
MIT Open Access Articles

An asymptotically optimal algorithm
for pickup and delivery problems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Treleaven, Kyle, Marco Pavone, and Emilio Frazzoli. “An asymptotically optimal
algorithm for pickup and delivery problems.” In IEEE Conference on Decision and Control and
European Control Conference, 584-590. Institute of Electrical and Electronics Engineers, 2011.

As Published: http://dx.doi.org/10.1109/CDC.2011.6161406

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/81450

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/81450
http://creativecommons.org/licenses/by-nc-sa/3.0/

An Asymptotically Optimal Algorithm
for Pickup and Delivery Problems

Kyle Treleaven, Marco Pavone, Emilio Frazzoli

Abstract— Pickup and delivery problems (PDPs), in which
objects or people have to be transported between specific loca-
tions, are among the most common combinatorial problems in
real-world operations. One particular PDP is the Stacker Crane
problem (SCP), where each commodity/customer is associated
with a pickup location and a delivery location, and the objective
is to find a minimum-length tour visiting all locations with the
constraint that each pickup location and its associated delivery
location are visited in consecutive order. The SCP is a route
optimization problem behind several transportation systems,
e.g., Transportation-On-Demand (TOD) systems. The SCP is
NP-Hard and the best know approximation algorithm only
provides a 9/5 approximation ratio. We present an algorithm for
the stochastic SCP which: (i) is asymptotically optimal, i.e., it
produces a solution approaching the optimal one as the number
of pickups/deliveries goes to infinity; and (ii) has computational
complexity O(n2+ε), where n is the number of pickup/delivery
pairs and ε is an arbitrarily small positive constant. Our results
leverage a novel connection between the Euclidean Bipartite
Matching Problem and the theory of random permutations.

I. INTRODUCTION

Pickup and delivery problems (PDPs) constitute an im-
portant class of vehicle routing problems in which objects
or people have to be transported between locations in a
physical environment. These problems arise in many con-
texts such as logistics, transportation-on-demand systems,
and robotics among others. Broadly speaking, PDPs can
be divided into three classes [1]: 1) Many-to-many PDPs,
characterized by several origins and destinations for each
commodity/customer; 2) one-to-many-to-one PDPs, where
commodities are initially available at a depot and are destined
to customers’ sites, and commodities available at customers’
sites are destined to the depot (this is the typical case for
the collection of empty cans and bottles); and 3) one-to-one
PDPs, where each commodity/customer has a given origin
and a given destination.

When one adds capacity constraints to transportation ve-
hicles and disallows transshipments, the one-to-one PDP
is commonly referred to as the Stacker Crane Problem
(SCP). SCPs represent the route optimization problem be-
hind several transportation systems, including delivery truck
networks and transportation-on-demand systems, where users

Kyle Treleaven and Emilio Frazzoli are with the Laboratory for In-
formation and Decision Systems, Department of Aeronautics and Astro-
nautics, Massachusetts Institute of Technology, Cambridge, MA 02139
{ktreleav, frazzoli}@mit.edu.

Marco Pavone is with the Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, CA 91109
marco.pavone@jpl.nasa.gov.

This research was supported in part by the Future Urban Mobility project
of the Singapore-MIT Alliance for Research and Technology (SMART)
Center, with funding from Singapore’s National Research Foundation.

formulate requests for transportation from a pickup point to a
delivery point [2], [3]. While in general the set of requests to
be answered is not known a-priori, random models are often
used to describe the behavior of the underlying processes
generating requests. Even though the SCP arises in several
contexts, current algorithms for its solution are either of
exponential complexity or come with quite poor guarantees
on their performance. The main contribution of this paper
is to develop a near-optimal, polynomial-time algorithm for
the SCP where origin/destination pairs are (stochastically)
dispersed within an Euclidean environment.

Literature overview. We present the main results for the
SCP; results about its many generalizations can be found
in [1]. The SCP, being a generalization of the Traveling
Salesman Problem, is NP-Hard [4]. The problem is NP-Hard
even on trees, since the Steiner Tree Problem can be reduced
to it [5]. In [5], the authors present several approximation
algorithms with a worst-case performance ratio ranging from
1.5 to around 1.21. The 1.5 worst-case algorithm, based on a
Steiner tree approximation, runs in linear time. Recently, one
of the polynomial-time algorithms presented in [5] has been
shown to provide an optimal solution on almost all inputs
(with a 4/3-approximation in the worst case) [6]. Even though
the problem is NP-hard on general trees, the problem is in
P on paths [13]. For general graphs, the best approximation
ratio is 9/5 and is achieved by an algorithm in [7]. Finally, an
average case analysis of the SCP on trees has been examined
for the special case of caterpillars as underlying graphs [8].

Contributions. In this paper, we embed the SCP within
a probability framework where origin/destination pairs are
identically and independently distributed random variables
within an Euclidean environment. Our random model is
general in the sense that we consider potentially non-uniform
distributions of points, with an emphasis on the case that
the distribution of pickup sites is distinct from that of
delivery sites; furthermore, the graph induced by the ori-
gin/destination pairs does not have any specific restrictions.
We refer to this version of the SCP as the stochastic SCP.
The key contribution of this paper is to present the SPLICE
algorithm, a polynomial-time algorithm for the stochastic
SCP, which is asymptotically optimal almost surely; that is,
except on a set of instances of measure zero, the cost of
the tour produced by this algorithm approaches the optimal
cost as the number n of origin/destination pairs goes to
infinity. In practice, convergence is very rapid and SPLICE
computes solutions for the SCP within 5% of the optimal
cost for a number of pickup/delivry pairs as low as 100. The
SPLICE algorithm has complexity of the order O(n2+ε) (for

arbitrarily small positive constant ε), where n is the number
of pickup/delivery pairs. From a technical standpoint, the
results in this paper leverage a novel connection between
the Euclidean Bipartite Matching Problem and the theory of
random permutations.

Structure of the paper. This paper is structured as follows.
In section II we provide some background on the Euclidean
Bipartite Matching Problem and on some notions in probabil-
ity and group theory. We formally state the stochastic Stacker
Crane Problem and the objectives of the paper in section III.
In section IV we introduce and analyze the SPLICE algo-
rithm, a polynomial-time, asymptotically optimal algorithm
for the SCP, while in section V we present simulation results
corroborating our findings. Finally, in section VI, we draw
some conclusions and discuss directions for future work.

II. BACKGROUND MATERIAL

In this section we summarize the background material used
in the paper. Specifically, we review (i) permutations and
several of their properties, and (ii) the stochastic Euclidean
bipartite matching problem (EBMP).

A. Permutations

A permutation is a rearrangement of the elements of an
ordered set S according to a bijective correspondence σ :
S → S. The number of permutations on a set of n elements
is given by n!, and the set of all permutations over such
a set will be denoted by Πn. As an example, a particular
permutation of the set {1, 2, 3, 4} is σ(1) = 3, σ(2) = 1,
σ(3) = 2, and σ(4) = 4, which leads to the reordered set
{3, 1, 2, 4}. A permutation can be conveniently represented
in a two-line notation, where one lists the elements of S in
the first row and their images in the second row, with the
property that a first-row element and its image are in the
same column. For the previous example, one would write:

[
1 2 3 4
3 1 2 4

]
. (1)

The identity permutation maps every element of a set S to
itself and will be denoted by σ1. We will often use the fol-
lowing elementary properties of permutations, which follow
from the fact that permutations are bijective correspondences:

Prop. 1: Given two permutations σ, σ̂ ∈ Πn, the compo-
sition σ(σ̂) is again a permutation.

Prop. 2: Each permutation σ ∈ Πn has an inverse permu-
tation σ−1, with the property that σ(x) = y if and
only if σ−1(y) = x. (Thus, note that σ−1(σ) = σ1.)

Prop. 3: For any σ̂ ∈ Πn, it holds Πn = {σ(σ̂), σ ∈ Πn};
in other words, for a given permutation σ̂ playing
the role of basis, Πn can be expressed in terms of
composed permutations.

A permutation σ ∈ Πn is said to have a cycle L ⊆ S if the
objects in L form an orbit under the sequence lt+1 = σ(lt),
i.e.,

σ(lt) = lt+1 for t = 1, . . . , T − 1, and σ(lT) = l1,

1 2 3 4

3 1 2 4

Cycle 1 : {1, 3, 2}
Cycle 2 : {4}

Fig. 1. The two cycles corresponding to the permutation: σ(1) = 3,
σ(2) = 1, σ(3) = 2, and σ(4) = 4. Cycle 1 can equivalently be
expressed as {2, 1, 3} or {3, 2, 1}. Apart from this cyclic reordering, the
decomposition into disjoint cycles is unique.

where lt ∈ L for all t and T is an integer larger than or
equal to one; given a permutation σ, the partition of S into
disjoint cycles is uniquely determined apart from a cyclic
reordering of the elements within each cycle (see figure 1).
Henceforth, we denote by N(σ) the number of distinct cycles
of σ. In the example in equation (1), there are two cycles,
namely {1, 3, 2}, which corresponds to σ(1) = 3, σ(3) = 2,
σ(2) = 1, and {4}, which corresponds to σ(4) = 4 (see
figure 1).

Suppose that all elements of Πn are assigned probability
1/n!, i.e.,

P[σ] := P[One selects σ] =
1

n!
, for all σ ∈ Πn.

Let Nn denote the number of cycles of a random permutation
with the above probability assignment. It is shown in [9]
that the number of cycles Nn has expectation E [Nn] =
log(n) +O(1) and variance var(Nn) = log(n) +O(1); here
log denotes the natural log.

B. The Euclidean Bipartite Matching Problem

Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be two sets
of n objects each. The general bipartite matching problem
(BMP) is to find a permutation σ∗ ∈ Πn over the indices
{1, . . . , n} (not necessarily unique) according to which each
yi is matched to xσ∗(i) and some cost criterion is minimized.
We will often refer to a minimizing permutation σ∗ as the
optimal bipartite matching. We will express the n matched
pairs as (xσ∗(i), yi), for i = 1, . . . , n.

The Euclidean bipartite matching problem (EBMP), be-
tween sets X and Y of points in Euclidean space, is to
find a permutation σ∗ (not necessarily unique) such that the
sum of the Euclidean distances between the matched pairs
is minimized, i.e.:

n∑

i=1

‖xσ∗(i) − yi‖ = min
σ∈Πn

n∑

i=1

‖xσ(i) − yi‖,

where ‖ · ‖ denotes the Euclidean norm (see figure 2). Let
Q := (X ,Y); we refer to the left-hand side in the above
equation as the optimal bipartite matching cost LM(Q).

The Euclidean bipartite matching problem is generally
solved by the “Hungarian” method [10], which runs in
O(n3) time. The O(n3) barrier was indeed broken by
Agarwal et. al [11], who presented a class of algorithms
running in O(n2+ε), where ε is an arbitrarily small positive
constant. Additionally, there are also several approximation
algorithms: among others, the algorithm presented in [12]

x1

x2

x3

x4

y1

y2
y3

y4

σ :

1 2 3 4

3 1 2 4

x1

x2

x3

x4

y1

y2
y3

y4

Fig. 2. Example of Euclidean bipartite matching problem whose solution
is the permutation: σ(1) = 3, σ(2) = 1, σ(3) = 2, and σ(4) = 4.

produces a O(log(1/ε)) optimal solution in expected runtime
O(n1+ε), where, again, ε is an arbitrarily small positive
constant.

III. PROBLEM STATEMENT

A. The Stochastic (Euclidean) Stacker Crane Problem

Let d be an integer larger than or equal to 2. Let X be
a set of points X1, . . . , Xn that are i.i.d. in a compact set
Ω ⊂ Rd and distributed according to a density ϕP : Ω →
R≥0; let Y be a set of points Y1, . . . , Yn that are i.i.d. in a
compact set Ω ⊂ Rd and distributed according to a density
ϕD : Ω → R≥0. We might interpret each pair (Xi, Yi) as
the pick and delivery site, respectively, of the ith customer.
Throughout the paper we assume that distributions ϕP and
ϕD are absolutely continuous.

The stochastic Stacker Crane Problem (SCP) is to find a
minimum-length tour through the points in X and Y with the
property that each point Xi (the ith pickup) is immediately
followed by the point Yi (the ith delivery); in other words,
the pair (Xi, Yi) must be visited in consecutive order (see
figure 3). We will refer to such a tour as an optimal SCP tour,
and to a tour that is not minimum-length but still satisfies the
pickup-to-delivery constraints as a SCP tour. In the previous
definition, the length of a tour is the sum of all Euclidean
distances on the tour. Note that the Stacker Crane Problem is
a constrained version of the well-known Traveling Salesman
Problem.

In this paper we aim at solving the following problem:
Problem: Find a polynomial-time algorithm A for
the SCP which is asymptotically optimal almost
surely, i.e.

lim
n→+∞

LA/L
∗
SC = 1,

where LA is the length of the SCP tour produced
by algorithm A, and L∗SC is the length of the
optimal SCP tour.

Henceforth, we will refer to the stochastic SCP simply as
SCP, with the understanding that all pickup/delivery pairs
are generated randomly according to the aforementioned
probability model.

IV. AN ASYMPTOTICALLY OPTIMAL POLYNOMIAL-TIME
ALGORITHM FOR THE SCP

In this section we present an asymptotically optimal,
polynomial-time algorithm for the stacker crane problem,
which we call SPLICE. The key idea behind the algorithm is

1

1

2

2

3

3

4

4

5

5

6

6

(a) Six pickup/delivery pairs are
generated in the Euclidean plane.
Solid and dashed circles denote
pickup and delivery points, re-
spectively; solid arrows denote the
routes from pickup points to their
delivery points.

1

1

2

2

3

3

4

4

5

5

6

6

(b) Dashed arrows combined with
the solid arrows represent a SCP
tour.

Fig. 3. Example of Stacker Crane Problem in two dimensions.

to connect the tour from delivery sites back to pickup sites in
accordance with an optimal bipartite matching between the
sets of pickup and delivery sites. Unfortunately, this proce-
dure is likely to generate a certain number of disconnected
subtours (see figure 4(b)), and so, in general, the result is
not a SCP tour. The key property we will prove is that,
perhaps surprisingly, the number of disconnected subtours is
“asymptotically small”. Then, by using a greedy algorithm to
connect such subtours, one obtains an asymptotically optimal
solution to the SCP with a polynomial number of operations
(since an EBM can be computed in polynomial time).

We start with a formal description of the SPLICE algo-
rithm and a characterization of its computational complexity,
then we show the aforementioned property about the number
of disconnected subtours, and finally we prove its asymptotic
optimality.

A. Algorithm

The algorithm SPLICE is described in pseudo-code on
the following page. In line 1, the algorithm M is any algo-
rithm that computes optimal bipartite matchings. After the
pickup-to-delivery links and the optimal bipartite matching
links are added (lines 2-3), there might be a number of
disconnected subtours (they do, however, satisfy the pickup-
to-delivery contraints). In such case (i.e., when N > 1),
links between subtours are added by using a nearest-neighbor
rule1. Figure 4 shows a sample execution of the algorithm;
we refer to the delivery-to-pickup links added in lines 12
and 15 (the green links in figure 4) as connecting links,
since they connect the subtours. The complexity of SPLICE
is dominated by the construction of the optimal bipartite
matching, which takes time O(n2+ε).

B. Asymptotic number of subtours

The SPLICE algorithm produces, in general (i.e., when
N > 1), a number of connecting links between disconnected

1In this paper we use a simple heuristic (from SPLICE line 5) for adding
connecting links to form an SCP tour. However, the results of this paper do
not depend on this choice, and any connecting heuristic can be used.

Algorithm SPLICE
Input: a set of demands S = {(x1, y1), . . . , (xn, yn)},

n > 1.
Output: a Stacker Crane tour through S.

1: initialize σ ← solution to Euclidean bipartite matching
problem between sets X = {x1, . . . , xn} and Y =
{y1, . . . , yn} computed by using a bipartite matching
algorithm M.

2: Add the n pickup-to-delivery links xi → yi, i =
1, . . . , n.

3: Add the n matching links yi → xσ(i), i = 1, . . . , n.
4: N ← number of disconnected subtours.
5: if N > 1 then
6: Arbitrarily order the N subtours Sj , j = 1, . . . , n, into

an ordered set S := {S1, . . . ,SN}.
7: base ← index of an arbitrary delivery site in S1.
8: prev ← base.
9: for k = 1→ N − 1 do

10: Remove link yprev → xσ(prev).
11: next← index of pickup site in Sk+1 that is closest

to yprev.
12: Add link yprev → xnext.
13: prev ← σ−1(next).
14: end for
15: Add link yprev → xσ(base).
16: end if

subtours (see figure 4). The first step to prove asymptotic
optimality of the SPLICE algorithm is to characterize the
growth order for the number of subtours with respect to
n, the size of the problem instance. To this purpose, the
following lemma shows the equivalence between the number
of subtours N produced by line 3 and the number of cycles
for the permutation σ in line 1.

Lemma 4.1 (Permutation cycles and subtours): The
number N of subtours produced by the SPLICE algorithm
in line 3 is equal to N(σ), where N(σ) is the number of
cycles of the permutation σ computed in line 1.

Proof: Let Dk be the set of delivery sites for subtour k
(k = 1, . . . , N). By construction, the indices in Dk constitute
a cycle of the permutation σ. For example, in figure 4, the
indices of the delivery sites in the subtour x1 → y1 → x2 →
y2 → x3 → y3 → x1 are {1, 2, 3}, and they constitute a
cycle for σ since σ(1) = 2, σ(2) = 3, and σ(3) = 1. Since
the subtours are disconnected, and every index is contained
by some subtour, then the sets Dk (k = 1, . . . , N) represent
a partition of {1, . . . , n} into the disjoint cycles of σ. This
implies that the number of subtours N is equal to N(σ).

The above lemma implies that characterizing the number
of subtours generated during the execution of the algorithm
is equivalent to characterizing the number of cycles for the
permutation σ. By leveraging the i.i.d. structure in our prob-
lem setup, one can intuitively argue that all permutations are
equiprobable, and therefore Nn = N(σn) = log(n) + O(1)
(see section II-A), and limn→+∞Nn/n = 0. The remainder
of this section provides a rigorous proof for this statement.

1

1

2

2

3

3

4

4

5

5

6

6

(a) Line 2: 6 pickup-to-delivery
links are added.

1

1

2

2

3

3

4

4

5

5

6

6

(b) Line 3: 6 matching links are
added. The number of discon-
nected subtours is N = 2.

1

1

2

2

3

3

4

4

5

5

6

6

(c) Line 10. Algorithm state:
prev = base = 3, k = 1. The
link y3 → x1 is removed, next
is assigned the value 6, the link
y3 → x6 is added, prev is
assigned the value 5.

1

1

2

2

3

3

4

4

5

5

6

6

(d) Line 15. Algorithm state:
prev = 5, base = 3. The link
y5 → x1 is added and the tour is
completed.

Fig. 4. Sample execution of the SPLICE algorithm. The solution to the
EBMP is σ(1) = 2, σ(2) = 3, σ(3) = 1, σ(4) = 5, σ(5) = 6, and
σ(6) = 4. Demands are labeled with integers. Pickup and delivery sites are
represented by red and blue circles, respectively. Pickup-to-delivery links
are shown as black arrows. Matching links are blue, dashed arrows. Subtour
connections are shown as green, dashed arrows. The resulting tour is 1 →
2 → 3 → 6 → 4 → 5 → 1.

Let s = ((x1, y1), . . . , (xn, yn)) (i.e., s ∈ Ω2n) be a
finite batch of demands. We may occasionally think of
s as a column vector formed from vertical concatenation
of x1, y1, . . . , xn, yn. Thus, we note that Ω2n is a full-
dimensional subset of Rd(2n). Let Π∗ : Ω2n → 2Πn be the
optimal permutation map that maps a batch s ∈ Ω2n into
the set of permutations that correspond to optimal bipartite
matchings (recall that there might be multiple optimal bipar-
tite matchings). Let us denote the set of batches that lead to
non-unique optimal bipartite matchings as:

Z :=
{
s ∈ Ω2n

∣∣∣ |Π∗(s)| > 1
}
,

where |Π∗(s)| is the cardinality of set Π∗(s). The behavior
of a bipartite algorithm on the set Z can vary; on the other
hand, we now show that set Z has Lebesgue measure zero,
and therefore the behavior of an algorithm on this set is
immaterial for our analysis.

Lemma 4.2 (Measure of multiple solutions): The set Z
has Lebesgue measure equal to zero.

Proof: The strategy of the proof is to show that Z is
the subset of a set that has zero Lebesgue measure.

For σ′, σ′′ ∈ Πn, σ′ 6= σ′′, let us define the sets:

Hσ′,σ′′ :=
{
s ∈ Ω2n

∣∣∣
n∑

i=1

‖xσ′(i)−yi‖ =

n∑

i=1

‖xσ′′(i)−yi‖
}

;

let us also define the union of such sets:

H :=
⋃

σ′,σ′′∈Πn
σ′ 6=σ′′

Hσ′, σ′′ .

The equality constraint in the definition of Hσ′, σ′′ implies
that Hσ′, σ′′ ⊆ Rd(2n)−1, which has zero Lebesgue measure
in Rd(2n). Hence, the Lebesgue measure of Hσ′, σ′′ is zero.
Since H is the union of finitely many sets of measure zero,
it has zero Lebesgue measure as well.

We conclude the proof by showing that Z ⊆ H. Indeed,
if s ∈ Z , there must exist two permutations σ′ 6= σ′′ such
that

∑n
i=1 ‖xσ′(i) − yi‖ = minσ

∑n
i=1 ‖xσ(i) − yi‖ and∑n

i=1 ‖xσ′′(i) − yi‖ = minσ
∑n
i=1 ‖xσ(i) − yi‖, i.e., there

must exist two permutations σ′ 6= σ′′ such that
n∑

i=1

‖xσ′(i) − yi‖ =

n∑

i=1

‖xσ′′(i) − yi‖,

which implies that s ∈ H. Hence, Z ⊆ H and, therefore, it
has zero Lebesgue measure.

In the description of the SPLICE algorithm, M is an
algorithm that computes an optimal bipartite matching (i.e.,
a permutation that solves an EBMP). According to our defi-
nitions, the behavior of such an algorithm can be described
as follows: given a batch s ∈ Ω2n it computes

M(s) =

{
unique σ ∈ Π∗(s) if s ∈ Ω2n \ Z ,
some σ ∈ Π∗(s) otherwise.

We want to compute the probability that M produces as
a result the permutation σ; we call such probability P[σ].

Lemma 4.3 (Equiprobability of permutations): The prob-
ability that the optimal bipartite matching algorithm M
produces as a result the permutation σ is:

P[σ] =
1

n!
.

Proof: We start by observing that it is enough to
consider a restricted sample space, namely Ω2n \Z . Indeed,
by the total probability law, and since Z is a set of zero
Lebesgue measure,

P[σ] = P[M(s) = σ| s ∈ Ω2n \ Z]. (2)

For each permutation σ ∈ Πn, let us define the set

Sσ :=
{
s ∈ Ω2n \ Z |M(s) = σ

}
.

Collectively, sets Sσ form a partition of Ω2n \ Z . This fact,
coupled with equation (2), implies

P[σ] = P[s ∈ Sσ].

For a permutation σ ∈ Πn, let us define the reordering
function gσ : Ω2n → Ω2n as the function that maps
a batch s = ((x1, y1), . . . , (xn, yn)) into a batch s =
((xσ(1), y1), . . . , (xσ(n), yn)). Let Ej ∈ Rd×2nd be a block
row matrix of 2n d × d square blocks whose elements are
equal to zero except the (2j−1)th block that is identity. Let

Fj ∈ Rd×2nd be such a block matrix, but whose elements are
all zero except the 2jth block that is identity. Then in matrix
form the reordering function can be written as gσ(s) = Pσ s,
where Pσ is the 2nd× 2nd matrix

Pσ =

Eσ(1)

F1

Eσ(2)

F2

...
Eσ(n)

Fn

.

Note that |det(Pσ)| = 1 for all permutations σ; also, Prop. 2
of section II-A implies Pσ−1 = P−1

σ . We now show that
gσ̂(Sσ̂) = Sσ1

for all permutations σ̂ ∈ Πn, recalling that
σ1 denotes the identity permutation (i.e., σ(i) = i for i =
1, . . . , n):
• gσ̂(Sσ̂) ⊆ Sσ1 . Let ŝ ∈ Sσ̂ . Then by definition∑n

i=1

∥∥x̂σ̂(i) − ŷi
∥∥ = minσ∈Πn

∑n
i=1

∥∥x̂σ(i) − ŷi
∥∥;

moreover σ̂ is the unique minimizer. We want to
show that gσ̂(ŝ) ∈ Sσ1

, where gσ̂(ŝ) has the form
((x̂σ̂(1), ŷ1), . . . , (x̂σ̂(n), ŷn)). Let s = gσ̂(ŝ); indeed,
σ1 is an optimal matching of s (by inspection), i.e.,
σ1 ∈ Π∗(s). Suppose, however, there is another optimal
matching ˆ̂σ 6= σ1 such that ˆ̂σ ∈ Π∗(s). Then ˆ̂σ(σ̂)
is an optimal matching of ŝ (Prop. 1); yet this is a
contradiction, because ˆ̂σ(σ̂) 6= σ̂. Therefore, we have
that s ∈ Sσ1 for all ŝ ∈ Sσ̂ .

• Sσ1 ⊆ gσ̂(Sσ̂). Let s ∈ Sσ1 . Then by definition∑n
i=1 ‖xi − yi‖ = minσ∈Πn

∑n
i=1

∥∥xσ(i) − yi
∥∥; more-

over σ1 is the unique minimizer. Note that gσ̂ is an injec-
tive function (since the determinant of Pσ̂ is nonzero);
let ŝ be the unique batch such that s = gσ̂(ŝ), i.e.,
ŝ = ((xσ̂−1(1), y1), . . . , (xσ̂−1(n), yn)) (Prop. 2). We
want to show that ŝ ∈ Sσ̂ . Because

∑n
i=1 ‖xi − yi‖ =∑n

i=1

∥∥xσ̂(σ̂−1(i)) − yi
∥∥, σ̂ is an optimal matching of

ŝ, i.e., σ̂ ∈ Π∗(ŝ). Suppose there is another optimal
matching ˆ̂σ 6= σ̂ such that ˆ̂σ ∈ Π∗(ŝ). Again, this is a
contradiction, since ˆ̂σ(σ̂−1) 6= σ1, and σ1 is the unique
optimal matching for batch s. We conclude that ŝ ∈ Sσ̂
for all s ∈ Sσ1

.
We are now ready to evaluate the probabilities of per-

mutations as follows: First, for any permutation σ̂ we
have P[σ̂] = P[ŝ ∈ Sσ̂] =

∫
ŝ∈Sσ̂ ϕ(ŝ)dŝ, where ϕ(ŝ)

denotes
∏n
i=1 ϕP(x̂i)ϕD(ŷi). We use variable substitution

s = gσ̂(ŝ) = Pσ̂ ŝ and the property gσ̂(Sσ̂) = Sσ1
, and we

apply the rule of integration by substitution:
∫
ŝ∈Sσ̂ ϕ(ŝ)dŝ =∫

s∈Sσ1
ϕ(P−1

σ̂ s) |det(Pσ̂)|−1

︸ ︷︷ ︸
=1

ds. Observing that

ϕ(P−1
σ̂ s) = ϕ(Pσ̂−1s) =

n∏

i=1

ϕP(xσ̂−1(i))ϕD(yi),

and that
n∏

i=1

ϕP(xσ̂−1(i))ϕD(yi) =

n∏

i=1

ϕP(xi)ϕD(yi) = ϕ(s),

we obtain
∫

s∈Sσ1
ϕ(P−1

σ̂ s) ds =

∫

s∈Sσ1
ϕ(s) ds = P[s ∈ Sσ1

]

= P[σ1].

Combining these results, we conclude P[σ] = P[σ1] for all
σ ∈ Πn, obtaining the lemma.

Lemmas 4.1 and 4.3 allow us to apply the results in
Section II-A and characterize the growth order for the
number of subtours.

Lemma 4.4 (Asymptotic number of subtours): Let d ≥ 2.
Let Xn be a set of points {X1, . . . , Xn} that are i.i.d. in a
compact set Ω ⊂ Rd and distributed according to a density
ϕP; let Yn be a set of points {Y1, . . . , Yn} that are i.i.d.
in a compact set Ω ⊂ Rd and distributed according to a
density ϕD. Let Nn be the number of subtours generated by
the SPLICE algorithm for a problem instance of size n, i.e.,
with inputs Xn and Yn. Then

lim
n→+∞

Nn/n = 0,

almost surely.
Proof: For any ε > 0, consider the sequence of events

En
.
=

{
(Xn,Yn) : Nn/n > ε

}

or, equivalently, En =
{

(Xn,Yn) : (Nn − ENn) +

(ENn − log(n)) + log(n) > εn
}

. Now, from lemma 4.1,
the number of disconnected subtours is equal to the number
of cycles in the permutation σ computed by the matching
algorithmM in line 1. Since, by lemma 4.3, all permutations
are equiprobable, the number of cycles has expectation and
variance both equal to log(n)+O(1). Therefore, we conclude
that Nn has expectation and variance both log(n) + O(1).
Hence, we can rewrite the events En as:

En =
{

(Xn,Yn) : Nn − ENn > εn+ o(n)
}
.

Applying Chebyshev’s inequality, we obtain (for n′ suffi-
ciently large, yet finite)

∞∑

n=0

P [En] ≤ n′ +
∞∑

n=n′

log(n) +O(1)

[ε n+ o(n)]
2 .

Since this summation is finite, we can apply the Borel-
Cantelli lemma to the sequence of events En and conclude
that P[lim supn→+∞En] = 0. Finally, since ε can be chosen
arbitrarily small, the upper limit of the claim follows (the
lower limit holds trivially).

C. Asymptotic optimality

Having characterized the number of subtours generated
by SPLICE, we are now ready to show the asymptotic
optimality of the algorithm.

Theorem 4.5: Let d ≥ 2. Let Xn be a set of points
{X1, . . . , Xn} that are i.i.d. in a compact set Ω ⊂ Rd and
distributed according to a density ϕP; let Yn be a set of

points {Y1, . . . , Yn} that are i.i.d. in a compact set Ω ⊂ Rd
and distributed according to a density ϕD. Then

lim
n→+∞

LSPLICE

L∗SC
= 1, almost surely.

Proof: Let Qn = (Xn,Yn). The optimal stacker crane
tour through the pickup points Xn and the delivery points
Yn is bounded below by

L∗SC ≥
∑

i

‖Yi −Xi‖+ LM(Qn). (3)

On the other hand, the number of connecting links added by
the SPLICE algorithm is bounded above by the number of
subtours Nn of the optimal bipartite matching, and the length
of any connecting link is bounded above by maxx,y∈Ω ‖x−
y‖. Hence, LSPLICE can be bounded above by

LSPLICE ≤
∑

i

‖Yi −Xi‖+ LM(Qn) + max
x,y∈Ω

‖x− y‖Nn

≤ L∗SC + max
x,y∈Ω

‖x− y‖Nn.

By the strong law of large numbers,
limn→+∞

∑
i ‖Yi −Xi‖ /n = E [‖Yi −Xi‖] almost

surely. Hence, L∗SC has linear growth (at least). Since
limn→+∞Nn/n = 0 (by lemma 4.4), one obtains the claim.

V. SIMULATION RESULTS

In this section we present simulation results to support the
theoretical findings of the paper. Specifically, we discuss (i)
rate of convergence to the optimal solution, (ii) the runtime
for the SPLICE algorithm, and (iii) the ratio between the
runtime of SPLICE and that of an exact algorithm. In all
simulations we assume that the pickup/delivery pairs are gen-
erated i.i.d. in a unit cube and that ϕP and ϕD are both uni-
form. The bipartite matching problem in line 1 of SPLICE is
solved using the GNU Linear Programming Toolkit software
on a linear program written in MathProg/AMPL. Simulations
were run on a laptop computer with a 2.66 GHz dual core
processor and 2 GB of RAM.

Figure 5 shows the factor of optimality ratios LSPLICE/L
∗
SC

with respect to the size of the problem instance n (the number
of origin/destination pairs). One can see that the factor of
optimality is consistently below 20% even for small problem
instances (n ' 10) and is reduced to ' 5% for n > 80.
Hence, convergence to the optimal solutions with respect
to the problem size is fairly rapid. In practice, one could
combine SPLICE with an exact algorithm, and let the exact
algorithm compute the solution if n is less than, say, 50, and
let SPLICE compute the solution when n ≥ 50.

Figure 6 shows the runtime TSPLICE of the SPLICE algo-
rithm with respect to the size of the problem instance n (the
problem instances are the same as those in figure 5). One
can note that even for moderately large problem instances
(say, n ' 100) the runtime is below a second.

Finally, figure 7 shows the runtime factor ratios
TSPLICE/T

∗ with respect to the size of the problem instance

20 40 60 80 100
Number of Demands

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

Fa
ct

or
of

op
tim

al
ity

Fig. 5. Factor of optimality for SPLICE as a function of the problem size
n. Each column records 25 random observations.

10 20 30 40 50 75 100
Number of Demands

10−2

10−1

100

R
un

tim
e

(s
ec

on
ds

)

Fig. 6. Runtime of the SPLICE algorithm as a function of the problem
size n. Each column records 25 random observations.

n (the problem instances are the same as those in figure 5),
where T ∗ is the runtime of an exact algorithm implemented
as an integer linear program. One can observe that the
computation of an optimal solution becomes impractical for
a number n ' 100 of origin/destination pairs.

VI. CONCLUSION

In this paper we presented the SPLICE algorithm, a
polynomial-time, asymptotically optimal algorithm for the
(stochastic) SCP. This algorithm has complexity of the order
O(n2+ε) (for arbitrarily small positive constant ε) and, in
practice, computes solutions within 5% of the optimal for n
larger than, say, 100.

This paper leaves numerous important extensions open
for further research. First, we are currently developing
(asymptotic and almost sure) bounds for the cost of the
optimal stochastic SCP solution, and also for the solution
delivered by SPLICE. These bounds are instrumental to
derive necessary and sufficient conditions for the existence
of stable routing policies for a dynamic version of the
stochastic SCP, whereby the pickup and delivery sites are
dynamically generated by an exogeneous process. Second,
we are interested in precisely characterizing the convergence
rate to the optimal solution, and in addressing the more
general case where the pickup and delivery locations are
statistically correlated, Third, we plan to extend the SPLICE
algorithm and its analysis to the case of multiple vehicles.

0 20 40 60 80 100
Number of Demands

0

100

200

300

400

500

600

R
un

tim
e

fa
ct

or

Fig. 7. Runtime factors for the SPLICE algorithm as a function of the
problem size n. Each column records 25 random observations.

Fourth, while in the SCP the servicing vehicle is assumed to
be omnidirectional (i.e., sharp turns are allowed), we hope
to develop approximation algorithms for the SCP where the
vehicle has differential motion constraints (e.g., bounded
curvature), as is typical, for example, with unmanned aerial
vehicles. In addition to these natural extensions, we hope
that the techniques introduced in this paper (i.e., coupling the
EBMP with the theory of random permutations) may come
to bear in the stochastic setting for other hard combinatorial
problems.

REFERENCES

[1] G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia, and G. Laporte. Static
pickup and delivery problems: a classification scheme and survey.
TOP, 15:1–31, 2007. 10.1007/s11750-007-0009-0.

[2] J. F. Cordeau, G. Laporte, J. Y. Potvin, and M.W.P. Savelsbergh.
Transportation on demand. In C. Barnhart and G. Laporte, editors,
Transportation, Handbooks in Operations Research and Management
Science, volume 14, pages 429–466. Elsevier, Amsterdam, The Nether-
lands, 2007.

[3] W. J. Mitchell, C. E. Borroni-Bird, and L. D. Burns. Reinventing the
Automobile. MIT Press, 2010.

[4] Greg N. Frederickson and D. J. Guan. Preemptive ensemble motion
planning on a tree. SIAM Journal on Computing, 21(6):1130–1152,
1992.

[5] G. N. Frederickson and D. J. Guan. Nonpreemptive ensemble motion
planning on a tree. J. Algorithms, 15:29–60, July 1993.

[6] A. Coja-Oghlan, S. O. Krumke, and T. Nierhoff. A heuristic for the
stacker crane problem on trees which is almost surely exact. Journal
of Algorithms, 61(1):1 – 19, 2006.

[7] G. N. Frederickson, M. S. Hecht, and C. E. Kim. Approximation
algorithms for some routing problems. Foundations of Computer
Science, Annual IEEE Symposium on, 0:216–227, 1976.

[8] A. Coja-Oghlan, S. O. Krumke, and T. Nierhoffi. Scheduling a server
on a caterpillar network - a probabilistic analysis. In Proceedings of the
6th Workshop on Models and Algorithms for Planning and Scheduling
Problems, 2003.

[9] L. A. Shepp and S. P Lloyd. Ordered cycle lengths in a random
permutation. Transactions of the American Mathematical Society,
121(2):340–357, 1966.

[10] H. W. Kuhn. The hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2(1-2):83–97, 1955.

[11] Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical de-
composition of shallow levels in 3-dimensional arrangements and its
applications. In Proceedings of the eleventh annual symposium on
Computational geometry, pages 39–50, Vancouver, British Columbia,
Canada, 1995. ACM.

[12] P. Agarwal and K. Varadarajan. A near-linear constant-factor ap-
proximation for euclidean bipartite matching? In Proceedings of the
twentieth annual symposium on Computational geometry, pages 247–
252, Brooklyn, New York, USA, 2004. ACM.

