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Abstract

The purpose of this paper is to review the development of
modern control theory with special emphasis on future theoretical
directions as motivated by expanding areas of application and
technological innovation. Of particular interest is the delineation
of future research directions in the areas of

(a) large scale systems and decentralized control
(b) control using microprocessors
(c) dynamic system reliability and control under failure.
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1. INTRODUCTION

Modern system theory and its applications deal with decision making

under uncertainty in both mechanistic and humanistic systems. Of particu-

lar importance, and a major source of challenges and complexities, is the

case in which the outcomes of decisions are related in a dynamic context;

that is, the current outcome(s) - or output(s) - of a dynamic system depend

on the history of past decisions - or control inputs. For example, consider

the problem of maintaining a moving submarine at a constant depth below the

ocean surface. In this case the main output variable of interest, the

submarine depth, depends (among other things) upon the past history of the

position of the submarine control surfaces, the stern plane and the bow

plane.

The development of any theory and associated computational algorithms

for analysis and design almost always requires the abstraction of reality

by means of approximate, yet realistic mathematical relations. In the

case of control of dynamic systems these mathematical relations take the

form of complex, linear or nonlinear, ordinary or partial differential

equations. These differential equations relate the main system variables

of interest, often called state variables, to the variables that can be

directly manipulated, either manually or automatically, which are often

called control variables.

In addition to the inherent complexity associated with multivariable

dynamic systems whose behavior is described by complex differential
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equations, the control engineer must also deal with the issues of uncer-

tainty. There are several sources of uncertainty that are of crucial

importance in both analysis and design which arise due to

(a) errors in modelling a physical system by means of mathematical

equations

(b) errors in the parameters that appear in differential equations of

motion, e.g. the submarine hydrodynamic derivatives

(c) exogeneous stochastic disturbances that influence the time evolution

of the system state variables in a random manner, e.g. the effects

of the surface waves upon submarine depth

(d) sensor errors and related noise in measurements.

Such uncertainties are modelled as random variables and/or random

processes. Thus, the complete description of any real physical system

requires the use of stochastic differential equations. Figure 1 shows a

visualization of the key elements of a stochastic dynamic system.
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2. WHAT IS THE CONTROL PROBLEM?

The control engineer is usually given a particular physical system

(a submarine, an aircraft, a power system., a traffic network, a communica-

tions system,etc.) that has been designed by others. More often than not,

the performance of the original system is unsatisfactory; this may be due

to the fact that the interaction of the exogeneous disturbance inputs with

the natural system dynamics creates unacceptable behavior of the system

state variables. For example, the system may be inherently unstable, in

the absence of control, due to the complex interaction of kinetic and

potential energy; this is the case with all unaugmented helicopters,

missiles and certain high performance aircraft. Even if the system is

stable, its response to changes in commanded inputs may be either too

oscillatory or too sluggish, and hence unacceptable.

If the behavior of the unaugmented, or open-loop, system is not

satisfactory then the only way that- it can be made satisfactory is by the

judicious manipulation of the control variables as a function of the

actual sensor measurements. This is often called feedback control. The

main thrust of the control system design problem is to deduce the trans-

formation from the noisy sensor measurements to the control signals. This

is illustrated in Figure 2; the device that accomplishes this transformation

is called a controller or a compensator. Depending upon the nature of the

physical problem and the stringency requirements for the overall system

performance, the physical realization of the feedback controller can be

exceedingly simple (e.g. a constant gain analog amplifier) or complex (a
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special purpose modern digital computer). The appropriate design of the

feedback compensator or controller so that not only the system performance

is satisfactory but, in addition, technological constraints that pertain

to its implementation are observed is the essence of the control design

problem. By technological constraints we mean both hardware and software

considerations, cost, weight, reliability, and so on.



3. HISTORICAL PERSPECTIVE

In this section we present a very brief historical perspective of

the techniques available for the design of feedback control systems. By

necessity our perspective will be brief. However, we hope to convey the

intimate interrelationship between the development of the theory, the

motivating applications, the available computational tools, and the hard-

ware technology for implementation.

The first phase of the development of control theory can be traced

to the time period 1940-1960. At present, we refer to this brand of theory

as servomechanism theory or classical control theory. During this period

the theory was developed for systems described by linear differential

equations with constant coefficients and characterized by a single control

input. By means of the Laplace transform such systems could be analyzed

in the frequency domain, so that the system dynamics could be represented

by a transfer function. One of the main motivations for the development

of the design methodology was the need for accurate fire control systems

for both naval and surface weapons systems (see references Il] to [4]).

Later on during this time period the feedback control of chemical and indus-

trial processes also provided additional motivation for theoretical refine-

ments.

The design tools which emerged from classical control theory were,

by necessity, greatly influenced by the computational tools and the

simulation facilities available. Most design tools were graphical in nature

(Nyquist diagrams, Bode plots, Nichol's charts, root locus plots). Closed



-9-

form solutions were sought. Since the available theory could not handle

nonlinear systems and stochastic effects (with the notable exception of

Norbert Wieners work [5]) extensive simulations were carried out on elec-

tronic analog computers, with a great amount of "knob twisting" and common

sense engineering utilized to arrive at a satisfactory design. Almost

exclusively, the implementation of the feedback system was by electro-

mechanical and analog-electronic devices.

The basic development of classical control theory can be understood

in reference to Figure 3. The basic idea was to have the actual output y(t)

"follow" the reference input r(t) as closely as possible. The error signal,

e(t), was a measure of the undesirable deviation which was then transformed

by the controller into the actual control signal that was applied to the

physical system. At the basic level the issue of how to design the controller

so that the error signal always remains small was the key design problem.

The second phase of the development of a more sophisticated and

powerful theory of control is often referred to as modern control theory.

Its origins are acknowledged to be around 1956 and it still represents an

extremely active research area. In its early stages of development, the

theory was strongly motivated by the missile and aerospace age and in

particular trajectory optimization. Aerospace systems can be extremely

nonlinear and, in general, their motion and performance can be influenced

by several available control inputs. Since classical control theory repre-

sented a scientific design methodology only for linear single-input systems,

a much more general design methodology had to be developed for the stringent
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performance requirements of aerospace systems.

The development of modern control theory and the associated design

methodologies were also greatly influenced by the appearance of the modern

digital (maxi) computer in the early sixties. The digital computer greatly

influenced the nature of "solutions" to control problems. To be more

specific, in classical control theory one almost always sought closed form

solutions; in modern control theory one accepts a recursive algorithm as

a perfectly acceptable solution to the control problem. This transition

from analytical solutions to algorithmic solutions opened several important

new research horizons and fresh ways of thinking.

The basic new ingredient associated with modern control theory was

that of optimization. This new attitude towards "optimal design" was

necessitated by the fact that it is difficult to examine simultaneously

several control and state variables, as they evolve in time, in order to

make a clear cut scientific decision on which design is preferable. Thus,

for multivariable control problems it is important to translate the desirable

attributes of "good" system performance into a scalar mathematical index

of performance that had to be optimized subject to the constraints imposed

by the system differential equations, as well as additional constraints on

the control and state variables which arise from the physical nature of

the problem.

Two powerful theoretical approaches were developed during the early

phases of modern-control theory. The first approach represented an extension

of classical calculus of variations methodology to the optimal control
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r (t): reference input

y(t): actual output

e(t): error signal (e(t) = r(t) - y(t))

u(t): control input

Figure 3. The Traditional Servomechanism Problem
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problem; it was developed by the Russian mathematician L.S. Pontryagin and

his students and was called the maximum principle (see references [6] to

[11]). The second approach, due to the U.S. mathematician R. Bellman, was

based upon the so-called principle of optimality, an almost self-evident

property of optimal solutions, which led to the so-called dynamic programming

algorithm (see references [12] to [14]).

These two major theoretical breakthroughs in the late fifties re-

sulted in a worldwide flurry of research during the early sixties. Several

digital computer algorithms were developed which could be used for the

numerical solutions of the complex nonlinear equations which define the

optimal control solution and the theory was applied to a variety of complex

trajectory optimization problems for both endoatmospheric and exoatmospheric

aerospace systems, with a great deal of success.

Another byproduct of the initial research breakthroughs in dynamic

optimization problems was the development of a systematic theory, with

associated digital computer algorithms for problems of optimal stochastic

estimation and optimal stochastic control.

In the stochastic estimation area one attempts to reconstruct

estimates of key state variables and parameters of a physical system from

noisy sensor data. An important class of applications that provided moti-

vation for, and benefited subsequently by, the development of optimal

stochastic estimation algorithms was the generic tracking problem of a

target by radar or (active or passive) sonar. In this class of problems the

radar or sonar generates noisy range and/or angle measurements; the sto-

chastic estimation algorithms processes the noisy sensor data to obtain
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(a) improved position estimates

(b) velocity estimates

(c) target classification estimates

for the target. At the present time there exists a whole variety of

stochastic estimation algorithms which represent extensions of the cele-

brated Kalman Filter (see references [15] to [16]), the optimal stochastic

estimation algorithm for linear dynamic systems subject to Gaussian

uncertainties, to systems described by nonlinear equations with respect

to their dynamics and measurements (see references [17] to [19]).

Stochastic estimation algorithms have been extensively used for

position accuracy improvement in inertial navigation systems. Some rela-

tively recent studies show how to couple the measurements of the inertial

measurements units (IMU) to those obtained from gravitational and/or

magnetic field anolmalies so as to further improve the position accuracy

of a ship or submarine.

Although stochastic estimation theory, and the associated algorithms

are important by themselves in a variety of application areas (such as the

tracking problem and the navigation problem), they become even more im-

portant when they are coupled to the control problem. The theory and

algorithms associated with optimal stochastic control deal with the over-

all problem of optimizing an overall system performance index subject to

the constraints imposed by the dynamic stochastic differential equations

that describe the system behavior as well as the available sensor con-

figuration and their accuracy characteristics.

Most of the theoretical advances in optimal stochastic control have
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been carried out during the past decade (see references [20] to [22]).

Optimal stochastic control problems are relatively well understood,

since the dynamic programming algorithm can be easily extended to the

stochastic case. There remain, however, certain formidable real time

computational requirements associated with optimal stochastic control.

This class of problems not only combines the issues of deterministic

optimization and stochastic estimation, but also a considerable inter-

action between the two. This is the so-called dual control problem (see

references [23] to [281). Roughly speaking the problem is that in any

dynamic optimization problem the present values of the control variables

should cause the future values of the state variables to behave in an

optimal manner. This requires, however, that a relatively good knowledge

of the future system response be available. Unfortunately, especially

in the case of nonlinear systems with uncertain parameters such "good"

knowledge of the future is not available. It may turn out that by

applying a control that excites certain modes, we could identify in

real-time certain key parameters, which would improve our knowledge of

future responses. On the other hand, control inputs that are good for

identification may not necessarily be the best for control. The pre-

ceding argument shows the conceptual complexity of the optimal stochastic

control problem. Fortunately the mathematical formulation of the problem

automatically handles all of these complex tradeoffs, and provides the

optimal control solution containing the correct balance between the

tasks of identification and optimization of performance index as a

function of time. The pragmatic difficulty is that, at the present state



of the art, the real time computational requirements can be formidable

for sufficiently complex nonlinear stochastic optimal control problems.

To give the reader an idea of the complexity of the real time computa-

tional requirements, it suffices to state that one needs to solve in real-

time coupled sets of nonlinear partial differential equations; such solu-

tions are beyond the state of the art of current and projected maxi-

computers.

The situation is not as grim, however, as one may imagine. Even if

the computation of the truly optimal stochastic control cannot be accom-

plished, the mathematical theory provides insight into the nature of the

optimal solutions. Such insight together with common sense engineering

know-how about the specific physical problem, can be used to develop near-

optimal solutions to several physical problems, still based upon a general

design methodology. The so-called Linear-Quadratic-Gaussian (LQG) method

has been extensively analyzed during the past decade (see references [29]

to [31]) and has been successfully applied to several complex problems.

The resultant designs show a significant degree of improvement over

conventional designs. Of particular interest in naval applications one can

mention the areas of submarine control (see references [32] to [33]), jet

engine control (see references [34] to [37]), and super-tanker control

(see reference [38]),
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4. RECAPITULATION

We have attempted in the above discussion to simultaneously provide

an historical perspective as well as a survey of the state of the art of

classical and modern control theory. At the present time, we have a good

conceptual understanding, theories, and design algorithms so that we can

tackle complex control problems. Of course, there is a gap between the

available theory and applications. The trend in the past five years has

been to apply modern control theory to several applications. Needless to

say we need many more complex applications to fully appreciate the advan-

tages and shortcomings of modern control theory. The shortcomings can then

serve as the motivating force for future relevant research at the theoreti-

cal, algorithmic, and design methodological level.

In the remainder of this paper we shall outline what are some

exciting future research topics and why they are important. Needless to

say the list of topics is not exhaustive; however, it represents a con-

sensus of international opinion of the most pressing areas for future

research based upon diverse application areas and the theoretical state

of the art.

The need for future advances in control and estimation theory can

only be appreciated by viewing this field of research as truly inter-

disciplinary applicable not only to complex defense systems but also to

other complex engineering and socioeconomic systems, such as intercon-

nected power systems, urban transportation networks, command control

and communications systems (C3 ), and socioeconomic systems.
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5. DECENTRALIZED CONTROL AND LARGE SCALE SYSTEMS

The theory associated with both classical and modern control theory

has been developed under a crucial key assumption: centralized decision

making. This can be best understood in reference to Figure 2 in which

the objective is to design the feedback controller. Notice that the

controller (or decision maker) has access to all the measurements generated

by the noisy sensors and generates all the controls. Implicit in the

theory and associated algorithms is that the controller also has central

knowledge of

(a) the entire system dynamics

(b) the probabilistic description of all uncertain quantities

(c) the overall index of performance.

Although such assumptions are perfectly valid in a variety of applications,

it is clear that there are several complex systems that cannot be handled

within the existing framework. We present two oversimplified examples

that hopefully illustrate the point.

Example 1. Consider the problem of defending a fleet consisting of

several vessels under attack. The overall defense objective may be to

minimize the expected number of losses in terms of men and equipment.

Clearly the evolution of the battle represents a stochastic phenomenon,

involving real time decisions with respect to the allocation of sensor

resources (radar,sonar) and defense resources (torpedoes, missiles, guns,

etc). A purely decentralized strategy, i.e. each vessel only defends

itself, cannot be optimal, since it does not utilize effectively the



available fleet resources. On the other hand, it is unrealistic to

visualize a purely centralized strategy in which the command center

directs at all instants of time each and every action of the entire fleet.

Conceptually a centralized strategy can be formulated, but it is unrealistic

from the point of view of communication requirements and the vulnerability

of the overall fleet to damage at the central command point. The proper

way of handling this problem is to establish some sort of hierarchical

command structure, where the overall defense objective is divided into

subobjectives, as a function of the remaining defense resources.

Example 2. Consider a geographically distributed command-control-

communications (C3) system, consisting of several nodes, links of different

capacities, and which is required to handle messages of different priori-

ties. Each node represents a decision point and it has to make real time

decisions on how to route the different classes of messages over the

available links to their desired destinations. Under heavy demand, and

especially if certain nodes and/or links become destroyed, this represents

an exceedingly complex stochastic dynamic control problem. Once more a

centralized control-decision strategy does not make sense. The entire

resources of the network could be used to pass back-and-forth protocol

and status information rather than to transmit useful messages. Once more

the real time optimal decisions, say with respect to routing strategies,

can only be accomplished with limited information exchange. For example,

each node may be allowed only to communicate with its neighboring nodes.

Hence, the optimal control strategy must be decentralized.
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The above two examples represent problems of stochastic dynamic

systems with distributed decision makers (or controllers) and limited

communication interfaces. Several other examples such as power systems,

ABM defense system, transportation networks, economic systems, have

similar generic characteristics. In the control literature these are

referred to as large scale systems and the methodology that has to be

employed is called decentralized control.

One could go on and on describing additional large scale systems

that certainly require the development of improved dynamic control strate-

gies. However, let us pause and reflect upon their common attributes.

They are

(1) topologically configured as a network

(2) they are characterized by ill understood dynamic interrelations

(3) they are geographically distributed

(4) the controllers (or decision points) are many and also

geographically distributed.

This class of large scale system problems certainly cannot be

handled by classical servomechanism techniques. Current designs are

almost completely ad hoc in nature, backed by extensive simulations, and

almost universally studied in static, or at best quasi-static, modes.

This is why their performance may deteriorate when severe demands or failures

occur.

We do not have a large scale system theory. We desperately need
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to develop good theories. The theories that we develop must, however,

capture the relevant physical and technological issues. These include

not only the traditional performance improvement measures but in addition

the key issues of

(a) communication system requirements and costs and

(b) a new word - "distributed computation".

In addressing the problems of large scale systems and decentralized

control we must also recognize that we are facing a critical technological

turning point. We are in the beginning of a microprocessor revolution.

These cheap and reliable devices offer us the capability of low cost dis-

tributed computation. It is obvious that relevant advances in the theory

and design methodologies must take into account the current and projected

characteristics of microprocessors, distributed computation, and decen-

tralized control.

The development of a theory for decentralized control , with special

attention to the issues of distributed via microprocessors, has to have the

elements of a relatively drastic departure in our way of thinking.

Figure 4 shows the type of structure that we must learn to deal

with. Once more we have a complex dynamic system which is being controlled

by several distinct controllers. These controllers may consist of a

single or many microprocessors, so that they provide means for distributed

computation.

As shown in Figure 4, we have now several controllers or decision

makers. Each controller only receives a subset of the total sensor measure-
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ments and in turn only generates a subset of the decisions or commanded

controls.

The key assumption is that each controller does not have instantan-

eous access to the other measurements and decisions. To visualize the

underlying issues involved, imagine that the "complex dynamic system" of

Figure 4 is an urban traffic grid of one-way streets. Each local con-

troller is the signal light at the intersection. The timing and duration

of the green, red, and yellow for each traffic signal is controlled by

the queue lengths in the two local one-way links as measured by magnetic

loop detectors. In this traffic situation some sort of signal coordina-

tion may be necessary. In the general representation of decentralized

control, shown in Figure 4, the dotted lines represent the communication/

computer interfaces. All boxes and lines with question marks represent

design variables. To systematically design the underlying decentralized

system with all the communication and microprocessor interfaces, is the

goal of a future large scale system theory.

The conceptual, theoretical, and algorithmic barriers that we must

overcome are enormous. There are many reasonable starting ponts that lead

to pitfalls and nonsense (see references [39] to [40]). Such decen-

tralized control problems are characterized by so-called non-classical

information patterns or non-nested information structure. This means

that each local controller does not have instantaneous access to other

measurements and decisions.

Such situations can lead to complicated results. The classic paper

of Witsenhausen [41] that demonstrated, via a counterexample, that a very
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simple linear-quadratic-Gaussian problem has a nonlinear optimal solution

was an early indication of the difficulties inherent in decentralized

control. Since that time some advances have been made in such fields as

(1) dynamic team theory (see references [42] to [47])

(2) dynamic stochastic games (see references (48] to [52]

which, nonetheless, have only scratched the surface. We have not seen as

yet spectacular theoretical breakthroughs in decentralized control. We

are at a normative stage where old ideas such as feedback are reexamined

and new conceptual approaches are being investigated.

My feeling is that, concurrently with the theory, we must obtain a

much better understanding of the key features associated with different

physical large scale systems. Then, and only then, will we be able to

obtain a deep understanding of the true generic issues associated with

large scale systems, as distinct from the physical, technological and

even sociopolitical peculiarities of each system.

We must answer the question of "how important is a bit of information

for good control". We may have to translate or modify certain results

in information theory (such as rate distortion theory) to accomplish our

goals. Perhaps the deep study of data communication networks- will pro-

vide a natural setting for basic understanding, since the commodity to

be controlled is information and the transmission of information for con-

trol routing strategies, or protocol as it is often called, share the

same resources, have the same dynamics, and are subject to the same

disturbances.

In summary, the development of new theoretical directions and
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concepts in decentralized control promises to be one of the most exciting

areas of research in the decades to come. In spite of the tremendous

conceptual and technical problems, the potential payoffs in a host of

application areas is enormous.
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6. MICROPROCESSOR CONTROL, ALGORITHM COMPLEXITY, AND CONTROL SYSTEM

DESIGN*

The potential of microprocessors for conventional control system

design presents a virgin area for both theoretical and applied research.

The entire development of both classical and modern control theory was

never greatly influenced by computer languages and architecture for two

reasons. During the early phases of development, the controller imple-

mentation was analog in nature. During the later phases the availability

of special purpose minicomputers for digital control did not present any

serious obstacle for implementation.

The availability of low cost and reliable microprocessors presents

new opportunities for the design of sophisticated control systems. How-

ever, the peculiarities of microprocessors, their architecture and so on

do present certain problems that cannot be handled by the available theory.

If control theory follows its tradition of rapidly exploiting technological

innovations (such as the digital computer) for novel and improved designs,

then it must face the challenges presented by microprocessors.

Of paramount importance is to incorporate in the overall index of

performance not only quantities that pertain to the overall behavior of

the control system but, in addition, quantities that reflect the complexity

of the control algorithms. In addition to the usual constraints imposed

by the physical system upon the control and state variables, we must also

* The material in this section was heavily influenced by a "white paper"
recently written by one of my colleagues, Professor T.L. Johnson [53].
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include constraints that reflect the use of microprocessors for signal

processing and control such as memory, finite word length, interrupts

and the like.

There is still another area that needs theoretical investigation in

that the bulk of the existing methodology applicable to the design of

digital compensators is of the synchronous type, that is the sampling of

sensors and the generation of control commands is carried out at uniform

time intervals. On the other hand, nontrivial applications using micro-

processors will almost surely require an asynchronous operation. Hence

we can see a divergence between existing theory and desired implementation.

This clearly points out that the available theory has to be re-evaluated,

modified, extended and perhaps we may even have to adopt a completely new

conceptual framework to keep up with the microprocessor technological

innovations. Perhaps the theory does not need a tremendous quantum jump,

but certainly several concepts from computer science (such as computational

complexity, parallel vs. serial computation, automata theory and finite

state sequential machines) must be incorporated into the formulation of

the control problem. To be sure, the mixing up of "continuous" and

"discrete" mathematics will lead to severe theoretical difficulties that

must be overcome. For example, the author is not aware of any natural

and general way of incorporating discrete-valued random variables in

digital compensator design. Also, computer scientists interested in the

area of computational complexity have not examined in any detail the most

common algorithms used in control systems (such as the Lyapunov equation

and the Riccati equation). Even if such measures of computational com-
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plexity were available, it is not clear how they could be naturally

incorporated either on constraints or on penalty functions in the overall

performance index to be optimized. Since the mathematics have to "mesh"

together, it is not clear if variational techniques could be used to

solve this class of new optimization problems.

At any rate the theory underlying the optimal use of microprocessors

and their interconnections for digital compensation has yet to be developed.

The resultant compensators will probably be of the finite-state, asyn-

chronous operation variety for optimal use of the computational resources.

This type of structure may naturally incorporate the common implementation

problems such as model aggregation, interface design, saturation, fault

handling, finite state inputs and outputs, storage allocation, interrupt-

handling, and alphabet and programming languages.
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7. FAILURE DETECTION, CONTROL UNDER FAILURE, AND SYSTEM RELIABILITY

Another exciting area for future research deals with the overall

problem of reliable control system design and operation. The motivation

for studying these types of problems is self evident, since reliable

opration is crucial in a variety of applications.

At the present time, we do not have a systematic methodology or

theory for handling such problems, Reliability theory, as a discipline

of its own, does not appear to be well suited for dealing with the complex

dynamic and stochastic situations that one is faced with in control.

Although we do not have as yet a general theory, there are several

theoretical investigations and results which are emerging in the literature

that appear to represent promising entries to this very important problem.

Several of these concepts were presented at a workshop held at MIT, and

funded by the NASA Ames Research Center, on Systems Reliability Issues

for Future Aircraft in August 1975. The proceedings of this workshop will

be published as a NASA Special Publication in the summer of 1976. It was

evident from the presentations in that workshop that the present state-of-

the-art in constructing reliable designs is to use triple or quadruple

redundancy in crucial actuators, sensors, and other key components.

With respect to future high performance systems (such as aircraft,

ships, etc.) the trend is to utilize a greater amount of control devices

and sensors, which will be under complete automatic control. If each new

sensor and actuator is constructed to be quadruply redundant, this will

result in a prohibitively expensive design. The idea is then to try to

arrive at systematic means for designing the control system such that the
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redundancy requirements are reduced, while in the case of sensor/actuator

failures (when recognized), one can reorganize the control system so that

the operative sensors and controllers can still maintain safe system

operation.

Failure detection and isolation is then of paramount importance and

some extremely important work has been done in this area during the past

four years. The field is well surveyed in a recent paper by Willsky [54].

Essentially, the idea of failure detection and isolation relies very

heavily upon the blending of dynamic stochastic estimation concepts (e.g.,

Kalman filters) with hypothesis testing ideas. Under normal operating

conditions the residuals (innovations) of Kalman filters are monitored.

A failure exhibits itself as a change in the statistical properties of

the Kalman filter residuals. Once a failure has been detected one can

formulate a set of alternate failure modes, and through the use of general-

ized likelihood ratios one can isolate the failed component.

Within the next five years we are going to see two or three case

studies which will give us a great insight into the entire issue of

failure detection and isolation, and obtain a much better understanding

of the inevitable tradeoffs associated with the

(a) rapidity of failure recognition

(b) rapidity of failure isolation and classification

(c) false alarm probabilities

(d) computational complexity.

Failure detection and isolation is only the tip of the iceberg in
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the broad area of designing reliable systems. The whole issue of alternate

ways of reconfiguring and reorganizing the control system, in real time,

following the onset of a failure is a wide open research area. Much

research at both the theoretical and the applied level needs to be carried

out during the next decade. Of particular importance is the problem of

what to do between the time that a failure has been declared and the time

that the failure has been isolated. During this critical transient one can

certainly expect a degraded operation of the control system, but its sta-

bility (under non-catastrophic failures) must be guaranteed.

It is imperative, in the author's opinion, that such a unified theory

that deals with failure detection and isolation be developed. The current

trend is to concentrate primarily upon sensor failures, but the theory and

methodology has to be extended to other types of failures such as abrupt

changes in the system dynamics, actuator failures, and computational

failures. To be sure, redundancy of certain critical components is still

going to be important. However, for military combat systems such as high

performance surface effect ships, as well as for aircraft, it is desirable

to distribute the redundant sensors on the vehicle so as to minimize the

probability that the entire group of crucial redundant sensors (such as

gyros and accelerometers) be destroyed by enemy fire. However, the geo-

graphical distribution of such redundant sensors presents additional problems

since their readings will be influenced by their location. Hence kinematic

and structural dynamics must be taken into account in order to have even

simple majority rule voting procedures in triply redundant sensors. Thus,
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the short term dynamics of the ship and aircraft, as well as important

bending and vibrational modes must be known relatively accurately so as

to minimize the effects of false failure alarms.

In the long run we need a general theory of dynamic system relia-

bility for the design of fail-safe, fail-operational, and fail-degradable

control systems. We must develop a methodology that starts with an overall

desired measure of reliability and control system performance, and provides

us with systematic computer-aided design techniques that determine the

type of sensors and actuators, their accuracy, their inherent reliability,

their redundancy level, their geographical distribution and their back up

(especially in the case of sensors) by software (based upon stochastic

estimation techniques) which can reduce the level of redundancy. Further-

more such a theory must incorporate the real time reconfiguration of the

control system, following the onset of one or more non-catastropic failures,

so as to maintain acceptable system performance. To the best of our

knowledge very little has been done in formulating in a precise mathematical

way this class of problems, and several conceptual barriers have to be

overcome before a useful set of theoretical tools can be developed.
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8. CONCLUDING REMARKS

We have attempted to define three major future research areas in

control and estimation theory. Such future theoretical directions build

upon a solid theoretical foundation available today, and are motivated by

both significant application areas and technological advances. It is

important to stress that the theoretical issues and the technical details

that must be overcome are extremely difficult and diverse. For the devel-

opment of relevant theoretical and algorithmic tools one can envision

significant interdisciplinary efforts by groups of control engineers,

mathematicians, and computer scientists as well as the great need for

advanced applications so that the advantages and disadvantages of the new

theories can be rapidly tested.



-33-

REFERENCES

1. H.M. James, N.B. Nichols, and R.S, Philips, "Theory or Servomechanisms",

McGraw Hill Book Co., N.Y., 1947.

2. G.S. Brown and D.P. Cambell, "Principles of Servomechanisms", J. Wiley

and Sons, N.Y., 1948.

3. J.J. D'Azzo and C.H. Houpis, "Feedback Control System Analysis and

Design", McGraw Hill Book Co., N.Y., 1960.

4. G.C. Newton, L.A. Gould, J.F. Kaiser, "Analytical Design of Linear

Feeback Controls", J. Wiley and Sons, N.Y., 1957.

5. N. Wiener, "The Interpolation and Smoothing of Stationary Time Series",

MIT Press, Cambridge, Mass., 1949.

6. L.S. Pontryagin, "Optimal Control Processes" (in Russian) Usp. Mat.

Nauk, Vol. 14, pp. 3-20, 1959, translated in Am. Math. Soc. Trans.,
Vol. 18, pp. 321-339, 1961.

7. L.S. Pontryagin, V. Boltyanski, R. Gamkrelidze, and E. Mishchenko,

"The Mathematical Theory of Optimal Processes", J. Wiley and Sons,

Interscience, N.Y., 1962.

8. L.I. Rozonoer, "L.S. Pontryagin's Maximum Principle in the Theory of

Optimal Systems I, II, III", Automation and Remote Control, Vol. 20,

I, pp. 1288-1302, II, pp. 1405-1421, III, pp. 1517-1532, 1960.

9. M. Athans and P.L. Falb, "Optimal Control", McGraw Hill Book Co.,

N.Y., 1966.

10. E.B. Lee and L. Marcus, "Foundations of Optimal Control Theory",

J. Wiley and Sons, N.Y., 1967.

11. A. E. Bryson and Y.-C. Ho, "Applied Optimal Control", Blaisdell,
Waltham, Mass., 1969.

12. R. Bellman, "Dynamic Programming", Princeton University Press, Princeton,

N.J., 1957.

13. R. Bellman and S.E. Dreyfus, "Applied Dynamic Programming", Princeton
University Press, Princeton, N.J., 1962.

14. S.E. Dreyfus, "Dynamic Programming and the Calculus of Variations",

Academic Press, N.Y., 1965.



-34-

15. R.E. Kalman, "A New Approach to Linear Filtering and Prediction
Problems", Trans. ASME, J. Basic Engineering, Ser. D, Vol. 82,

pp. 34-45, 1960.

16. R.E. Kalman, and R.S. Bucy, "New Results in Linear Filtering and

Prediction Theory", Trans. ASME, J. Basic Engineering, Ser. D, Vol. 83,

pp. 95-108, 1961.

17. R.S. Bucy and P.D. Joseph, "Filtering for Stochastic Professes with

Applications to Guidance", J. Wiley and Sons, N.Y., 1962.

18. A.H. Jazwinskii, "Stochastic Processes and Filtering Theory",

Academic Press, N.Y., 1970.

19. A. Gelb, "Applied Optimal Estimation", M.I.T. Press, Cambridge, Mass.,

1974.

20. M. Aoki, "Optimization of Stochastic Systems", Academic Press, N.Y.,

1967.

21. K.J. Astrom, "Introduction to Stochastic Control Theory", Academic

Press, N.Y., 1970.

22. H.J. Kushner, "Introduction to Stochastic Control", Holt, Rinehart,

and Winston, N.Y., 1971.

23. A.A. Fel'baum, "Optimal Control Systems", Academic Press, N.Y., 1967.

24. B. Wittenmark, "Stochastic Adaptive Control Methods: A Survey",

Int. J. of Control, Vol. 21, pp. 705-730, 1975.

25. M. Athans and P. Varaiya, 'A Survey of Adaptive Stochastic Control

Methods", in ERDA Report CONF-780867, Systems Engineering for Power:

Status and Prospects (L.H. Fink and K. Carlsen, eds.), pp. 356-366,

October 1975.

26. E. Tse, Y. Bar-Shalom and L. Meier, "Wide Sense Adaptive Dual Control

for Nonlinear Systems", IEEE Trans. on Automatic Control, Vol. AC-18,

pp. 98-108, 1973.

27. E. Tse and Y. Bar-Shalom, "An Actively Adaptive Control for Linear

Systems with Random Parameters via the Dual Control Method", IEEE

Trans. on Automatic Control, Vol. AC-18, 1973, pp. 109-116.

28. Y. Bar-Shalom and E. Tse, "Concepts and Methods in Stochastic Control"

in Control and Dynamic Systems: Advances in Theory and Applications,

(C.T. Leondes, ed.), Academic Press, N.Y., 1975.



-35-

29. M. Athans (ed,), "Special Issue on Linear Quadratic Gaussian Problem",

IEEE Trans. on Automatic Control, Vol. AC-16, No. 6, December 1971.

30. B.D.O. Anderson and J.B. Moore, "Linear Optimal Control", Prentice Hall,

Englewood Cliffs, N.J., 1971.

31. H. Kwackernaak and R. Sivan, "Linear Optimal Control Systems", J. Wiley

and Sons, N.Y., 1972.

32. J. Griffin, P. Berry, J. Boussard, and R.F. Stengel, "Advanced Concepts

for Submarine Control", Report TR-662-1 (ONR-CR-289-001-lF), The Analytic

Sciences Corp., Reading, Mass., 1976.

33. D.L. Kleinman, W. Killingworth, W. Smith, "Automatic Depth Keeping

Control for the Trident Submarine (U)", Systems Control Inc., Report

101, Palo Alto, California, October 1973,(CONFIDENTIAL).

34. D.L. DeHoff and W.E. Hall, "Multivariable Control Design Principles

with Application to the F-100 Turbofan Engine", Proc. 1976 Joint

Automatic Control Conference, W. Lafayette, Indiana, July 1976.

35. G.J. Michael and F.A. Farrar, "Development of Optimal Control Modes

for Advanced Technology Propulsion Systems", United Aircraft Research

Labs, Report N911620-2, East Hartford, Conn., March 1974.

36. C.R. Stone, "Turbine Engine Control Synthesis", Honeywell Systems and

Research Division, Final Report AF Contract F33615-72-C-2190, Minneapolis,

Minnesota.

37. F.A. Farrar and G.J. Michael, "Analyses Related to Implementation of

Multivariable Control Techniques for ten F100-F401 Class of Engines",

United Aircraft Research Lab Report UARL-M177, East Hartford, Conn.,

1973.

38. K. Astrom et al., "Estimation and Control for Supertankers Using the

Self-Tuning Regulator Method" (to appear).

39. N.R. Sandell, P. Varaiya, and M. Athans, "A Survey of Decentralized

Control Methods for Large Scale Systems", in ERDA Report CONF-750876

Systems Engineering for Power: Status and Prospects (L.H. Fink and

K. Carlsen, eds.), pp. 334-352, October 1975.

40. M. Athans, "Survey of Decentralized Control Methods", Annals of Economic

and Social Measurement, Vol. 4, pp. 345-356, 1975.

41. H.S. Witsenhausen, "A Counterexample in Stochastic Optimal Control",

SIAM J. on Control, Vol. 6, 1968.



-36-

42. Y.-C. Ho and S.K. Mitter -(eds.), "Directions in Large-Scale Systems",
Plenum Press, N.Y., 1976.

43. Proceedings IFAC Symposium on Large Scale Systems, Udine, Italy, June
1976.

44. Y.-C, Ho and K.C. Chu, "Team Decision Theory and Information Structures
in Optimal Control Problems - Parts I and II", IEEE Trans. on Automatic
Control, Vol. AC-17, pp. 15-28, 1972.

45. Y.C. Ho and K.C. Chu, "Information Structure in Dynamic Multi-Person
Control Problems", Automatica, Vol. 10, pp. 341-351, 1974.

46. N.R. Sandell and M. Athans, "Solution of Some Non-Classical LQG
Stochastic Decision Problems", IEEE Trans. on Automatic Control, Vol.
AC-19, pp. 108-116, 1974.

47. C.-Y. Chong and M. Athans, "On the Periodic Coordination of Linear
Stochastic Systems", Automatica, Vol. 12, 1976.

48. J.B. Cruz, Jr., "Survey of Nash and Stackelberg Equilibrium Strategies
in Dynamic Games", Annals of Economic and Social Measurement, Vol. 4,
pp. 339-344, 1975.

49. D. Castanon and M. Athans, "On Stochastic Dynamic Stackelberg Strategies",
Automatica, Vol. 12, pp. 177-183, 1976.

50. D. Castanon, "Equilibria in Stochastic Dynamic Games of Stackelberg
Type", MIT Electronic Systems Laboratory Report ESL-R-662, Cambridge,
Mass., May 1976.

51. Y.-C. Ho and F.-K. Sun, "Value of Information in Two Team Zero Sum
Problems", J. of Optimization Theory and Applications, Vol. 14, pp.

557-571, 1974.

52. T. Basar, "A New Class of Nash Strategies for M-Person Differential
Games with Mixed Information Structure", Proc. 1975 IFAC, Cambridge,
Mass., 1975.

53. T.L. Johnson, "Finite-State Compensators for Physical Systems," M.I.T.
Electronic Systems Laboratory Tech. Memo ESL-TM-658, April 1976.

54. A.S. Willsky, "A Survey of Design Methods for Failure Detection in
Dynamic Systems", MIT Electronic Systems Laboratory Report ESL-P-633,
November 1975 (to appear in Automatica).


