
MIT Open Access Articles

Decentralized Task Allocation with
Coupled Constraints in Complex Missions

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Whitten, Andrew K., Johnson, Luke B., How, Jonathan P., Choi, Han-Lim. 2011.
"Decentralized Task Allocation with Coupled Constraints in Complex Missions." Paper presented
at the IEEE Proceedings of the American Control Conference, July 29-July 1, 2011, San
Francisco, CA.

As Published: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5990917

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/81459

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/81459
http://creativecommons.org/licenses/by-nc-sa/3.0/

Decentralized Task Allocation with Coupled Constraints
in Complex Missions

Andrew K. Whitten, Han-Lim Choi, Luke B. Johnson, and Jonathan P. How

Abstract— This paper presents a decentralized algorithm that
can create feasible assignments for a network of autonomous
agents in the presence of coupled constraints. The coupled
constraints are introduced to address complex mission charac-
teristics that include assignment relationships, where the value
of a task is conditioned on whether or not another task has
been assigned, and temporal relationships, where the value
of a task is conditioned on when it is performed relative to
other tasks. The new algorithm is developed as an extension
to the consensus-based bundle algorithm (CBBA), introducing
the notion of pessimistic or optimistic bidding strategies and
the relative timing constraints between tasks. This extension,
called Coupled-constraint CBBA (CCBBA), is compared to
the baseline in a complex mission simulation and is found to
outperform the baseline, particularly for task-rich scenarios.

I. INTRODUCTION

Decentralized task planning for a team of networked
agents (e.g., unmanned aerial vehicles (UAVs)) has been
investigated by many researchers [1]–[13]. Ideally, the com-
munication link between all elements of the autonomous
decision system (command station, autonomous vehicles,
manned vehicles, etc.) is high bandwidth, low latency, low
cost, and highly reliable. However, even the most modern
communication infrastructures do not posses all of these
characteristics. If the inter-agent communication mechanism
has a more favorable combination of these characteristics
compared to agent-to-base communication, then a decentral-
ized planning architecture offers performance and robustness
advantages. In particular, response times to changes in sit-
uational awareness can be significantly faster via decentral-
ized control than those achieved under a purely centralized
planner. In addition, decentralized planning schemes are
well-suited for situations where the information needed for
decision making is local with respect to the network diam-
eter. This is particularly noticeable in the task assignment
consensus problem where agents near each other will require
the most communication to resolve task assignment conflicts,
whereas agents that are spatially separated are less likely to
choose the same tasks. Decentralized algorithms with strong
inter-agent communication should support this scenario more
efficiently than centralized approaches.

One decentralized tasking approach the authors have re-
cently developed is the consensus-based bundle algorithm
(CBBA) [12], which is a market-based distributed agreement
protocol upon the winning agents and associated winning

A. K. Whitten, L.B. Johnson, and J. P. How was/are with the Dept.
of Aeronautics and Astronautics, MIT, Cambridge, MA. {awhitten, lbj,
jhow}@mit.edu.

H.-L. Choi is with the Div. of Aerospace Engineering, KAIST, Korea.
hanlimc@kaist.ac.kr

scores. By enforcing agreement upon the solution rather
than the information set, CBBA was shown to account
for inconsistent information among the networked agents,
guaranteeing a conflict-free assignment for all the agents
in the network. CBBA is a polynomial-time algorithm that
scales well with the size of the network and/or the number
of tasks (or equivalently, the length of the planning horizon).
From the design perspective, various design objectives, agent
models, and constraints can be incorporated by defining
appropriate scoring functions. If the resulting scoring scheme
satisfies a property called diminishing marginal gain (DMG),
a provably good feasible solution is guaranteed (50% min-
imum performance in theory; over 90% in simulations).
Furthermore, a recent extension to CBBA [13] has enabled
incorporation of heterogeneity in the agent capabilities and
time windows of validity of tasks, which significantly en-
riches the mission characteristics that can be handled.

However, this recent progress is still not enough to address
task planning for complex missions wherein tasks are cou-
pled both spatially and temporally. The main source of such
coupling is the set of rules of engagement, which can often
be described as logical constraints and temporal precedence
relationships. This paper particularly focuses on embedding
these coupled constraints in the CBBA-based decentralized
tasking framework. While a preliminary approach to achieve
this functionality was presented in [14] for specific types
of constraints described by cooperation requirements and
preference, this paper provides a more systematic method-
ology that can handle a much broader class of coupled
constraints. Numerical experiments on cooperative sensing &
neutralization mission of uninhabited aerial vehicles (UAVs)
verify the performance advantage of the proposed extension
compared to the baseline CBBA approach.

II. TASK ALLOCATION WITH CONSTRAINTS

Consider a bounded environment containing a network of
Nu autonomous agents, and a set of Nt tasks. For notational
convenience, both agents and tasks are given integer indices.
The set of all agent indices is denoted I , {1, . . . , Nu},
while the set of all task indices is denoted J , {1, . . . , Nt}.

Each task, j ∈ J , is given a score function, Sj(aj , tj) ∈
R+ which represents the value that task adds to the mission
as a function of aj ∈ I∪{∅}, the index of the agent assigned
to task j, and tj ∈ R≥0 ∪ {∅} the time the agent plans to
arrive at the j-th task location. The symbol ∅ denotes a null
entry in the corresponding set. The goal of the task planner
is to assign agents to tasks in such a way that the cumulative
score over all tasks in the task set is maximized. The task

assignment problem at a given mission time has an objective
function expressed as

max

Nt∑
j=1

Sj(aj , tj) (1)

Note that in this formulation, there exists no requirement
to assign an agent to every task, and in fact doing so may
be infeasible. However, a task only earns a positive score if
an agent is assigned to it, Sj(aj , tj) > 0 only if aj 6= ∅ .
Therefore, the task planner must determine an appropriate
subset of tasks to assign, and select the agent, and visit time
for each assigned task. The assignment is thus completely
determined by selecting aj and tj for each task j ∈ J .

The problem is subject to two types of constraints: 1)
agent-specific constraints, and 2) coupled constraints. Agent-
specific constraints affect the options available to a given
agent i independently of decisions made with respect to all
other agents, and include:

1) Capability constraints: Each task has a requirement,
and each agent has a set of capabilities. Compatibility
matrix, M captures each agent’s fitness for performing
the task. Mij > 0 if agent i is allowed to perform task
j, and zero otherwise.

2) Time window of validity: Each task j, has a time window
of validity given by [τ startj , τ endj]. The task must be
started on the interval of time specified by the time
window. If a task is not time sensitive, it is given a
time window of [0,∞).

3) Vehicle dynamics: Each agent has a set of dynamics that
impose a set of constraints on that agent. Agent i has a
maximum speed, vmax

i , a maximum acceleration, v̇max
i ,

and a minimum turn radius rmin
i . These parameters de-

termine the minimum amount of time required between
each task the agent performs.

4) Fuel constraints: At a given time t, agent i has re-
maining fuel mass, mi

fuel(t), and has nominal fuel
consumption rate, ṁi

fuel. These parameters determine
the maximum remaining time aloft for agent i.

Coupled constraints include any situation where the de-
cisions regarding one agent alter the options available to
another agent. Often, in a complex mission, there are a
variety of such constraints due to rules of engagement or
simply the nature of the tasks involved. Coupled constraints
include:

• Assignment constraints deal with the relationship between
tasks with respect to which combination of assignments are
permitted. Examples:

1) Conflict-freeness: Each task may have at most one
agent assigned to it. (Note that this is a simplifying
assumption: mission activities requiring or benefiting
from multiple agents may be represented by multiple
instances of the same task.)

2) Unilateral Dependency: A task, A is dependent on
another task B, but task B is not dependent on A. In
other words, task A cannot be assigned unless B is also

assigned, but B may be assigned independently of task
A.

3) Mutual Dependency: A task A is dependent on another
task B, and task B is dependent on task A. Task A and
task B must be assigned together or not at all.

4) Mutually Exclusive: A task A cannot be assigned if
another task B is assigned, and task B cannot be
assigned if task A is assigned.

• Temporal constraints include any specified relationship
between the chosen visit times for a subset of tasks. Common
temporal constraints include, but are not limited to:

1) Simultaneous: task A and B must begin at the same
time.

2) Before: task A must end before task B begins.
3) After: task A must begin after task B ends.
4) During: task A must begin while task B is in progress.
5) Not during: task A must either end before task B

begins, or begin after task B ends.
6) Between: task A must begin after task B ends and end

before task C begins.

III. CBBA: THE BASELINE TASKING ALGORITHM

The following summarizes CBBA first developed in [12]
and recently extended in [13].

A. Phase I: Task Selection

In the first phase of CBBA, task selection, each agent
iteratively adds tasks to its bundle. The selection process is
sequentially greedy; given an initial bundle, bi, agent i adds
the task that will result in the largest marginal increase in
score, and repeats the process until the bundle is full, or no
more tasks can be added. Each time agent i adds a task j to
its bundle, it enters its own index into the winning agent list,
zij ← i, and its corresponding bid into the winning bids list,
yij ← Sj(i, tij). Agent i is only allowed to add task j to
its bundle if agent i can place a higher bid than the current
highest bidder, yij .

B. Phase II: Consensus

After all agents complete a round of the task selection
phase, agents communicate with each other to resolve con-
flicting assignments within the team. After receiving infor-
mation from neighboring agents about the winning agents
and corresponding winning bids, each agent can determine if
it has been outbid for any task in its bundle. Since the bundle
building recursion (Section III-A) depends at each iteration
upon the tasks in the bundle up to that point, if an agent is
outbid for a task, it must release it and all subsequent tasks
from its bundle. For each message (consisting of bidding
information on a task) that is passed between a sender k
and a receiver i, a set of actions is executed by agent i to
update its information vectors using the received information.
These actions involve comparing its winning agent list zi, the
winning bids list yi, and the time stamp vector si to those of
agent k to determine which agent’s information is the most
up-to-date for each task.

A B

C D

E

x x

q=1 q=2

q=1 q=2

q=3

x x

Activity 1

Activity 2

x
Dependency

Mutual Exclusion

Fig. 1. Example of task set partitioning

C. Properties

The baseline CBBA is capable of handling non-coupled
constraints including capability constraints, time windows,
and basic vehicle dynamics such as top speed. It is also
proven that the baseline algorithm is also capable of guar-
anteeing conflict-free assignments, assuming a strongly con-
nected network, which is one type of coupled constraint.

However, it is not able to account for the other types
of coupling which are common in complex missions. This
paper describes the necessary machinery for enforcing the
following types of coupled constraints within the CBBA
framework: 1) unilateral dependency constraints, 2) mutual
dependency constraints, 3) mutual exclusions, and 4) tempo-
ral constraints.

IV. COUPLED-CONSTRAINT CBBA (CCBBA)

A. Task Set Partitioning

For book-keeping purposes, the task set is partitioned into
sub-groups of tasks that share coupled constraints. Each
of these sub-groups is called an activity. For notational
convenience, each task in an activity is referred to as an
element of that activity, and is given an index, q ∈ Z+.
Each task in the task set can be uniquely identified by its
activity number and element index, and the notation jq is
used to indicate the task associated with the qth element
of activity j. The set of all tasks in the task set is still
denoted J . The set of all activities in the set is denoted
A, while the set of all elements in an activity j is denoted
Aj . Each pair of elements in an activity may have a coupled
constraint between them but does not have to. However, by
construction, coupled constraints do not exist between tasks
belonging to different activities with the exception of the
conflict-freeness constraint.

An example is shown in Fig. 1: task B may not be assigned
unless task A is assigned, but task A may be assigned
independently of task B. Task C may not be assigned unless
task D is assigned, and task D may not be assigned unless
task C is assigned. The task pair (C,E) may not both be
assigned, and the task pair (D,E) may not both be assigned.
This particular task set can be grouped into two activities,
with two and three elements respectively. The task set J =
{A,B,C,D,E} is now written J = {11, 12, 21, 22, 23}.

TABLE I
CODE FOR DEPENDENCY MATRIX ENTRY Dj

qu
1 u depends on q
0 u may be assigned independently of q
−1 q and u are mutually exclusive
a > 1 u requires either q or another element with the same

code, a. Entries are used sequentially: 3 is not used
unless 2 is used, etc.

For each activity j ∈ A, the constraint structure can be
compactly written in the form of a Dependency Matrix,
Dj where the row column entry, (q, u), denoted as Dj

qu,
describes the relationship between the qth element of activity
j and the uth element of activity j. The notation for encoding
the constraints is provided in Table I. The diagonal entries
of Dj are defined to be 0 for all activities.

Each task in the task set is given a bidding strategy
which represents how the bidding protocol is handled; the
bidding strategy for each task jq ∈ J is determined from
the dependency matrix as

bidStratjq =

{
optimistic if Ojq 6= ∅
pessimistic otherwise

where Ojq , {u : Dj
uq ≥ 1 ∧ Dj

qu = 1}.

B. Pessimistic Bidding Strategy in Phase I

In the baseline CBBA, at the beginning of the task
selection phase, an agent i calculates the marginal score
for each of the tasks in the task set that are not in their
bundle. In CCBBA, a step is added before this where an
agent determines which tasks it is allowed to bid on.

Task jq is given a pessimistic bidding strategy (PBS) if
it is only dependent upon tasks which do not depend on jq .
The PBS specifies that agent i is allowed to bid on task
jq only if all of the dependency constraints for task jq are
satisfied. An indicator canBidi(jq) is used to keep track of
this permission:

canBidi(jq) =

{
true if nsat(jq|zi) = Nreq(jq)
false otherwise

where Nreq(jq) and nsat(jq|zi) denote the total number
of constraints required to be satisfied, and the number of
satisfied constraints according to the current knowledge,
respectively. For the case where Dj

uq ∈ {−1, 0, 1},∀u, q ,
these quantities are given by

Nreq(jq) =
∑|Aj |

u=1 I
(
Dj

uq = 1
)

nsat(jq|zi) =
∑|Aj |

u=1 I
((
zi(ju) 6= ∅

)
∧
(
Dj

uq = 1
))
,

while their expressions for more sophisticated cases can be
found in [?, Section 3.3]. If canBidi(jq) is true, then the
marginal score for jq is calculated to determine if this task
should be added to agent i’s bundle. If canBidi(jq) is false,
then the marginal score for jq is set to 0.

C. Optimistic Bidding Strategy in Phase I

Tasks which are mutually dependent on at least one other
task are given an optimistic bidding strategy. Consider a
task jq with an optimistic bidding strategy. An agent who
can benefit from adding task jq to its bundle may do so,

even if the number of satisfied constraints is smaller than the
number required. The agent then keeps track of the number
of iterations that pass where at least one of the tasks which jq
depends on remains unassigned. If too many iterations pass,
the agent releases task jq from its bundle. The task is released
with the assumption that the other agents in the network are
not interested in selecting the tasks jq depends on, because
other tasks are more valuable to these agents. To prevent
an agent from repeatedly bidding on a task only to release it
once it discovers no other agents are interested in performing
the tasks which it depends on, the number of attempts is
limited. Once an agent has run out of attempts on a particular
task, they are no longer permitted to bid on that task unless
all of the required constraints are satisfied. Thus, the agent
has transitioned to a pessimistic bidding strategy for this
task. To formalize the technique, the following definitions
are introduced:

a) Number of Iterations in Constraint Violation: νi ,
{νi1, . . . , νiNt

} is the list which keeps track of the number
of CBBA iterations which have passed with agent i violating
a constraint. Element notation νi(jq) is used to indicate the
number of iterations agent i has been winning element q of
activity j while at least one other element in j is unassigned.

b) Permission to Bid Solo: wsolo
i , {wsolo

i1 , . . . , wsolo
iNt
}

indicates which elements agent i is allowed to bid on as the
first agent. The list is initialized to contain positive integers
representing the number of attempts an agent is given to win
the particular element. If wsolo

i(jq)
> 0, agent i is permitted to

bid on task jq even if no other elements of j have a winning
agent. If a task jq is released due to a timeout, or a timing
constraint violation, wsolo

i(jq)
is decremented by one.

c) Permission to Bid Any: wany
i , {wany

i1 , . . . , wany
iNt
}

indicates which tasks agent i is allowed to bid on given that
at least one of the dependency constraints is satisfied for
that task. The array is initialized to contain positive integers
in a similar manner to wsolo

i , except the initial values are
typically larger in magnitude. If wany

i(jq)
> 0, and any other

element of j has a winner, agent i is permitted to bid on task
jq . If an element jq is released due to a timeout, or a timing
constraint violation, wany

i(jq)
is decremented by one.

d) Timeout Parameter: For each element q of an activ-
ity j, a timeout parameter, ojq is defined. At each iteration,
agent i increments νi(jq) for each task, jq , for which agent i
is the winner, but the other elements belonging to activity j
are not filled. If at any time, νi(jq) exceeds ojq , the task jq
must be released from bi, and the values wsolo

i(jq)
and wany

i(jq)
,

are each decremented by 1.
Whether or not an agent i is allowed to bid on task jq is

determined by:

canBidi(jq) =
(
wany

i(jq)
> 0 ∧ nsat(jq|zi) > 0

)
∨
(
wsolo

i(jq)
> 0
)
∨
(
nsat(jq|zi) = Nreq(jq)

)
.

If wsolo
i(jq)

> 0, then the agent has not yet exhausted its
attempts to acquire the proper number of partnering agents
for task jq , and so it is allowed to bid even if 0 dependency
constraints are satisfied. If wsolo

i(jq)
= 0, but wany

i(jq)
> 0,

then the agent has not yet exhausted its attempts to acquire
the proper number of partnering agents, but at least one
dependency constraint must be met in order for the agent to
bid on task jq . If both wsolo

i(jq)
= 0 and wany

i(jq)
= 0, then agent

i has exhausted its attempts to bid optimistically on task jq ,
and may only bid if all of the dependency constraints for
task jq are satisfied.

Note that appropriate selection of ojq and appropriate
initialization of wsolo

i and wany
i are needed to achieve good

performance and convergence properties. Selecting ojq too
small may lead to performance degradation, discouraging
agents to bid on coupled tasks, while choosing it too large
may lead to long convergence time. Selecting a higher initial
value for wsolo

i(jq)
gives agent i more attempts to bid on task jq ,

however may adversely affect the runtime of the algorithm.
Selecting too small of a value may reduce performance due
to conservatism in bidding on coupled tasks.

D. Mutual Exclusions in Phase I

In the baseline CBBA, an agent must be able to outbid
the current winner of a task in order to be eligible to bid
on that task. In Coupled-Constraint CBBA, to bid on task
jq , the marginal score for jq must be greater than all of the
tasks which are mutexed with task jq . Therefore, task jq is
eligible to be bid on by agent i, if(

ci(jq) > yi(ju) ∨ D
j
uq 6= −1

)
= true, ∀u ∈ Aj .

E. Temporal Constraints in Phase I

Often in complex missions, there exist timing constraints
between some of the tasks in the task set. CCBBA allows
a timing relationship to be specified between any pair of
tasks belonging to the same activity. The pairwise timing
constraints can be written compactly in the form of a
temporal constraint matrix, T j ∈ R|Aj |×|Aj |. The (q, u)
entry of T j , denoted as T j

qu, specifies the maximum amount
of time task jq can begin after task ju begins. Thus, task ju
must begin at least T j

qu before task jq begins and at most T j
uq

after task jq begins, which can be interpreted as the relative
time window imposed on task ju by task jq . There exists
no sign restriction on the entries of the temporal constraint
matrix, which means that the relative time window a task
jq imposes on another task ju does not have to contain
the start time for task jq . This makes it possible to specify
constraints like before, or after mentioned in Section II. If
no timing constraint exists between task jq and ju, then
T j
qu = T j

uq = ∞. The diagonal entries of matrix T j are
0 by definition.

To satisfy coupled timing constraints, it is necessary that
each agent be aware of the scheduled times of arrival of
each of the tasks which have winners. Therefore, a new
information list is introduced, tzi , {tzi1, . . . , tzi(Nt)}.
Entries are denoted tzi(jq) for jq ∈ J , and the list keeps
track of the arrival times for each task in zi that has a winner.
tzi(jq) = ∅ if task jq has no winner according to agent i.

Agent i must calculate the time interval that is valid
for each task under consideration to determine if that task
is feasible given their current path, and to determine the

marginal score for that task. Agent i considering task jq cal-
culates the permissible start time by intersecting the original
time window for task jq with each of the coupled timing
constraints imposed by the agents winning each of the tasks
upon which task jq depends, according to its knowledge, i.e.,
zi and tzi.

Agent i needs to compute the interval [τmin
jq

, τmax
jq

] where
τmin
jq

is the minimum allowed start time for task jq given
the current knowledge of agent i and τmax

jq
is the maximum

allowed start time for task jq given the current knowledge
of agent i. Recall that the original time window is given by
[τ startjq

, τ endjq
].

The minimum admissible arrival time, τmin
jq

is calculated
by

τmin
jq = max

(
τ startjq , max

u∈{1,...,|Aj |}\{q}
tmin
const(ju, jq|zi),

)
where

tmin
const(ju, jq|zi) =

{
tziu − T j

uq if zi(ju) 6= ∅ ∧ Dj
uq > 0

−∞ otherwise.

is the constraint imposed on the start time of task jq by
the agent winning task ju. Notice that the constraint is only
active if agent i believes there is an agent winning task
ju, and jq is dependent on ju. τmin

jq
is taken to be the

tightest active constraint including the original time window.
Similarly, τmax

jq
is given by

τmax
jq = min

(
τ endjq , min

u∈{1,...,|Aj |}\{q}
tmax
const(ju, jq|zi)

)
with

tmax
const(ju, jq|zi) =

{
tziu + T j

qu if zi(ju) 6= ∅ ∧ Dj
uq > 0

∞ otherwise.

F. Enforcing Constraints in Phase II

The consensus phase is augmented to enforce the addi-
tional coupled constraints: unilateral dependency constraints,
mutual dependency constraints, mutual exclusions, and tem-
poral constraints.

a) Tasks with Pessimistic Bidding Strategy: During the
consensus process, an agent i may find that another agent in
the network outbid it for some task jq in its bundle. When
this happens, jq as well as all tasks after jq in bundle bi

are released. The tasks which are released may be depended
on by other agents to satisfy the constraints associated with
the tasks in their bundles. It is therefore necessary for each
agent i to verify at each iteration, that the tasks in their
bundle bi which have a pessimistic bidding strategy have all
dependency constraints satisfied. If an agent finds that it is
winning a task jq which depends on some task which is no
longer assigned, it must release task jq as well as all tasks
in their bundle after jq .

b) Tasks with Optimistic Bidding Strategy: The proto-
col for optimistic bidding requires that each agent keep track
of the number of iterations they have been winning a task
with at least one violated dependency constraint. At each
iteration, agent i counts the number of satisfied constraints
for each task in its bundle, and compares it to the required

number of satisfied constraints for that task. If it is less, νi(jq)
is incremented for each appropriate jq .

Agent i also checks νi(jq) for each task in its bundle. If
νi(jq) = ojq for any task, then jq is released from the agent’s
bundle and wsolo

i(jq)
and wany

i(jq)
are each decremented by 1. At

this point, agent i has waited for ojq iterations of CBBA
in hopes of acquiring all of the partnering agents that task
jq requires. The agent infers that if the constraints are not
satisfied by this time, then the other agents in the network are
either unable to select the tasks jq depends on or choose not
to select them because other tasks result in a greater score.
Task jq is worth nothing to agent i unless all dependency
constraints are met, and so it releases that task so it can
select other tasks. Agent i also releases any task appearing
in its bundle after jq , but does not decrement wsolo

i(jq)
or wany

i(jq)

for those tasks.
c) Enforcing Mutexes: An agent i is allowed to bid on

a mutexed task jq as long as it can place a bid larger than
the current winning bid of all tasks that are mutexed with jq ,
and larger than the winning bid for task jq itself. The agent
placing the bid on task jq assumes that the other agents
will release the tasks mutexed with task jq once they are
informed that they were “outbid.” Because of this protocol, it
is possible for an agent to discover that it is currently winning
a task ju which is mutexed with another task jq which it also
believes to be assigned. Therefore it is necessary for each
agent to evaluate whether they are winning a task which is
mutexed with another assigned task at every iteration. Agent
i is required to release task jq from its bundle if it discovers
another task ju where Dj

uq = −1 and yi(ju) ≥ yi(jq); it is
permitted to keep task jq at a given iteration only if(

yi(jq) > yi(ju) ∨ D
j
uq 6= −1

)
= true, ∀u ∈ Aj \ {q}.

d) Temporal Constraints: Temporal constraints may
become violated during the task assignment process for a
variety of reasons. Note that the task selection phase of
CBBA is performed by agent i independently of all other
agents, except for the information agent i posses in zi and yi.
Therefore, it is possible for several agents to bid on elements
of an activity in the same bidding round, possibly resulting in
conflicting arrival times. Additionally, when an agent selects
the start time for a task jq , it is only required to consider
the constraints imposed by the tasks which jq depends on.
There may exist an agent k who is currently winning another
task ju which unilaterally depends on jq . Now the start time
chosen by agent i for task jq may invalidate the start time
already selected for task ju by agent k.

Therefore, it is necessary for each agent to check the tem-
poral constraints for all tasks in their bundle at each iteration.
The method developed for enforcing timing constraints is
described in this section for two cases: 1) temporal conflicts
between tasks with unilateral dependency constraints, and
2) temporal conflicts between tasks with mutual dependency
constraints. The process is as follows:

At each iteration, agent i checks each task jq ∈ bi for a

temporal constraint violation.

tempSat(jq)

=
∧

u∈Sjq

(
tzi(jq) ≤ tzi(ju) + T

j
qu

)
∧
(
tzi(ju) ≤ tzi(jq) + T

j
uq

)
where Sjq = {u ∈ {1, . . . , |Aj |} : zi(ju) 6= ∅}. If
tempSat(jq) = true the agent i keeps task jq as it is.
However, if a task ju is found whose start time is in violation
with the start time for jq , then agent i may have to release
task jq .

If task jq unilaterally depends on ju, then agent i releases
jq , because it is violating a constraint imposed by a task
assumed to be higher priority. The agent may re-bid on task
jq in the next iteration, as long as it can select a start time that
does satisfy the constraints. If task ju unilaterally depends
on jq , then agent i keeps task jq in its bundle. The agent
assumes that the agent winning task ju will also realize that
jq and ju are conflicted, and release task ju.

If task jq and ju are mutually dependent, then a special
procedure is followed: Assume that the score for a given task
is monotonically decreasing within its time window. Then
the agent arriving earliest (with respect to the start time of
the task) is required to release that task. In this instance, it
is assumed that the agent arriving later in their task’s time
window would have chosen an earlier start time if it were
possible, since the score decays with time. Given that agent
i is winning task jq and agent k is winning task ju, and the
start times are conflicted, then agent i releases task jq if

tzi(jq) − τ
start
jq ≤ tzi(ju) − τ

start
ju

Now each of the cases for the (jq, ju) task pair have been
accounted for when there is a temporal constraint violation
between them. If an agent is required to release a task jq
because of a temporal constraint violation, and task jq has
an optimistic bidding strategy, then wsolo

i(jq)
and wany

i(jq)
are each

decremented by one.

V. NUMERICAL RESULTS

A. Simulation Setup

Coupled-constraint CBBA is compared to the baseline
CBBA using a simulation to determine the merit of the as-
signments achieved. The mission scenario that is simulated is
a cooperative search, track, and engage mission. Participating
in the mission, are three types of agents. Agents of type A are
Neutralizing Uninhabited Aerials Vehicles (NUAVs) which
are capable of engaging hostile targets. Agents of type B are
Sensor UAVs (SUAVs), and they are capable of providing the
NUAVs with accurate measurements during an engagement.
Finally, agents of type C are SUAVs, but are only capable
of image capture; they cannot provide measurements to a
NUAV. Agent capabilities are described in the Table II.

There exist several objects of interest in the mission
environment. Some of the objects are confirmed hostiles, and
it is desired that all hostiles be engaged. Some of the objects
are of unconfirmed identity, and more intelligence is desired

TABLE II
AGENT PARAMETERS FOR SIMULATED MISSION SCENARIO

Agent Parameters

Type A: NUAV
Units Available 3
Capability Neutralization
Max Velocity 50 m/s

Type B: SUAV 1
Units Available 5
Capability Sensing for NUAV
Max Velocity 25 m/s

Type C: SUAV 2
Units Available 8
Capability Sensing- Image only
Max Velocity 15 m/s

regarding these objects. The two different types of objects
each have a specific activity associated with them.

Activity type 1 is a service hostile activity: hostile targets
may be engaged, which requires one agent of type A to
strike the target and one agent of type B to provide position
measurements. The strike portion of the activity takes 120
seconds, and the NUAV and the SUAV must plan to arrive
within 20 seconds of each other. If one type A and one type
B agent are assigned to a service hostile activity, a type C
agent may also be assigned to perform a damage assessment
(DA). The DA takes 180 seconds, and must begin at least
60 seconds after the strike is completed. If there is no strike
package available to engage the hostile target, a SUAV may
be sent to observe the hostile, but it is assumed that the
reward for performing the intelligence gathering task is much
less than that for performing the strike task. The maximum
score for a strike task is 100, the maximum score for a DA
is 50, and the maximum score for a intelligence gathering
task is 10. The time window for the activity is 600 seconds.

Activity type 2 is a tracking activity and involves visiting
one of the objects with unknown identity. This type of
activity contains a single element which is an information
gathering task that can be performed by either a type B
agent or a type C agent. The duration is 60 seconds, and the
maximum score for a tracking activity is 10. The dependency
and temporal constraint matrices for an activity of type 1 and
type 2 are

D1 =

0 1 1 −1
1 0 1 −1
0 0 0 −1
−1 −1 −1 0

 T1 =

0 20 −180 ∞
20 0 −180 ∞
∞ ∞ 0 ∞
∞ ∞ ∞ 0

D2 =

[
0
]
, T2 =

[
0
]

The simulation environment is 10 × 10 km. Activity lo-
cations and agent initial positions are generated randomly,
uniform in the environment. The number of activities is
varied as a parameter, with half of the activities being of
type 1, and half type 2. The time windows for each activity
are chosen such that the start time is uniformly random on
[0, 300] seconds. A maximum bundle length, Lt = 4 is used.

The scoring for a given assignment is calculated such that
only tasks which are assigned without constraint violation
count toward the assignment score. Also, the baseline CBBA
has no way to account for timing constraints, so the only
way to enforce them is to shrink the time window for the
two elements of the neutralization task to be 20 seconds
long, and set the time window of the DA to begin after the

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

Total number of activities

A
ss

ig
nm

en
t s

co
re

CBBA
CCBBA

Fig. 2. Coupled-constraint CBBA vs. Baseline CBBA, Assignment Score

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

Total number of activities

N
um

be
r

of
 ta

sk
s

as
si

gn
ed

Feasible Tasks CBBA
Feasible Tasks CCBBA
Total Tasks CBBA
Total Tasks CCBBA

Fig. 3. Coupled-constraint CBBA vs. Baseline CBBA, Number of Tasks
Assigned
neutralization window ends.

B. Results

The number of activities is varied as a parameter and 80
trials are simulated for each case. Fig. 2 compares the aver-
age assignment scores of the baseline CBBA and CCBBA.
Notice that the score for CBBA flattens out as the number of
activities increases beyond 10. The reason for this behavior
is: As Nt/Nu grows larger, each agent has increasingly more
task options available. Given that an agent selects a task,
jq , the probability that all tasks which jq depends on are
also assigned decreases as Nt/Nu increases when using the
baseline CBBA. However, notice that the score for CCBBA-
generated assignments increases with the number of tasks at
a much higher rate compared to CBBA, and does not posses
this tendency to flatten out suddenly. This is because CCBBA
is explicitly enforcing the coupled constraints so that agents
select tasks that are actually valuable.

Fig. 3 further validates the advantage of using CCBBA for
large Nt/Nu cases. The figure compares the total number of
tasks assigned by each algorithm as well as the number of
feasible tasks assigned. A feasible task is defined to be a task
which satisfies all constraints in the problem. Notice that the
total number of tasks assigned is roughly the same for each
approach. However, for the baseline CBBA, the percentage
of tasks assigned which satisfy the constraints decreases as

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8
x 104

Total number of activities

N
um

be
r

of
 c

al
cu

la
tio

ns

CBBA
CCBBA

Fig. 4. Coupled-constraint CBBA vs. Baseline CBBA, Computation
Complexity

0 5 10 15 20 25 30
0

2000

4000

6000

8000

10000

12000

14000

Total number of activities

N
um

be
r

of
 m

es
sa

ge
s

CBBA
CCBBA

Fig. 5. Coupled-constraint CBBA vs. Baseline CBBA, Comm. Complexity

the number of activities increases, thus adversely affecting
the assignment score for the baseline CBBA. The figure
also shows that for CCBBA, all assigned tasks satisfy the
constraints, which is reflected in the assignment score.

Fig. 4 shows the increase in computation for CCBBA
compared to CBBA. The metric for comparing computation
is the required number of score calculations to arrive at an
assignment summed over the whole network. The compar-
ison of computation shows that for this mission scenario,
the computation requirements are approximately linear for
CBBA, and approximately quadratic for CCBBA.

Fig. 5 compares the communication requirements for the
two algorithms. The metric for comparing communication is
the total number of messages parsed during the assignment
process summed over the network. This figure shows that for
this choice of mission parameters, CBBA has approximately
constant communication requirements with respect to the
number of tasks, whereas CCBBA has approximately lin-
ear communication requirements. The additional complexity
is associated with the optimistic bidding process, because
agents must put forth additional effort to discover that a task
will not have the required number of satisfied constraints.

CBBA is known to have polynomial computation and
communication requirements. CCBBA is certainly more
computationally expensive compared to CBBA, and requires

additional message passing. However, CCBBA still provides
a tractable framework for complex missions involving large
teams and many tasks. In this particular mission scenario,
there were 16 agents and up to 30 activities, (75 tasks with
coupling constraints), and the assignments were generated
in less than 40 seconds (in the Matlab environment with all
agents’ computations being performed by a single CPU).

VI. CONCLUSIONS

Coupled-constraint CBBA (CCBBA) was developed as an
efficient mechanism for solving the decentralized constrained
task allocation problem. These algorithmic extensions to
CBBA expand the types of constraints that CBBA can char-
acterize to include unilateral dependency constraints, mutual
dependency constraints, mutual exclusion, and temporal con-
straints. Numerical examples validate that CCBBA enables
incorporation of a wide range of mission constraints, pro-
viding measurable performance improvement to the baseline
CBBA. Future work will include integration of the presented
CCBBA into the Asynchronous CBBA framework [15] that
has been developed for the most efficient implementation of
CBBA in terms of computation and communication.

ACKNOWLEDGMENTS

This work is funded in part by AFOSR # FA9550-08-1-
0086, and by ONR STTR # N00014-08-C-0707 (with Mr.
Olivier Toupet at Aurora Flight Sciences).

REFERENCES

[1] J. Bellingham, M. Tillerson, A. Richards, and J. How, “Multi-Task
Allocation and Path Planning for Cooperating UAVs,” in Proceedings
of Conference of Cooperative Control and Optimization, Nov. 2001.

[2] C. Schumacher, P. Chandler, and S. Rasmussen, “Task allocation for
wide area search munitions,” in Proceedings of the American Control
Conference, 2002.

[3] A. Casal, “Reconfiguration planning for modular self-reconfigurable
robots,” Ph.D. dissertation, Stanford University, Stanford, CA, 2002.

[4] Y. Jin, A. Minai, and M. Polycarpou, “Cooperative Real-Time Search
and Task Allocation in UAV Teams,” in IEEE Conference on Decision
and Control, 2003.

[5] D. Turra, L. Pollini, and M. Innocenti, “Fast unmanned vehicles
task allocation with moving targets,” in Proceedings of the IEEE
Conference on Decision and Control, Dec 2004.

[6] M. Alighanbari, “Task assignment algorithms for teams of UAVs in
dynamic environments,” Master’s thesis, Massachusetts Institute of
Technology, 2004.

[7] T. W. McLain and R. W. Beard, “Coordination variables, coordination
functions, and cooperative-timing missions,” Journal of Guidance,
Control, and Dynamics, vol. 28(1), pp. 150–161, 2005.

[8] D. A. Castanon and C. Wu, “Distributed algorithms for dynamic
reassignment,” IEEE Conference on Decision and Control,
vol. 1, pp. 13–18 Vol.1, 9-12 Dec. 2003. [Online]. Available:
10.1109/CDC.2003.1272528

[9] J. Curtis and R. Murphey, “Simultaneous area search and task as-
signment for a team of cooperative agents,” in Proceedings of AIAA
Guidance, Navigation, and Control Conference and Exhibit, 2003.

[10] T. Shima, S. J. Rasmussen, and P. Chandler, “Uav team decision
and control using efficient collaborative estimation,” in Proceedings
of the American Control Conference, 8-10 June 2005, pp. 4107–4112
vol. 6. [Online]. Available: 10.1109/ACC.2005.1470621

[11] M. Alighanbari and J. How, “Robust and Decentralized Task Assign-
ment Algorithms for UAVs,” Ph.D. dissertation, MIT, 2007.

[12] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Trans. on Robotics, vol. 25
(4), pp. 912 – 926, 2009.

[13] S. Ponda, J. Redding, H.-L. Choi, J. P. How, M. A. Vavrina, and
J. Vian, “Decentralized planning for complex missions with dynamic
communication constraints,” in American Control Conference (ACC),
July 2010.

[14] H.-L. Choi, A. K. Whitten, and J. P. How, “Decentralized task
allocation for heterogeneous teams with cooperation constraints,” in
American Control Conference (ACC), July 2010, pp. 3057–3062.

[15] L. B. Johnson, S. Ponda, H.-L. Choi, and J. P. How, “Improving the
efficiency of a decentralized tasking algorithm for UAV teams with
asynchronous communications,” in AIAA Guidance, Navigation, and
Control Conference (GNC), August 2010.

APPENDIX

A. Examples of Encoding Real-World Constraints

Encoding the constraints into the dependency matrix and
the temporal constraint matrix may not be intuitive. This
section provides a couple of different examples of mission
scenarios, and describes the corresponding constraints matri-
ces. Details on more examples can be found in [?, Section
3.9].

a) Required Cooperation: Many real-world scenarios
involve a set of tasks, all of which must be assigned for
any of them to be valid, and they must have simultaneous
arrival. The dependency matrix for a set of mutually required
tasks of arbitrary size are given by D = 1Nt×Nt

− INt
, and

temporal constraint matrix in this case is T = 0Nt×Nt
.

b) Not During: Consider a scientific operation where
a series of measurements are taken by a fleet of robots.
Suppose there are two measurements that are to be taken:
measurement task A, and measurement task B. Both mea-
surements must be taken for either of them to be valid, how-
ever, they cannot be taken simultaneously, due to equipment
interference. The constraints can be encoded by splitting one
of the tasks into two instances - consider B into B− and B+

for example. Then, task B− depends on task A, task B+

depends on task A, and A depends on either B− or B+,
which give

D =

 0 1 1
2 0 −1
2 −1 0

 , T =

 0 ∞ −dA
−dB 0 ∞
∞ ∞ 0

 .
c) Super-Additive Score Structure: Sometimes, it is

desirable to send two UAVs to track a target if possible,
severely reducing the probability of being evaded. This
situation often leads to a super-additive score structure for
which the combined score is greater than the sum of the
individuals. To encode this score structure, combined assign-
ment is represented by two tasks, each worth half of the
combined score. A third task representing single assignment
is introduced; this task is to be mutexed with each of the
two tasks representing combined assignment, which give
constraint matrices

D =

 0 1 −1
1 0 −1
−1 −1 0

 , T =

 0 0 ∞
0 0 ∞
∞ ∞ 0

 .

