THE OPTIMIZATION OF DATA COMPRESSION ALGORITHMS

By

WANG-REI TANG
Master of Engineering in Civil and Environmental Engineering
Massachusetts Institute of Technology
June 1999

Submitted to the Department of Civil & Environmental Engineering
In Partial Fulfillment of the Requirement for the Degree of

ENGINEER'S DEGREE
IN CIVIL AND ENVIRONMENTAL ENGINEERING

At the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2000

© 2000 Wang-Rei Tang
All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper
and electronic copies of this thesis for the purpose of other works.

Signature of Author______________
Department of Civil and Environmental Engineering
August 4, 2000

Certified by______________
Professor Jerome Connor
Associate Professor, Civil and Environmental Engineering
Thesis Supervisor

Accepted by______________
Professor Daniele Veneziano
Chairman, Department Committee on Graduate Studies
THE OPTIMIZATION OF DATA COMPRESSION ALGORITHMS

By

WANG-REI TANG

Submitted to the Department of Civil & Environmental Engineering
In Partial Fulfillment of the Requirement for the Degree of

Engineer’s Degree
In Civil & Environmental Engineering
Massachusetts Institute of Technology

Abstract

Data compression is used to reduce the number of bits required to store or transmit information. A data compression algorithm is a set of rules or procedures for solving data compression problems in a finite number of steps. The efficient of a algorithm is important since it is directly related to cost and time.

Data compression algorithms can be categorized according to the techniques used to do the compression. Statistical methods use variable-size codes, with the shorter codes assigned to symbols that appear more often in the data, and longer codes assigned to symbols that appear less often in the data. Shannon-Fano encoding, the Huffman code, and arithmetic coding are all in the statistical method family.

This thesis presents an overview of the different data compression algorithms, their development and the improvements from one technique to another. The code for Huffman algorithm is developed at the end of the thesis.

Thesis Supervisor: Jerome Connor
Title: Professor of Civil and Environmental Engineering
Acknowledgements

First of all, I would like to thank my advisor, Professor Jerome Connor, for all his help during the entire year, for his understanding and trust in everything that I was doing.

I also want to give very special thanks to my parents and brother for their continuous support for whatever decision I made. Another big thank-you goes to my relatives and friends for their support through all these years.

Finally, I thank God for all the wonderful things that happened to me.
TABLE OF CONTENTS

TABLE OF FIGURES

CHAPTER ONE INTRODUCTION

CHAPTER TWO BASICS OF DATA COMPRESSION

2.1 BRIEF HISTORY OF DATA COMPRESSION

2.2 LOSSLESS AND LOSSY COMPRESSION

2.3 SYMMETRICAL AND ASYMMETRIC COMPRESSION

2.4 SYMBOLIC DATA COMPRESSION

2.5 BRAILLE CODE

CHAPTER THREE RUN-LENGTHENCODING

3.1 INTRODUCTION

3.2 OPERATION

3.3 CONSIDERATIONS

CHAPTER FOUR STATISTICAL CODING

4.1 INTRODUCTION

4.2 MORSE CODE

4.3 INFORMATION THEORY

4.4 VARIABLE-SIZE CODES

CHAPTER FIVE SHANNON-FANO CODING

5.1 INTRODUCTION

5.2 OPERATION

5.3 CONSIDERATIONS

CHAPTER SIX HUFFMAN CODING

6.1 INTRODUCTION

6.2 OPERATION

6.3 CONSIDERATIONS

CHAPTER SEVEN ARITHMETIC CODING

7.1 INTRODUCTION

7.2 OPERATION

7.3 CONSIDERATIONS

CHAPTER EIGHT HUFFMAN CODE

CHAPTER NINE CONCLUSION

APPENDIX A

REFERENCES
TABLE OF FIGURES

<table>
<thead>
<tr>
<th>Table Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Symbolic data encoding</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Flow chart for run-length compression</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Flow chart for run-length decompression</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Morse code</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Fixed-size code</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Variable-size code</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>An example of character set probability occurrence</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Initial process for Shannon-Fano compression</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Completed process for Shannon-Fano compression</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Another version of completed Shannon-Fano process</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Perfect splits for Shannon-Fano process</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Huffman code</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Huffman code</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Huffman code for symbols with equal probability</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>The process of Arithmetic encoding</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>The process of Arithmetic decoding</td>
</tr>
</tbody>
</table>
Data compression may sound like one of those technical phrases that only computer programmers can understand or need to understand. In fact, data compression is present in many aspects of our daily life. For example, when a boy wants to send a message to a girl, instead of sending the message “I love you”, he might use “I♥U”. In such a case, since the message was sent by three symbols instead of ten, it can be called data compression.

Another example of a data compression application that we see every day is a fax machine. Exchanging faxes is one of the most common tasks of many businesses. As we all know, sending a fax is faster and more efficient than regular mail. But fax devices would not work without data compression algorithms. The image of the document is not being sent over the phone line as it is. A fax machine compresses the data before it is sent. Data compression helps to reduce the time needed to transmit the document. The cost of transmission is reduced 10 or more times.

So what is data compression? Data compression is the process of converting an input data stream into another data stream that has a smaller size. A stream is either a file or a buffer in memory. The basic idea of data compression is to reduce the redundancy. That is why a compressed file cannot be compressed again since a compressed file should have a little or no redundancy.

Why is data compression important? The answer to this question is data compression saves a lot of time and money. First of all, people like to accumulate data
but hate to throw it away. No matter how big the storage device is, sooner or later it is going to overflow. Data compression is useful because it delays the overflow. Secondly, people often don’t have the time to wait online, thus they don’t like to wait for a long time for downloads. When doing a transaction on the Internet or downloading music or file, even a few seconds can make us feel it is a long time to wait. Data compression is to find innovative ways to represent information using as few bits as possible for storage and transmission. Most of the time, saving time means saving money.

In the past, documents were stored on paper and kept in filing cabinets. It was very inefficient in terms of storage space and also the time taken to locate and retrieve information when required. Storing and accessing documents electronically through computers have replaced this traditional way of storage.

In digital systems, there are three reasons to use data compression: storage efficiency, transmission bandwidth conservation, and transmission time reduction. The capacity of a storage device can be effectively increased with methods that compress a body of data on its way to a storage device and decompresses it when it is needed. Compressing data at the sending end and decompressing data at the receiving end can effectively increase the bandwidth of a digital communication link. Lastly, with data compression techniques, many files can be combined into one compressed document, making transferring data through the Internet easier.

Data compression is achieved by reducing redundancy, but this also makes the data less reliable. Adding check bits and parity bits, a process that increases the size of the codes, increases the redundancy, thus does make the data more reliable. Data reliability is a more recent field while data compression existed even before the advent of
computer. In this thesis, some of the basic concepts of data compression are introduced. In the later chapters, different data compression algorithms for symbolic data are analyzed. We will go through not only the technique used in each algorithm but also the advantages and disadvantages of each algorithm are experienced.
2.1 Brief history of data compression

The need to efficiently represent information has been with us since man learned how to write. The art of writing in shorthand can be traced back to the first century B.C. when a form of shorthand was used to record the speeches of the Roman orator Cicero. Shorthand is a system that uses simple abbreviations, or symbols to represent letters of the alphabet, words or phrases. This is a form of data compression in writing.

Two important events occurred in the 1800s. In 1829, the invention of Braille code by Louis Braille created a system of writing for blind people. Braille codes represent the letters of the alphabet by combinations of raised and flat dots. These dots can be read by touch of fingers. Later in 1843, S.F.B. Morse developed an efficient code consisting of dots, dashes and spaces to allow transmitting messages electrically by telegraph. It assigns short easy codes to E, I, and other frequently transmitted letters, and longer codes to Q, Z, and other infrequently occurring letters. The general law of data compression is then developed, to assign short codes to common events and long codes to rare events. There are many ways to implement this law, and an analysis of any compression method will show that deep inside it works by obeying this general law.

More recently, in the late 1940's were the early years of Information Theory. The idea of entropy and redundancy was starting to be introduces. The first well-known method for compressing digital signals was the Shannon-Fano method. Shannon and Fano developed this algorithm that assigns binary bits to unique symbols that appear
within a given data file. While the Shannon-Fano was a great development, it has quickly superseded by a more efficient coding system, the Huffman algorithm.

Huffman coding is very similar to Shannon-Fano coding. The difference is that Huffman coding is a bottom-up technique while Shannon-Fano coding uses a top-down technique for building the binary tree. Huffman coding has become the best known and widely used statistical coding technique to result from the studies of information theory and probability.

In the last fifteen years, Huffman coding has been replaced by arithmetic coding. Arithmetic coding is more complex than any other coding. It replaces a stream of input symbols with a single floating-point number.

Dictionary-based compression algorithms use a completely different method to compress data. The main idea of dictionary compression is to eliminate the redundancy of storing repetitive strings for words and phrases repeated within a text stream. Dictionary compression replaces an entire string of symbols by a single token. This approach is extremely effective for compressing text where strings of characters representing words occur frequently. LZ77 and LZ78 have been developed as dictionary compression. LZ77 is also called a sliding window technique.

2.2 Lossless and lossy compression

Data compression techniques can be divided into two major families: lossless and lossy. Lossless compression can recover the exact original data after compression. It is used mainly for compressing database records, spreadsheets or word processing files,
where exact replication of the original is essential. For example, text files containing computer programs may become worthless if even one bit gets modified.

Lossy compression will result in a certain loss of accuracy in exchange for a substantial increase in compression. Lossy compression is more effective when used to compress graphic images and digitized voice. If the loss of data is small, we may not be able to tell the difference.

2.3 **Symmetrical and asymmetric compression**

Symmetrical compression is the case where the compressor and decompressor use basically the same algorithm but work in different directions. In general, symmetrical compression is used where the file is compressed as often as decompressed.

Asymmetrical compression is used when either the compressor or decompressor works much harder. In environments where files are updated all the time and backups are made, compressor executes a simple algorithm and the decompressor executes a slow and complex algorithm. The opposite case is where files are decompressed and used very often. Then a simple decompression algorithm and a complex compression algorithm will be operated.

2.4 **Symbolic data compression**

As shown in Table 2.1, data compression algorithms implement these length changes as fixed-to-variable, variable-to-fixed, or, by combining both, variable-to-variable-length encoding. Run-length coding and the front-end models of Lempel-Ziv
dictionary algorithms are examples of variable-to-fixed-length encoding. In run-length encoding, three or more consecutive occurrences of a symbol are encoded into a fixed number of bits. Huffman coding technique and arithmetic coding method are examples of fixed-to-variable-length coding. Each letter or groups of letter is encoded into different number of bits depending on how often the letter occurs in the file. Variable-to-variable-length algorithms, such as a Lempel-Ziv front-end model followed by Huffman encoding, are appropriate if the first stage is not completely optimized to maximize compression. In my paper, all data compression algorithms included is symbolic data compression.

<table>
<thead>
<tr>
<th>Encoding Method</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed to fixed</td>
<td>A symbol</td>
<td>Variable number of bits</td>
</tr>
<tr>
<td>Variable to fixed</td>
<td>Symbol string</td>
<td>Fixed number of bits (bytes)</td>
</tr>
<tr>
<td>Variable to variable</td>
<td>Symbol string</td>
<td>Variable number of bits</td>
</tr>
</tbody>
</table>

Table 2.1 Symbolic data encoding

2.5 Braille code

A blind eleven-year-old boy took a secret code devised for the military and saw in it the basis for written communication for blind individuals. Louis Braille spent nine years developing and refining the system of raised dots that has come to be known by his name.

The original military code was called night writing. It was used for the soldiers to communicate after dark. It was based on a twelve-dot cell, two dots wide by six dots
high. Each of the 12 dots can be flat or raised. Each dot or combination of dots within the cell represents a letter or phonetic sound. The problem with the military code was that human fingertip couldn’t feel all the dots at one touch.

Louis Braille created a six-dot cell, two dots wide by three dots high. The information content of a group is equivalent to 6 bits, resulting in 64 possible groups. In fact, letters don’t require all 64 codes, the remaining groups are used to code digits, punctuations and common words such as and, for and of and common strings of letters such as “ound,” “ation,” and “th.”

The amount of compression achieved by Braille may seem small but books in Braille tend to be very large. Imagine that if the books get old and dots become flat, a lot of reading errors will appear. The basic concept in Braille Code is to use fixed code length for different letters, digits and symbols. It is similar to the Run-Length encoding which assigns fixed length code to symbols when they have three or more consecutive occurrences.
3.1 Introduction

Run-length coding is one of the simplest data compression algorithms. The idea behind this approach to data compression simply represents the principle of encoding data: If a data item d occurs n consecutive times in the input stream, then the n occurrences would be replaced with the single pair nd. The repeating data item d is called a run. The run length of n is the consecutive occurrences of the data item d. For example, “bbbb” will be “4b”. We also need to add a control symbol before “4b”. For example, “abbb4b” will be “a@4b4b” instead of “a4b4b”. If a control symbol is not added, computer does not know if “4b” is “4b” or “bbbb”. When decompressed the data. In this case, @ is used as a control symbol.

3.2 Operation

As mentioned in the introduction, a run-length coder replaces sequences of consecutive identical data items with three elements: a control symbol, a run-length count and a data item. A control symbol is used to tell the computer that the compression should start from here. Let’s see a simple example. Given “hippppp899999w”, it can be compressed as “hi@5p8@59w”. Fourteen characters were used to represent the original message. After the compression, only 10 characters are needed. We used @ as the
control symbol. It tells the computer to take the first character right after this symbol as the number of repetition of a data item. That data item is the character right after the count. Let’s see another example. Given “happy555”, it can be compressed as ha@2py@35. The compression expands the original string rather than compresses it, since two consecutive letters was compressed to three characters. This is not an optimized compression.

It takes at least three characters to represent any number of consecutive identical letters. We should have it in mind that only three or more repetitions of the same character will be replaced with a repetition factor. Figure 3.1 is a flow chart for such a simple run-length text compressor.

After reading the first character, the character count is 1 and the character is saved. Each of the following characters is read and compared to the saved character. If they are identical to the saved character, the repeat count will be incremented by 1. If they are not identical to the saved character, the next operation will depend on the number of the repeat count. If the repeat count is less than 3, the saved character will be written on the compression file for a number of times. The newly read character will be saved and the repeat count goes back to zero. If the repeat count is equal or greater than 3, an “@” is written, followed by the repeat count plus one and by the saved character.

Figure 3.2 is the decompression flow chart. The program starts with the compression flag off. The flag is used to determine whether the decompressor should read the next character as a character from the original message or as a repeat count of the followed character. If an “@” is read, the flag is turned on immediately and is turned off after generating a certain character for repeat count plus one time.
Figure 3.1 flow chart for run-length compression.
Figure 3.2 Flow chart for run-length decompression
3.3 Considerations

1. As mentioned previously, run-length coding is highly effective when there are a lot of runs of consecutive symbols. In plain English text there are not many repetitions. There are many “doubles” but a “triple” is rare.

2. In the basic encoding flow chart illustrated in Figure 3.1, it was assumed that the repeat count was capable of having an unlimited range of values. In reality, the maximum value that the repeat count can contain depends on the function of the character code level employed. For an 8-level (eight bit per character) character code, the maximum value of the repeat count is 255. However, we can extend 255 to 258 by using a small trick. Since a repeat count of 1, 2 or 3 is only helping in counting, we can set repeat count 0 instead of 3. When writing out to the decompression file, repeat count 8 would be 5 in this case. This method is not very helpful since only a value of 3 is extended. But one can always add additional repeat count comparison to test for the maximum value permitted to be stored in the character count.

3. The character “@” was used as a control symbol in our examples. A different control symbol must be chosen if “@” may be part of the text in the input stream.
Choosing a right control symbol can be tricky. Sometimes the input stream may contain every possible character in the alphabet. The MNP5 method provides a solution.

MNP stands for Microcom Networking Protocol. The MNP class 5 method is commonly used for data compression by modems. It has a similar flow chart as run-length coding. When three or more identical consecutive characters are found in the input stream, the compressor writes three copies of the character on the output stream followed by a repeat count. When the decompressor reads three identical consecutive characters, it knows that the next character will be a repeat count. For example, “abbbccdddd” will be compressed as “abbb0cddd1”. A disadvantage of this method is that when compressing three identical consecutive characters, writing four characters to the output stream instead of the original three characters is inefficient. When compressing four identical consecutive characters, there is no compression. The compression only really works when there are more than four characters.
CHAPTER FOUR STATISTICAL CODING

4.1 Introduction

The different Run-Length encoding variants have one common feature; they assign fixed-size codes to the symbols they operate on. In contrast, statistical encoding takes advantage of the probabilities of occurrence of single characters and groups of characters, so that short codes can be used to represent frequently occurring characters or groups of characters while longer codes are used to represent less frequently encountered characters and groups of characters. An early example, the well-known Morse code was designed using this property.

4.2 Morse code

Samuel F.B. Morse has been called “the American Leonardo”, because he is most well known for inventing the telegraph and the dot-and-dash code used by telegraphers everywhere. As shown in table 4.1, Morse selected a single dot to represent the letter E, which is the most frequently encountered character in the English language, while longer strings of dots and dashes were used to represent characters that appear less frequently. The concept which behinds the Morse code matches the one in statistical encoding. Shannon-Fano encoding, Huffman coding technique, and the arithmetic encoding method are also included in this category.
In 1948, Claude Shannon from Bell Labs published “The Mathematical Theory of Communication” in the Bell System Technical Journal, along with Warren Weaver. This surprising document is the basis for what we now call information theory, a field that has made all modern electronic communications possible. Claude Shannon isn’t well known to the public at large, but his “Information Theory” makes him at least as important as Einstein. The important concepts from information theory lead to a definition of redundancy, so that later we can clearly see and calculate how redundancy is reduced, or eliminated, by the different methods.

Information theory is used to quantify information. It turns all information into the on-or-off bits that flip through our computers, phone, TV sets, microwave ovens or
anything else with a chip in it. So what is information? Information is what you don’t know. If I tell you something that you already know, I haven’t given you any information. If I tell you something that surprise you, then I have given you some information. We’re used to thinking about information as facts, data, and evidence, but in “Information Theory”, information is uncertainty. When Shannon started out, his simple goal was just to find a way to clear up noisy telephone connections. The immediate benefit of information theory is that it gives engineers the math tools needed to figure out channel capacity, how much information can go from A to B without errors. The information we want is the “signal,” not the “noise”.

As mentioned earlier, information is uncertainty. For example, when we toss a coin, the result of any toss is initially uncertain. We have to actually throw the coin in order to resolve the uncertainty. The result of the toss can be head or tail, yes or no. A bit, 0 or 1 can express the result. A single bit resolves the uncertainty in the toss of a coin. Many problems in real life can be resolved, and their solutions expressed by means of several bits. Finding the minimum number of bits to get an answer to a question is important. Assume that we have 32 cards; each number between 1 and 32 is assigned on one card. None of the cards have the same number. If I want to draw a card, what is the minimum number of yes/no questions that are necessary? We should divide 32 into two, and start by asking, “is the result between 1 and 16?” If the answer is yes, then the result should be in range 1 and 16. This range should then be divided into two. The process continues until the range is reduced to a single number, the final answer.

We know now it takes exactly five questions to get the result. This is because 5 is the number of times 32 can be divided in half. Mathematically \(5 = \log_{2}^{32} \), that’s why the
logarithm is the mathematical function that expresses information. Another approach to the same problem is to ask the question “given a non-negative integer \(N \), how many digits does it take to express it?” Of course the answer depends on \(N \), but it also depends on how we want it to be presented. For decimal digits, base 10 is used; for binary ones (bits), base 2 is used. The number of decimal digits required to represent \(N \) is approximately \(\log N \). The number of binary digits required to represent \(N \) is approximately \(\log_2^N \).

Let’s see another example. Given a decimal (base 10) number with \(k \) digits, how much information is included in this \(k \)-digit number? We can find out the answer by calculating how many bits it takes to express the same number. The largest number can be expressed by \(k \)-digit decimal number is \(10^k - 1 \). Assuming it takes \(x \) bits to express the same number. The largest number can be expressed by \(x \)-digit binary number is \(2^x - 1 \). Since \(10^k - 1 = 2^x - 1 \), then we get

\[
x = k \frac{\log 10}{\log 2}.
\]

If we select base 2 for the logarithm, \(x = k \log_{10} 10 \approx 3.22 k \). This shows that one decimal digit equals that contained in about 3.22 bits. In general, to express the fact that the information included in one base-\(n \) digit equals that included in \(\log_2^n \) bits, we can use

\[
x = k \log_2^n.
\]

Let’s think about the transmitter. It is a piece of hardware that can transmit data over a communications line, such as a channel. It sends binary data. In order to get general results, we assume that the data is a string made up of occurrences of the \(n \) symbols \(a_1 \) through \(a_n \). Think about a set that has \(n \)-symbol alphabet. We can think of
each symbol as a base-n digit, which means that it is equivalent to \(\log_2^n \) bits. The transmitter must be able to transmit at \(n \) discrete levels.

Assume that the speed of the transmission is \(s \) symbols per time unit. In one time unit, the transmitter can send \(s \) symbols, which is equal to \(s \log_2^n \) bits. We use \(H \) to represent the amount of information transmitted each time unit, \(H = s \log_2^n \). Let's express \(H \) in terms of the probabilities of occurrence of the \(n \) symbols. We assume that symbol \(a_i \) occurs in the data with probability \(P_i \). In general, each symbol has a different probability. Since symbol \(a_i \) occurs \(P_i \) percent of the time in the data, it occurs on the average \(sP_i \) times each unit, so its contribution to \(H \) is \(-sP_i \log_2 P_i \). The sum of the contributions of all \(n \) symbols to \(H \) is thus \(H = -s \sum_{i=1}^{n} P_i \log_2 P_i \).

Since \(H \) is the amount of information, in bits, sent by the transmitter in one time unit, and it takes time \(1/s \) to transmit one symbol, so the amount of information contained in one base-n symbol is thus \(H/s \). This quantity is called the entropy of the data being transmitted. We can define the entropy of a single symbol \(a_i \) as \(-P_i \log_2 P_i \). This is the smallest number of bits needed, on the average, to represent the symbol.

As we can see from the formula, the entropy of a symbol depends on the individual probability \(P_i \). It becomes the smallest when all \(n \) probabilities are equal. This can be used to define the redundancy \(R \) in the data. The redundancy is the difference between the entropy and the smallest entropy.

\[
R = - \sum_{i=1}^{n} P_i \log_2 P_i + \log_2^n
\]
When $\sum_i P_i \log_2 P_i = \log^*$, there is no redundancy. The concept of entropy will be used in the later chapter as well. It is very important and is used in many fields, not just in data compression.

4.4 Variable-Size codes

As mentioned earlier, statistical encoding tends to use short codes to represent frequently occurring characters and groups of characters while longer codes are used to represent less frequently encountered characters and groups of characters. Why is it important to use variable-size codes? We will use the following cases to show how variable-size codes reduce redundancy.

Given four symbols $X_1, X_2, X_3,$ and X_4. In the first case, all symbols appear in our file with equal probability, 0.25. The entropy of the data is $-4(0.25 \log_2 0.25) = 2$ bits/symbol. Two is the smallest number of bits needed, on the average, to represent each symbol. Table 4.2 shows four 2-bit codes 00, 01, 10 and 11 are assigned to the symbols.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Probability</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>0.25</td>
<td>00</td>
</tr>
<tr>
<td>X_2</td>
<td>0.25</td>
<td>01</td>
</tr>
<tr>
<td>X_3</td>
<td>0.25</td>
<td>10</td>
</tr>
<tr>
<td>X_4</td>
<td>0.25</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 4.2 Fixed-size code

Let's look at another case where all symbols appear in the file with different probabilities. As shown in Table 4.3, X_1 appears most frequently, almost half of the time.
X_2 and X_3 appear as often as a quarter of the time, and X_4 appears only one percent of the time. The entropy of the data is

\[-(0.49 \log_2 0.49 + 0.25 \log_2 0.25 + 0.25 \log_2 0.25 + 0.01 \log_2 0.01) = 1.57 \text{ bits/symbol.}\]

Thus 1.57 is the smallest number of bits needed, on average, to represent each symbol. If we still assign four 2-bit codes as in case one, it may not be efficient since four 2-bits codes produce the redundancy \(R = -1.57 + (4 \times 2 \times 0.25) = 0.43 \text{ bits/symbol.} \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Probability</th>
<th>Code A</th>
<th>Code B</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>0.49</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>X_2</td>
<td>0.25</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>X_3</td>
<td>0.25</td>
<td>001</td>
<td>010</td>
</tr>
<tr>
<td>X_4</td>
<td>0.01</td>
<td>000</td>
<td>101</td>
</tr>
</tbody>
</table>

Table 4.3 Variable-size code

If we assign our symbols with variable-size as Code A in Table 4.3, the average size is \(1 \times 0.49 + 2 \times 0.25 + 3 \times 0.25 + 3 \times 0.01 = 1.77 \text{ bits/symbol.} \) Then the redundancy will be \(-1.57 + 1.77 = 0.2 \text{ bits/symbol, which is less than the case when four 2-bits size codes were used.}\) This fact is suggesting variable-size code.

Variable-size codes have two important properties. One of them was mentioned above, short codes represent more frequently occurred symbols while long codes represent less frequently occurred symbols; the other is the prefix property. Given a 10-symbol string \(X_2 X_3 X_1 X_4 X_4 X_1 X_2 X_3 X_3 X_2. \) All symbols occur with similar frequency. We can encode this string with Code A as the follows:

0100110000010100100101
It takes 23 bits. Using 23 bits to encode 10 symbols makes an average size of 2.3
bits/symbol. To get a close result to the best, we need to use an input stream with at least
thousand of symbols. That result will be really close to the calculated average size, 1.77
bits/symbol.

We should be able to decode the binary string with the code A given in Table 4.3. However, encoding the 10-symbol string with code B result in difficulty in the decoding
process. Let’s encode the 10-symbol string with code B as follows:

\[01010110110110101001001\]

It takes 23 bits just like code A. How about decoding? When the decompressor starts
decoding from the first bit, it knows the symbol will be either X2 or X3. But after taking
one or two more bits, it doesn’t know how to decode. The above binary string can
decode as starting with X2X3... or X3X4.... The reason that it works with code A but
not code B is that code A has a prefix property that code B doesn’t have. Prefix property
makes sure that the code for each symbol is not a prefix for other symbol. For example,
if the bit for X2 is assigned as 01, then the bits for any symbol cannot be assigned starting
with 01. This is why in code A, X3 and X4 have to start with 00, which is different from
01 of X2.
CHAPTER FIVE SHANNON-FANO CODING

5.1 Introduction

The first well-known method for effective variable-size coding is now known as Shannon-Fano coding. Claude Shannon at Bell Labs and R. M. Fano at M.I.T. developed this method nearly simultaneously. The basic idea is in creating code words with variable code length, like in the case of Huffman codes, which was developed few years later. Shannon-Fano coding has a lot in common with Huffman coding.

As mentioned earlier, Shannon-Fano coding is based on variable length code words. Each symbol or group of symbols has a different length code depending on the probability of its appearance in a file. Codes for symbols with low probabilities have more bits, and codes for symbols with high probabilities have fewer bits, though the codes are of different bit lengths, they can be uniquely decoded. Arranging the codes as a binary tree solves the problem of decoding these variable-length codes.

5.2 Operation

1. For a given list of characters, get the frequency count of each character.

2. Sort the list of characters according to their frequency counts. The characters are arranged in descending order of their frequency count.
3. Divide the list into two subsets that have the same or almost the same total probability.

4. The first subset of the list is assigned to digit 1, and the second subset is assigned to digit 0. This means that the codes for the characters in the first part will all start with 1, and the codes in the second part will all start with 0.

5. Repeat step 3 and 4 for each of the two parts, subdividing groups, and adding bits to the codes until no more subset exist.

<table>
<thead>
<tr>
<th>Character</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>X₁</td>
<td>0.05</td>
</tr>
<tr>
<td>X₂</td>
<td>0.05</td>
</tr>
<tr>
<td>X₃</td>
<td>0.35</td>
</tr>
<tr>
<td>X₄</td>
<td>0.30</td>
</tr>
<tr>
<td>X₅</td>
<td>0.10</td>
</tr>
<tr>
<td>X₆</td>
<td>0.05</td>
</tr>
<tr>
<td>X₇</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Table 5.1 An example of character set probability occurrence.

First, the characters are sorted in descending order. Then the list forms two subsets. In our subset construction process, we will group the characters into each subset so that the probability of occurrence of the characters in each subset is equal or as nearly equal as possible. In this example, the first subset contains X₃ and X₄, and the second subset contains the rest of the list. The total probability is 0.65 for the first subset, and 0.35 for the second subset. The two symbols in the first subset are assigned codes that start with 1, while other symbols in the second subset are assigned codes that start with 0.
Note that after the initial process, as shown in Table 5.2, X_3 and X_4 in the first subset isn’t unique. Thus, a 1 and 0 must be added to the pairs. The same process should be followed by the second subset. The second subset is divided into two subsets. Then the same process we did earlier is repeated. A completed Shannon-Fano coding process is shown in Table 5.3.

<table>
<thead>
<tr>
<th>Character</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_3</td>
<td>0.35</td>
</tr>
<tr>
<td>X_4</td>
<td>0.30</td>
</tr>
<tr>
<td>X_5</td>
<td>0.10</td>
</tr>
<tr>
<td>X_7</td>
<td>0.10</td>
</tr>
<tr>
<td>X_1</td>
<td>0.05</td>
</tr>
<tr>
<td>X_2</td>
<td>0.05</td>
</tr>
<tr>
<td>X_6</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Table 5.2 Initial process for Shannon-Fano compression

<table>
<thead>
<tr>
<th>Character</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_3</td>
<td>0.35</td>
</tr>
<tr>
<td>X_4</td>
<td>0.30</td>
</tr>
<tr>
<td>X_5</td>
<td>0.10</td>
</tr>
<tr>
<td>X_7</td>
<td>0.10</td>
</tr>
<tr>
<td>X_1</td>
<td>0.05</td>
</tr>
<tr>
<td>X_2</td>
<td>0.05</td>
</tr>
<tr>
<td>X_6</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Table 5.3 Completed process for Shannon-Fano compression
The average size of this code is $0.35 \times 2 + 0.30 \times 2 + 0.10 \times 3 + 0.10 \times 3 + 0.05 \times 3 + 0.05 \times 4 + 0.05 \times 4 = 2.45$ bits/symbol. The entropy, which is the smallest number of bits needed on average to represent each symbol, is

$$-(0.35 \log_2 0.35 + 0.30 \log_2 0.30 + 0.10 \log_2 0.10 + 0.10 \log_2 0.10 + 0.05 \log_2 0.05 + 0.05 \log_2 0.05 + 0.05 \log_2 0.05) = 2.22.$$

5.3 Considerations

One of the problems associated with the development of the Shannon-Fano code is the fact that the procedure to develop the code can be changeable. It is important where we make a split in the subset construction process. Let's repeat the previous example but divide the list between X_5 and X_7. In this case, the first subset contains X_3, X_4, and X_5 and the second subset contains all of the rest of the list. The total probability is 0.75 for the first subset and 0.25 for the second subset. Table 5.4 illustrates the new version of the completed Shannon-Fano process.

<table>
<thead>
<tr>
<th>Character</th>
<th>Probability</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X_3</td>
<td>0.35</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>X_4</td>
<td>0.30</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>X_5</td>
<td>0.10</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X_7</td>
<td>0.10</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>X_1</td>
<td>0.05</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>X_2</td>
<td>0.05</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>X_6</td>
<td>0.05</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5.4 Another version of the completed Shannon-Fano process
The average size of the code is $0.35 * 2 + 0.30 * 3 + 0.10 * 3 + 0.10 * 2 + 0.05 * 3 + 0.05 * 4 + 0.05 * 4 = 2.65$ bits/symbol. The reason the code of Table 5.4 has a longer average size is that the splits were not as good as those of Table 5.3. Shannon-Fano coding produces better codes when the splits are better. The optimal split is when the two subsets in every split have very close total probability. The perfect splits produce the best codes. So what is the perfect split? If the two subsets of every split have the same total probability, the perfect case is introduced. Table 5.5 illustrates this case.

The entropy of this code is 2.5 bits/symbol. The average size of the code is $0.25 * 2 + 0.25 * 2 + 0.125 * 3 + 0.125 * 3 + 0.125 * 3 + 0.125 * 3 = 2.5$ bits/symbol. It is identical to the entropy. This indicates that it is the theoretical minimum average size, with zero redundancy. We can conclude that the Shannon-Fano coding gives the best result when the symbols have probabilities of occurrence that are negative powers of 2.

<table>
<thead>
<tr>
<th>Character</th>
<th>Probability</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_3</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_4</td>
<td>0.25</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X_5</td>
<td>0.125</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>X_7</td>
<td>0.125</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>X_1</td>
<td>0.125</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X_2</td>
<td>0.125</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5.5 Perfect splits for Shannon-Fano process
CHAPTER SIX HUFFMAN CODING

6.1 Introduction

Huffman coding appeared first in the term paper of a M.I.T. graduate student, David Huffman, in 1952. Since then, it has become the subject of intensive research into data compression. Huffman coding is the major data compression technique applicable to text files. Even though it was introduced forty-eight years ago, Huffman coding is still extremely popular and used in nearly every application that involves the compression and transmission of digital data, such as fax machines, modems, computer networks, and high definition television.

Huffman coding shares most characteristics of Shannon-Fano coding. Symbols with higher probabilities get shorter codes. Huffman Coding also has the unique prefix property and produces the best codes when the probabilities of the symbols are negative powers of 2. However, building the Huffman decoding tree is done using a completely different algorithm from that of the Shannon-Fano method. The Shannon-Fano tree is built from the top down (leftmost to the rightmost bits), and the Huffman tree is built from the bottom up (right to left).

6.2 Operation

Huffman coding assigns the optimal unambiguous encoding to the symbols. We need to construct a binary tree to perform Huffman compression. This is done by
arranging the symbols of the alphabets in a descending order of probability. Then the process involves repeatedly adding the two lowest probabilities and resorting. This process continues until the sum of the probabilities of the last two symbols is 1. Once this process is complete, a Huffman binary tree can be generated. The last symbol, which was formed with the sum of the total probability 1, is the root of the binary tree.

Let’s use the example in Table 6.1 to go through the steps of the algorithm. For the given list of five character and sorted frequency counts:

1. X_4 and X_5 are combined to form X_{45}, and the probability of the new symbol is simply the sum of the probability of X_4 and X_5, 0.2. Now sort the list.

2. With four symbols left in the list with probabilities of 0.4, 0.2, 0.2, and 0.2, we arbitrary select X_{45} and X_3. The new symbol X_{345} has the probability of 0.4. Sort the list.

3. With three symbols left in the list with probabilities of 0.4, 0.4 and 0.2, we arbitrary select X_2 and X_{345}. The new symbol X_{2345} has the probability of 0.6.

4. Finally, we combine the remaining two symbols, X_1 and X_{345}. The last combined symbol is X_{12345} with the probability of 1.

The tree is now completed. In order to make a binary tree, we should assign bit 0 or 1 to each edge of the tree. Starting with adding bit 1 to the root, we arbitrary add bit 1 to the top edge, and bit 0 to the bottom edge, of every pair of edges.

As we can see from this example, the least frequent two symbols were X_4 and X_5. They were combined into X_{45}. This shows that adding bit 1 to codes which is assigned to
X_{45} will give the code of X_4 and by adding bit 0 will give the code of X_5. The same concept applies to all other combined symbols and their child nodes.

<table>
<thead>
<tr>
<th>Character</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>0.4</td>
</tr>
<tr>
<td>X_2</td>
<td>0.2</td>
</tr>
<tr>
<td>X_3</td>
<td>0.2</td>
</tr>
<tr>
<td>X_4</td>
<td>0.1</td>
</tr>
<tr>
<td>X_5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table 6.1 Huffman code

6.3 Considerations

1. When several symbols have the same frequency of occurrence, we may be able to develop two or more sets of codes to represent the Huffman coding. This kind of situation presents us with an interesting problem on deciding which code to use. To illustrate how this problem occurs, we use our previous example from Table 6.1.

At step 2 of the previous example, we arbitrary select X_{45} and X_3 out of X_2, X_3 and X_{45}. If we had selected X_2 and X_3, the code set might be changed as shown in Table 6.2.
The average size of the first code is $0.4 \times 1 + 0.2 \times 2 + 0.2 \times 3 + 0.1 \times 4 + 0.1 \times 4 = 2.2$ bits/symbol. The average size of the second code is $0.4 \times 2 + 0.2 \times 2 + 0.2 \times 2 + 0.1 \times 3 + 0.1 \times 3 = 2.2$ bits/symbol, just the same as the previous one.

It turns out that arbitrary decisions made when constructing the Huffman tree affect the individual codes but not the average size of the codes. Although over a long period of time the use of either code should produce the same result in terms of efficiency expressed as the sum of encoded bits, in actuality, a more appropriate choice is to select the code whose average length varies the least. That is, the code whose variance is the smallest of all. The variance of the first code is:

$$0.4(1-2.2)^2 + 0.2(2-2.2)^2 + 0.2(3-2.2)^2 + 0.1(4-2.2)^2 + 0.1(4-2.2)^2 = 1.36.$$

The variance of the Huffman code developed in the second code is:

$$0.4(2-2.2)^2 + 0.2(2-2.2)^2 + 0.2(2-2.2)^2 + 0.1(3-2.2)^2 + 0.1(3-2.2)^2 = 0.16.$$
Obviously, the second code set has less variance and is more efficient. So how do we make a better arbitrary selection between symbols with the same probability of occurrence? As shown in Table 6.2, at the stage when there are four symbols X_1, X_2, X_3 and X_{45} with respective probabilities of occurrence of 0.4, 0.2, 0.2, and 0.2, we will select the symbol with the lowest probability of occurrence and another symbol with the highest probability of occurrence. Combining the lowest frequency with the highest frequency reduces the total variance of the code.

2.

As stated earlier, the Huffman code is only optimal when all symbol probabilities are negative powers of 2. In practice, this situation is not guaranteed to occur. Huffman codes can be generated no matter what the symbol probabilities are, but they may not be efficient. The worst case is when one symbol occurs very frequently (approaching 1). According to information theory, the entropy shows that only a fraction of a bit is needed to code the symbol, but Huffman coding cannot assign a fraction of a bit to a symbol. With Huffman coding, the minimum bit to assign a symbol is one. In such cases, arithmetic coding can be used. Note that Huffman coding gives a code only for each symbol separately, while arithmetic coding gives a code for one or more symbols. A more detailed description about arithmetic coding will be discussed in the next chapter.

3.
How about the case where all symbols have equal probabilities? They don’t compress under the Huffman coding. Table 6.4 shows Huffman coding for 5, 6, 7, and 8 symbols with equal probabilities. When \(n \) is equal to 8, a negative power of 2, the codes are simply the fixed-size one, 3 bits for each symbol. In other cases, the codes are very close to fixed-size. This shows that symbols with equal probabilities do not have an advantage over variable-size codes.

<table>
<thead>
<tr>
<th>(n)</th>
<th>Prob.</th>
<th>(X_1)</th>
<th>(X_5)</th>
<th>Avg. size</th>
<th>Var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.200</td>
<td>111</td>
<td>110</td>
<td>101</td>
<td>100</td>
<td>0</td>
<td></td>
<td>2.6</td>
<td>0.64</td>
</tr>
<tr>
<td>6</td>
<td>0.167</td>
<td>111</td>
<td>110</td>
<td>101</td>
<td>100</td>
<td>01</td>
<td>00</td>
<td>2.672</td>
<td>0.2227</td>
</tr>
<tr>
<td>7</td>
<td>0.143</td>
<td>111</td>
<td>110</td>
<td>101</td>
<td>100</td>
<td>011</td>
<td>010</td>
<td>00</td>
<td>2.86</td>
</tr>
<tr>
<td>8</td>
<td>0.125</td>
<td>111</td>
<td>110</td>
<td>101</td>
<td>100</td>
<td>011</td>
<td>010</td>
<td>001</td>
<td>000</td>
</tr>
</tbody>
</table>

Table 6.3 Huffman coding for symbols with equal probabilities

4.

The Huffman coding described in this chapter was static Huffman coding. We always know the probability of each symbol before building the binary tree. In practice, the frequencies are rarely known in advance. One solution is to read the original data twice (two passes). The first pass reads the original data and calculates the frequencies. The second pass reads the original data again and actually builds the Huffman tree. This is called semi-adaptive Huffman. It is a slow process. Another solution is called adaptive or dynamic Huffman coding. Such method lets the compressor read the data into the Huffman tree and updates the data at the same time. The compressor and the
decompressor should modify the tree in the same way. This means that at any point in the process, they should use the same code.

5.

Another limitation of Huffman coding is that when the number of symbols to be encoded grows to be very large, the Huffman coding tree and storage for it grows to be large too, especially because of its prefix property. This kind of situation occurs in facsimile transmission. Combining run-length and Huffman coding to create a modified Huffman code can dramatically reduce the storage requirement for facsimile coding.
CHAPTER SEVEN ARITHMETIC CODING

7.1 Introduction

Even though Huffman coding is more efficient than Shannon-Fano coding, neither of the methods always produces the best code. The problem with Huffman coding and Shannon-Fano coding is that they only produce the best results when the probabilities of the symbols equal negative powers of 2, a situation that rarely happens. When the probability of occurrence of a symbol is $1/3$, according to the information theory and the entropy concept, such a symbol should be assigned with 1.59 bits. With Huffman coding or Shannon-Fano coding, the symbol will be assigned with 2 or more bits. Then each time the symbol is compressed, the compression technique would result in the addition of approximately 0.4 or more bits over the symbol's entropy. As the probability of the symbol in the set increases, the coding variance between the entropy of the symbol and the required bits using Huffman or Shannon-Fano coding increases. Arithmetic coding overcomes this difficulty.

Using arithmetic coding, a message is encoded as a real number in an interval from zero to one. Unlike Huffman coding, arithmetic coding takes the whole message from the input stream and encodes it into one code. It creates a single symbol rather than several separate codes. Arithmetic coding typically gives better compression ratios than Huffman coding. It is a more recent technique compare to Huffman coding. Although
the concept of arithmetic compression has been known for a long time, until relatively recently it was considered more as an interesting theoretical technique.

7.2 Operation

Arithmetic coding algorithm is more complex than Huffman coding or Shannon-Fano coding. It is easier to understand this algorithm with an example:

1. Start encoding symbols with the current interval [0, 1). When encoding a symbol, "zoom" into the current interval, and divide it into subintervals with the new range.

2. In our example, we want to encode "add". Start with an interval [0, 1). This interval is divided into subintervals of all possible symbols to appear within a message. In our example, the possible symbols are a, b, c, and d with probabilities of occurrence of 0.2, 0.3, 0.1, and 0.4. Then we divide the interval into four subintervals. The size of each subinterval is proportional to the frequency at which it appears in the message. We "zoom" into the interval corresponding to "a," which is the first symbol. The interval will be used for the next step.

3. To encode the next symbol "d," repeat step 2. We go to the "a" interval created in step 2, and zoom into the subinterval "d" within the previous interval, and use that interval for the next step.

4. Lastly, we go to the "d" interval created in step 3, and zoom into the subinterval "d".
5. The output number can be any number within \([0.168, 0.2)\). We choose 0.168 since it is the smallest number, represented with the least bits.

As we can see from the steps, encoding the message proceeds symbol by symbol. The message has become a single, high-precision number between 0 and 1. As encoding proceeds and more symbols are encountered, the message interval width decreases and more bits are needed in the output number. Before any symbol is encoded, the interval covers all the range between 0 and 1. Once each symbol is encoded, the message interval narrows and the encoder output is restricted to a narrower and narrower range of values.

Let’s define a set of formula for encoding. Starting with the interval \([\text{Low}, \text{High})\), notice that \text{Low} is equal to 0 and \text{High} is equal to 1 at the initial stage. Since there are only four possible symbols appearing in the message, we define that “a,” which has the probability of occurrence 0.2, has the interval \([0.0, 0.2)\). Repeat the same process for “b,” “c,” and “d” so that the interval is \([0.2, 0.5), [0.5, 0.6), \) and \([0.6, 1.0)\) respectively. In the previous example, “add” was the entire message. Since “a” is the first symbol, we should look into the interval that corresponds to a, which is \([0.0, 0.2)\). The next symbol is “d”. We then zoom into the interval \([0.0, 0.2)\) and find the new range. As more symbols are being input and processed, \text{Low} and \text{High} are being updated according to:

\[
\text{NewHigh} = \text{OldLow} + \text{OldRange} \times \text{HighRange(X)}; \\
\text{NewLow} = \text{OldLow} + \text{OldRange} \times \text{LowRange(X)};
\]

where \text{OldRange} = \text{OldHigh} - \text{OldLow} and \text{HighRange(X)}, \text{LowRang(X)} indicate the high and low limits of the range of symbol X, the new symbol. In the example above, the next symbol is “d”, then:
NewHigh = 0.0 + (0.2-0.0)*0.6 = 0.12,
NewLow = 0.0 + (0.2-0.0)*1.0 = 0.20.

The new interval is now [0.12, 0.20). The rest of the symbols can be processed with the same formula as shown in Table 7.1. The final code from encoding was 0.168, and only the five digits “168” is written on the output stream.

<table>
<thead>
<tr>
<th>Char</th>
<th>The calculation of low and high</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>L 0.0 + (1.0-0.0) * 0.0 = 0.0</td>
</tr>
<tr>
<td></td>
<td>H 0.0 + (1.0-0.0) * 0.2 = 0.2</td>
</tr>
<tr>
<td>d</td>
<td>L 0.0 + (0.2-0.0) * 0.6 = 0.12</td>
</tr>
<tr>
<td></td>
<td>H 0.0 + (0.2-0.0) * 1.0 = 0.20</td>
</tr>
<tr>
<td>d</td>
<td>L 0.12 + (0.2-0.12) * 0.6 = 0.168</td>
</tr>
<tr>
<td></td>
<td>H 0.12 + (0.2-0.12) * 1.0 = 0.20</td>
</tr>
</tbody>
</table>

Table 7.1 The process of arithmetic encoding

The decoder works in the opposite way. The first digit is “1,” so the decoder immediately knows that the entire code is a number of the form 0.1.... This number is inside the subinterval [0.0, 0.2) of “a”. So the first symbol must be “a”. Then it subtracts the lower limit 0.0 of “a” from 0.168 and divides it by the width of the subinterval of “a,”
which is 0.2. The result is 0.84. Now we know the next symbol must be “d” since 0.84 is in the subinterval [0.6, 1.0) of “d.” We find the rule here is:

\[
\text{Code} = \frac{(\text{Code} - \text{LowRange}(X))}{\text{Range}},
\]

where Range is the width of the subinterval of X. Table 7.2 summarizes the steps for decoding our example.

<table>
<thead>
<tr>
<th>Char</th>
<th>The calculation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>0.168-0.00 = 0.168</td>
<td>0.168 / 0.2 = 0.84</td>
</tr>
<tr>
<td>d</td>
<td>0.84-0.60 = 0.24</td>
<td>0.168 / 0.4 = 0.60</td>
</tr>
<tr>
<td>a</td>
<td>0.60-0.60 = 0.00</td>
<td></td>
</tr>
</tbody>
</table>

Table 7.2 The process of arithmetic decoding

To figure out the kind of compression achieved by arithmetic coding, we have to consider the following two facts. First, in practice, binary numbers perform all the operations. We should translate the final number, in this case “168,” into binary numbers before we estimate the compression ratio. Second, since the last symbol encoded is EOF, the final code doesn’t have to be the final value of Low. It can be any number in the range of Low and High. This makes it possible to select a shorter number as the final code that is being output.
The advantage of arithmetic coding is that it makes adaptive compression much simpler. Adaptive Huffman coding is more complex and not always as effective as adaptive arithmetic coding. Another advantage of Arithmetic coding is that it is not limited to compressing characters, or a particular kind of image, but can be used for any information that can be represented as binary digits.

7.3 Considerations

While code must be received to start decoding the symbols, if there’s a corrupt bit in the code, the entire message could be corrupt. There is a limit to the precision of the number that can be encoded, depending on the type of the computer, thus limiting the number of symbols to encode within a code.

Another problem always occurs when the last symbol in the input stream is the one whose subinterval starts at zero. In order to distinguish between such a symbol and the end of the input stream, we need to define an additional symbol, the end-of-file (EOF). This symbol should be added, with a small probability, to the frequency table, and it should be encoded at the end of the input stream.

There exist many patents upon arithmetic coding, so the use of some of the algorithms may cost a royalty fee. The particular variant of arithmetic coding specified by the JPEG standard is subject to patents owned by IBM, AT&T, and Mitsubishi. You cannot legally use the JPEG arithmetic coding unless you obtain licenses from these companies. Patent law’s “experimental use” exception allows people to test a patented
method in the context of scientific research, but any commercial or routine personal use is infringement.
/* File: huff.cc
 * Author: Wang-Rei Tang
 * JoRel Sallaska
 * Routines to perform huffman compression */

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <cassert.h>
#include "utils.h"
#include "bits.h"

void write_header(ofstream& out, int totalcharacters, int charactersused,
 int freq[]);
void get_frequency(ifstream& in, int freq[], int& totalcharacters);
void encode_file(bitwriter& outwrite, ifstream& in, int totalcharacters,
 code mycodes[]);

/* main procedure for compression. Takes command line arguments.
 * To use, type: ./huff input-void write_header(int totalcharacters,
 * int characters_used,
 * int freq[])file-name output-file-name at prompt */

int main(int argc, char **argv)
{
 ifstream in;
 ofstream out;

 /* Check for file name on the command line */
 if (argc == 3) {
 in.open(argv[1], ios::binary|ios::in);
 out.open(argv[2], ios::binary|ios::out);
 if (!in || !out) {
 cerr << "Can’t open file!\n";
 exit(0);
 }
 }
 else {
 cerr << "Usage: huff <input fname> <output fname>\n";
 exit(0);
 }
 char ch;
 int num;
 int freq[256];
 int total_characters = 0;
 int characters_used = 0;

 // Get the frequency of the characters
get_frequency(in, freq, total_characters);

in.close();
in.open(argv[1], ios::binary | ios::in);

// Get total number of characters in file

for (int i = 0; i < 256; i++) {
 if (freq[i] != 0)
 characters_used++;
}

// Make linked list of nodes from frequency array

node* freq_list = make_nodes(freq);

// Sorts list of nodes

linked_list_insertion_sort(freq_list);
node* sorted_linklist = freq_list;

// Combines linked list of nodes into huffman tree and
// returns pointer to top of tree

node* tree = make_tree(sorted_linklist);
//print_tree(tree);

// Given array for key and pointer to tree, stores all
// codes in array key
code thecode;
code mycodes[256];
build_key(mycodes, tree, thecode);

// Writes frequency count and the character it belongs
// to the output file for all characters whose
// frequency is not 0

write_header(out, total_characters, characters_used, freq);

// Writes encoded characters to output file

bit_writer outwrite(out);
encode_file(outwrite, in, total_characters, mycodes);
in.close();
out.close();
}

// Get the frequency of the characters

void get_frequency(ifstream& in, int freq[], int& total_characters) {
 for (int i = 0; i <= 255; i++){
 freq[i] = 0;
}
unsigned char ch;
in.read((unsigned char*)&ch, sizeof(char));
while (!in.eof()){
 freq[(int)ch]++;
 total_characters++;
in.read((unsigned char*)&ch, sizeof(char));
}

void write_header(ofstream& out, int total_characters, int characters_used, int freq[])
{
 out.write((char*)&total_characters, sizeof(int));
 cout << total_characters << endl;
 out.write((char*)&characters_used, sizeof(int));
 cout << characters_used << endl;
 for (int i = 0; i <= 255; i++){
 if (freq[i] != 0){
 out.write((char*)&i, sizeof(char));
 out.write ((char*)&freq[i], sizeof(int));
 }
 }
}

void encode_file(bitwriter& outwrite, ifstream& in, int total_characters, code mycodes[])
{
 int characters_written = 0;
 char ch;
 code thecode;
 while (characters_written < total_characters){
 if (!in.get(ch)) {
 return;
 }
 thecode = mycodes[ch];
 outwrite.write_code (thecode);
 characters_written++;
 }
 outwrite.flush_bits();
}
#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <cassert.h>
#include "utils.h"
#include "bits.h"

void build_freq_table (ifstream& in, int freq[256], int total_pairs);
void decode_file (bitreader& in, ofstream& out, node* tree, int total_characters);

/* main procedure for decompression. Takes command line arguments.
 * To use, type: ./puff input-file-name output-file-name at prompt */

int main(int argc, char **argv)
{
 ifstream in;
 ofstream out;

 /* Check for file name on the command line */
 if (argc == 3) {
 in.open(argv[1], ios::binary); in.open(argv[2], ios::binary);
 if (!in || !out) {
 cerr << "Can't open file!\n";
 exit(0);
 }
 } else {
 cerr << "Usage: puff <input fname> <output fname>\n";
 exit(0);
 }

 // Read in first int which indicates total number of encoded characters
 int total_characters;
 in.read((char*)&total_characters, sizeof(int));

 // Read in second int which indicates total number of char/code pairs
 int total_pairs;
 in.read((char*)&total_pairs, sizeof(int));

 int freq[256];
for (int i = 0; i < 256; i++)
{
 freq[i] = 0;
}

// Read header and construct frequency array
build_freq_table (in, freq, total_pairs);

// Convert array of frequencies to linked list of nodes
node* freq_list = make_nodes (freq);

// Sort linked list
linked_list_insertion_sort(freq_list);
node* sorted_link_list = freq_list;

// Construct tree from sorted linked list
node* tree = make_tree (sorted_link_list);

// Start decoding file
bit_reader reader(in);
decode_file (reader, out, tree, total_characters);

// Close input and output files
in.close();
out.close();

}

void build_freq_table (ifstream& in, int freq[256], int total_pairs)
{
 for (int i = 0; i < 256; i++) {
 freq[i] = 0;
 }
 char ch;
 int num;
 int pairs_read = 0;
 while (pairs_read < total_pairs) {
 in.read((char*)&ch, sizeof(char));
 in.read((char*)&num, sizeof(int));
 freq[ch] = num;
 pairs_read++;
 }
}

void decode_file (bit_reader& in, ofstream& out, node* tree,
 int total_characters)
{
 int characters_read = 0;
 int code_digit;
 node* tracer = tree;
while (characters_read < total_characters) {
 while (tracer -> right != NULL && tracer -> left != NULL) {
 bool success = in.get_bit(code_digit);
 if (!success) {
 return;
 }
 if (code_digit == 0) {
 tracer = tracer -> left;
 } else {
 tracer = tracer -> right;
 }
 }
 out.write((char*)&(tracer->character), sizeof(unsigned char));
 tracer = tree;
 characters_read++;
}
}
/* File: utils.h
 * Author: Wang-Rei Tang
 * JoRel Sallaska
 * Common routines to manipulate huffman encoding data structures */

#ifndef _UTIL_H
#define _UTIL_H

#include <iostream.h>
#include <iomanip.h>
#include "bits.h"

struct node {
 unsigned char character;
 int frequency;
 node* next;
 node* left;
 node* right;
};

node* make_nodes(int freq[]);
void linked_list_insertion_sort (node* &freq_list);
void insertion_sort (node* &tree);
node* combine_2_nodes (node* a, node* b);
node* make_tree (node* first_node);
void build_key (code mycodes[], node* tree, code& thecode);
void write_bit (int bit, code& thecode);
void erase_bit (code& thecode);
void traverse_tree (node* tree, code mycodes[], code& thecode);
void print_tree(node* tree);

#endif
void print_tree (node* tree) {
 if (tree == NULL)
 return;
 cout << "Node: " << tree->character << endl;
 cout << "frequency: " << tree->frequency << " next: "
 << (unsigned int)tree->next << " left: "
 << (unsigned int)tree->left << " right: "
 << (unsigned int)tree->right << endl;
 print_tree (tree->left);
 print_tree (tree->right);
}

node* make_nodes(int freq[]) {
 node* head;
 node* curr;
 curr = new node;
 head = curr;
 for (int i = 0; i < 255; i++) {
 if (freq[i] == 0)
 continue;
 curr -> character = char (i);
 curr -> frequency = freq[i];
 curr -> next = new node;
 curr->left = NULL;
 curr->right = NULL;
 curr = curr -> next;
 }
 curr -> character = char (255);
 curr -> frequency = freq [255];
 curr -> next = NULL;
 curr->left = NULL;
 curr->right = NULL;
 return head;
}

void linked_list_insertion_sort (node* &freq_list) {
 node* ptr = freq_list;
 node* next_node = ptr -> next;
while (next_node -> next != NULL) {

 // Go to first element that is out of order
 while (ptr -> frequency <= next_node -> frequency
 && next_node -> next != NULL) {
 ptr = next_node;
 next_node = next_node -> next;
 }

 // If not at end of list, move element out of order to beginning of
 // list and call insertion sort
 if (ptr -> frequency > next_node -> frequency) {
 ptr -> next = next_node -> next;
 next_node -> next = freq_list;
 freq_list = next_node;
 insertion_sort(freq_list);
 next_node = ptr -> next;
 }

 if (ptr -> frequency > next_node -> frequency) {
 ptr -> next = NULL;
 next_node -> next = freq_list;
 freq_list = next_node;
 insertion_sort(freq_list);
 }
}

// Finds appropriate spot in linked list for first node and inserts it

void insertion_sort (node* &tree) {
 if (tree -> next != NULL) {
 if (tree -> frequency <= tree -> next -> frequency) { return;
 }
 node* head = tree -> next;
 node* ptr = head;
 node* last = tree;
 while (ptr -> frequency < tree -> frequency && ptr -> next !=
 NULL) {
 last = ptr;
 ptr = ptr -> next;
 }
 if (ptr -> frequency < tree -> frequency && ptr -> next == NULL)
 {
 ptr -> next = tree;
 tree -> next = NULL;
 tree = head;
 return;
 }
 tree -> next = last -> next;
 last -> next = tree;
 tree = head;
}

// Combines 2 nodes into parent w/ children and returns pointer to
// parent
node* combine_2_nodes (node* a, node* b) {
 node* parent = new node;
 parent -> frequency = a -> frequency + b -> frequency;
 if (a -> frequency <= b -> frequency) {
 parent -> left = a;
 parent -> right = b;
 } else {
 parent -> left = b;
 parent -> right = a;
 }
 parent -> next = b -> next;
 a -> next = NULL;
 b -> next = NULL;
 return parent;
}

// Combines linked list of nodes into huffman tree and returns pointer to top of tree
node* make_tree (node* first_node) {
 node* tree;
 while (first_node -> next != NULL) {
 tree = combine_2_nodes (first_node, first_node -> next);
 insertion_sort (tree);
 first_node = tree;
 }
 return tree;
}

// Given array for key and pointer to tree, stores all codes in array key.
void build_key (code mycodes[], node* tree, code& thecode) {
 traverse_tree (tree, mycodes, thecode);
}

// Adds one bit to end of thecode with the value bit.
void write_bit (int bit, code& thecode) {
 thecode.bits = (thecode.bits << 1) | bit;
 thecode.length++;
}

// Takes one bit from end of thecode.
void erase_bit (code& thecode) {
 thecode.bits = thecode.bits >> 1;
 thecode.length--;
}

// Traverses tree & stores all codes and length of codes in array of all codes
void traverse_tree (node* tree, code mycodes[], code& thecode) {
 if (tree -> left == NULL && tree -> right == NULL) {
 mycodes[int(tree -> character)].bits = thecode.bits;
 mycodes[int(tree -> character)].length = thecode.length;
 return;
 }
 write_bit(0, thecode);
 traverse_tree (tree -> left, mycodes, thecode);
 erase_bit (thecode);
 write_bit (1, thecode);
 traverse_tree (tree -> right, mycodes, thecode);
 erase_bit (thecode);
 return;
}
Data compression algorithm is a set of rules and procedures used to compress an original file into a smaller destination file represented by fewer bits (for the purpose of efficient storage) and to decompress the destination file into the original file when it is needed. An efficient data compression algorithm has a higher compression ratio, saves more storage space, or increases the speed of downloading files on the Internet. It is very important because saving time and space usually means saving money.

The variety of data compression algorithms is almost endless. There are many ways to group data compression algorithms into a few classes based on the techniques used to do compression. In fact, a lot of algorithms are developed from more than one of the classes.

Run-length coding is one of the simplest data compression algorithms. Run-length coding replaces sequences of consecutive identical data items with three elements: a control symbol, a run-length count and a data item. It is highly effective when there are a lot of runs of consecutive symbols. But in plain English text, there are not many repetitions.

The different Run-length encoding variants have one common feature: they assign fixed-size codes to the symbols on which they operate. In contrast, statistical encoding takes advantage of the probabilities of occurrence of single characters and groups of characters, so that short codes can be used to represent frequently occurring characters or groups of characters while longer codes are used to represent less frequently
encountered characters and groups of characters. Shannon-Fano encoding, the Huffman code and arithmetic coding are all in the family of statistical methods.

Huffman coding shares most characteristics of Shannon-Fano coding. Symbols with higher probabilities get shorter codes. They both have the unique prefix property and produce the best codes when the probabilities of the symbols are negative powers of 2. However, building a Huffman decoding tree is done using a completely different algorithm from that of the Shannon-Fano method. The Shannon-Fano tree is built from the top down, and the Huffman tree is built from the bottom up. One of the problems associated with the development of the Shannon-Fano code is the fact that the procedure to develop the code can be changeable. It is important where we make a split in the subset construction process. Huffman coding solves the problem. It assigns the optimal unambiguous encoding to the symbols.

In Huffman coding, when several symbols have the same frequency of occurrence, we may be able to develop two or more sets of codes to represent Huffman coding. The rule is to always combine the lowest frequency with the highest frequency while merging the symbols’ probabilities. As stated earlier, the Huffman code is only optimal when all symbol probabilities are negative powers of 2. In practice, this situation is not guaranteed to occur. Huffman code can be generated no matter what the symbol probabilities are, but they may not be efficient. Arithmetic encoding solves this problem.

Using arithmetic coding, a message is encoded as a real number in an interval from zero to one. Unlike Huffman coding, arithmetic coding takes the whole message from the input stream and encodes it into one code. It creates a single symbol rather than
several separate codes. Arithmetic coding typically gives better compression ratios than Huffman coding. It is a more recent technique compared to Huffman coding.

Dictionary-based methods do not use a statistical model, nor do they use variable-size codes. Instead, they select strings of symbols and encode each string as a token using a dictionary. LZ 77 (Sliding Window) and LZ 78 are in the family of dictionary-based methods. Dictionary-based methods were not mentioned in the paper. It will be noted in a future work. All the algorithms mentioned in this paper were for symbolic data compression. In the future work, image compression, video compression, and audio compression shall be covered.
APPENDIX A

/* File: bits.h
 * Author: Omri Traub <otraub@eecs.harvard.edu>
 * Routines for reading and writing bits to a file.
 * NOTE: you should not have to modify this file.
 */

#ifndef _BITS_H
#define _BITS_H

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>

/* An encoding of a character consists of the bits and the number of
 * bits in the code.
 * Note: you are encouraged to use this class whenever you need
 * to store a bit code */

class code {
public:
 code() { bits = length = 0; }

 unsigned int bits;
 int length;
};

/* A class interface to reading a file one bit at a time */
class bit_reader {
public:
 /* initialize the reader with an input file handle */
 bit_reader(ifstream &_in);

 /* read the next bit from the file into the argument int
 * variable.
 * returns a bool indicating whether eof reached */
 bool get_bit(int &the_bit);

private:
 /* a bit buffer containing up to 8 bits from the file */
 unsigned char buffer;

 /* how many character are currently in the buffer */
 int buf_len;

 /* the current file, assumed to be open */
 ifstream *in;
};

/* A class interface to writing a file one bit at a time */
class bit_writer {
public:
 /* initialize the reader with an output file handle */
 bit_writer(ofstream &_out);
/* write the next code (sequence of bits) to the file */
void write_code(code the_code);

/* write the next bit to the file. */
void put_bit(int the_bit);

/* when the buffer gets full, write the bits out to the file.
 * NOTE: call this file when you are done writing, or else some
 * bits
 * may not get written out! */
void flush_bits();

/* return the number of bytes written to file */
int num_bytes_written() { return num_bytes; }

private:
/* a bit buffer containing up to 8 bits to be written to the file */
unsigned char buffer;

/* how many character are currently in the buffer */
int buf_len;

/* the current file, assumed to be open */
ofstream *out;

/* number of bytes written */
int num_bytes;
};

#endif
/* File: bits.cc
* Author: Omri Traub <otraub@eecs.harvard.edu>
*
* Routines for reading and writing bits to a file.
* NOTE: you should not have to modify this file.
*/

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include "bits.h"

/* initialize the reader with an input file handle */
bit_reader::bit_reader(ifstream &_in)
{
 in = &_in;
 buffer = buflen = 0;
}

/* read the next bit from the file into the argument int variable.
* returns a bool indicating whether eof reached */
bool bit_reader::get_bit(int &the_bit)
{
 /* buffer is empty: need to read more bits from the file! */
 if (buflen == 0) {
 buffer = in->get();
 if (in->eof())
 return false; /* that's it! eof has been reached */
 }

 /* just read 8 bits */
 buflen = 8;
}

/* now we need to get the highest bit that is valid:
* i.e. the bit in position buflen - 1 in the buffer */
the_bit = (buffer & (1 << (buflen-1))) >> (buflen - 1);

buflen--;
return true;

/* initialize the reader with an output file handle */
bit_writer::bit_writer(ofstream &_out)
{
 out = &_out;
 buffer = buflen = num_bytes = 0;
}

/* write the next code (sequence of bits) to the file */
void bit_writer::write_code(code the_code)
{

int i;
int bit;

/* call put_bit() on all bits, from left to write */
for (i = the_code.length-1 ; i >= 0; i--) {
 bit = (the_code.bits & (1 << i)) >> i;
 put_bit(bit);
}

/* write the next bit to the file. */
void bit_writer::put_bit(int the_bit)
{
 /* if the buffer has eight bits, need to flush it first */
 if (buf_len == 8) {
 flush_bits();
 }

 /* need to add the new bit to the right of existing buffer */
 buffer = (buffer << 1) | the_bit;
 buf_len++;
}

/* when the buffer gets full, write the bits out to the file.
 * NOTE: call this file when you are done writing, or else some bits
 * may not get written out! */
void bit_writer::flush_bits()
{
 /* if buffer has fewer than 8 bits, need to shift the bits
 * left to align them with the left end of the byte before
 * writing out. NOTE: when you read in the bits, there may be
 * extra 0 bits dangling at the end! */
 if (buf_len < 8)
 buffer = buffer << (8 - buf_len);

 out->put(buffer);
 buffer = buf_len = 0;
 num_bytes++;
}
REFERENCES

http://www.rasip.fer.hr/research/compress/

http://www.eas.asu.edu/~morrell/551fall95/project1/project1.html

http://student.monterey.edu/dh/dunkeljodyd/world/cst332/a1present/10.htm

http://www.mdc.net/~eberhard/ari/arithmetic.html

http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html#Sec_3.1

http://www.eee.bham.ac.uk/WoolleySI/All7/huff_1.htm

http://www.eee.bham.ac.uk/WoolleySI/All7/HuffTutorial.htm

http://www.compressconsult.com/huffman/