spe-
cifically, models differ on (i) the physical meaning and mathe-
matical form of the variable responsible for diffusion, (ii) the
details of the differential or integral system it must satisfy, and (iii)
how it couples to the mechanics to influence the flow. Despite the
various models tried, none of the aforementioned approaches
have been able to demonstrate quantitative predictivity in arbi-
trary geometries.
Recently, finite-size effects in emulsions and bubble rafts have

been addressed using the concept of size-dependent fluidity
(inverse viscosity) (31–33), which introduces a nonlocal term
involving a microscopic length scale. Analogously, the “granular
fluidity” g may be introduced and defined as g= _γ=μ, relating the
shear flow rate _γ to what drives the flow, which for a granular
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material is μ. Recent work (21), using 2D discrete-element
method (DEM) simulations in several different geometries, in-
dicated that g satisfies a universal grain-size-dependent differ-
ential relation roughly analogous to that observed for emulsions
(32). The relation accounts for the observed loss of uniqueness in
the relation between μ and I (19), while collapsing to the local
law in uniform flows.
On the basis of these observations, in this work, we propose

a continuum-level, 3D constitutive system for well-developed
granular flow. Our model builds in the successes of the local
rheology, but extends the range of applicability to I. 10−3 through
the introduction a differential relation for the granular fluidity,
enabling an accounting of size effects. Following similar assump-
tions to those of the local rheology, we consider grains that are (i)
spherical, (ii) quasi-monodisperse, and (iii) stiff enough so that the
wave speed is much greater than the deformation speed. In addi-
tion to the material parameters of the local rheology, μs and b, we
introduce a single dimensionless parameter, A, the nonlocal am-
plitude, which characterizes the cooperativity of flow. Upon cali-
brating this parameter, the model predictions match numerous
experimental flows of glass beads in multiple families of geome-
tries, including the split-bottom family (4–6), whose flow fields
have until now resisted continuum description. Our approach has
the joint benefits of being based on physically grounded micro-
scopic arguments, while being straightforward enough for tracta-
ble numerical implementation in arbitrary geometries and carrying
demonstrable predictivity among a variety of test cases.

Continuum Model
Define the strain-rate tensor as _γij = ð∂vi=∂xj + ∂vj=∂xiÞ=2, where vi
is the velocity field and xi is the spatial coordinate, and the Cau-
chy stress tensor is σij = σji. Define the strain-rate deviator as
_γ′ij = _γij − ð1=3Þð _γkkÞδij and the stress deviator σ′ij similarly. The
equivalent shear stress and equivalent shear rate are defined,
respectively, by τ= ðσ′ijσ′ij=2Þ1=2 and _γ = ð2 _γ′ij _γ′ijÞ1=2, and we use the
spherical pressure P = −σkk/3. The ratio μ = τ/P is now the
Drucker–Prager stress ratio, which we adopt along with g= _γ=μ.
It has been observed in DEM simulations of multiple non-

uniform, well-developed slow-flow environments (19, 34) that,
unlike the μ vs. I relationship, a relatively predictable, one-to-one
dependence of the packing fraction ϕ on the pressure P and
shearing rate _γ emerges, which may be expressed as ϕ = ϕ(I),
indicating that steady flow progresses at constant volume, i.e.,
_γkk = 0, which we shall adopt. This is a common assumption in
well-developed granular flow modeling (17, 18, 23–25, 28), pro-
viding considerable simplification, while generally still providing
good steady-flow predictions in a wide variety of environments.
With these definitions, the stress is given by

σij = −Pδij + 2
P
g
_γij: [2]

Implicit in Eq. 2 is that the tensorial directions of σij and _γij are
related through codirectionality (19, 34). We propose that the
granular fluidity g is governed by the differential relation

∇2g=
1
ξ2

ðg− glocÞ; [3]

where gloc = _γlocðP; μÞ=μ is the local granular fluidity, with
_γlocðP; μÞ given by Eq. 1, and ξ is the cooperativity length for
plastic rearrangement, which is directly proportional to d,
thereby imposing a length scale on the flow. Note that in the
absence of any stress or flow gradients, the system reduces to the
local law as it should. Where the local law has no contribution
(i.e., gloc = 0, μ < μs), the differential relation Eq. 3 becomes a
linear equationwhose solutions can always be scaled by a constant.
This gives precisely the slow-flow, rate-independent effect observed.
And due to the Laplacian term, flow naturally spreads near μs with
a decay determined by ξ, instead of a sharp flow cutoff.

The physical basis of Eq. 3, as derived mathematically for the
viscoplastic behavior of pressure-insensitive amorphous mate-
rials with interest in emulsions (31), is based on the statistics of
a kinetic elasto-plastic (KEP) mechanism. The microscopic
picture behind the KEP mechanism is similar to that of soft
glassy rheology (SGR) (35) with a few key differences. Like
SGR, the KEP mechanism envisions mesoscopic regions of
material that may undergo local elastic loading as well as
plastic yielding and subsequent relaxation to a new local
equilibrium position. Unlike SGR, yielding events are not as-
sumed to be “thermally activated” by an effective “noise tem-
perature.” In fact, the interactions between mesoscopic regions
are explicitly accounted for by positing that localized yield
events induce elastic modifications in nearby regions, leading to
a highly cooperative picture of flow. Invoking this microscopic
description, a continuum-level differential relation in the same
vein as Eq. 3 is derived. It is this notion of cooperativity, i.e.,
flow inducing flow, that directly leads to its differential nature.
Other nonlocal models stem from a similar microscopic picture
(23, 36, 37).
Instead of rederiving the KEP mechanism here for dry grains,

we adapt its final result for pressure-insensitive emulsions to our
purposes by using the pressure-dependent granular fluidity g.
The microscopic picture for this mechanism as applied to
a granular material may be imagined as follows. A localized zone
of plastic grain rearrangement produces nonlocal elastic stress
fluctuations extending ∼ξ away from the zone. These fluctuations
superpose with the stresses due to applied loads and can cause
a neighboring material element to flow when otherwise it would
not. Consequently, g, the relative susceptibility to flow in a
granular medium, has a contribution due to the local stress
(gloc) and one connecting to how much neighboring material is
moving (ξ2∇2g).
Importantly, the statistical argument (31) concludes that ξ is

not a constant, but in fact a specific function of the local stress.
We have adopted a similar functional form, using μ as the stress
variable as appropriate for a granular material,

ξðμÞ= Affiffiffiffiffiffiffiffiffiffiffiffiffiffijμ− μsj
p d; [4]

with A a dimensionless constant, the nonlocal amplitude, char-
acterizing the cooperativity of flow. The functional form of Eq. 4
is consistent with past work on length-scale effects in amorphous
materials (36–40) in that it diverges at a yield (or jamming)
point; however, the precise definition of the length scale as well
as the nature of the power-law divergence varies among these
studies. Our approach of taking ξ to diverge in μ with the −1/2
power law of Eq. 4 is consistent with the KEP argument (31) and,
from a pragmatic perspective, provides the best description of
experimental data. (See SI Text and Fig. S1 for an expanded
discussion.) We emphasize that the divergence of ξ at μs does
not affect the well-behaved nature of Eq. 3. The nonlocal am-
plitude A is directly connected to the “elastic stress propagator”
in the KEP mechanism, which describes the precise form of non-
local stress fluctuations in nearby material due to yielding events.
Conceivably, A may be estimated from the explicit form of this
microscopic operator; however, in the present work, it is much
simpler to observe its value from flow data.
The system is closed mathematically by the usual equations

of motion, ∂σij=∂xj +ϕρsGi =ϕρs _vi, for Gi the acceleration of
gravity and ϕ the packing fraction, which we take here to be
near random close packing ϕ = 0.62 for quasi-monodisperse
spherical grains. To implement the system numerically, we have
custom-written a User Element within the Abaqus finite-element
package (41), which calculates g as an added degree of freedom
coupled to the stress/kinematic variables. We have developed a
3D continuum brick element and model all subsequently described
problems in three dimensions. For ease, we also neglect mac-
roscopic inertial effects ðϕρs _vi ≈ 0Þ due to our current interest in
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steady, slow-flow phenomena; however, it is straightforward to
include these effects if necessary for rapid flows. (SeeMaterials and
Methods and SI Text for further discussion of our finite-element
method procedures.) For the fluidity boundary conditions,
throughout this work, we assume the simplest, least disruptive case:
ni(∂g/∂xi) = 0 for ni the surface normal. (See SI Text for further
discussion of the granular fluidity boundary conditions.)

Numerical Solutions
Flows in the Split-Bottom Geometry—Shallow Layers. We first turn
attention to flows in the split-bottom geometry, pictured in
Fig. 1A. The geometry is an annular cell with fully rough walls
at inner radius Ri and outer radius Ro and an open top, having
a bottom that is split at some radius Rs. It is filled with grains
to a height H, and the outer portion (gray in Fig. 1A) is then
rotated at a rate Ω, holding the center portion (blue in Fig. 1A)
stationary. The geometry was introduced by Fenistein and van
Hecke (4), and its flow features and wide shear bands have
challenged granular materials researchers for much of the last

decade, becoming the subject of many papers (5–7, 20, 42–47).
No continuum model has successfully described split-bottom
flows (47). In fact, all local constitutive relations are intrin-
sically insufficient, predicting an infinitely sharp shear band for
slow steady Ω (20, 42), whereas the observed flow is always
smooth with a wide shear zone (4). Following the experiments,
we focus on matter composed of quasi-monodisperse spherical
glass beads. The local relation parameters for glass beads are
taken from existing simple shear data (48): μs = 0.3819, b =
0.9377, and ρs = 2,450 kg/m3. By fitting to the experimental
data for shallow flows in the split-bottom cell, we take A = 0.48
and use this value throughout the paper. We emphasize that
A is the only model parameter that was not known in advance.
We first simulate shallow layers in the split-bottom cell on the

basis of the configurational parameters used in experiments (4,
5), taking Ri = 65 mm, Rs = 85 mm, Ro = 105 mm, and Ω = 0.16
rad/s. We consider four particle sizes d = 0.35, 0.8, 1.2, and 2.2
mm, which are taken to be representative of the four quasi-
monodisperse mixtures of spherical glass beads used in experi-
ments (5), and a variety of filling heights H, ranging between
5 mm and 35 mm. We neglect combinations of H and d for which
H/d < 5 as well as higher values of H in which the shear band
region localizes to the inner wall, which is beyond the scope of
interest here (but included in Fig. S2). In total, we consider 22
combinations. (See Materials and Methods for further simulation
details.)
For each combination of H and d, we calculate the steady-state

flow predictions. We introduce the quantity ω = vθ/rΩ, referred to
as the normalized revolution rate, which varies from 0 (static) to 1
(rotating at Ω). To demonstrate typical calculated flow fields,
contour plots of ω at steady state in the r-z plane are shown in Fig.
1 B and C for d = 0.35 mm andH = 10 and 30 mm, respectively. A
shear band is clearly observable, emanating from the split along
the bottom of the cell. The shear band gradually moves inward
toward the inner wall with increasing height, accompanied by
a broadening of the shear-band width before terminating at the
top surface. For the purpose of comparing to experiments, we
introduce the surface flow, defined as ω(r, z =H). Fig. 1D displays
the excellent quantitative agreement between the predictions of
the theory and experimental data of surface flows for d = 0.35 mm
and H = 10, 20, and 30 mm.
Importantly, van Hecke and coworkers (4, 5) have shown that

the dependence of ω on r along the top surface is universal for
the shallow filling heights under consideration and is extremely
well described by an error function. Next we show that all 22
calculated surface flows may be quantitatively normalized to an
error function of the form

ωðλÞ= 1
2
+
1
2
erfðλÞ; for λ=

r−Rc

W
; [5]

where Rc is the shear-zone center and W is the shear-zone width.
Fig. 2A shows ω vs. λ for all 22 simulations along with Eq. 5
plotted in green, and the quality of the normalization is excellent
(within 0.01 absolute error, Fig. S3).
The surface flows are well characterized by their shear-zone

center Rc and width W. Fig. 2A, Inset shows that the model ad-
equately captures the dependence of Rc on filling height and its
relative insensitivity to d. The experiments are characterized by
a power law (5): (Rs − Rc)/Rs = (H/Rs)

5/2. The relation between
W and H is strongly particle-size dependent, and model pre-
dictions are in excellent agreement with experiments, per Fig.
2B, where d = 0.35, 0.8, 1.2, and 2.2 mm from bottom to top.
When normalizing by d, as in Fig. 2B, Inset (plotted in log-log),
the model clearly captures the nondiffusive scaling evident in the
experimental data, which appears roughly like a 2/3 power law as
previously suggested (5). Further results for shallow layers, in-
cluding the steady-state torque and subsurface shear bands, are
included in SI Text and Figs. S4 and S5.

A

B C

D

Fig. 1. Flows in the split-bottom geometry. (A) Schematic of the split-bottom
geometry. The blue inner section is fixed, while the gray outer section rotates.
The side walls and bottom are rough, whereas the top is open. (B and C)
Theoretical flow profiles in the r-z plane for (B) H = 10 mm and (C) H = 30 mm
with Rs = 85 mm and d = 0.35 mm. (D) Comparison of surface flows to ex-
perimental data (4) for H = 10, 20, and 30 mm.
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Flows in the Split-Bottom Geometry—Deep Layers. For deeper lay-
ers, as Rc moves farther inward, the symmetry of the universal
surface flow profile is broken. To examine this transition in our
simulations, we match conditions to the corresponding experi-
ments (6), where Ri = 0 (i.e., no inner wall), Ro = 105 mm, and
d = 1.2 mm. [We note that Fenistein et al. (6) report a grain size
of d= 0:8 mm; however, that would make the data reported in
ref. 6 inconsistent with their previously reported data (5). Thus,
we take d= 1:2 mm, which is consistent with the previously
reported data.] We consider Rs = 95 mm with H ranging from
48 to 78 mm and Rs = 65 mm with H ranging from 40 to 52 mm.
The calculated flow profiles for Rs = 95 mm and H =58, 68, and
78 mm are shown in Fig. 3 A, B, and C, respectively. As pictured
in Fig. 3A, shallower layers display the previous shallow flow
phenomena, i.e., a shear band terminating at the top surface.
However, as H increases (Fig. 3 B and C) a gradual transition
takes place, leading to a flow characterized by a quasi-stationary

central dome. The transition can be quantified through the ro-
tation of the top center point, ωp ≡ ω(r = 0, z = H). Our model
prediction gives an excellent match to the experimentally ob-
served dependence of ωp on H, as in Fig. 3D, for multiple values
of Rs. (For a comparison of surface flows, see Fig. S6.)

Annular Shear Flow. Whereas a significant degree of geometric
variation exists among the family of split-bottom cells, the point
that the model is geometrically general and predictive is made
more clear by comparing it to flows of glass beads in different
families of geometries without adjusting the parameterA. As a first
validation test, we consider 3D annular shear flow, pictured
schematically in Fig. 4A, Inset. The annular cell has rough walls at
inner radius Ri and outer radius Ro, an open top at height H, and
a perfectly smooth floor. The inner wall is rotated at a rate Ω,
giving rise to a wall-located shear band. In keeping with the con-
figuration used in the 3D annular shear flow experiments of Losert
et al. (8), we take Ri = 51 mm, Ro = 63 mm, and d = 0.75 mm. We
also takeH = 10 mm (although this geometrical parameter has no

A

B

Fig. 2. Comparison of theory and experimental results (5) for shallow layers
in the split-bottom geometry. (A) For 22 different combinations of H and d,
the surface flow profiles normalize extremely well onto an apparent error
function. (Inset) Comparisons of the location of shear-band center Rc. (B)
Shear-band width W vs. H for d = 0.35, 0.8, 1.2, and 2.2 mm, bottom to top.
(Inset) (log-log) Normalized by d. A 2/3 power-law is plotted for reference.

A

A

B

B

C

C
D

Fig. 3. Comparison of theory and experimental results (6) for deep layers in
the split-bottom geometry. (A–C) Theoretical flow profiles in the r-z plane for
(A) H = 58 mm, (B) H = 68 mm, and (C) H = 78 mm with no inner wall (Ri = 0),
Rs = 95 mm, and d = 1.2 mm. (D) Variation of ωp ≡ ω(r = 0, z = H) with H/Rs

quantitatively predicted by the nonlocalmodel forRs= 65mmandRs= 95mm.
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observable effect on the simulated surface flow) andΩ= 0.16 rad/s.
The value of the outer radius Ro is large enough not to affect the
result, but the dimensionless quantity Ri/d = 68 is important in
determining the width of the wall-located shear band. The com-
parison of themodel’s steady-state prediction along the top surface
(z = H) to experimental data (8) is shown in Fig. 4A. We plot the
tangential velocity vθ normalized by the inner wall speed ΩRi as
a function of the normalized distance from the inner wall, (r−Ri)/d.
The experimental results represent a variety of inner wall speeds
(note the near rate-independent response).

Linear Shear Flow with Gravity. As a final validation test, we consider
the flow under a plate being dragged over a bed of gravitationally
loaded material, shown schematically in Fig. 4B, Inset. The rough
plate sits atop the bed, imparting a pressure of Pwall (due to the
weight of the plate), and is dragged tangential to the top surface at
a velocity vwall, driving shear flow. The bed is much deeper than the
grain size d. Due to the gravity-induced pressure gradient in the
z-direction, a shear band develops immediately below the plate,
decaying into the bulk. In keeping with the parameters used in the
plate-dragging experiment of Siavoshi et al. (10), we take Pwall =
102.3 Pa and d = 1 mm so that ϕρsGd/Pwall = 0.1457. The wall
velocity is vwall = 0.3 mm/s. Further simulation details may be found
in Materials and Methods. A comparison of the flow prediction of
the model to the experimental data (10) is shown in Fig. 4B. We
plot the horizontal velocity v normalized by the wall velocity vwall
against the normalized coordinate beneath the plate z/d.

Conclusion
We have proposed a simple, size-dependent, continuum-level, 3D
constitutive theory for well-developed, dense granular flows.
Central to the theory is the granular fluidity, an inverse viscosity
scaled by the pressure, which obeys a diffusive differential relation.
Themicroscopic basis of themodel relates to the notion that “flow
induces flow”; i.e., plastic rearrangements cause stress fluctuations
that can induce plastic events in neighboring material. The model
has been implemented in a commercial finite-element program
(41), and with one experimentally measured material parameter,
the nonlocal model quantitatively predicts hundreds of experi-
mental flows in completely different geometries without adjust-
ment, including all salient features of split-bottom flow.
One major assumption of the model is that steady flow pro-

gresses at constant volume. This assumption is exactly satisfied in
each of the flows considered in the present work, as well as other
common settings such as chutes and heap flow. For flow geom-
etries such as silos, hoppers, and rotating drums, the flow field is
steady from an Eulerian perspective, but Lagrangian material
elements experience changes in the flow rate as they move
through the steady Eulerian field. However, flow data in many
silo geometries (34) show a rapid approach to the critical packing
fraction, such that ϕ = ϕ(I) is well satisfied throughout. More-
over, other steady rheological approaches, making the same
constant volume assumption, have found success in describing
silo flows (18, 49), and therefore we fully expect our geometrically
general model to be applicable to these technologically relevant
flow configurations as well.
There remain several avenues for refinement. Although our

theory can model developing flows, it has not been designed to
be quantitatively predictive in this regard; fully describing de-
veloping or unsteady flows, including shear strengthening/weak-
ening and the effect of the initial state, requires the addition of
a critical-state-like model (11). It remains to be seen whether
critical-state effects may be incorporated entirely into the local
response or whether the fluidity relation in unsteady flows has
a separate dynamic term; i.e., a term proportional to _g in Eq. 3.
To eventually extend our model to other amorphous mate-

rials, a justification based on first-principles continuum thermo-
mechanics is desired. Our belief is that nonlocal effects, through g,
give a micoscopic source for power expenditure and that the dif-
ferential relation Eq. 3 is a microforce balance obtainable from
a virtual power argument.
A clearer microscopic understanding of the fluidity boundary

conditions accompanying Eq. 3 is needed. Applying our model to
flows down rough inclined surfaces will likely elucidate the role of
the fluidity boundary condition. It is well known that flows of thin
layers of grains down an inclined surface exhibit a size effect
whereby thinner layers requiremore tilt to beginflowing (50), and it
is possible that the nonlocal fluidity approach justifies this behavior
as a consequence of the lower boundary condition. Approaches
based on kinetic theory have had success attributing this phenom-
enon to the effect of the bottom wall (27), which is encouraging.
Finally, our 3D theory is built upon the common assumption of

“codirectionality,” which is the most straightforward generaliza-
tion to three dimensions. This assumption embodies two com-
ponents: (i) The strain-rate deviator and stress deviator tensors
are coaxial (share principal directions) and (ii) the ratios of their
principal values are equal. DEM simulations have observed slight
deviations from both of these assumptions, namely ∼5% non-
coaxiality (45) and the small “normal stress differences” (43). A
next iteration of the model would account for these effects.
In closing, we point out the benefits of using an upscaled con-

tinuum approach like the one presented herein. We expect signif-
icant improvements in computation time to be achieved by using
such a method compared with discrete particle approaches. As
such, it should provide a useful and expeditious tool in geotechnical
design and industrial applications where granular flow modeling on
large space scales is required.

A

B

Fig. 4. Comparison of theory and experimental results (8, 10) in other ge-
ometries. (A and B) Theory (solid line) vs. experiments (symbols) for 3D flows
in (A) annular shear flow with Ri/d = 68 and (B) shear flow with gravity
present with ϕρsGd/Pwall = 0.1457.
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Materials and Methods
Finite-Element Implementation. We use the Abaqus finite-element software
package (41) and its User Element (UEL) subroutine capability as a tool for
solving general boundary-value problems. The governing equations are the
equations of stress equilibrium and the nonlocal fluidity relation (Eq. 3),
which are first cast in the corresponding weak form. The nodal solution
variables are taken to be the displacements and granular fluidity, which are
interpolated inside each element. Using a standard Galerkin approach, a set
of element-level residuals may be derived. The system of coupled, nonlinear
equations is solved iteratively via a Newton–Raphson procedure, using the
Abaqus/Standard solver. We have developed a 3D, linear, eight-noded
continuum brick user element for the coupled problem. Explicit details of
the weak form and finite-element discretization are found in SI Text.

Simulation Details for Annular Cells. Here we discuss the details of our finite-
elementsimulations inannularcells, includingall split-bottomgeometriesaswell
as annular shear. Regarding displacement boundary conditions, on the side
walls, the displacements in the r- and θ-directions are prescribed to match the
given wall motion. For the split-bottom simulations, the r- and θ-displacements
are also prescribed on the floor of the cell, whereas for the case of annular
shear, these degrees of freedom are left unprescribed. In all cases, material
may slide without resistance up and down the walls, but the displacement in
the z-direction is zero on the floor. The top surface is set to be traction-free.
Because flow, stress, and fluidity are symmetric in the θ-direction, the be-
havior as seen in a downward cut through the annular trough represents the

global behavior. A narrow section of the annulus (total angle 0.1°) is simulated
using periodic boundary conditions on the front and back faces—nodal dis-
placements on the front face are constrained to be identical to those on the
back face except rotated appropriately by 0.1° and nodal fluidities on the front
face are constrained to be identical to those on the back face. The section is
modeled using amesh resolution of 0.25d in the r-z direction and a thickness of
one element in the θ-direction. This resolutionwas confirmed to producemesh-
independent simulation results. We are interested only in the steady-state flow
profiles. To ensure that the steady state is attained, we run the simulations to
a final outer section rotation angle of 4°. At this point, no variation is observed
in the flow field, and the applied torque has reached a constant value. Further
simulation details for the split-bottom cell may be found in SI Text.

Simulation Details for Linear Shear with Gravity. We consider a single column
of 100 elements in the z-direction, applying the constraint that both the
displacements and the fluidity be functions of only z. The column depth is
taken to be 10 mm (larger depths produce identical results), and the bottom
nodes are fixed whereas the wall velocity is prescribed to the top nodes. The
simulation is run to a final lateral displacement of 10 mm to ensure that the
flow reaches steady state.
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