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Variable Frame Based Max-Weight Algorithms

for Networks with Switchover Delay

G. Çelik, S. Borst, P. Whiting, E. Modiano

Abstract—This paper considers the scheduling problem for net-
works with interference constraints and switchover delays, where
it takes a nonzero time to reconfigure each service schedule.
Switchover delay occurs in many telecommunication applications
such as satellite, optical or delay tolerant networks (DTNs).
Under zero switchover delay it is well known that the Max-Weight
algorithm is throughput-optimal without requiring knowledge
of the arrival rates. However, we show that this property of
Max-Weight no longer holds when there is a nonzero switchover
delay. We propose a class of variable frame based Max-Weight
(VFMW) algorithms which employ the Max-Weight schedule
corresponding to the beginning of the frame during an interval of
duration dependent on the queue sizes. The VFMW algorithms
dynamically adapt the frame sizes to the stochastic arrivals and
provide throughput-optimality without requiring knowledge of the
arrival rates. Numerical results regarding the application of the
VFMW algorithms to DTN and optical networks demonstrate a
good delay performance.

I. INTRODUCTION

Dynamic scheduling of servers in stochastic networks with

interference constraints has been a very active field [3],

[4],[5],[9],[10]. However, the significant effects of server

switchover delays or the time to reconfigure schedules have

been largely ignored. Switchover delay occurs in many prac-

tical communications systems. In satellite systems it can take

the satellite antenna about 10ms to switch from one ground

station to another [2]. Electronic beamforming in wireless

radios and laser tuning for optical transceivers can take µs-ms

[3], [2]. Furthermore, in DTNs significant switchover delays

occur when mobile servers (e.g., unmanned aerial vehicles

(UAV)) are used as data gatherers from sensors in a field. We

consider a general queueing model for stochastic networks

which include wireless uplinks/downlinks, optical networks,

or DTNs as special cases and study the impact of switchover

delays on optimal policies.

Scheduling algorithms for wireless networks with inter-

ference constraints have received considerable attention in

the past two decades. The seminal papers by Tassiulas and

Ephremides [9], [10] characterized the stability region of such

systems and proved throughput-optimality for the Max-Weight

scheduling policy that works without requiring arrival rate
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Fig. 1: System model with N = 4 queues and M = 3 servers. Server 2 is
forced to be idle due to interference constraints.

information. These results were generalized to many different

settings such as power allocation and routing or optimal

scheduling in switches (e.g., [5], [6], [8]). These models do

not consider the server switchover delays and we show in

Section II-A that they fail to provide stability when there are

switchover delays.

For a simple two-queue system, [4] shows that simultaneous

presence of randomly varying connectivity for users and

switchover delays for servers reduces the stability region of

the system significantly. It is known that in the absence of ran-

domly varying connectivity, switchover delay does not reduce

the stability region [3]. However, the celebrated Max-Weight

policy is not throughput-optimal as it decides to reconfigure

the schedule too often, incurring large throughput losses during

reconfiguration. In order to overcome the negative effects of

reconfiguration delays, [3] considered a frame based scheme

which persists with a Max-Weight schedule during a frame

of fixed duration. This scheme was shown to be throughput-

optimal when the arrival rate vector was known in advance.

The fluid limit of the system was considered in [3] and

throughput-optimality was established under rate stability1.

In this paper we propose a new class of policies called

Variable Frame Based Max-Weight (VFMW) policies that

operate over frames of dynamically changing duration based

on queue states and show that they are throughput-optimal

without requiring knowledge of the arrival rates for systems

with nonzero switchover delay. Setting the frame size as a

suitably increasing sublinear function of the queue lengths dy-

namically adapts the frame duration to the stochastic arrivals.

This scheme gives infrequent reconfiguration decisions for

large queue lengths, while enabling frequent reconfiguration

1A queue of length Qi(t) at time t is rate stable if limt→∞ Qi(t)/t = 0.
This is a weaker notion of stability as compared to strong stability in Definition
1 which implies bounded first moments of a stationary measure.



for small queue lengths resulting in good delay performance.

This paper is organized as follows. In Section II we in-

troduce the system model and provide an example show-

ing that the Max-Weight policy is not throughput-optimal.

We introduce the class of VFMW algorithms and prove its

throughput-optimality in Section III. We present numerical

examples regarding the application of the VFMW algorithm

to DTN and Optical Networks in Section IV.

II. QUEUEING MODEL AND PRELIMINARIES

Consider a discrete time (slotted) system of N parallel

queues served by M identical servers as in Fig. 1. Let Aℓ(t),
denote the number of arrivals to queue ℓ at time slot t. We

assume that the processes Aℓ(t) can take nonnegative real

values, are independent of each other and are i.i.d. over time

with E{Aℓ(t)
2} ≤ A2

max, E{Aℓ(t)} = λℓ ≤ Amax, ∀ℓ =
1, · · · , N . We assume that it takes any server Tij slots to

switch from queue i to queue j. We define the system

reconfiguration time as Tr , max{Tij|i, j ∈ {1, ..., N}}.

The interference constraints in the system are given by the set

of all possible activation vectors, I = {I1, ..., I|I|}, where I
consists of vectors of at most M non zero entries. We include

the zero vector I = 0 in I for convenience. If at time slot

t the activation vector I(t) = [D1(t), D2(t), ..., DN (t)]′ ∈ I
is used, then min {Dℓ(t), Qℓ(t)} packets depart from queue

ℓ. We assume there is a uniform departure rate bound, µmax

over all schedules and queues: Dℓ(t) ≤ µmax, ∀ℓ, t. Also let

µmin be the minimum level of departure rate given to an active

queue over all schedules. Finally, we assume that the queues

are initially empty and that the arrivals take place after the

departures in any given time slot.

Definition 1 (Strong Stability [5], [6]): The system is

strongly stable under a given control policy π if

lim sup
T→∞

1

T

T−1
∑

t=0

N
∑

ℓ=1

Eπ[Qℓ(t)] < ∞.

Note that for the case of integer arrival and service variables,

this stability criterion implies the existence of a long-run

stationary measure with bounded first moments [5].

Definition 2 (Stability Region [5], [6]): The stability re-

gion Λ is the closure of the set of all arrival rate vectors

λ = [λ1, λ2, ..., λN ]′ such that there exists a control policy

that stabilizes the system under λ.

A policy is said to be throughput-optimal if it stabilizes the

system for all input rates strictly inside Λ.

When Tr = 0, the stability region of this system, Λ0,

consists of all arrival rate vectors λ in the convex hull of

the vectors in I [5], i.e., Λ0 = {λ|λ ∈ Conv{I}}. The

Max-Weight algorithm applies the activation vector I∗(t) =
argmax

I∈I
Q(t).I in each time slot, where . denotes the dot

product. When Tr > 0, we lose service opportunities during

the reconfiguration times. Therefore, the stability region of our

system satisfies Λ ⊆ Λ0. We will establish that Λ = Λ0.

A. Instability of Ordinary Max-Weight Algorithm

In this section we show the instability of the Max-Weight

policy for a system of 2 queues and a single server with i.i.d.

Bernoulli arrivals with arrival probability p < 1/2. The set

of available activation vectors is I = {(0, 0), (1, 0), (0, 1)},

and the switching delay is Tr = 1 slot. The stability region

of this simple system is {p|p ≤ 1/2} and it is achieved by

the policy that serves the queues until exhaustion. The Max-

Weight policy decides to switch whenever the boundary Q1 =
Q2 is crossed. By construction, there are an infinite number

of service switches almost surely (a.s.) and we have

|Q1(t)−Q2(t)| ≤ 3, ∀t. (1)

Lemma 1: Max-Weight policy is not throughput-optimal.

Furthermore, there exists an arrival rate p̂ < 0.5 such that

both queues grow to infinity a.s. for all p > p̂.

We omit the proof for brevity but highlight the basic ideas.

The probability of having no arrivals at the queue in service

and 2 arrivals at the other queue during two consecutive time

slots is p2(1 − p)2 and such an arrival sequence leads to

reconfiguration. Hence the fraction of time slots that the server

spends switching is bounded from below by 1/3p2(1 − p)2,

which converges to 1/48 as p tends to 1/2, while it must be

less than 1− 2p in order for the system to be stable.

For the second part of the lemma, let tk, k = 0, 1, 2, ... be

the kth reconfiguration epoch. It is easy to show by a drift

analysis over the expected time to reconfiguration that

E [Q1(tk+1) +Q2(tk+1)|Q(tk)] ≥ Q1(tk)+Q2(tk)+η, (2)

as long as p > p̂ = 0.421 where η is a fixed constant. From

(2), it follows that the process Rk
.
= 1

Q1(tk)+Q2(tk)+1 ≤ 1 is

a nonnegative supermartingale for p > p̂ :

E [Rk+1|Rk] ≤ Rk − η′R2
k, (3)

where η′ is an appropriate constant. Therefore, limk Rk exists

a.s. [1] and so does limk Q1(tk)+Q2(tk). Using a telescoping

series argument over k = 0, 1, 2, ..., and Fatou’s lemma gives

lim infk Rk = 0 a.s. and since the limit exists we have

limk Q1(tk) + Q2(tk) = ∞ a.s. Therefore, using (1) and

|Qℓ(t) − Qℓ(tk)| ≤ 4 for tk ≤ t < tk+1, we have that the

number of packets in both queues diverges to infinity a.s.

III. VARIABLE FRAME BASED MAX-WEIGHT POLICY

We propose a class of policies termed the Variable Frame

Based Max-Weight (VFMW) policies that are throughput-

optimal without requiring the arrival rate information. The

VFMW policies operate over frames whose duration is dy-

namically changing based on queue states. Specifically, let tk
be the first slot of the kth frame, let Q(tk) be the queue lengths

at tk and let S(Q(tk))
.
=
∑

iQi(tk). The VFMW policy

calculates the Max-Weight schedule with respect to Q(tk) and

applies this schedule during the frame, where the frame length

is set as a sublinear and increasing function of S(Q(tk)). The

VFMW policy is defined in detail in Algorithm 1.



Algorithm 1 VFMW ALGORITHM WITH FRAME LENGTH

χk = Tr + F (S(Q(tk))):

1: Find the Max-Weight activation vector at time tk, I∗(tk):

I∗(tk) = argmax
I∈I

Q(tk).I

2: Invoke reconfiguration for the next Tr slots.

3: Apply I∗(tk) for an interval of duration F (S(Q(tk)))
slots where χk

.
= Tr + F (S(Q(tk))), F (.) > 0 is a

monotonically increasing function that satisfies

lim
y→∞

F (y)

y
= 0.

4: Repeat above for the next frame starting at tk+1 = tk+χk.

The VFMW algorithm sets the frame length as a suitably

increasing sublinear function of the queue sizes, which dynam-

ically adapts the frame duration to the stochastic arrivals. For

instance, χk = Tr+(
∑

i Qi(tk))
α with α ∈ (0, 1) satisfies the

criteria for the frame duration. Under the VFMW policy the

frequency of service reconfiguration is small when the queue

sizes are large, limiting the fraction of time spent to switching.

Note that this frequency should not be too small otherwise the

system becomes unstable as it is subjected to a bad schedule

for an extended period of time. Indeed, frame sizes linear in

queue lengths do not guarantee stability in our framework.

When the queue sizes are small, the VFMW policy gives

frequent reconfiguration decisions, becoming more adaptive

and providing a good delay performance.

Theorem 1: The VFMW policy stabilizes the system for all

arrival rates λ ∈ Λ0 without requiring knowledge of λ.

An immediate corollary to this theorem is as follows:

Corollary 1: Λ = Λ0.

The proof of Theorem 1 is given in the Appendix and

is presented using the frame length function χk = Tr +
(
∑

iQi(tk))
α for a fixed α ∈ (0, 1) for ease of exposition.

It is based on establishing a negative drift over the switching

epochs tk using a quadratic Lyapunov function, and then

utilizing this result to establish stability of the overall system.

It is novel in that the proof performs a drift analysis over a

variable length interval whose duration is set as a function of

the queue sizes. The basic intuition behind the proof is that

if the queue sizes are large, the VFMW policy accumulates

sufficient negative drift during the frame, which overcomes

the cost accumulated during the reconfiguration time. Note that

choosing the frame length as a sublinear function of the queue

sizes is critical. This is because the VFMW algorithm uses the

Max-Weight schedule corresponding to the beginning of the

frame, which “loses weight” as the frame goes on. Therefore,

one needs to make sure that the system is not subjected to

this “light-weight” schedule for too long. In particular, frame

lengths sublinear in queue sizes work, however, frame lengths

that are linear in queue sizes do not guarantee stability.

We establish additional results when the arrival and depar-
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Fig. 2: The total average queue size for (a) the Max-Weight policy and (b)
the VFMW policy for 2 queues and Tr = 2 slots.

ture processes have extra structure:

Corollary 2: When the arrivals and service rates take in-

teger values, and there is a positive probability of no arrivals

to each queue, we have the following:

• the queues are all empty infinitely often with finite mean

recurrence times,

• the queue sizes follow an irreducible and positive-

recurrent Markov chain,

• the stationary measure of the Markov chain has bounded

first moments.

The proof of these results is omitted for brevity.

The VFMW algorithm has much lower computational com-

plexity than the ordinary Max-Weight algorithm since it per-

forms scheduling computation only once per frame. As first

suggested in [7], by using out-of-date queue length informa-

tion, the VFMW algorithm can be implemented to perform

the computation of the next schedule during the current frame,

without reducing the stability region. Therefore, letting CMW

denote the computational complexity of the ordinary Max-

Weight algorithm per time slot, the VFMW algorithm has

CMW /χ computational complexity per time slot, where χ is

the steady-state expected frame length.

IV. NUMERICAL RESULTS

We performed simulation experiments that determine aver-

age queue occupancy values for the VFMW policy, the ordi-

nary Max-Weight policy and the Max-Weight policy with fixed



frame sizes (MWFF). The average queue occupancy of queue

ℓ over Ts slots is given by 1
Ts

∑Ts

t=1 Qℓ(t) and the frame length

for the VFMW policy is chosen as χk = Tr+(
∑

iQi(tk))
0.9.

Through Little’s law, the long-run packet-average delay in

the system is equal to the time-average number of packets

divided by the total arrival rate into the system. We used the

2-queue network described in Section II-A, except that we

have different Bernoulli arrivals to each queue and that the

switchover delay Tr is taken to be 2 or 20 in the experiments.

In all the reported results, we have (λ1, λ2) ∈ Λ with 0.01
increments, where Λ = {(λ1, λ2)|λ1 +λ2 ≤ 1}. Furthermore,

for each data point the simulation length was Ts = 1, 000, 000
slots.

Fig. 2 compares the stability regions of the VFMW and

the Max-Weight policies when Tr = 2. This experiment can

model single-hop optical networks where the reconfiguration

time Tr is usually small. Fig. 2 (a) confirms that the plain

Max-Weight policy is not throughput-optimal, and the points

corresponding to the sudden jump in the plot represent the

boundary of the region stabilized by the Max-Weight policy.

Fig. 2 (b) shows that the VFMW policy has bounded queue

sizes for all arrival rates inside the stability region Λ.

Fig. 3 presents the delay as a function of throughput for

the VFMW, Max-Weight and the MWFF (with frame sizes

T = 30 and T = 80) policies along the main diagonal line.

The switchover delay in this experiment, Tr = 20 slots, is

relatively large, which could represent a DTN application such

as mobile elements gathering data from sensors in a field.

Fig. 3 confirms that the VFMW policy is throughput-optimal

for this system and that the system quickly becomes unstable

under the Max-Weight policy as the arrival rate is increased.

In Fig. 3, the MWFF policy with frame length T = 30
has similar delay performance to the Max-Weight policy for

small arrival rates, however, under this policy the system

becomes unstable around λ1 = λ2 = 0.2. Increasing the frame

length improves the stability region of the MWFF policy at

the expense of delay performance for small arrival rates. As

opposed to fixed frame lengths, the VFMW policy dynamically

adapts the frame length as a function of the queue states and

stabilizes the system whenever possible, while providing a

delay performance that is similar to that of the Max-Weight

policy for small arrival rates.

V. CONCLUSIONS

We investigated the scheduling problem of multiple servers

over parallel queues under arbitrary interference constraints

and server switchover times. We showed that the Max-Weight

scheduling algorithm is not throughput-optimal for such sys-

tems and we developed the class of Variable Frame Based

Max-Weight (VFMW) algorithms that provide throughput-

optimality without requiring the knowledge of the arrival rates.

The VFMW algorithms persist with the Max-Weight schedule

during an interval of duration dependent on the queue sizes,

which dynamically adapts the frame sizes to stochastic arrivals

and provides a good delay performance in addition to stability.
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Fig. 3: Delay (total average queue size) vs the throughput under the Max-
Weight, MWFF and the VFMW policies for 2 queues and Tr = 20 slots.

In the future, we intend to develop low-complexity dis-

tributed algorithms for systems with nonzero reconfigura-

tion times that achieve a good performance. Finally, joint

scheduling and routing in multihop networks with interference

constraints and switchover times is another future direction.

APPENDIX-PROOF OF THEOREM 1

Consider the following χk-step queue evolution expression:

Qi(tk+χk)≤ max

{

Qi(tk)−

χk−1
∑

τ=0

Di(tk+τ), 0

}

+

χk−1
∑

τ=0

Ai(tk+τ).

To see this, note that if
∑χk−1

τ=0 Di(tk + τ), the total service

opportunity given to queue i during the kth frame, is smaller

than Qi(tk), then we have an equality. Otherwise, the first

term is 0 and we have an inequality. This is because some

of the arrivals during the frame might depart before the end

of the frame. We first prove stability at the frame boundaries.

Squaring both sides, using max(0, x)2 ≤ x2, ∀x ∈ ℜ, and

Di(t) ≤ µmax, ∀t we have

Qi(tk + χk)
2−Qi(tk)

2 ≤ χ2
kµ

2
max +

(

χk−1
∑

τ=0

Ai(tk + τ)
)2

− 2Qi(tk)
(

χk−1
∑

τ=0

Di(tk + τ)−

χk−1
∑

τ=0

Ai(tk + τ)
)

.(4)

Define the quadratic Lyapunov function L(Q(t)) =
∑N

i=1 Q
2
i (t), and the χk-step conditional Lyapunov drift

∆χk
(tk) , E

[

L(Q(tk + χk))− L(Q(tk))
∣

∣Q(tk)
]

.

Summing (4) over the queues, taking conditional expectation,

using the assumption E[Ai(t)
2] ≤ A2

max, ∀t (which also

implies E[Ai(t1)Ai(t2)] ≤
√

E[Ai(t1)]2E[Ai(t2)]2 ≤ A2
max

for all t1 and t2), we have

∆χk
(t) ≤ NBχ2

k + 2χk

∑

i

Qi(tk)λi

− 2
∑

i

Qi(tk)E

[

χk−1
∑

τ=0

Di(tk + τ)
∣

∣Q(tk)

]

(5)



where B = A2
max + µ2

max is a constant and we

used the fact that the arrival processes are i.i.d. over

time, independent of the queue lengths. Recalling that

the system is idle for the first Tr slots of the frame,

we have
∑

i Qi(tk)E
[

∑χk−1
τ=0 Di(tk + τ)

∣

∣Q(tk)
]

= (χk −

Tr)Q(tk).I
∗(tk). Using this in (5) we have

∆χk
(tk)≤NBχ2

k+2χk

∑

i

Qi(tk)λi−2(χk−Tr)Q(tk).I
∗(tk).

Now using the fact that for any arrival rate vector λ that is

strictly inside Λ0, there exist real numbers β1, ..., β|I| such

that βj ≥ 0, ∀j ∈ 1, ..., |I|,
∑|I|

j=1 β
j = 1− ǫ for some ǫ > 0

and λ =
∑|I|

j=1 β
jIj [3], we have

∆χk
(tk) ≤ NBχ2

k + 2χkQ(tk).





|I|
∑

j=1

βjIj





− 2(χk − Tr)Q(tk).I
∗(tk)

= χk

(

NBχk − 2

(

ǫ−
Tr

χk

)

Q(tk).I
∗(tk)

)

,

where we used the fact that Q(tk).I
∗(tk) ≥ Q(tk).I, ∀I ∈ I.

If χk = Tr + (
∑

i Qi(tk))
α ≤ Tr

ǫ
then ∆χk

(tk) ≤ C0 where

C0 is a constant. Otherwise, there exists a small δ1 > 0 such

that ǫ − Tr

χk
> δ1. Hence, for

∑

iQi(tk) >
T 1/α
r (1−ǫ)1/α

ǫ1/α
, we

use Q(tk).I
∗(tk) ≥

µmin

N

∑

i Qi(tk) to have

∆χk
(tk) ≤ χ2

kNB − 2χkδ1
µmin

N

∑

i

Qi(tk).

Therefore, there exists a constant C such that

∆χk
(tk) ≤ C − δ

(

∑

i

Qi(tk)

)1+α

, (6)

where δ , δ1µmin/N . Taking expectations with respect to

Q(tk), writing a similar expression over the frame boundaries

tk, k ∈ {0, 1, 2, ...,K}, summing them and telescoping these

expressions leads to

L(Q(tK))− L(Q(0)) ≤ KC − δ
K−1
∑

k=0

E





(

∑

i

Qi(tk)

)1+α


 .

Using L(Q(tK)) ≥ 0 and L(Q(0)) = 0, we have

1

K

K−1
∑

k=0

E





(

∑

i

Qi(tk)

)1+α


 ≤
C

δ
< ∞.

This implies that

lim sup
K→∞

1

K

K−1
∑

k=0

E





(

∑

i

Qi(tk)

)1+α


 ≤
C

δ
< ∞. (7)

This establishes stability (as defined in Definition 1) at the

frame boundaries tk, k ∈ {0, 1, 2, ...}.

Now, we have for all frames k ∈ {0, 1, 2, ...},

χk−1
∑

τ=0

∑

i

Qi(tk + τ) ≤

χk−1
∑

τ=0

∑

i

(

Qi(tk) +

χk−1
∑

τ1=0

Ai(tk+τ1)

)

.

Taking conditional expectation we have,

χk−1
∑

τ=0

∑

i

E [Qi(tk + τ)|Q(tk)] ≤ χk

∑

i

Qi(tk) + χ2
k

∑

i

λi,

where we used the fact that arrival processes are i.i.d. and

independent of the queue lengths. Recalling χk = Tr +
(
∑

iQi(tk))
α with 0 < α < 1 we have

χk−1
∑

τ=0

∑

i

E [Qi(tk + τ)|Q(tk)] ≤

(

∑

i

Qi(tk)

)1+α

+Tr

∑

i

Qi(tk)

+

(

Tr+
(

∑

i

Qi(tk)
)α

)2
∑

i

λi.

Now, for any given large T , let KT be the number of frames

up to and including T . We have

T−1
∑

t=0

∑

i

E[Qi(t)] ≤

KT−1
∑

k=0

E





(

∑

i

Qi(tk)

)1+α

+ Tr

∑

i

Qi(tk)





+

KT−1
∑

k=0

E





(

Tr+
(

∑

i

Qi(tk)
)α

)2




∑

i

λi.

Dividing both sides by T , using T > KT for any T , taking

the lim supT of both sides, using (7) and 0 < α < 1, we have

lim sup
T→∞

1

T

T−1
∑

t=0

N
∑

i=1

E [Qi(t)] < ∞. (8)

Therefore, the system is stable.
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