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Abstract

In this thesis, I investigate how scenes are represented by the human visual sys-
tem and how observers use visual information to reorient themselves within a space.
Scenes, like objects, are three-dimensional spaces that are experienced through two-
dimensional views and must be recognized from many different angles. Just as people
show a preference for canonical views of objects, which best show the object's surfaces
and shape, people also show a preference for canonical views of scenes, which show as
much of the surrounding scene layout as possible. Unlike objects, scenes are spaces
which envelope the observer and thus a large portion of scene processing must take
place in peripheral vision. People are able to perform many scene perception tasks,
such as determining whether a scene contains an animal, quickly and easily in periph-
eral vision. This is somewhat surprising because many perceptual tasks with simpler
stimuli, such as spotting a randomly-rotated T among randomly-rotated Ls, are not
easily performed in the periphery and seem to require focal attention. However, a
statistical summary model of peripheral vision, which assumes that the visual system
sees a crowded, texture-like representation of the world in the periphery, predicts
human performance on scene perception tasks, as well as predicting performance on
peripheral tasks with letter stimuli. This peripheral visual representation of a scene
may actually be critical for an observer to understand the spatial geometry of their
environment. People's ability to reorient by the shape of an environment is impaired
when they explore the space with central vision alone, but not when they explore
the space with only peripheral vision. This result suggests that peripheral vision is
well-designed for navigation: the representation in peripheral vision is compressed,
but this compression preserves the scene layout information that is needed for under-
standing the three-dimensional geometry of a space.

Thesis Supervisor: Ruth Rosenholtz, PhD
Title: Principal Investigator
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Chapter 1

Introduction

Scene perception is extremely fast: people can process the semantics of a scene a least

as quickly as they can identify objects and their locations in the scene (Biederman,

1981). People can make scene judgments, such as deciding whether or not a scene

contains an animal, after seeing a scene flashed for only 20 ms (Thorpe, Fize, &

Marlot, 1996). It takes only a 20-40 ms exposure to a scene to extract many of its

properties, such as the depth of the scene or whether it is natural or urban (Greene

& Oliva, 2009; Joubert, Rousselet, Fabre-Thorpe, & Fize, 2009). What are the visual

features underlying rapid scene perception?

Computer vision approaches to scene perception generally assume that processing

a scene in a single glance involves extracting some type of texture representation over

the entire image. One dominant algorithm, GIST, analyses a scene by calculating

histograms of orientations at various spatial scales and pooling these over large patches

of the image (Oliva & Torralba, 2001). This coarse representation of a scene is

sufficient to extract many of the scene properties which are visible in a glance, such

as the depth and navigability of the scene. It also provides information about the

most likely locations of objects in a scene, and can predict where people will look

first when searching for those objects (Torralba, Oliva, Castelhano, & Henderson,

2006; Ehinger, Hidalgo-Sotelo, Torralba, & Oliva, 2009). It can also be leveraged to

perform more complex tasks, such as determining what city is depicted in an image

(Hays & Efros, 2008). Although the GIST representation is clearly much simpler
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than the representation of a scene that is extracted by a human observer, it illustrates

the power of a scene representation based on a statistical summary of pooled image

features. And even the current state-of-the-art approaches to scene recognition rely

heavily on global texture analysis, calculating feature statistics over the entire image

or over large pooling regions distributed across the image (Xiao, Hays, Ehinger, Oliva,

& Torralba, 2010).

This texture-like approach to scene recognition seems to reflect an important

property of scenes: they are less structured, and more texture-like, than objects.

Both scenes and objects are made up of parts, and in the case of objects, the parts

tend to follow a fairly rigid template: for example, a dog has four legs, a head, and a

tail. There isn't much flexibility in the number or type of parts allowed, and any new

configuration is usually labeled as a different object (eg, a three-headed dog). On the

other hand, scenes are usually very flexible in the number and types of parts they

allow. For example, a forest scene should contain trees, but they can be any species

and in any configuration. A kitchen scene should contain some kitchen appliances,

such as a stove, refrigerator, microwave, or dishwasher, but it need not have all of

these, and they can be in various locations in the scene. On the other hand, the

higher-level statistics of a scene are often central to the scene's identity. The spatial

arrangement of trees is what defines the forest scene: randomly-arranged trees are a

wild forest, but trees in regular rows are an orchard or garden. Spatial arrangement

is also important for the kitchen scene: although it can contain various appliances,

they should be lined up against the walls, not piled in the middle of the room. In this

way, scenes are similar to textures: the precise locations of the individual elements

are not as important as their global statistics (Portilla & Simoncelli, 2000).

Although scenes are more texture-like than objects, they are three-dimensional

spaces, and therefore scene and object recognition pose many of the same problems

for the visual system. One of the main issues in object recognition is how to recognize

the same object from different views, since the same three-dimensional object can

look very different from different angles. Similarly, scenes can look very different

when explored from different directions. Being able to recognize the same place from

14



a new perspective is one of the most important requirements for navigating through

an environment. What are the visual features that are used to recognize a place,

extract information about its spatial extent and layout, and locate the observer in

that space?

According to the geometric module hypothesis, animals (including people) navigate

primarily by the spatial layout of their surroundings. Cheng (1986) observed that rats

seeking food in a rectangular enclosure make errors based on the rotational symmetry

of the space: they seek food in the correct corner and the diagonally opposite corner.

Animals persist in these errors even when there are featural cues that could be used to

distinguish between the two locations, such as a different pattern on each corner of the

enclosure or a differently-colored wall on one side. Gallistel (1990) used this and other

animal studies to argue that orientation in the absence of self-movement cues relies

solely on the spatial geometry of the environment. Spatial geometry is computed

from visible surfaces and aligned with a stored representation of the space in memory

to reorient the animal within the environment. Figure B-i shows an example of how

the shape of an environment can be extracted by measuring the distances to visible

surfaces. This representation is also known as an isovist (Benedikt, 1979), which is

the architectural term for the three-dimensional volume of space visible from a single

location.

The spatial geometry of an environment forms the basis of a cognitive map that

is used to perform navigational tasks (Tolman, 1948; O'Keefe & Nadel, 1978). The

cognitive map is a two-dimensional allocentric representation of space which encodes

the geometric layout of the environment and the positions of landmarks, objects, and

the observer within that environment. This map-like representation is thought to be

stored in the hippocampus, encoded in place cells, which fire when an animal is in a

particular location in space (place field), irrespective of other factors like the animal's

current view or heading. These cells were originally observed in rodents (O'Keefe &

Dostrovsky, 1971), but have also been identified in humans (Ekstrom et al., 2003).

The firing rate of a place cell is a function of the animal's distance from all of the

walls of its enclosure (OKeefe & Burgess, 1996), and a network of place cells with
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overlapping place fields can be used to encode locations relative to the boundaries

of an enclosure, consistent with the geometric module hypothesis (Burgess, Recce, &

O'Keefe, 1994).

Human beings are thought to navigate using two systems: a purely geometric

system which is present in young children, and a system that incorporates surface

features and landmarks, but which develops more slowly and may be tied to the

development of spatial language (Lee & Spelke, 2010; Shusterman, Lee, & Spelke,

2011). Until about the age of 4, children are thought to navigate using the shape

of the boundaries of a room, but not landmarks with the room or any features on

the boundaries. Young children (18-24 months) make the same errors as rats when

searching in rectangular rooms - they search the correct corner and the rotationally-

symmetric corner, even when one wall is a different color and could be used to disam-

biguate between the two locations (Hermer & Spelke, 1994). Children do not seem to

be able to reorient themselves to landmarks within the room, such as a rectangular

or triangular arrangement of pillars (Gouteux & Spelke (2001), see also Lew (2011)

for a survey of similar results in animals). However, children will reorient using a

set of four free-standing walls arranged to form a rectangle with open corners, and

in this type of room they make the same rotational errors as in a rectangular room

(Gouteux & Spelke, 2001). Children will also reorient within rectangles defined by a

2cm-high border on the floor or a pair of 10cm-high parallel ridges on the floor, but

not a rectangular mat on the floor (Lee & Spelke, 2011). Children will use landmarks

(tall pillars or small boxes) to reorient in a cylindrical room only if they are set right

against the wall - in this case, the landmarks apparently become part of the bound-

ary, and their shapes are incorporated into the representation of the shape of the

room (Lee & Spelke, 2010). One of the few surface features that young children do

use for reorientation is texture density: in a square room with alternating patterns of

smaller and larger circles, children make the same rotational errors that they make in

rectangular rooms (Huttenlocher & Lourenco, 2007). In this case, children may not

be recognizing the pattern at all, but using texture density to determine the shape of

the room and incorrectly treating it as a rectangle.
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The conclusion drawn from these results is that children and animals can only

reorient to the spatial geometry of a space, as defined by its boundary walls. There

are clearly some problems with this theory. Although there are easy ways to estimate

distances to surfaces in some environments, for example, by using texture gradients

or the retinal height at which a surface meets the ground (Gibson, 1979), this process

nevertheless poses some shape-from-texture and shape-from-shading problems. In

particular, the geometric module hypothesis seems to assume a very accurate shape

representation of the surrounding environment, which includes "boundaries" as small

as 2 cm in height, and it's not clear how easily these could be extracted in natural en-

vironments with uneven surfaces and irregular textures. It's also not clear why, after

separating geometry from features, feature information should then be discarded (al-

though Gallistel (1990) argues that surface features are unreliable cues for navigation

because, in natural settings, they change with the seasons). Finally, the geometric

module hypothesis predicts that children should be very accurate at orienting within

irregularly-shaped rooms because these have unambiguous geometry, but in fact chil-

dren do not seem to be able to reorient in these rooms at all (Lew, Gibbons, Murphy,

& Bremner, 2010).

An alternate view is that boundary information is used for reorientation not be-

cause it is a special type of cue, but because the boundaries of an enclosure tend

to provide the best visual information for navigation: far enough away to be fairly

stable, but still close enough to provide changing visual information as the observer

moves. In support of this are studies showing that animals can use landmarks in

some situations (see Lew (2011) for a survey). In general, it seems that landmarks

are more likely to be used for reorientation when they are placed closer to the walls of

an enclosure, and, as with boundary information, animals use the spatial configura-

tion of landmarks but not surface features like color. This could be taken as evidence

for the geometric module hypothesis: perhaps landmarks placed near the boundary

become part of the boundary representation and thus can be used for reorientation.

However, this could also reflect the fact that landmarks near the boundaries of an

enclosure are more stable: because the animal only sees them from a limited set of
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viewpoints, these landmarks do not change position relative to each other. In con-

trast, the landmarks in the middle of an enclosure can present very different views as

the animal moves around them - the relative positions of the landmarks in the image

plane will change in different views, and the landmarks themselves may look different

when seen from different angles. O'Keefe and Nadel (1978) point out that whether a

set of landmarks is useful for navigation depends, in part, on their distance from the

observer: more distant landmarks will not change as an observer moves, which makes

them more reliable, but less useful for estimating the observer's location.

In this thesis, I investigate how scenes are represented by the human visual

system and how observers use visual information to reorient themselves within a

space. Because scenes are three-dimensional entities that are experienced through

two-dimensional views, they pose many of the same representational problems for

the visual system as objects. But unlike objects, scenes envelope the observer, and

so much of scene processing must take place in peripheral vision. Hence, an under-

standing of the representation in peripheral vision is important for understanding

how people recognize and reorient within scenes.
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Chapter 2

Canonical views of scenes

One of the primary challenges for both scene and object recognition is recognizing

a particular scene or object from multiple views. Environmental spaces are three-

dimensional, but we perceive them only through two-dimensional views. Being able

to recognize a familiar place when we see it from a new angle is critical for navigating

through the world. So it is interesting to ask how people represent spaces as views.

What aspects of a scene are most important to represent in a single view?

Multi-view recognition has been studied extensively in objects. One important

finding is that fact that, although people can recognize familiar objects in any ori-

entation, there seem to be preferred or standard views for recognizing and depicting

objects. These preferred views, called "'canonical" views, are the views that ob-

servers select as best when they are shown various views of an object, and these are

the views that people usually produce when they are asked to photograph or form a

mental image an object (Palmer, Rosch, & Chase, 1981).

In general, the canonical view of an object is a view which maximizes the amount

of visible object surface. The canonical view varies across objects and seems to depend

largely on the shape of the object. For most three-dimensional objects (e.g., a shoe

or an airplane), observers prefer a three-quarters view which shows three sides of the

object (such as the front, top, and side). However, straight-on views may be preferred

for flatter objects like forks, clocks, and saws, presumably because the front of the

object contains the most surface area and conveys the most information about object
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identity (Verfaillie & Boutsen, 1995). In addition, observers avoid views in which an

object is partly occluded by its parts, and they avoid accidental views which make

parts of the object difficult to see (Blanz, Tarr, & Bulthoff, 1999).

Canonical views of objects may also reflect the ways people interact with objects.

People show some preferences for elevated views of smaller objects, but ground-level

views of larger objects (Verfaillie & Boutsen, 1995). The ground-level views show

less of the object (because they omit the top plane), but seem to be more canonical

for large objects such as trucks or trains because these objects are rarely seen from

above. However, these sorts of preferences may be due to greater familiarity with

certain views, not functional constraints per se. Observers do not consistently select

views in which an object is oriented for grasping (e.g., a teapot with the handle

towards the viewer), and when subjects do choose these views, they don't match the

handle's left/right orientation to their dominant hand (Blanz et al., 1999).

Scenes and places, like objects, are three-dimensional entities that are experi-

enced and recognized from a variety of angles. Therefore, it seems reasonable to

expect that certain views of a scene are more informative and would be preferred

over others. However, this has not been extensively studied. Studies using artificial

scenes (a collection of objects on a surface) have shown that scene learning is view-

point dependent, but recognition is fastest not just for learned views, but also for

standardized or interpolated versions of the learned views (Diwadkar & McNamara,

1997; Waller, 2006; Waller, Friedman, Hodgson, & Greenauer, 2009). For example,

after learning an off-center view of a scene, viewers recognize the centered view of the

scene about as quickly as the learned view.

There is also some evidence that there are "best" views of real-world places. Stud-

ies of large photo databases have shown that different photographers tend to select

the same views when taking photos in the same location, indicating that there is good

agreement on the best views of these scenes (Simon, Snavely, & Seitz, 2007). Cluster-

ing analyses of the photographs can produce a set of representative views which are

highly characteristic and recognizable, but it is not clear that these are the "canon-

ical" views in the sense of Palmer et al. (1981). For example, the most commonly
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photographed view in a particular cathedral might be a close-up view of a famous

statue in the cathedral, but this view would probably not be considered the "best"

view of the cathedral itself, nor would it be the view people produced if they were

told to imagine the cathedral.

Determining the canonical view of a scene is more complicated than finding the

canonical view of an object, because in addition to rotating the view at a particular

location (by turning the head), an observer can walk around within the space, ob-

taining different views from different locations. The current study looks at only the

first part of the problem: what is the canonical view of a scene from a fixed location

within that scene? To investigate this question, we use 360-degree panoramic images,

which capture all of the views available from a particular location.

2.1 Methods

2.1.1 Participants

195 people participated in the experiment through Amazon's Mechanical Turk web-

site (www.mturk.com), an online service where workers are paid to complete short

computational tasks ("HITs") for small amounts of money. All of the workers who

participated in this task were located in the United States and had a good track record

with the Mechanical Turk service (at least 100 HITs completed with an acceptance

rate of 95% or better). Vorkers were paid $0.01 per trial.

2.1.2 Materials

The stimuli were 1084 panoramic images taken in various indoor and outdoor locations

(classrooms, lobbies, chapels, parking lots, gardens, athletic fields, etc.). About half

of the images (460) were downloaded from an online collection of panoramic images

(www.360cities.net) and the remainder were taken in various locations around the

MIT area using a camera fitted with a parabolic mirror. Each image was 3200 by 960

pixels in equirectangular projection, corresponding to 360 degrees horizontally and
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about 110 degrees vertically.

2.1.3 Design

Each image was seen by 10 different participants. Participants were allowed to com-

plete as many trials as they wished; on average, each participant performed 32 trials

(median 9 trials).

2.1.4 Procedure

On each trial, participants saw one panoramic image in an interactive viewing window

(this window was 550 by 400 pixels, corresponding to about 60 degrees by 45 degrees

visual angle). Observers could change the view shown in the window by clicking and

dragging the image with the mouse, which gave the effect of turning one's head and

looking around in the scene. The initial view of the scene was chosen randomly at

the start of each trial.

There were two tasks on each trial: first, type a name for the location shown in the

panoramic image (for example, "kitchen"); and second, manipulate the viewer window

to get the best possible view of the location. Specifically, participants were told to

imagine that they were photographers trying to take the best possible snapshot of the

scene, a task modeled on the photography task used by Palmer, Rosch, and Chase

(1981) in their study of the canonical views of objects.

2.2 Modeling the canonical view

In addition to collecting data on the preferred views of scenes, we wished to determine

how these preferred views are influenced by the visual, spatial, and semantic properties

of the scene. For example, when choosing which is the "best" view of a scene, people

may attempt to maximize the amount of space visible within the view, analogous to

choosing a view of an object which shows as much of the object's surface as possible.

Or they may consider the functional constraints of the scene, and choose views which
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reflect how they would move in the space shown. These navigational views may be

preferred because they are functional or because they are familiar: they are the types

of views which people experience most often as they move through the environment.

In addition, people may prefer stable views, which have minimal perceptual difference

from other nearby views. Finally, the choice of a "best" view may be influenced by

saliency: a view which contains interesting, unusual, or outlier features may be the

best view to distinguish a specific place from other, similar places.

2.2.1 Area map

To characterize the shape of the space around the camera in the panoramic scene,

we marked the edges of the ground plane in each image. These edges were defined

by the boundaries of the scene (walls, fences, sides of buildings) and ignored small

obstructions like furniture, cars, and trees. By measuring the pixel height of this edge

in each image, and using the known camera height, we were able to estimate the shape

of the visible space around the camera (or "isovist"), as shown in Figure B-1. This

allowed us to calculate the distance to the wall in any direction around the camera

("visible depth"), the total volume of space around the camera location, and, for any

particular camera view, what percentage of the total space was captured within that

view. This percentage, calculated for the full 360 degrees of possible views around

the camera, is called the "area map."

2.2.2 Navigational map

To characterize the navigational affordances of the scene, we marked the walking

paths in each image using an online task on Amazon's Mechanical Turk. Workers

participating in this task saw a panoramic image in equirectangular projection and

were asked to place arrows on each of the paths, which included sidewalks, hallways,

staircases, and navigable spaces between furniture or other obstacles. Since some

images did not contain clearly defined walking paths (for example, a large, open field

may not contain any marked paths and it is possible to walk in any direction), workers
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were given the option to mark a checkbox ("this is a large, open space") in addition to

marking any paths that they did see in the image. Along with instructions, workers

were given several examples of correctly- and incorrectly-marked images, followed by

a test in which they were required to correctly mark a set of example images.

Three different workers marked the paths in each image; each received $0.03 per

image. None of the workers in this path-marking task had participated in the main

experiment. A Gaussian distribution was centered on each of the marker locations

in the image and the responses from the three workers were summed to create a

"navigational map". This map gives an estimate of the navigability of all possible

views around the camera location: peaks in this map represent directions in which

the observer could move from the camera location.

2.2.3 Stability map

To measure stability, we implemented the algorithm of Cyr and Kimia (2001). This

algorithm finds stable canonical views in a horizontal circle around an object by

clustering nearby views and taking the view with the minimum distance to all other

views in its cluster as the "canonical" view. In order to form a valid cluster, views

must be similar in some feature space and show a monotonic increase in dissimilarity

with rotational distance: views which are physically farther away from the canonical

view are more dissimilar than views which are closer. Our implementation used

GIST features (Oliva & Torralba, 2001) to represent each view. A low-resolution

pixel representation was also tried, but did not improve performance. To build the

stability map from the algorithm output, we remove clusters with only one member,

and for each remaining cluster, we place a Gaussian distribution over the center of

each cluster's canonical view, weighted by cluster size. Peaks in this map represent

the most stable views in the image, views which are similar over a wide angle of

rotation in the scene.

24



2.2.4 Saliency map

To represent saliency, we use the saliency model of Torralba et al. (2006), modified

for spherical images. To calculate saliency over a sphere, we sample the sphere using

an icosahedral grid. At each sample location, the image pixels are projected onto a

tangential plane and convolved with a set of oriented Gabor filters at 4 orientations

and 3 spatial scales (filter orientations are defined on the tangental plane). The three

color channels (R,G,B) are handled separately. The resulting filter responses are then

fit to a multivariate power-exponential distribution to determine their likelihood, as

described in Torralba et al. (2006). To obtain a single saliency value for each hori-

zontal direction around the sphere, we take the maximum saliency over the vertical

direction (mean saliency was also tested, but gave worse performance).

2.3 Results

Trials were excluded if the worker did not name the location shown in the image

(1% of trials) or did not use the viewer to explore the scene and simply submitted

the initial view as the best view (3% of trials). In general, agreement on the "best

view" of a scene was high: the average circular standard error of the angles selected

by observers was 12.7 degrees. Agreement was correlated with the area of the scene

(R = 0.54), with higher agreement in smaller, indoor spaces, and worse agreement in

large, open outdoor scenes.

Model performance was assessed using ROC curves. ROC curves show the de-

tection rate of a model relative to its false alarm rate. In this case, the ROC curves

show the proportion of human observers' "best" views which can be predicted by each

map when it is thresholded at a range of threshold values. The area under the ROC

curve (AUC) can be used as a measure of a model's overall performance. A model

performing at chance produces an ROC curve that is a diagonal line with an AUC of

0.5. AUC values closer to 1 indicate better model performance.

The ROC curves for each model are shown in Figure B-2, and their corresponding

AUC values are given in Table A.1. As an upper bound on our models, we calculated

25



the agreement between observers: for each image we made a map from all but one of

the observers' responses and used that to predict the left-out observer. This process

was repeated for all observers and the results were averaged. The AUC for inter-

observer agreement calculated in this fashion was 0.80.

Of the predictive models, the area model gives the best prediction of the views

selected by observers (AUC = 0.71), while the navigational and saliency models have

similar, lower performance (AUC = 0.59 and AUC = 0.61, respectively). The GIST-

based implementation of the Cyr and Kimia (2001) stability algorithm performed

only slightly above chance (AUC = 0.54). Although it gave a reasonable set of stable

views for each image, these views do not seem to predict observers' view preference.

We also measured the performance of models which combined two or more of

the above maps. To combine maps, we normalized each map so that it summed to

one, and then multiplied them together. The best-performing combined map was a

combination of the area and saliency maps, which only slightly outperformed the area

map alone (AUC = 0.71). This performance was similar across a range of weights

for the two maps. No combination of maps which included the stability map or

navigational map outperformed the area map alone, which suggests that, although

these maps perform above chance, they don't add any independent predictive power

to the area map. The navigational and stability maps perform above chance because

they often predict the same views as the area map: views which show a large amount

of space tend to be navigable views, and they also tend to be more stable views.

2.4 Discussion

Just as people show clear preferences for certain views of objects, there seem to be

agreed-upon "best" views of scenes. This is not surprising, given previous findings

in scene research, such as the fact that people tend to use similar viewpoints when

photographing famous locations. Overall, it seems that the way people choose a

canonical view of a scene may be very similar to the way they select the canonical

view of an object. This is because choosing the "best" view of an object or a scene
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poses essentially the same problem: how to compress as much three-dimensional visual

information as possible into a necessarily limited two-dimensional view.

When selecting canonical views of objects, people seem to try to maximize the

amount of visible surface: they select views which show at least two sides of the

object, and avoid occlusions and accidental views. Similar constraints seem to apply

in scenes. The canonical view from a particular location is dependent on the shape

of the space around that location: people show preferences for views that shows as

much of the surrounding space as possible. It's not clear whether people choose these

large-volume views because they wish to capture the space itself, or because they wish

to capture the things that fill that space (objects, textures, etc.). However, the fact

that visible area predicts canonical views better than saliency suggests the former:

people seem to prefer views which capture the most space over views which capture

the most salient objects.

There is also some evidence that the canonical view of an object reflects the way

people usually see the object, or the way they interact with the object. However, our

results suggest that the canonical view of a scene is not strongly based on functional

constraints. Although the canonical view of a scene is often a navigationally-relevant

view (a walkway, a corridor), our modeling results suggest that these views may be

selected because they show a large amount of the surrounding space, not because

they afford navigation. In addition, people are more likely to choose views with

high saliency than non-salient views, which may maximize the amount of information

shown in the view by including the most unusual or outlier features of the scene.

It may be the case that the canonical view of a scene is not the functional view.

There is some evidence that people do not have a specific functional view in mind

when they choose canonical views of objects (for example, Blanz et al. (1999) showed

that people do not prefer views of objects oriented for grasping). On the other hand,

people may consider functional constraints other than navigation when choosing a

canonical view of a scene. Navigation is a very general function of scenes; most

scenes also afford more specific functions (sitting in a theater, shopping in a store,

etc.). If canonical views of scenes do reflect functional constraints, it seems quite likely
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that they would reflect these more specific functions rather than a general function

like navigation. Further work will be needed to quantify these specific functional

constraints and determine how they affect view selection in scenes.

It should also be noted that there are many other factors that could affect choice of

view in addition to the two factors modeled here. As noted above, people may prefer

views of an environment which show a large number or large variety of the objects

within that environment, and this may explain the preference for views which show

a large amount of the surrounding space. People may also prefer views which show

specific objects, such as ones which are central to the function or identity of a place

(such as cars in a parking lot, or the stage in a theater). Aesthetics may also play a

role in the selection of a "best" view of a place: people may be biased towards views

which have high symmetry or are otherwise aesthetically pleasing. Many of these

factors can be quantified and should be included in a full model of view preference in

scenes.

Identifying the canonical views of scenes may help in understanding how scenes are

represented in memory and perceptual processes. The existence of canonical views of

objects has been used to argue for a viewpoint-dependent theory of object recognition,

in which objects are stored in memory as a collection of typical or informative views,

and recognition involves matching incoming visual information to these stored views

(Edelman & Bulthoff, 1992; Cutzu & Edelman, 1994). The existence of canonical

views of scenes could suggest a similar view-based representation for memory and

perception of scenes.

28



Chapter 3

A summary statistic model of scene

perception

Scene perception has generally been a problem for models of human vision developed

to explain performance on more abstract tasks, such as searching within letter arrays.

Scene recognition is extremely fast: in less than 100 ms, human observers can name

the basic-level category of a scene (Oliva & Schyns, 1997; Rousselet, Joubert, &

Fabre-Thorpe, 2005), detect if a scene shows an animal (Thorpe et al., 1996), and

recognize scene attributes such as naturalness, openness, and navigability (Greene &

Oliva, 2009; Joubert et al., 2009). Some scene tasks, such as determining whether or

not a scene contains an animal, can be performed in peripheral vision while attention

is engaged by a second, foveal task (Li, VanRullen, Koch, & Perona, 2002; VanRullen,

Reddy, & Koch, 2004).

These results are surprising, since many apparently simpler tasks, such as identify-

ing a letter in an array, seem to require focal attention. For example, when searching

for a T among Ls, people seem to need to direct focal attention to the individual items

in the array in order to find the T; it cannot be seen in the periphery. An influential

theory to explain this and other visual search results is the Feature Intergration The-

ory of Treisman and Gelade (1980). According to this theory, the peripheral visual

field represents only isolated feature dimensions, such color or orientation, and it has

no information about feature combinations. Focal attention is needed to "bind" the
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features from different dimensions to a single location to form a coherent object. Ac-

cording to this theory, peripheral vision can only perform tasks that involve a single

feature dimension, such as finding a red square among green squares.

This might lead to the conclusion that scene tasks are easy because they involve

only a single feature dimension, but this doesn't appear to be the case. Evidence for

this comes from visual search tasks. Animals do not "pop-out" from animal images in

a search array (VanRullen et al., 2004), nor do scene properties such as navigability

guide visual search (Greene & Wolfe, 2011). And if feature-binding is required to

recognize fairly simple objects such as letters, then it should be required to recognize

more complex objects such as animals. So why is recognizing a scene in peripheral

vision easy, when recognizing a T among Ls in the periphery is not?

Here we investigate whether performance on scene perception tasks can be ex-

plained by a summary statistic representation in peripheral vision. Previous work

has shown that this representation explains performance on non-scene tasks, including

visual search (Rosenholtz, Huang, Raj, Balas, & Ilie, 2012) and crowded letter recog-

nition (Balas, Nakano, & Rosenholtz, 2009). According to this model, the peripheral

visual field has a texture-like representation of the world. It measures statistics of

low-level features such as luminance and orientation in pooling regions, so it knows

about the distribution of features in an image, but does not know precise feature

locations. This representation is different from the "unbound" features proposed by

Treisman and Gelade (1980). According to the statistical summary model, peripheral

vision does have some information about feature conjunctions, such as the correla-

tion between edges in the image, but this information is statistical and pooled over

a portion of the image. This representation seems to explain many results in visual

search; it's sufficient to discriminate a tilted line in the presence of vertical lines, but

not a randomly-rotated T among randomly-rotated Ls (Rosenholtz et al., 2012).

In these experiments, we follow the procedure introduced by Balas et al. (2009).

One group of subjects performs a task with scene images. A second group of subjects

performs a classification task with "mongrel" images, which have been coerced to

match the feature statistics of the stimuli. As in Balas et al. (2009) and (Rosenholtz
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et al., 2012), the feature statistics used in these experiments are the rich set of sum-

mary statistics proposed by Portilla and Simoncelli (2000) to represent and synthesize

textures. The second group of subjects are allowed to view the mongrel images freely,

with no time limit, and their performance is used as a measure of the amount of

task-relevant information present in the mongrel images.

3.1 Experiment 1

In this experiment, we investigated performance on a range of scene perception tasks.

We compared performance when observers fixated centrally in an image to perfor-

mance on mongrel images synthesized to simulate the same fixation location. We

looked at four broad categories of questions: determining whether or not a specific

object (such as a car) was present in the scene, identifying the scene category, iden-

tifying the spatial layout, and determining where (e.g., in which city) a photo was

taken.

3.1.1 Methods

Participants

12 participants were recruited from the Massachusetts Institute of Technology com-

munity to participate in the gaze-contingent scene perception task. All were in the 18

to 35 age range and reported normal or corrected-to-normal vision. A second group

of 60 participants took part in the mongrel classification on Amazon's Mechanical

Turk service. Demographic data was not collected on these participants. All of the

individuals who participated in the Mechanical Turk task were located in the United

States and had a good track record with the Mechanical Turk service (at least 100

HITs completed with an acceptance rate of 95% or better). All participants gave

informed consent and were paid to take part in the experiment.
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Design

In the gaze-contingent task, participants were asked twenty yes/no questions about

scenes. Five questions were included from each of the four question groups: pres-

ence/absence of an object, scene category or gist, road layout, and geographic lo-

cation. Each question was presented as a block, in random order. In the mongrel

classification task, participants were asked the same questions about mongrel versions

of the images used in the gaze-contingent task.

Materials and apparatus

The stimuli for the gaze-contingent experiment were 400 photos of urban environ-

ments. The 200 images used as stimuli for the road layout and geographic location

questions were collected from Google Streetview, and the 200 images used as stim-

uli for the object presence and scene category questions were taken from the SUN

database (Xiao et al., 2010) or collected from the internet. The images used in the

object presence tasks were selected so that the target object appeared in only one

location in the image, and object presence was counterbalanced with scene cate-

gory, so that there were an equal number of target-present and target-absent trials

from each scene category. The target scene categories ("downtown," "parking lot,"

"plaza," "residential neighborhood," and "shopfront") were selected from the list of

scene categories in the SUN database. Geographic location and road layout was also

counterbalanced, so that each road layout class appeared equally often in each city.

Images were grayscale and 480 by 640 pixels in size. To ensure that participants could

not use foveal information to perform the task, the center of each image was covered

with a black circle 1 degree in radius.

During the gaze-contingent task, images were presented at (15 degrees by 20

degrees) on a 34 cm by 60 cm monitor, with participants seated 50 cm away in a

dim room. Eye position was tracked with an Eyelink 2000 eyetracking system.

The mongrel classification stimuli were full-field mongrels generated from Gaussian

noise images. The synthesis algorithm is as follows: starting at a central fixation
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point, the algorithm tiles the image with square, overlapping pooling regions whose

size increases with distance from fixation according to Bouma's Law (Bouma, 1970).

Within each pooling region, the model computes summary statistics as described in

Portilla and Simoncelli (2000). Synthesis is initiated by assuming the foveal region, a

circle 1 degree in radius around the fixation point, is reconstructed perfectly. Then,

moving outward, each subsequent pooling region is synthesized using the previous

partial synthesis result as the seed for the texture synthesis process. The lowest-

spatial frequency statistics are synthesized first and then higher spatial frequency

information is added in a coarse-to-fine manner. The process iterates a number of

times over the whole image. After each iteration, the foveal region and the border

between the image and its background are re-imposed on the output. An example of

a scene and its corresponding mongrel image is shown in Figure B-3.

Procedure for gaze-contingent task

The twenty scene-perception questions were presented in blocks of 40 images per

block. At the start of each block, participants were given the question (for example,

"Is this London?") and were shown two example images (for example, a picture

of London and a typical distractor scene). Each trial was preceded by a central

fixation cross, and the image appeared only after the participant was fixating the

cross. Participants were required to maintain fixation on the center of the image;

if fixation moved more than 1 degree from the center, the image was replaced with

a gray mask. Image presentation time was not limited, but participants were told

to respond as soon as they knew the answer to the question, by pressing 1 ("yes")

or 2 ("no") on a keyboard. Each block took about 2 to 3 minutes to complete, and

participants were allowed breaks after each block.

Gaze position was tracked monocularly (right eye only) at 1000 Hz. Calibration

of the eyetracker was performed at the start of the experiment by having the subject

fixate 9 targets with a subsequent validation. The same calibration procedure was

performed occasionally during the experiment, which could be interrupted at any

time for re-calibration.
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Procedure for mongrel classification

Participants completed the mongrel classification task on their own computer, using

a web interface on the Amazon Mechanical Turk website. Participants were told that

the purpose of the study was to determine how well people could recognize images

"distorted by digital noise" and were shown examples of images with their correspond-

ing full-field mongrels. In each task, participants were given a single question (for

example, "Is this London?") and were shown mongrel versions of the 40 images which

had been used as stimuli for that question in the gaze-contingent experiment. Partic-

ipants were allowed to study each image for as long as they wished, and then clicked

one of two buttons to indicate "yes" or "no". Participants received feedback after each

response. Questions were randomly assigned to participants, and each participant

could complete as many as she wished (up to twenty).

3.1.2 Results

One participant in the gaze-contingent task reversed the response keys during one

block, so this block of data was dropped from analysis. Average accuracy in each

block was calculated for each subject in the gaze-contingent and mongrel classification

tasks. Average accuracy on each task is shown in Figure B-4. For the most part,

accuracy in the mongrel classification task is very similar to accuracy in the gaze-

contingent task: questions that are difficult to answer with mongrel images are also

difficult to answer in a single fixation on a scene. The main exception were the

tasks which asked observers to detect small, eccentric objects in the scenes: this task

seems to be consistently easier in real scenes than would be predicted by mongrel

performance. Bonferroni-corrected t-tests were used to compare gaze-contingent and

mongrel performance in each task; these differences were significant only for three

of the object-detection tasks: detecting a car (t(22) = 4.21, p < 0.05), detecting a

person (t(22) = 10.3, p < 0.01), and detecting a street sign (t(22) = 18.5, p < 0.01).

In addition to showing similar overall accuracy, responses to the individual images

in the mongrel and gaze-contingent versions of each task were highly correlated for
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most of the tasks. The correlations for each task are shown in Table A.2. For the

scene category, layout, and location tasks, responses to the individual images in the

gaze-contingent experiment were well predicted by responses to the mongrel images.

However, correlations were lower for the object-detection tasks.

3.2 Experiment 2

In this experiment, we investigate whether the statistical summary model of periph-

eral vision can predict performance on two commonly-investigated rapid-perception

tasks: a go/no-go animal detection task and a go/no-go vehicle detection task. Pre-

vious experiments have shown that both animal/non-animal and vehicle/non-vehicle

discrimination can be performed in the periphery without attention (Li et al., 2002).

3.2.1 Methods

Participants

24 participants were recruited from the Massachusetts Institute of Technology com-

munity to participate in the go/no-go task. All were in the 18 - 35 age range and

reported normal or corrected-to-normal vision. A second group of 24 participants

took part in the mongrel classification task on Amazon's Mechanical Turk service.

Demographic data was not collected on these participants. All of the individuals who

participated in the Mechanical Turk task were located in the United States and had

a good track record with the Mechanical Turk service (at least 100 HITs completed

with an acceptance rate of 95% or better). All participants gave informed consent

and were paid to take part in the experiment.

Design

In the go/no-go task, participants were asked to identify a target class ("animal"

or "vehicle") in rapidly-presented images. Target class was manipulated between-

participants. In the mongrel classification task, participants were asked to sort mon-
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grel versions of the go/no-go images into target and non-target ("animal"/"not-animal"

or "vehicle"/"not-vehicle", between-participants).

Materials

The go/no-go stimuli were a randomly selected subset of the images used by Li et al.

(2002). The target images for the animal-detection task were 240 scenes containing

animals (including mammals, birds, reptiles, fish, and insects). The target images for

the vehicle-detection task were 240 scenes containing vehicles (including cars, trains,

boats, planes, and hot-air balloons). The distractor set for each task included 120

images from the other target category, plus 120 scenes which contained neither vehi-

cles nor animals (which included images of plants, food, landscapes, and buildings).

During the go/no-go task, images were presented in grayscale at 384 by 256 pixels

(8.9 degrees by 6.0 degrees) on a 34 cm by 60 cm monitor, with participants seated

75 cm away in a dark room.

The mongrel classification stimuli were full-field mongrels generated from noise

using the algorithm described previously with a few variations. Instead of pooling

in square image regions, features were pooled and synthesized in elliptical regions

oriented along lines radiating out from the fixation center, with the longer (radial)

dimension equal to the width/height of the corresponding square pooling region.

Because the elliptical pooling regions were narrower than the square regions, the

angular overlap of regions was increased, and the radial overlap was decreased. The

image/background border was not enforced during synthesis, and therefore a much

larger number of iterations were used at each scale to achieve convergence. Mongrels

were synthesized to simulate fixation at either the image center or 11 degrees left or

right of center, to match the viewing conditions of the go/no-go task.

Procedure for go/no-go task

Participants were instructed to hold down the left mouse button throughout the

experiment. At the start of a trial, a central fixation cross appeared for 300 -/- 100

Ins, and was followed by an image presented for 20 ms. The image appeared either
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at the center of the screen or left or right of the fixation (center of the image at 11

degrees eccentricity); each position occurred equally often. If the image contained a

target (animal or vehicle), participants were to respond by releasing the left mouse

button as quickly as possible. Participants made no response to non-target images.

Participants were given 1000 ms to make their response.

Participants completed 10 blocks of 48 trials, with a break after each block. Each

block contained an equal number of target and non-target images, and an equal

number of images in each of the three presentation locations (left, center, and right).

Procedure for mongrel classification

Participants completed the task on their own computer, through the Amazon Me-

chanical Turk website. Participants were told that the purpose of the study was to

determine how well people could recognize images "distorted by digital noise" and

were shown examples of images with their corresponding mongrels. The experiment

consisted of 480 trials which exactly matched one the 24 sessions of the rapid per-

ception experiment. On each trial, participants were shown a mongrel version of an

image from the rapid perception task. Mongrel images were always presented in the

center of the screen, but had been synthesized to simulate the image's position in the

rapid perception task: left of, right of, or at fixation. Participants were allowed to

study each image for as long as they wished, and then responded with a key press

to indicate whether or not the mongrel corresponded to the target category for the

experimental session ("animal" or "vehicle"). Participants received feedback after each

response.

3.2.2 Results

Accuracy in the go/no-go task was averaged across subjects. For both target types,

accuracy for centrally-presented images was 94%, and accuracy for peripherally-

presented images was 74% for animal targets and 76% for vehicle targets. Performance

was considerably lower for the mongrel images: 85% and 85% correct for animal and
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vehicle detection, respectively, in mongrel images simulating central presentation, and

60% and 62% correct for mongrels simulating peripheral presentation.

Despite the overall lower performance in the mongrel classification task, responses

to individual images in each task were correlated. A comparison of the percentage of

"target" responses in each task is shown in Figure B-5. Mongrel images which were

more frequently classified as targets ("animal" or "vehicle") were more likely to be

detected in the go/no-go task, in both central and peripheral presentation.

3.3 Discussion

Performance on "mongrel" classification tasks predicts performance on a range of scene

perception tasks. This means that the information in the mongrels - a set of feature

statistics collected over local pooling regions - is sufficient for many scene perception

tasks, such as determining whether an scene is a residential or city street, whether a

road turns left or right, or whether or not a scene depicts an animal.

In addition to predicting performance on scene perception tasks, this mongrel

image approach has been shown to predict performance on other peripheral visual

tasks. Figure B-6 shows the results of previous experiments on crowding (Balas et

al., 2009) and visual search (Rosenholtz et al., 2012) overlaid on the results of the scene

perception tasks from Experiment 1. These tasks used a slightly different approach,

creating "mongrel" images for single patches of the peripheral visual field, instead

of simulating the entire image. However, this comparison shows that, across a wide

range of tasks, the feature statistics of the mongrel images predict what observers

will be able to see in their peripheral vision.

So why are scene tasks, such as recognizing an animal, generally easy in the

periphery, while other peripheral tasks such as spotting a letter in a visual search

display are generally difficult? The reason is that the summary statistic representation

in the periphery preserves the information needed for many scene tasks, but this

information is not sufficient for many visual search tasks. For example, consider the

search display shown in Figures B-7 and B-8. Figure B-7 shows a visual search display
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consisting of randomly-rotated Ls; the task is to find a single randomly-rotated T.

Also shown in Figures B-7 and B-8 are three mongrel images with the same statistics

as the search display. In one of these mongrels (the lower half of Figure B-7), the

T is clearly visible in its true location, but in the other two mongrels (Figure B-8),

there is an L in the T's location, and T-like symbols appear in other parts of the

display. This means that the statistics of these peripheral patches do not contain

enough information to discriminate between a patch of Ls with a T and a patch of Ls

with no T, so a search for a T among Ls in this type of display is a moderately difficult

task. People cannot spot a T in a peripheral patch - they will need to fixate quite

close to this target in order to see it and know it is present. (Note that the Ls nearest

the central fixation in each mongrel are reproduced quite faithfully - in the small

pooling regions near fixation, the statistical summary representation is sufficient to

make out individual letters, but this is not the case in the periphery.)

Although an observer looking at these mongrels might not know exactly where

the T had been in the original display, he could nevertheless answer many "scene

perception" questions about the original display just by looking at the mongrels.

From the mongrels, it's obvious that the original display was a regularly-spaced array

of white symbols on a black background, and that these symbols were randomly-

rotated Ls or something very similar. This type of scene summary or "gist" is very

well conveyed by the texture-like summary statistic representation, and this is true

regardless of whether the scene is a real-world scene or an artificial scene such as a

letter array.

Although mongrel images predict performance on a wide range of tasks, they

do not seem to predict performance on the object-detection tasks of Experiment

1, in which observers were asked detect a small, eccentric object in a larger scene.

Many of these tasks seem to be easier when fixating in a real image than would

be predicted by mongrel classification performance. One reason for this is that the

feature pooling in the mongrels is very likely to destroy the shape of an object - the

object features will still be present in the mongrel, but broken apart and rearranged.

These statistics may, in fact, contain enough information to say that the object was
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present in the original, but because the scrambled object doesn't look much like the

original object, people are unwilling to say the object was present. At the same

time, random conjunctions of other objects' features in a target-absent image can

sometimes produce something that looks very much like the target object. It may

be possible to show a better correspondence between mongrel and scene performance

by showing observers multiple mongrels per image, which gives a better sense of the

statistical nature of the mongrel output and makes it more obvious which features

signal true objects and which are accidental.

The fact that mongrel animal images can be distinguished from mongrel non-

animals does not mean that search for animal images among non-animal distractors

should be an easy pop-out search. And the same is true for other types of scene search

tasks - these results do not necessarily mean that a particular scene category or layout

would "pop-out" among scene distractors. When multiple images are presented in a

search display, features of two neighboring images may be pooled, masking the target

or creating illusory targets. The image borders and the spaces between images would

also be pooled with the image features, creating a new set of statistics which would

complicate target detection. These effects can be seen in Figure B-9, which shows a

"mongrel" version of a scene search display.

One concern with the mongrel approach is that the mongrel images could contain

too much information. At the extreme, if the "mongrel" images were simply identical

to the original images, they should predict performance on all of the easy scene tasks.

However, if this were true, we would expect performance on the mongrel images to

be much higher than fixating performance on the harder scene tasks, such as the

tasks that required people to detect small objects in the scene or to identify the city,

and this was not the case in our experiment. Even so, the mongrels may contain

more information than needed to do the easier scene tasks, such as identifying scene

category or layout: previous work has shown that this information can be extracted

from a much coarser representation of the scene (Oliva & Schyns, 1997; Ross & Oliva,

2010). However, the goal of these experiments is not just to find the minimum set

of features which can predict performance on scene tasks, but rather to understand

40



the representation that the visual system has of an image in the periphery. The

summary statistic representation described here can predict performance on a range

of peripheral visual tasks, including crowding and visual search, while a coarser model

might be sufficient for some scene perception but would not predict performance on

these other tasks.

The feature statistics which are represented in the mongrel images may or may not

be the feature statistics which are represented in the human visual system. There is

some evidence that the visual system does, in fact, compute these statistics: Freeman

and Simoncelli (2011) have shown that, with an appropriate pooling scheme, mongrel

images can be synthesized that are indistinguishable from the original, and they use

this approach to argue that this set of statistics forms the representation of images in

an early level of the visual system (specifically, in V2). However, other feature sets

have been proposed. Crouzet and Serre (2011) have shown that the HMAX model,

which was designed to simulate the early stages of the primate visual system (see

Serre, Oliva, and Poggio (2007) for details), predicts human performance on a rapid

animal/non-animal categorization as well as or better than a model based on the

Portilla and Simoncelli (2000) texture statistics. However, these two models have not

been compared on a wide range of tasks, so further work will be needed to determine

what feature set best matches human perception.

These scene perception results, in combination with previous work, provide strong

support for a summary statistic representation in peripheral vision. The peripheral

visual system computes a rich set of summary statistics over some feature space,

within pooling regions that distributed across an visual field. This representation is

sufficient to convey the "gist" of the scene, including the scene category, spatial layout,

and some location information, but it is not sufficient to perform tasks that require

fine-grained localization, like discriminating letters in a crowded display.
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Chapter 4

The role of peripheral vision in

reorienting in scenes

When navigating in the real world, our focal attention is often occupied by other

tasks such as looking at a person or object in our surroundings, reading a sign, or

texting on a cellphone. Even when we don't put effort into interpreting the layout of

our surroundings, we have an effortless sense of where we are in space, where we've

been, and where we can go from our present location. Because the fovea only covers a

small part of the visual field, most of the scene around an observer is being processed

by peripheral vision. But how important is peripheral vision for understanding and

reorienting in space?

Reorientation is thought to be guided primarily by the shape of the surrounding

space: people extract the shape of their surroundings from boundary walls and locate

themselves within that shape. It's reasonable to think that peripheral vision would

play a role in extracting shape information, since much of the boundary surface would

be in the periphery, and scene layout information seems to be very easily visible in the

periphery. However, it is not clear that peripheral vision is necessary for extracting

shape information: people may be able to learn the layout of their surroundings just

as easily by exploring the scene with central vision.

Work in virtual reality and visual prosthetics suggests that navigation and re-

orientation tasks become more difficult with a narrower field of view. van Rheede,
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Kennard, and Hicks (2010) compared performance on a virtual navigation task under

two viewing conditions: observers could either view the entire screen or a patch just

around their fixation point. The image was downsampled so that the resolution was

matched in both cases (and in both cases it was very low, only 30 x 30 samples, to

simulate the experience of wearing a visual prosthesis). Wayfinding performance was

significantly better with the wider field of view: participants navigated more quickly

and chose a more direct path.

In a real-world navigation task, (Rousek & Hallbeck, 2011) asked subjects to

find their way around a hospital while wearing goggles that simulated various visual

impairments. One of their findings was that people with limited peripheral vision

(simulated glaucoma) were significantly worse at navigating the hospital than sub-

jects whose simulated disorders spared peripheral vision. When peripheral vision was

impaired, people had more trouble avoiding obstacles in their path, but they also

seemed to make more wayfinding errors: they lost their way or mistook their loca-

tion for another location in the hospital. Similarly, studies which asked people to

navigate while wearing blinders have shown that real-world navigation performance

is impaired when peripheral vision is blocked, although these tasks tend to look more

at obstacle avoidance than at reorientation or wayfinding (Toet, Jansen, & Delleman,

2007, 2008).

Although previous studies have investigated the role of reduced peripheral vision,

no previous work has directly compared the role of the central and peripheral visual

fields in a reorientation task. In this study, we ask people to reorient themselves within

an immersive virtual environment that provides nearly the full field of view that is

available in the real world. We investigate how well people can localize themselves

in a virtual environment when they have information only from their central visual

field or only from their peripheral visual field. In addition, we compare reorientation

performance in real-world scenes, where both landmarks and spatial geometry may

be used for reorientation, and in artificial environments where people must reorient

by spatial geometry alone, and we investigate whether central and peripheral visual

information play different roles in these two types of reorientation tasks.
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4.1 Methods

4.1.1 Participants

24 participants (age 18 - 40) were recruited from the Max Planck Institute Tiibingen

community. All reported normal or corrected-to-normal vision. Participants gave

informed consent and were paid for their participation.

4.1.2 Design

The experiment consisted of 45 trials, which included 9 artificial scenes interleaved

with 36 real-world scenes. Each trial appeared in one of three training conditions: full

view, central vision only, or peripheral vision only. Trials cycled between the three

conditions in that order.

4.1.3 Materials and apparatus

Artificial scenes were created in Blender, and consisted of two room shapes (kite-

shaped or trapezoidal) defined by three different types of structures (connected walls,

free-standing walls, or pillars). Examples of each of these room types are shown in

Figure B-10. In each artificial scene, spherical panoramic images were rendered at the

test location (which was always the center of the room) and training locations (vari-

ous corners of the rooms). Stimuli for the real-world scene trials were collected from

Google Streetivew. These photos had been taken from a bicycle-mounted camera

about 1.7 meters off the ground. Training and test views were selected from nearby

locations (median 17 meters apart; range 10 to 63 meters). The panoramic images

used as stimuli in the experiment subtended the entire visual field (360 degrees hori-

zontally and 180 degrees vertically) and were saved in equirectangular projection at

a resolution of 8192 by 4096 pixels and 24-bit color.

During the expeirment, mages were projected onto a wide-area, half-cylindrical

screen. Participants were seated at the center of the screen and head position was

fixed with a chin rest. In this position, the viewing screen subtended 220 degrees
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horizontally and about 63 degrees vertically (23 degrees above fixation and about 40

degrees below). Participants used a game controller to make their responses and to

manipulate the view shown on the screen: moving the analog stick on the controller

rotated the view, as though the observer were turning around in the scene. A camera

mounted below the chin rest was used to monitor eye position, and a tin clicker was

used to signal that the participant had broken fixation.

4.1.4 Procedure

Three practice trials preceded the experiment, one practice trial for each training

condition. Each trial consisted of a training and test phase. In the training phase, a

spherical panoramic image was projected onto the screen, and participants were given

40 seconds to explore the scene by using the analog stick on the game controller to

change the view. In all training conditions, subjects were asked to maintain fixation

on a cross projected into the center of their field of view. In the full-view training

condition, the scene was unobstructed. In the central-only training condition, subjects

viewed the scene through a central, circular window of radius 20 degrees while the

rest of the image was masked. In the peripheral-only training condition, this was

reversed and a circular mask of radius 20 degrees obscured the central portion of the

scene.

Participants could terminate the training phase by pressing a button on the game

controller; after 40 seconds this phase terminated automatically. The image was

replaced by noise for 1 second, and then the participant was shown a second panoramic

photo, taken from a location near the training image's location. A cross was projected

into the center of the participant's field of view, and the participant was asked to

rotate the view to place the cross on the ground at the point were they had apparently

been standing during the training phase. During the test phase, participants were

permitted to move their eyes, and there was no time limit on responses. In both

phases, view rotation was limited to 12 degrees per second to counteract motion

sickness.
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4.2 Results

Trials were dropped if the participant pressed the response key too quickly (1% of

trials) or made a saccade during the trial (9% of trials). Dropping saccades eliminated

more than 90% of the peripheral-only trials for two subjects, so these two subjects

were dropped entirely from the analysis.

Ground truth correct answers had to be determined manually for the real-world

images from Google Streetview. This was done by annotating a set of 25 - 50 matching

point pairs in the two images and using RANSAC to find the subset of points with the

best alignment and identify the fundamental matrix relating the two views (Hartley

& Zisserman, 2004). The fundamental matrix can be decomposed to find the vector

from the center of the test panorama to the center of the training panorama (the

location of the camera which took the training view image). Assuming that the

ground plane is flat, the vector to the point on the ground below the training camera

can be determined from a single pair of matched ground points in the two views. We

performed this calculation with multiple pairs of ground points in each image and

took the median result as the ground truth location of the point on the ground below

the training camera.

Reaction times in the test phase were 28 seconds in full-view training condition, 29

seconds in the central-only condition, and 30 seconds in the peripheral-only condition.

These differences were not significant (X 2 (2) = 3.08, p = 0.21). However, there was

a significant difference in study time across the three conditions (X 2 (2) = 9.75, p <

0.01). This difference is only significant in pairwise comparisons between the central-

only and peripheral-only condition: people spent slightly more time studying the

scene when they explored with their central vision only (average 36 seconds) than

when they had peripheral vision only (average 33 seconds). People were more likely

to quit the learning phase before it timed out in the full-view and peripheral-only

conditions (48% and 53% of trials) than in the central-only condition (41% of trials),

although these differences are not significant (X2 (2) = 5.63, p = 0.06).
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4.2.1 Reorientation performance

One measure of the accuracy on this task is the angular error between the participant's

response and the correct location. The participant's response and the correct response

are treated as vectors on a unit sphere, and the angular error is the angle between

these vectors. This measure of accuracy is shown in Figure B-11. Overall, angular

error was much lower when people reoriented in real-world scenes than when they

reoriented in artificial scenes, where the only cue for reorientation was the shape of

the room. Angular error was 46 degrees, 54 degrees, and 35 degrees for the full view,

central-only, and peripheral-only learning conditions in artificial scenes. In the real-

world scenes, angular error was 21 degrees, 23 degrees, and 28 degrees for the same

conditions.

A 2 (scene type) x 3 (training condition) repeated measures ANOVA showed a

significant main effect of scene type (F(1,42) = 28.0, p < 0.01), but no main effect

of training condition (F(2,42) - 1.4, p = 0.26). However, there was a significant

interaction between scene type and training condition (F(2,42) = 7.1, p < 0.01).

Bonferonni-corrected t-tests were used to compare training conditions within each

scene type. These comparisons showed a significant difference between the central-

only training condition and the peripheral-only training condition in the artificial

scenes (t(21) = 2.9, p < 0.05). No other comparisons were significant. In the arti-

ficial scenes, people were significantly more accurate in reorienting themselves after

exploring the scene with peripheral vision only than when they had explored the scene

with central vision only.

In addition to looking at the distance between the participant's response and the

correct location, we ran another analysis in which we scored each response as correct

or incorrect. In this analysis, we only looked at whether the observer had gotten the

direction to the training location roughly correct, and we ignored their estimate of

the distance to the training location. Responses were marked correct if they were

within 18 degrees horizontally of the true location; all other responses were marked

incorrect. (Other thresholds were tested, but they gave the same results and are not
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reported here.) Figure B-10 shows some example scenes with observers' responses and

the threshold for correct responses, while Figure B-12 shows the proportion of correct

responses in artificial and real-world scenes. In the artificial scenes, people were able

to reorient themselves correctly 48% of the time when they had studied the scene

with their full visual field, 28% of the time when they had studied with central vision

only, and 51% of the time when they had studied the scene with peripheral vision

only. People were more accurate in real-world scenes, reorienting correctly 75%, 67%,

and 69% of the time in the same learning conditions.

A 2 (scene type) x 3 (training condition) repeated measures ANOVA showed a

significant main effect of scene type (F(1,42) - 29.6, p < 0.01), and a significant main

effect of training condition (F(2,42) = 5.4, p < 0.01). There was also a significant

interaction between scene type and training condition (F(2,42) = 3.3, p < 0.05).

Bonferonni-corrected t-tests were used to compare training conditions within each

scene type. As before, these comparisons showed a significant difference between

the central-only training condition and the peripheral-only training condition in the

artificial scenes (t(21) - 2.5, p < 0.05). No other comparisons were significant. In

artificial scenes, where shape is the only cue for reorientation, people are better at

reorienting themselves after exploring the scene with their peripheral vision only than

when they explore with central vision only.

4.2.2 Reorientation in artificial scenes

We also investigated reorientation performance in the three types of artificial spaces,

which were defined by pillars, unconnected walls, or connected walls. This analysis

was done within images, because it had not been possible to counterbalance the

artificial scene types with training condition for each subject. The angular error

in each condition across the three types of artificial scenes are show in Figure B-

13. A 3 x 3 ANOVA looking at the angular error across room type and training

condition showed a significant main effect of training condition (F(2,12) = 11.9, p

< 0.01) but no main effect of room type (F(2,12) = 0.67, p = 0.55). There was a

significant interaction between condition and room type (F(2,12) - 4.7, p < 0.05).
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Bonferroni-corrected pairwise comparisons between the individual room types within

each condition were not significant, although it does appear that the interaction may

be due to a difference in the peripheral-only condition: observers may have been

better at reorienting in the rooms with connected walls than in other scene types.

The proportion correct in each room type by condition is shown in Figure B-14.

A 3x3 ANOVA looking at the proportion of correct responses across room type and

training condition showed a significant main effect of training condition (F(2,12) =

16, p < 0.01) but no main effect of room type (F(2,12) = 0.86, p = 0.47). There was

a significant interaction between condition and room type (F(2,12) = 6, p < 0.01).

Again, the Bonferroni-corrected pairwise comparisons between the individual room

types within each condition were not significant, but it appears that observers were

more accurate in the connected-wall rooms when reorienting with peripheral vision

only, while accuracy in the full view and central-only conditions were similar across

room types.

4.3 Discussion

People were better at reorienting in artificial scenes that they had explored with

peripheral vision only than they were at reorienting in artificial scenes that they had

explored with central vision only. When people are asked to locate themselves within

an impoverished environment, where the shape of the surrounding walls provides the

only cue to location, they seem to be better at extracting that shape information with

peripheral vision than with central vision.

However, there was no difference in reorientation performance when people studied

real-world scenes with only their peripheral vision, only central vision, or both. This

indicates that peripheral visual information is important for reorientation by spatial

geometry alone, but it isn't necessary when other, non-geometric cues are available. In

the real-world scenes, observers could orient themselves using landmark objects within

the space and the surface features of the boundaries (a distinctive set of windows on

one wall of a building, for example), in addition to the spatial geometry of the scene.
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Central vision alone seems to be sufficient to extract and use these non-geometric

cues.

It's not surprising that people can extract some scene layout information from

peripheral vision alone. As discussed previously, scene layout is readily extracted from

a single fixation on a scene, and it is easy to see in a crowded "mongrel" representation

of a scene. In fact, coarse layout information can be extracted from orientation

information even when orientations are pooled over quite a large portion of the scene,

for example into four quadrants around the image center (Ross & Oliva, 2010). So

scene layout information is not likely to be lost to crowding, and it should be possible

to determine the spatial geometry of a scene from peripheral vision alone.

More surprising is the fact that it is actually easier to reorient by spatial geometry

with only peripheral visual information than it is with only central visual information.

However, it is probably easier for the brain to extract the shape of a surrounding space

when a larger portion of the space is visible in a single view. In the peripheral-only

condition, observers could see a nearly 180-degree view of the space. Even though

the central 40 degrees of the scene were obscured, this view would allow people to see

two or three of the walls of a room simultaneously, which probably made easier to

work out their relative positions. In the central-only condition, observers could only

see a small part of the room at one time and had to figure out the relative positions of

structures by moving their gaze and trying to relate the two views. There is probably

some noise involved in this process, particularly in this virtual reality task where

people could not use normal proprioceptive cues from eye and head movement to

determine the distance between two views. This would make it much more difficult

to work out the shape of the surrounding space, resulting in more errors when people

are asked to use that shape information to reorient themselves.

However, in natural scenes, people do not orient by shape alone: they have access

to many other cues, including landmark objects within the space and distinctive fea-

tures on the walls of the space. When these cues are present, people can orient just as

easily with central vision alone as with their full visual field or with peripheral vision

only. It's possible that people use different strategies in these environments: reorient-
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ing by spatial geometry when only peripheral vision is available, and by landmarks

when only central vision is available. Or people might adopt a similar strategy in

both viewing conditions, reorienting by non-shape cues such as a distinctive pattern

on the boundary walls, or a large landmark object. Further experiments would be

needed to distinguish between these possibilities.

Finally, it is interesting to note that we found some difference in reorientation

accuracy in the three different artificial scene types. Young children are known to

perform differently in these different types of spaces: they are better at reorienting

in rooms with connected or free-standing walls than in rooms with a shape defined

by pillars (Gouteux & Spelke, 2001). Adults typically reorient well in all three room

types. Gouteux and Spelke (2001) take this as evidence that young children navigate

by room shape as defined by boundary walls, and the ability to navigate by landmark

objects such as pillars develops later in life. However, this study shows that when

the task is made sufficiently difficult, even adults reorient more easily in a shape

defined by connected walls than in a shape defined by unconnected landmark objects.

Previous work with adults and children has used real-world orientation tasks which

allow the use of many cues to determine the shape of the space, including optic flow

and self-movement in the space, while this task required observers to reorient using

visual information only from a single position in the space. The fact that we find

reorientation differences in adults suggests that it may actually be easier, visually,

to determine the shape of a space defined by connected walls than a shape defined

by landmarks such as pillar. Children's difficulty in reorienting by landmarks may

not due to an innate navigational system which can only use boundary information;

rather, they may simply have more trouble integrating the various visual and motion

cues that adults use to understand the shape of their environment.
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Chapter 5

Conclusion

Scenes and objects pose many of the same problems for the human visual system:

scenes, like objects, are three-dimensional entities that we must be able to recognize

from many different two-dimensional views. In order to navigate through the world,

we must be able to extract and represent the three-dimensional shapes of the spaces

around us. Peripheral vision plays an important role in this process, because scenes,

unlike objects, surround the viewer and thus are mainly viewed in the periphery.

The visual system can extract a great deal of information about a scene from a

crowded, peripheral visual representation. A summary statistic representation of the

scene, which captures the distribution of features but not their precise locations, is

sufficient to determine the basic-level scene category and the spatial layout of the

scene. It also carries enough detail to allow an observer to guess the geographic

location of a scene and detect some larger objects in the scene.

The spatial geometry of a scene, as defined by its boundaries, plays a particularly

important role in scene representation. Just as the canonical view of an object is the

one that shows the object's surfaces as well as possible to give a sense of its shape,

the canonical view of a scene seems to be the one that shows as much of the area as

possible and gives a sense of the spatial geometry. Representing the spatial layout

of the scene in a single canonical view may be particularly important because this

layout information is what people use to orient themselves within a space.

The spatial geometry of a scene is easily extracted from peripheral vision because
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it is defined over large boundary surfaces, such as walls, buildings, and ground Ex-

tracting layout information from these boundary surfaces is mostly a matter of texture

segementation: determining where two walls meet or finding the edge between the

walls and the floor. The texture-like representation in peripheral vision proposed by

the summary statistic model is well-suited for this purpose. The fact that spatial

geometry is easily processed in peripheral vision may be why it is so important for

navigation: this information is available at all times in the periphery, even when

central vision is focused on individual objects in a scene. And conversely, landmark

objects and surface features may be relatively less useful for navigation because their

precise locations and configuration details are more likely to be lost to crowding in

peripheral vision.

Instead of being a disadvantage, a crowded, texture-like representation in periph-

eral vision may actually be a beneficial adaptation for navigation. There is a limit on

how much information the visual system can process with reasonable speed: the brain

can't afford to process the entire visual field with the same high fidelity as is avail-

able in the fovea. One option for dealing with that bottleneck might be to process a

smaller field of view with high resolution; the other option is to process a wide-angle

view with lower resolution. A wide-angle field of view is extremely useful for repre-

senting the three-dimensional shape of an environment: it's easier to understand the

relative positions of two structures when both can be seen at once in a single view.

So rather than reduce the field of view, the human visual system has opted for a com-

pressed, summary statistic representation in peripheral vision. This representation

doesn't preserve the exact locations of features in the periphery, but it captures the

scene layout information that is necessary for understanding the three-dimensional

geometry of a space.
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Tables
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Table A.1: Mean AUC values for each map in predicting observers' choice of the
"'best"' view of a scene

0.80 Inter-observer agreement
0.71 Area map
0.61 Saliency map
0.59 Navigational map
0.54 Stability map
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Table A.2: Correlations between "'yes"' resposnes to mongrels and "'yes"' responses
to the same images in the gaze-contingent task

0.47 bike
0.73 car
0.58 fire hydrant
0.34 person
0.41 sign
0.86 downtown street
0.97 parking lot
0.95 plaza
0.94 residential street
0.96 shopping street
0.93 4-way intersection
0.68 left turn
0.73 right turn
0.86 no turn
0.95 T intersection
0.69 Europe
0.76 London
0.67 Los Angeles
0.75 NYC
0.75 Paris
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Appendix B

Figures
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Figure B-1: A panoramic scene with an outline around the boundary wall (above)
and the spatial geometry or "isovist" computed from the scene boundaries (below).
The arrow represents the same direction in each image.
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Figure B-2: ROC curves for each model in predicting the canonical views chosen by
human observers.
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Figure B-3: Example of a stimuli scene (above) and its corresponding mongrel (be-

low).
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Figure B-4: Comparison of responses to mongrel images and while fixating real scenes,
for various scene perception tasks.
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Figure B-5: Comparison of responses to mongrel images and responses in the go/no-go

task.
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Figure B-6: Mongrel vs. image results from the scene perception tasks, with crowding
results from Balas, et al., 2009 and visual search results from Rosenholtz, et al., 2012.
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Figure B-7: Example of a visual search display (above) and its corresponding mongrel

(below). Fixation is assumed to be in the center of the display.
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Figure B-8: Two additional mongrels of the same visual search display. Fixation is

assumed to be in the center of the display.
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Figure B-9: Example of a scene search display (above) and its corresponding mongrel

(below). The mongrel is synthesized with fixation in the center of the search display.
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Training condition: X Full view Central vision only X Peripheral vision only X Correct (training view location)

Figure B-10: Examples of the artificial environments used in the reorientation task:
a trapezoidal environment with the shape defined by pillars (top), unconnected walls
(middle), or connected walls (bottom). Xs represent observers' responses, and the
vertical lines represent an 18 degree threshold around the correct response (green X).
An overhead diagram of each environment is shown on the right.
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