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ABSTRACT

The development of synthetic vectors enabling efficient intracellular delivery
of macromolecular therapeutics such as nucleic acids and proteins could potentially
catalyze the clinical translation of many gene and protein-based therapies. However,
progress has been hindered by a lack of safe and effective materials and by
insufficient insight into the relationship between key delivery properties and
efficacy.

Accordingly, working with a promising class of cationic, degradable gene
delivery vectors, poly(-amino ester)s (PBAEs), we develop novel, hydrophobic
PBAE terpolymers that display dramatically increased gene delivery potency and
nanoparticle stability. We then develop a technique based on size-exclusion
chromatography that enables the isolation of well-defined, monodisperse PBAE
polymer fractions with greater transfection activities than the starting polymer. This
technique also allows us to elucidate the dependence of gene delivery properties on
polymer molecular weight (MW). Subsequently, we examine the cellular uptake and
trafficking mechanisms of PBAE/DNA polyplexes, and demonstrate that polyplex
internalization and transfection depend on a key endo/lysosomal cholesterol
transport protein, Niemann-Pick C1 (Npcl).

Finally, working with cationic lipids termed lipidoids, which have shown
exceptional potency for the delivery of RNAi therapeutics, we develop these
materials for intracellular delivery of proteins using a simple and novel approach in
which nucleic acids serve as a handle for protein encapsulation and delivery.
Preliminary in vivo experiments suggest the potential application of this approach
toward lipidoid-mediated delivery of protein-based vaccines.

Taken together, the work presented here advances the development of
polymer and lipid materials for the safe and effective intracellular delivery of DNA
and protein therapeutics.

Thesis Supervisors: Robert Langer and Daniel G. Anderson
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1 INTRODUCTION

The development of synthetic vectors enabling efficient intracellular delivery

of macromolecular therapeutics such as nucleic acids and proteins could potentially

catalyze the clinical translation of many gene and protein-based therapies. However,

progress has been hindered by a lack of safe and effective materials and by

insufficient insight into the relationship between key delivery properties and

efficacy. For instance, the biodegradable, cationic polymers known as poly(p-

aminoester)s (PBAEs) have shown tremendous potential as non-viral gene delivery

carriers in numerous studies, yet several key challenges and questions remain

unaddressed, such as poor stability of polymer/DNA nanoparticles under

physiological conditions, batch-to-batch variability in transfection performance, and

the lack of mechanistic knowledge of cellular uptake and trafficking pathways.

Similarly, lipid-based nanoparticles (LNPs) incorporating cationic lipid materials

termed lipidoids have demonstrated excellent in vitro and in vivo efficacy for

delivery of oligonucleotides such as short interfering RNA (siRNA), but their

application toward intracellular delivery of protein-based therapeutics is impeded

by the wide range of physicochemical properties characterizing these diverse

macromolecules.

Accordingly, the overall objective of this thesis is to develop polymer and

lipid-based materials for safe, effective intracellular delivery of gene and protein

therapeutics, primarily through the following specific aims:
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(1) Development of novel, degradable PBAE polymers with enhanced gene

delivery potency and nanoparticle aggregation resistance

(2) Systematic investigation into the gene delivery properties of PBAE polymers,

particular with respect to the effects of polymer hydrophobicity and

molecular weight, and with respect to the mechanisms employed for cellular

internalization and trafficking

(3) Development of lipid-based nanoparticles for efficient intracellular delivery

of proteins by way of oligonucleotide conjugation

In light of these aims, Chapter 2 of this thesis offers a broad survey outlining

the current clinical prospects for gene therapy, the limitations of viral vectors, the

barriers to non-viral delivery, and the most commonly studied synthetic gene

carriers. It also details the development of poly(P-amino ester)s as gene delivery

materials and presents some of the remaining unresolved challenges and questions

for these polymers. Chapter 3 describes the development of novel, degradable PBAE

terpolymers demonstrating significantly improved gene delivery potency and

nanoparticle stability, and Chapter 4 explores the potential of these polymers for

gene transfection of clinically relevant cell types as well as for in vivo gene delivery.

Chapter 5 details a systematic study of the effect of PBAE molecular weight on gene

delivery properties, the results of which elucidate a potential cause of PBAE batch-

to-batch variability. Chapter 6 then reveals new mechanistic insights into the

dependence of PBAE/DNA polyplex internalization and transfection on a key

cholesterol transport protein, Niemann-Pick C1 (Npc1). Subsequently, Chapter 7

describes a simple and novel approach for achieving efficient intracellular protein
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delivery with lipid-based nanoparticles via oligonucleotide conjugation. Finally,

Chapter 8 provides a conclusion that summarizes the major findings and

contributions of this thesis and discusses the future outlook for continued

development of these materials.
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2 BACKGROUND

2.1 MOTIVATION FOR GENE THERAPY

In a broad sense, gene therapy can be defined as the intentional modulation

of gene expression within cells to prevent or treat a pathological process[l'. More

narrowly, this modulation of gene expression is accomplished through the

introduction of exogenous nucleic acids, such as DNA, messenger RNA (mRNA),

small interfering RNA (siRNA), microRNA, or antisense oligonucleotides. In contrast

to many small molecule or protein-based drugs, a singular aspect of DNA

therapeutics is that for many diseases, especially monogenic disorders defined by

inheritance of one mutated gene, the cure - a nucleic acid representing a functional

copy of the gene - is plainly manifest. However, because most cells are impermeable

to these large, negatively charged macromolecules, a carrier or vector is typically

required to mediate effective intracellular delivery.

This fundamental engineering challenge, which is in equal measures both

exciting and exasperating, largely explains why within the U.S., gene therapy

remains a strictly experimental approach, with no FDA-approved gene therapeutics

yet on the market despite nearly 2,000 clinical trials of gene therapy worldwide

since 1989 (Figure 2.1). Nevertheless, recent clinical progress, including the

approval of the first gene therapeutic for use in Europe, has marked a resurgence of

optimism for a field burdened by a tumultuous history[21.
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Figure 2.1 Clinical trials of gene therapy approved by year
1,903 clinical trials of gene therapy have been approved worldwide since 1989.
Adapted from Ginn et al.[31

Over the past two decades, gene therapy has been investigated clinically for

the treatment or prevention of a wide range of diseasesl31 (Figure 2.2). Cancer-

related diseases comprise nearly two-thirds of the indications addressed by clinical

trials thus far. Gene therapies for cancer treatment generally adhere to one of the

following broad strategies: mutation compensation, immunopotentiation, suicide

gene therapy, oncolytic virotherapy, and radio- or chemo-sensitization[ 4-51.

Controversially, two cancer gene therapeutics have already been approved for use

in China, even though similar versions have failed to pass clinical development in

the U.S.: Gendicine, a modified adenovirus encoding the human p53 gene, and

H101/Oncorine, a recombinant oncolytic adenovirus targeting p53-deficient cancer

cells[2,61.
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Figure 2.2 Indications addressed by gene therapy clinical trials worldwide
since 1989
Adapted from Ginn et al.[31

Within the U.S., Allovectin-7, a locally administered formulation consisting of

a DNA plasmid encoding two immunotherapeutic genes and a cationic lipid delivery

reagent, is currently undergoing a Phase III clinical study for treatment of advanced

metastatic melanoma[71 (ClinicalTrials.gov ID: NCT00395070). Also undergoing a

Phase III clinical trial is ProstAtak, which consists of an adenoviral vector encoding

the herpes thymidine kinase gene, for suicide gene therapy of prostate cancer in

conjunction with a prodrug and radiation therapy (ClinicalTrials.gov ID:

NCT01436968).
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Despite the enormous potential of gene therapy to address monogenic

diseases, this class of disorders represents only -9% of gene therapy clinical trials

to date (Figure 2.2), which include some major successes along with some tragic

failures. One of the earliest human trials of gene therapy in the early 1990s involved

the retroviral transfer of adenosine deaminase (ADA) into the T cells of two children

with ADA-associated severe combined immunodeficiency disorder (ADA-SCID)[8]. In

2000, the first gene therapy cure was reported in children with X-linked SCID who

experienced dramatic clinical improvement following delivery of interleukin-2

receptor gamma chain with a murine retroviral vector[91. Unfortunately, the trial's

success was marred two years later when several of these young patients developed

leukemia resulting in one death[10' 111. Just a few years earlier, the gene therapy field

had suffered its first major setback with the death of a Jesse Gelsinger, an 18-year-

old clinical trial patient who experienced a severe immune response after receiving

adenoviral gene therapy for a mild form of ornithine transcarbamylase (OTC)

deficiency[ 21. On the basis of preclinical studies, cystic fibrosis, a severe and fatal

lung disease caused by mutations in the CFTR gene, appeared to be a promising

early candidate for gene therapy, but clinical trials in humans have so far shown a

disappointing lack of efficacy[12 1.

Nevertheless, one recent triumph has been the approval of Glybera in Europe

for the treatment of lipoprotein lipase (LPL) deficiency[131. This orphan metabolic

disease results from mutation of the LPL gene and is characterized by elevated

levels of blood plasma triglycerides and debilitating bouts of pancreatitis[141. When

administered as a series of intramuscular injections, Glybera, an adeno-associated
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viral (AAV) vector encoding an LPL gene construct, has shown efficacy in reducing

plasma triglycerides and rates of pancreatitis [111.

Cardiovascular diseases are the targets of approximately 8% of clinical gene

therapy studies to date, but clinical trial results have so far been marked by low

gene transfer efficacy[161. A promising exception may be Mydicar, an AAV vector

encoding SERCA2a (sarcoplasmic reticulum Ca+2-ATPase), currently under Phase IlIb

study for congestive heart failure (ClinicalTrials.gov ID: NCT01643330). In a Phase

Ila trial, patients treated with the highest dose of Mydicar experienced significant

reduction of major cardiovascular events over a 12-month period compared with

those receiving placebo[' 71.

Infectious diseases comprise another 8% of indications that have been

addressed for clinical gene therapy trials. One interesting example under Phase I/II

study is a cell-based therapy for HIV/AIDS termed SB-728-T, which consists of

autologous CD4+ T cells genetically modified with a zinc finger nuclease to resist

HIV infection (ClinicalTrials.gov ID: NCT00842634).

Neurological diseases comprise a relatively small proportion of targets of

active gene therapy trials. In a Phase II study, patients with Parkinson's disease

showed some improvement in motor function following subthalmic infusion of

AAV2-GAD, an adeno-associated viral vector encoding glutamic acid decarboxylase

(GAD)[ 181, yet its clinical development is in doubt following the bankruptcy of the

trial's corporate sponsor. However, another gene therapeutic for Parkinson's

disease, an AAV vector encoding neurturin, is currently undergoing Phase I/II

studies[191.
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With respect to ocular diseases, recent early-phase clinical trials have raised

the prospects for treatment of some forms of inherited blindness, such as Leber's

congenital amaurosis (LCA)[ 201. In a pair of landmark studies, some patients with

LCA caused by mutations in the gene encoding an essential retinal pigment

epithelial protein (RPE65) experienced marked improvements in vision following

local injection of AAV vectors delivering the RPE65 gene[21t 221. A follow-up study in

three patients showed efficacy after a second administration to the contralateral

eye[2 3I.

2.2 LIMITATIONS OF VIRAL VECTORS

As suggested above, the key challenge limiting clinical translation of gene

therapeutics is the lack of delivery vectors considered safe and effective. Many of the

aforementioned clinical trials have employed modified viruses such as retroviruses,

lentiviruses, adenoviruses, and adeno-associated viruses (AAVs) to deliver genes; in

fact, nearly 70% of gene therapy clinical trials to date have involved viral vectors[ 31

(Figure 2.3). Although they can be quite efficient and have advanced the field of gene

therapy in significant ways, several limitations have been associated with viral

vectors, as described below.

(1) Carcinogenesis: Retroviruses and lentiviruses in particular have been

associated with a risk of carcinogenesis[ 24 . The development of leukemia in

children receiving retroviral gene therapy for X-linked SCID has been

attributed to a combination of insertional mutagenesis caused by viral

genome integration, acquired somatic mutations[251, and transgene-specific
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effects[261. Although AAV vectors are generally considered safer due to a very

low probability of integration, and have become more widely used in recent

years, tumorigenesis has been observed in mice treated with this class of

vectors 271, and the long-term cancer risk is still unclear[13.

(2) Immune responses: Pre-existing immunity comprises a serious safety concern

for certain classes of viral vectors, especially adenoviruses[ 28 . The death of

Jesse Gelsinger within days of receiving adenoviral gene therapy was blamed

on a severe innate immune response characterized by dramatically elevated

levels of inflammatory cytokines[281. In contrast, AAVs have not been

associated with such severe immune responses, but pre-existing immunity to

many AAV serotypes in significant fractions of the human population can

greatly diminish their efficacy[2 9I. Furthermore, adaptive immune responses,

both humoral and cell-mediated, can prevent the possibility of repeat dosing

and result in the elimination of transduced cells[2 9 1.

(3) Broad tropism: Some viral serotypes show relatively narrow transduction

specificity, or tropism, for particular cells or tissues, but many others have

broad tropism[30 l. This feature may be undesirable if the transgene is

expressed in non-target tissues following systemic delivery.

(4) Limited DNA packaging capacity: AAVs have a DNA cargo capacity of <5 kb;

retroviruses, lentiviruses, and some adenoviruses have packaging capacities

of -8 kb, which may limit the potential for transduction of long

transgenes[311.
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(5) Difficulty of production: Depending on the viral vector, raising the necessary

numbers of vector particles can be challenging, requiring purification

procedures that may be difficult and costly to scale up[3 21.

Herpes simplex virus
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Lentivirus
3%

Adenoviru
Poxvirus 23%
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Adeno-associated
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Lpofection
6%

Naked/Plasmid DNA
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Figure 2.3 Vectors used in gene therapy clinical trials worldwide since 1989
Adapted from Ginn et al.[3]

Non-viral gene therapy has the potential to address many of these

limitations, particularly with respect to safety. For DNA-based therapeutics,

transgenes are often encoded on plasmids that are episomal and non-integrating,

reducing the risk of cancer due to insertional mutagenesis. Moreover, due to the

general lack of pre-existing immunity, synthetic vehicles tend to have comparably

lower immunogenicity and toxicity. These carriers also have the potential to deliver

larger genetic payloads and are typically easier to synthesize.

A number of non-viral gene delivery strategies have been developed so far.

These strategies include the injection of naked DNA alone or in combination with
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physical methods[33-391, such as gene gun, electroporation, hydrodynamic delivery,

sonoporation, magnetofection, and laser irradiation. Because these techniques are

generally less applicable to systemic gene delivery in humans, a panoply of synthetic

delivery vectors have also been developed including lipids and liposomes 40 411,

polymers (linear and branched polymers, dendrimers, and polysaccharides)[42-50 ,

polymersomes[51I, cell-penetrating peptides 5 2-s4 , and inorganic nanoparticles[551.

Traditionally, synthetic vectors have been plagued by low delivery efficiency

relative to viral vectors[451.Whereas viruses have been naturally selected to deliver

their genomes efficiently to mammalian cells, most synthetic vectors have not been

designed to mediate gene delivery past the multiple barriers that confront them,

which are detailed in the next section.

2.3 BARRIERS TO SYSTEMIC NON-VIRAL GENE DELIVERY

2.3.1 Extracellular barriers

For systemic delivery of DNA therapeutics, an initial barrier is the poor

chemical stability of nucleic acids due to the presence of endonucleases in

physiological fluids and the extracellular space. The half-life of plasmid DNA has

been estimated to be 10 min. following intravenous injection in mice[56 and 60 min.

following intratracheal instillation in mouse lungs[571. For this reason, entrapment of

the DNA within a nanoparticulate carrier is desirable in order to provide protection

from nuclease degradation, as well as to improve circulation time.

Polyplexes, for instance, are spherical or toroidal nanoparticulate complexes

formed from the condensation of plasmid DNA by cationic polymers 461. The collapse
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of DNA's expanded wormlike chain, representing a loss of entropy, is driven

primarily by entropic gain due to the release of counterions upon polymer-DNA

binding, which is favored by electrostatic interaction between the cationic polymer

and the anionic phosphate backbone[581. Similarly, mixtures of cationic lipids,

neutral lipids, and DNA are able to spontaneously assemble into lipoplexes or

liposomes characterized by DNA entrapped within lamellar or inverted hexagonal

arrangements of lipid bilayers[91. An excess of cationic polymer or lipid promotes

enhanced DNA binding and the formation of stable complexes with positively

charged surfaces; however, at high salt concentrations, electrostatic repulsion

between the positively charged complexes is reduced, making them prone to

colloidal instability and aggregation within physiological fluids[60l. In particular,

aggregation of nanoparticles within the blood, either via colloidal instability or via

interaction with blood components such as serum proteins and erythrocytes, can

inhibit localization within the desired tissues, induce rapid clearance by circulating

macrophages, and even cause embolism within lung capillaries[ 421.

Selective accumulation of the gene therapeutic at the cell or tissue of interest

is another major challenge[611. Passive targeting can be achieved through

modulation of nanoparticle size, charge, shape, or surface chemistry. For instance,

systemic gene delivery to liver hepatocytes generally requires particles smaller than

-100-200 nm to traverse the fenestrated endothelium 6 2 , whereas uptake in

macrophages can be achieved with positively charged, spherical particles on the

order of 500 nm and above[631. Stabilization of nanoparticles with non-fouling

polymers such as polyethylene glycol (PEG) can increase circulation time within the
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blood and promote accumulation in tumors with leaky vasculatures, a phenomenon

known as the enhanced permeation and retention (EPR) effect[641. Active targeting

of synthetic gene vectors has been attempted using numerous ligands including

small molecules, vitamins, carbohydrates, peptides, growth factors, antibodies, and

aptamers 6 2 ,s651, but unfortunately there have been relatively few clear

demonstrations of efficacy.

2.3.2 Cellular internalization

Once the nanoparticulate gene carrier is within the vicinity of the target cell,

it may adsorb to the cell surface non-specifically through electrostatic interaction

with negatively charged proteoglycans[66 . Internalization and endocytosis of the

nanoparticle may then proceed through a variety of mechanisms[671 . Besides

phagocytosis for some types of immune cells, these endocytic mechanisms include

macropinocytosis, clathrin-dependent endocytosis, caveolae-mediated endocytosis,

and a growing number of clathrin- and caveolae-independent pathways such as

RhoA-dependent, Arf6-dependent, Cdc42-dependent, and flotillin-dependent

endocytosis[681. For most of the nanoparticles commonly used for non-viral gene

delivery, including poly-L-lysine (PLL) and polyethylenimine (PEI)-based

polyplexes, as well as various lipoplexes and liposomes, evidence exists for the use

of multiple endocytic mechanisms[69-771, not all of which may contribute to

successful gene expression[71' 781. In some cases, an active targeting ligand may allow

uptake and endocytosis of the nanoparticle to proceed selectively through one

pathway after binding to a specific cell surface receptorl 79 1.
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2.3.3 Endosomal escape

Once internalized, the nanoparticle will generally be located within a

vesicular structure known as an endosome formed from pinching off an

invagination of the membrane[681. Depending on the endocytic mechanism, cargo

within the endosomes may then follow a pathway leading through increasingly

acidified compartments toward enzymatic degradation within lysosomes (pH -4.5),

or may get recycled back to the extracellular space[671. Dissection of these routes has

been accomplished primarily via co-localization of the nanoparticles with certain

protein markers of endocytic trafficking pathways, such as caveolin-1 (caveolae),

Rab5 and EEA1 (early endosomes), Rab7 and ESCRTs (late endosomes), LAMP-1

(lysosomes), and Rab11 (recycling compartments)[ 801.

Efficient cytosolic localization and gene expression have generally been

assumed to depend on an active mechanism for endosomal escape mediated by the

gene carrier[461. For lipoplexes, two mechanisms have been proposed, one involving

interaction and fusion of the lipid carrier with endosomal membranes, and the other

involving detergent-like destabilization of these membranes[771. In contrast,

polyplexes have been hypothesized to escape via a "proton-sponge" mechanism

hinging on the ability of amines in the polymer with suitable pKa values to buffer

acidic endosomes or lysosomes 8 1 821. The polymer's ability to absorb protons

presumably results in increased activity of pH-dependent proton pumps, which in

turn promotes facilitated diffusion and internalization of chloride ions to maintain

electroneutralityle31. This increase in osmolarity is then thought to cause osmotic

swelling of the endosomes or lysosomes leading to rupture. Despite the relative lack

26



of alternative hypotheses, this mechanism has been controversial, with some

reports providing evidence to bolster it[84 -861 and others challenging itl87 -8 91.

2.3.4 Cytosolic trafficking and nuclear localization

Microinjection experiments suggest that a key cellular barrier limiting the

efficiency of polymeric gene delivery is the transport of DNA from the cytoplasm to

the nucleus. Working with a mouse cell line deficient in thymidine kinase (TK),

Mario Capecchi reported nearly 30 years ago that if he microinjected plasmid DNA

encoding TK directly into the nuclei, 50-100% expressed TK activity, as detected by

the incorporation of 3H-thymidine into DNA following autoradiographic analysis[901.

However, in over 1,000 cells receiving cytoplasmic injections of the same plasmid

DNA, no TK activity was detected. The inefficiency of transgene expression following

cytoplasmic microinjection of DNA relative to nuclear microinjection has since been

confirmed by several other groupsl91 .

The importance of the nuclear barrier is further highlighted in the

observation that quiescent or slowly dividing cells with intact nuclei are generally

more difficult to transfect than cells that divide rapidly and undergo frequent

breakdown of their nuclear envelopes 921. In one study, transfection efficiency with

lipoplexes and polyplexes was found to be cell-cycle dependent: luciferase

expression was 30- to 500-fold higher in K-562 and HeLa cells transfected during S

or G2 phase compared with cells transfected during G1 phase[931. This effect was

much less pronounced (only a fourfold difference) when the cells were transduced

with recombinant adenoviruses.
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Both deterministic and stochastic kinetic models of synthetic gene delivery

have identified nuclear uptake as a potential rate-limiting step. In a direct

comparison of the kinetics of intracellular gene transfer by PEI and by an adenoviral

vector in the C3A human hepatocellular carcinoma cell line, one of the main

advantages of the adenovirus in its superior gene delivery was its faster rate of

nuclear import[941. Similarly, after running stochastic simulations of synthetic gene

delivery using PEI as an example, another group suggested that slow nuclear

transport greatly reduced overall delivery because plasmids in the cytoplasm are

quickly digested by nucleases[951, with an apparent half-life of 50-90 min[961. Due to

their relatively large size (25-80 nm in diameter), the diffusion coefficient of DNA

plasmids in the cytoplasm is estimated to be small, on the order of 10- or 104

[tm 2/s, and it has been observed for HeLa cells that DNA longer than 2,000 bp

undergoes little or no diffusion in the cell cytoplasm[971. Even so, polyplexes have

been seen to accumulate quickly in the perinuclear region apparently via motor-

protein driven transport on microtubules[981.

The nuclear envelope features a double membrane studded with -3,000-

5,000 nuclear pore complexes (NPCs) that serve as conduits between the nuclear

and cytoplasmic compartments. Transport through the NPCs is selective, not only

due to the small diameter of the pore (-25 nm), but also the presence of

hydrophobic Phe-Gly (FG) sequence motifs in nucleoporin proteins lining the

channel[991. Molecules with a molecular weight less than -40 kDa can enter the

nucleus passively, but larger molecules require active transport[1001.
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Several groups have tried co-opting endogenous mechanisms for nuclear

trafficking of proteins by directly attaching a nuclear localization signal (NLS)

peptide to plasmid DNA or to the vector; however, these efforts have yielded mixed

results likely attributable to confounding variables such as the conjugation method,

the site of attachment, and the number of NLS peptides attached, as well as masking

of the positively-charged NLS through its association with the negatively-charged

DNA backbone[101 -1031. An alternative strategy relies on the presence of a so-called

DNA nuclear targeting sequence (DTS) within the plasmid to enhance nuclear

localization, presumably by binding to newly synthesized transcription factors in

the cytoplasm that facilitate shuttling to the nucleus [92, 1041. The evidence in support

of such a strategy has also been mixed[1051.

2.3.5 Vector unpacking

Vector unpacking is generally assumed to be necessary for DNA release and

gene expression, but the extent to which suboptimal dissociation affects gene

delivery is not fully clear. For lipoplexes, it has been proposed that fusion of the

cationic lipid with endosomal membrane lipids facilitates not only endosomal

escape but also DNA release[106,1071. Polyplexes, meanwhile, have been observed to

localize to the nucleus intact where they presumably undergo dissociation[108 1091.

For certain polyplexes, mechanistic studies have implicated slow vector unpacking

as an explanation for decreased transfection efficiency["0-1121.A recent report

suggests that lipoplex-delivered plasmids are nearly 10-fold more efficiently

expressed, on the basis of protein expression per plasmid number in the nucleus,
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than polyplex-delivered plasmids, a potential consequence of incomplete polyplex

dissociation within the nucleus[113 .

2.3.6 Gene expression

For DNA therapeutics, expression of the transgene and production of the

protein of interest constitute the final barrier, which has sometimes been neglected

despite its significant contribution to the overall transfection efficacy of a gene

carrier. Plasmids are routinely used as expression vectors in non-viral gene therapy

studies due to the relative ease of construction and amplification. The choice of

enhancer/promoter combination has a tremendous impact on both the level and

duration of transgene expression. Viral enhancers and promoters derived from

cytomegalovirus (CMV), respiratory syncytial virus (RSV), and simian virus 40

(SV40) are frequently used to achieve high-level expression in a wide variety of

mammalian cell types and tissues, but this expression is typically short-lived[1 41.

Constitutive mammalian promoters such as the human polyubiquitin C (UbC) and

the elongation factor 1-a (EF1-a) promoters have been observed to result in more

persistent expression1" 51. Tissue-specific promoters such as the a-fetoprotein

enhancer/albumin promoter for expression within the liver[1161 offer the possibility

of enhanced safety by minimizing off-target transgene expression. Numerous cis-

acting sequences including various polyadenylation signals[1171, introns[117-1181, and

scaffold/matrix attachment regions (S/MAR) [1191 have been reported to increase the

level and persistence of transgene expression. DNA size and topology have been

shown to affect gene expression efficiency, with small, covalently closed circular

(ccc) plasmids mediating greater transgene expression than large or linearized

30



constructs[12 01. Highly supercoiled plasmid DNA is often stated to be preferable for

transfection over relaxed forms, although there is evidence to contradict this

assumption[1211.

bacterial
enhancer backbone

antibiotic
resistance r

gene plasmid
DNA

transgene minicircle
ori DNA

Figure 2.4 Schematic representation of plasmid and minicircle vectors

Recently, compact DNA vectors known as minicircles have been developed

that demonstrate superior levels and duration of gene expression relative to full-

length DNA plasmids[12 2 -12 6 1. The major distinction between the two constructs is

that minicircles lack a bacterial backbone, consisting of an origin of replication and

an antibiotic resistance gene, necessary for propagation in bacteria, while retaining

only the mammalian expression cassette (Figure 2.4). Like plasmids, minicircles are

non-integrating and characterized by transient expression. However, minicircles

present at least four key advantages over plasmids: (1) increased potency due to the

elimination of features that are unnecessary for therapeutic gene expression; (2)

lower risk of TLR9-mediated immunogenicity owing to the reduction of

unmethylated CpG motifs[ 1 2 7 ,1 2 8 1; (3) increased gene delivery efficiency due to more
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compact DNA cargo; and (4) significantly greater level and potential for duration of

gene expression[ 1291. This last advantage has been hypothesized to result from the

absence of the bacterial backbone, which may induce gene silencing through the

formation of repressive heterochromatin[1301.

In an effort to promote longer-term expression, a number of systems for

transgene integration have been developed, including transposition systems based

on the recombinases phiC31[1311, piggyBac[1321, and Sleeping Beauty[1 33 1. However,

the safety of these integrating systems with respect to unwanted side effects as a

result of transgene insertion has not yet been established[1 .

2.4 OVERVIEW OF CURRENT NON-VIRAL VECTORS

To address these formidable barriers, myriad natural and synthetic materials

have been explored as non-viral vectors for safe and effective gene delivery. A brief

survey of the most commonly studied materials has been provided below.

2.4.1 Lipid-based vectors

Lipid-based vectors are among the most widely used and most clinically

advanced non-viral gene carriers. Fraley et al. first showed in 1980 that liposomes

composed of the phospholipid phosphatidylserine could entrap and deliver SV40

DNA to CV-1 monkey kidney cells[13 41. More efficient transfection was obtained in

1987 by Felgner et al., who demonstrated that the synthetic cationic lipid DOTMA

spontaneously formed small, uniform liposomes capable of efficient encapsulation

and delivery of DNA to various mammalian cell lines [1351. Cationic lipids such as

DOTMA are characterized structurally by three components: a cationic headgroup, a
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hydrophobic tail, and a linking group between these domains[411. DOSPA, DOTAP,

DMRIE, and DC-Cholesterol feature particular modifications of these three domains

and are examples of cationic lipids that have been applied for liposomal gene

delivery[1071 (Figure 2.5). Neutral lipids, such as the fusogenic phospholipid DOPE or

the membrane component cholesterol, have been included in liposomal

formulations as "helper lipids" to enhance transfection activity and nanoparticle

stabilityl401. Pairs of cationic lipids and helper lipids are widely available as

commercial reagents for in vitro transfection, with one example being

Lipofectamine, a combination of DOSPA and DOPE[4 1 1.

I 0 \/O
-N O+H 3N "--N NoN

H2 ' +H2N H

DOTMA DOSPA
NH

3+

0

00

DOTAP DMRIE

H H
H H

HO H H

Cholesterol DC-Cholesterol

o o + OONN+NOOQO IH3 N**-R
o- 0 o- 0

DSPC DOPE

Figure 2.5 Chemical structures of cationic and neutral lipids commonly used in
gene delivery studies
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Although some traditional liposomes including DC-Chol/DOPE and

DMRIE/DOPE have been applied clinically for gene therapy[411, their delivery

efficacy has generally been low due to poor stability and rapid clearance, and more

recently, lipid formulations have been developed that show greater clinical

potential[1361. So-called stable nucleic acid-lipid particles (SNALPs), or lipid-based

nanoparticles (LNPs), typically comprise at least four components including a

synthetic cationic amino lipid, a phospholipid such as DSPC, a PEG-lipid conjugate,

and cholesterol; these components are combined in an organic solvent such as

ethanol and then mixed with nucleic acids in an acidic aqueous buffer to form stable

nanoparticles[ 401. The most promising amino lipid materials, such as DLinDMA-

based ionizable lipids[1371 and cationic lipid-like molecules termed lipidoids[138,1391

(Figure 2.6), have been developed primarily for LNP-mediated delivery of RNAi

therapeutics and are currently under clinical investigation[ 14 0,1411. Interestingly, the

pKa of the ionizable DLinDMA-based lipids has been found to correlate tightly with

their hepatic gene silencing activity in mice, with an optimal pKa range of 6.2-6.5[1421.

R R

90*C HO>. OH
R +H2N" NH2 N -NH

3 eq. 1eq. OH
R

Figure 2.6 Synthesis of epoxide-derived lipidoids
Adapted from Love et al.[1391

In general, although they have been used to achieve systemic DNA delivery to

subcutaneous mouse tumor xenografts[1431, such LNPs appear to have less potency

for delivery of plasmid DNA as compared with siRNA, perhaps a consequence of
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poorer relative entrapment of the larger DNA cargo. An additional limitation is that

cationic lipids have been observed to stimulate immune or anti-inflammatory

responses[144 .

2.4.2 Polymeric vectors

The extraordinary chemical diversity of polymers has enabled a plethora of

biomaterials applications, most notably within the fields of tissue engineering and

the controlled release and delivery of drugs. Selected examples of polymers that

have been frequently studied as gene delivery vectors are highlighted below.

2.4.2.1. Poly(L-lysine)

Poly(L-lysine) (PLL) is a homopolypeptide of the basic amino acid lysine, the

side chain of which terminates in a primary E-amine with a pKa of ~9.3-9.5[145].

Polylysine's capacity to condense DNA has been known since at least the 1960s[146,

1471. Pioneering studies in the late 1980s indicated that PLL conjugated to the

asialoorosomucoid glycoprotein could potentially be applied toward non-viral liver-

targeted gene deliveryl1 4 8-1 4 9]. In general, in the absence of a lysosomal disruption

agent such as chloroquine, PLL has relatively poor transfection activity, presumably

because its amine groups tend to be positively charged at physiological pH and

therefore have low capacity for endosomal buffering and lysis[ 41]. Moreover,

unmodified PLL demonstrates fairly significant in vitro cytotoxicity[150l. Numerous

modified variants of PLL with enhanced gene delivery properties have been

reported[14s. One prominent example includes the grafting of histidine's imidazole

functionalities (pKa ~ 6.5) to the side chains of PLL in an effort to increase its
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endosomal buffering capacity[151l. Another example is the synthesis of a degradable

polyester analog of PLL, poly[a-(4-aminobutyl)-L-glycolic acid] (PAGA), which is

characterized by improved transfection activity and reduced cytotoxicity[15 21.
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Figure 2.7 Chemical structures of selected polymeric gene vectors

2.4.2.2. Polyethylenimine

Polyethylenimine (PEI) and its variants have become the most widely used

polymeric materials for gene delivery. With a nitrogen atom at every third position

along the polymer, PEI is capable of an extremely high charge density at reduced pH
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values, a characteristic which is postulated to aid in condensation of DNA and

endosomal escape[15 31. PEI's gene transfection activity in vitro was first

demonstrated in 1995 by Behr and colleagues[811. Soon after, it was shown that the

transfection efficiency and cytotoxicity of PEI strongly depend on its structural

properties, especially with respect to molecular weight[154 (MW) and the linear

versus branched forms[155-1561. In mice, intravenous injection of PEI/DNA polyplexes

has been observed to afford gene transfection in the lungs[157-1591, perhaps as a

result of nanoparticle aggregates accumulating within pulmonary capillaries[ 6 01.

Several groups have also reported tumor gene delivery in mice using PEI/DNA

polyplexes[161,1621. In humans, PEI is under clinical study for local gene therapy of

bladder cancer (ClinicalTrials.gov ID: NCT00595088) and pancreatic cancer

(ClinicalTrials.gov ID: NCT01413087). Nonetheless, because PEI is well known to

induce significant cytotoxicity[163,1641, modifications to PEI have been extensively

investigated, with prominent examples including block copolymers of PEG and PEI

to improve stability and biocompatibility[165 ,1661, degradable disulfide-crosslinked

PEls to reduce toxicity[1671, and alkylated PEI to increase potency[168 ,1691.

2.4.2.3. Poly[(2-dimethylamino) ethyl methacrylate]

Poly [(2 -dimethylamino) ethyl methacrylate] (pDMAE MA) is a water-soluble

cationic polymer first investigated for gene delivery by Hennink and coworkers[170,

1711. Effective DNA condensation and gene transfer require relatively high MW (>300

kDa) pDMAEMA[1 721. Although these polymers have been evaluated in rodents for

systemic in vivo gene delivery[1 73,1741, additional studies are needed to ameliorate

aggregation and toxicity issues that have been observed[1751.
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2.4.2.4. Carbohydrate-based polymers

A number of promising natural and synthetic carbohydrate-based polymers

are currently under study for gene delivery applications. One of the oldest chemical

methods of transfection, developed in the late 1960s, involves the use of cationic

diethylaminoethyl (DEAE)-modified dextran[1761; however, this material is mainly

limited to in vitro gene transfer for biological studies. A carbohydrate-based

material more actively being researched is chitosan, a polysaccharide derivative of

chitin composed of cationic glucosamine and N-acetyl glucosamine units joined by

P(1,4) glycosidic linkages. A relatively biocompatible, biodegradable, and

inexpensive material, unmodified chitosan has relatively low transfection activity,

but modified versions of chitosan have been synthesized with greater gene delivery

potential[1 7 7 -1781. Chitosan's mucoadhesive and permeability-enhancing properties

have enabled its use for certain oral gene delivery applications[1791, such as

immunization of mice against peanut antigen-induced anaphylactic responses[1801.

Produced from the enzymatic degradation of starch, cyclodextrins (CDs) are

cyclic oligosaccharides of glucose linked by a(1-4) glycosidic bonds, with six-, seven-

, or eight-membered glucose rings respectively defining the a-, P-, or y-variants.

Cyclodextrin's membrane-permeabilizing properties have been exploited for gene

transfection through the synthesis of CD-based polymers and through the grafting of

CDs to existing gene delivery materials[1811. Davis and colleagues synthesized novel,

linear P-CD-containing polycations and described the effects of a variety of

structural modifications on gene transfection activity[182 1 8 41. Although they are

typically extremely water soluble, CDs are characterized by a cup-shaped topology
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with a hydrophobic internal cavity that can facilitate the inclusion of non-polar

guest molecules such as poorly soluble drugs18 51. This unique feature was used to

enable direct non-covalent PEGylation of polyplexes formed from p-CD-containing

polymers and DNA through the addition of adamantane-PEG conjugates; stable

ternary complexes are efficiently formed due to the interaction of adamantane with

CD[1 86 1. Targeted versions of these CD-containing polymer systems are currently

under clinical investigation for delivery of RNAi therapeutics to solid tumors [187,188].

2.4.2.5. Dendrimers

Dendrimers are polymers featuring perfectly defined, tree-like molecular

architectures in which monomers with branching points radiate symmetrically from

a central core[501. They are synthesized in a stepwise fashion, with each reaction step

yielding a new layer and defining an additional "generation" of dendrimer. A

chemically diverse set of cationic dendrimers has been studied for gene deliveryl491,

with the most common based on polyamidoamine (PAMAM). The potential of

PAMAM dendrimers for in vitro gene delivery was first explored through a series of

studies in the mid-1990s[189-1911. Like PEI-based polymers, PAMAM dendrimers have

a high density of secondary and tertiary amines and appear to be capable of

endosomal buffering and osmotic swelling[8 51. PAMAM/DNA complexes have also

been observed to accumulate and mediate transgene expression within the mouse

lungs following systemic administration[1921 . Moreover, they have been used for

suicide gene therapy of subcutaneous mouse tumor xenografts via intratumoral

injection1 93,194]. As with many cationic vectors, one issue has been toxicity

associated with PAMAM's positive charge[501, but a variety of modified PAMAM
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dendrimers have recently been developed to improve the efficacy and safety profile

of these materials[1951.

2.4.3 Cell-penetrating peptides

Within the last two decades, hundreds of natural and synthetic cell-

penetrating peptides (CPPs) have been identified and developed, with most falling

into two classes, cationic arginine-rich peptides and amphipathic peptides[1961. The

former class includes the HIV TAT protein transduction domain (PTD), the

Drosophila Antennapedia homeodomain-derived penetratin peptide, and the

synthetic octoarginine (Arg8) peptide, whereas the latter class includes the chimeric

peptides KALA, MPG, Pep-1, and Transportan (Table 2.1).

TAT HIV-1 TAT YGRKKRRQRRR [9

(47-57)
transcriptional
activator

Penetratin Drosophilia RQIKIWFQNRRMKWKK [198]

Cationic Antennapedia
homeodomain

Ar8Chimeric RRRRRRRR [19-,
2001

CHs-TAT-HsC Chimeric CHHHHHRKKRRQRRRRHHHHHC [201]

KALA Chimeric WEAKLAKALAKALAKHLAKALAKALKACEA [202]

MPG Chimeric GALFLGFLGAAGSTMGAWSQPKKKRKV [2031

Amphipathic Pep-1 Chimeric KETWWETWWTEWSQPKKKRKV [204]

Transportan Chimeric GWTLNSAGYLLGKINLKALAALAKKIL [205]

PPTG1 Chimeric GLFKALLKLLKSLWKLLLKA [206]

Table 2.1 Selected examples of cell-penetrating peptides

Although these peptides have been fused to or non-covalently complexed

with nucleic acids to promote cellular internalization, the major limitation for many

CPPs is the inability to mediate efficient endosomal escape[2071. For this reason, CPPs
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are often either conjugated to traditional non-viral gene vectors such as polyplexes

or liposomes[208I, or they are otherwise designed with specific functionalities to

enhance endosomal escape or overall gene transfection[5 3, 2071. Examples of peptides

intentionally designed to mediate more efficient gene transfer include an

endoosmolytic TAT peptide incorporating cysteine and histidine residues[2011 (CHs-

TAT-HsC), an N-terminal stearylated oligoarginine peptide[2091, and the chimeric

amphipathic peptide PPTG1[ 206I.

2.4.4 Inorganic nanoparticles

Several kinds of inorganic nanoparticles (NPs) have been applied for non-

viral gene delivery, most prominently silica, gold, iron oxide, quantum dots, and

carbon nanotubes[551. Technically, inorganic NPs have been used since the 1970s to

achieve low levels of in vitro gene transfer using the method of calcium phosphate

transfection 2101. While calcium phosphate NPs continue to receive some study, more

recently attention has shifted to NPs with better prospects for in vivo translation.

Each class of inorganic NP presents particular advantages and disadvantages.

For instance, silica NPs are considered biodegradable and relatively biocompatible,

with surfaces that are easily functionalized, but they present some issues with

respect to toxicity[2 1 1 -2 1 31. Similarly, gold NPs are easily functionalized using thiol

moieties, and can enable a number of interesting imaging and treatment modalities

such as photothermal cancer therapy, but they lack degradability[2141. Useful as MRI

contrast agents and effectors for magnetic hypertherapy, iron oxide NPs are

biodegradable and biocompatible, but achieving uniform surface functionalization

and NP stabilization is challenging[215l. Quantum dots are extremely small particles
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(< 10 nm) that can enable unique fluorescent imaging applications[ 2161, but elements

commonly present within their cores, especially cadmium and selenium, are known

to induce considerable cytotoxicity[2 171. Finally, the unique physical and chemical

properties of carbon nanotubes (CNTs), which allow them to be easily

functionalized and applied as photoluminescence, Raman, and photoacoustic

contrast agents[21 l, are quite exciting, yet concerns remain regarding their lack of

degradability and potential toxicity[2191.

In order to bind nucleic acids and mediate transfection, the surfaces of most

inorganic NPs need to be suitably functionalized. Silica nanoparticles, for example,

have been shown to yield efficient gene delivery when functionalized with various

amine groups[220' 2211 or with PAMAM dendrimers[221 . Preliminary studies have

established that amine-functionalized CNTs are capable of binding and condensing

plasmid DNA[ 2 2 , 2231. Recently, magnetically-enhanced delivery of DNA and RNA was

accomplished using novel lipidoid-coated iron oxide NPs[ 224I. Gold nanoparticles,

meanwhile, have been shown to mediate effective gene transfection in vitro when

conjugated to PEI[225 2261. In another example, efficient siRNA transfection of stem

cells was achieved using gold nanoparticles functionalized with poly(p-amino

ester)s, a promising group of cationic polymers which are described at length in the

next section.

2.5 DEVELOPMENT OF POLY(BETA-AMINO ESTER)S FOR GENE THERAPY

Poly(p-amino esters) (PBAEs) are a class of polymeric gene vectors

characterized by their relative ease of synthesis and their biodegradability. With
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their ability to condense plasmid DNA into nanoparticles on the order of 50-200 nm

in diameter, PBAEs have demonstrated high gene delivery efficiency to a variety of

cell types with low cytotoxicity[2 271. In addition to gene transfer, these polymers

have been employed for a number of other applications, including hydrophobic drug

delivery[2 2 8-2 3 41, biomaterials for cell encapsulation and tissue engineering[23 -238],

drug release from polyelectrolyte films[ 239-2421, and the modification of other

delivery materials[2 4 3 , 2441. PBAEs have also been incorporated into poly(lactic-co-

glycolic acid) (PLGA) microparticles for the generation of improved non-viral

genetic vaccines for cancer[245, 246]. The rapid development of poly(p-amino ester)s,

from their initial synthesis and characterization to their extensive preclinical

evaluation ten years later, owes at least in part to the powerful approach of

combinatorial polymer library synthesis coupled with high-throughput screening

and characterization.

2.5.1 Initial synthesis and characterization

Although in the 1980s the synthesis of poly(ester amines) formed from the

Michael-type addition of bisfunctional amines to diacrylate esters had been

previously reported[247, 2481, the suitability of these polymers as gene carriers was

first explored in 2000 by Lynn and Langer[249I. The polymer reaction scheme is

displayed in Figure 2.8. These polymers were selected for investigation for three

reasons. First, it was hypothesized that the incorporation of tertiary amines into the

polymer backbone could facilitate electrostatic interactions with DNA as well as

buffer the endosomal compartment, allowing for escape of DNA to the cytoplasm[811.

Second, the presence of hydrolysable ester bonds in the backbone offered the
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possibility of a less toxic polymer than non-degrading alternatives, assuming that

the small-molecule acid degradation products could be cleared rapidly. Third, and

perhaps most significantly, the polymers could be synthesized in a one-step reaction

from commercially available monomers with a range of structural diversity, thereby

allowing the investigation of structure-property relationships and the engineering

of polymers with desired functionalities. In this initial study, three such polymers

were synthesized from the addition of the bis(secondary amines) N,N'-

dimethylethylenediamine, piperazine, or 4,4'-trimethylenedipiperidine to 1,4-

butanediol diacrylate, and critical features of the resulting polymers, including the

degradation kinetics, cytotoxicity, and DNA binding abilities, were explored.
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Figure 2.8 Synthesis of poly(p -amino ester)s
Poly(p-amino ester)s are synthesized from either the conjugate addition of a
primary amine to a diacrylate monomer (top), or from the addition of a
bis(secondary amine) to a diacrylate monomer (bottom).

Clearly, the degradation kinetics of an ideal gene delivery carrier should

reflect a careful balance between a slow rate that inhibits unpacking and clearance

and a rapid rate that precludes its functional utility. The degradation profiles of the

polymers were assessed in water at 37*C in the presence of salt at two

physiologically relevant pH values: (1) pH 5.1, roughly the pH encountered in the
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lysosome, and (2) pH 7.4, as is encountered in the cytoplasm. In general, the

polymers, which ranged in molecular weight from 5.8 to 31.2 kDa, degraded more

rapidly at pH 7.4, with two of the polymers undergoing complete degradation within

5 hours. At the reduced pH, the half-life was approximately 7-8 hours. Though at

odds with the well-known phenomenon of acid- (or base-) catalyzed ester

hydrolysis, these degradation profiles match those of similar polyesters containing

pendant amines; these amines are thought to act as intramolecular nucleophilic

catalysts for which reactivity increases with pH[25 0 , 251]. Given that the polymers

contained only tertiary amines, which make for poor nucleophiles, Lynn and Langer

considered this mechanism unlikely, but a more in-depth mechanistic investigation

of the degradation kinetics of such polymers has not yet been performed.

To assess cytotoxicity, the authors used the commonly employed MTT assay.

Strikingly, at concentrations as high as 100 pg/mL, the polymers had no effect on

the viability of NIH 3T3 cells. In contrast, linear 25 kDa polyethylenimine (PEI) was

highly toxic at this concentration, lending support to the hypothesis that the

incorporation of degradable functionalities helps to reduce the toxicity of cationic

polymers. The polymers also appeared promising in their capacity to bind and

condense DNA. An agarose gel retardation assay showed that these polymers could

inhibit the migration of plasmid DNA at weight ratios above 10:1 polymer:DNA.

More importantly, quasi-electric light scattering revealed that in HEPES buffer at pH

7, complexes formed from the polymers and DNA above a 2:1 weight ratio were in

the range of 50-150 nm. The measured C-potentials for these complexes were

slightly positive at +10-15 mV, and the relative consistency of both particle size and
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charge over time at 25'C suggested good particle stability with only a minor degree

of particle aggregation. In general, as the polymer:DNA weight ratio increased, the

polymer was better able to condense DNA into nanoparticles of smaller size with a

more positive C-potential. For in vitro gene delivery, the slight positive charge on the

particles may be desirable with respect to facilitation of cellular uptake via

electrostatic interaction with the negatively charged cell surface.

One year later, Lynn and colleagues published a follow-up report in which

they synthesized an initial library of 140 structurally diverse poly(p-amino esters)

and screened them for DNA binding ability and in vitro transfection efficiency[151].

This paper provided a significant proof-of-concept for the combinatorial library

approach to the identification of superior gene delivery materials. The library was

formed by reacting 7 different diacrylates with each of 20 different amines. The

resulting polymers ranged in molecular weight from 2 to 50 kDa, and half of them

were sufficiently water-soluble to be included in a high-throughput DNA binding

assay. Using an agarose gel slab with 500 lanes, they found that 56 of 70 water-

soluble PBAEs could retard plasmid DNA when complexed at a polymer:DNA weight

ratio of 20:1.

They then tested whether these PBAEs could mediate delivery and

expression of a luciferase-encoding plasmid DNA in COS-7 cells, an immortalized

line of African green monkey kidney fibroblasts frequently used in transfection

assays. Two of the polymers yielded transfection levels 4 to 8 times that of PEI, with

their performance rivaling that of a leading commercially available lipid reagent,

Lipofectamine 2000. The short time required for these experiments, two weeks
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from library synthesis to identification of "hits," further bolstered the value of this

approach.

A more thorough characterization of this initial library revealed additional

features of the structure-activity relationship for these polymers[25 21. In general,

smaller particle sizes below 250 nm and positive C-potentials were correlated with

higher rates of DNA uptake, as assessed by the degree of internalization of a

fluorescently labeled plasmid. Additionally, the authors used a FACS-based assay

they developed[25 31 to measure the local pH environment of the delivered DNA. In

this assay, pH values of 5 or less indicate that the polyplexes are unable to avoid

eventual trafficking to lysosomes, whereas values closer to neutral pH suggest that

the polymeric vector has mediated endosomal escape. The polymer-DNA complexes

with the highest transfection efficiency in this library yielded average pH

measurements above 6.5, implying that they had been able to buffer the endosome

and successfully escape the lysosomal pathway. With regard to cytotoxicity, the

majority of the DNA nanoparticles formed from PBAEs in this library appeared to

have no impact on cell viability as measured by the MTT assay. Optimization of the

synthesis, formulation, and transfection conditions for two members of the library

resulted in polyplexes that could yield higher gene transfection efficiency in COS-7

cells than Lipofectamine 2000 and PEI[2 5 41.

2.5.2 High-throughput screening and selection

To accelerate the development of these polymeric gene carriers, Daniel

Anderson and colleagues in the same group synthesized a large combinatorial

library of 2,350 structurally distinct PBAEs from the reaction of 25 diacrylates,
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designated by letters, with 94 primary or bis(secondary amine)s, designated by

numbers.[25 l Because the polymer products were generally viscous and therefore

not amenable to automated fluid handling, all polymerization reactions were carried

out in DMSO in a 96-well plate format, and the resulting polymer-DMSO solutions

were directly processed for downstream characterization and screening. The

authors determined that the residual levels of DMSO had no effect on gene delivery

efficiency or cytotoxicity. After optimization of transfection conditions, 46 of the

polymers, or roughly 2%, were found to transfect COS-7 cells at efficiencies better or

equal to that of PEI.

Analysis of the structure-activity relationship for the lead polymers from this

first-generation library suggested that the acrylate monomers were almost always

hydrophobic, whereas the amine monomers tended to contain an alcohol, imidazole,

or secondary diamine. It was also observed that the molecular weight and end-

group termination, as governed by the ratio of monomers used during

polymerization, dramatically affected transfection efficiency. Consequently, the

authors decided to synthesize a more focused, second-generation library of PBAEs

with 6 to 12 different molecular weights and chain end-groups - 486 variants in all -

to probe the structural space represented by the best performing polymers[ 256I.

In this focused library, the top performing PBAEs converged in chemical

structure, lending support to the identification of important structure-function

trends. The top nine polymers were synthesized from amino alcohols, which may

suggest a key role for pendant hydroxyl functionalities in the side chains. The top

three polymers, C32, JJ28, and C28, differed in structure by only one carbon. Formed
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from the addition of 5-amino-1-pentanol ("32") to 1,4-butanediol diacrylate ("C") at

a molar ratio of 1.2:1, C32, the most effective polymer overall, outperformed PEI and

Lipofectamine 2000 in transfection of COS-7 cells. This polymer also formed the

tightest complexation with DNA, resulting in 71 nm particles with a -potential of

+15 mV in HEPES buffer at pH 7.2. C32 synthesized with a 1.2:1 amine:acrylate ratio

was nearly 50-fold more effective than C32 synthesized with a ratio of 1.025:1. This

difference in transfection efficiency is likely due to differences in both molecular

weight and terminal chain groups.

In another study, the C32 PBAE was used to deliver a suicide gene to prostate

tumor xenografts in mice[25 71. The prostate tumor xenografts were generated by

mixing PC3 or LNCaP human prostate cancer cells with Matrigel and injecting the

cells subcutaneously into the flanks of nude (athymic) mice. As a proof-of-concept,

two days after intratumoral (i.t.) injection of a luciferase-encoding plasmid

complexed with C32 nanoparticles, the local level of luminescence was 26-fold

higher than with naked DNA alone and 4-fold higher than could be achieved with in

vivo-jetPEI, a commercially available linear PEI intended for in vivo application.

Interestingly, intramuscular injections yielded the opposite results; naked DNA gave

the highest expression in healthy muscle, followed by jet-PEI and then C32,

suggesting that the PBAE/DNA nanoparticles may be useful for targeting tumors

while avoiding the surrounding healthy tissue. Histological analyses of the muscle

tissue injected with the PBAE nanoparticles showed no evidence of pathology, and

there was no significant difference relative to saline-injected mice with respect to a
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number of commonly used toxicity markers for renal function, liver function, and

muscle damage.

The researchers then used C32 to deliver a DNA construct encoding the A-

chain of the diphtheria toxin (DT-A) to the prostate tumor xenografts. DT-A inhibits

protein synthesis and causes apoptosis by catalyzing the transfer of ADP-ribose

from NAD to elongation factor 2 (EF-2), which is essential for protein production.

Because tight control of DT-A expression is crucial, two levels of gene regulation

were used. The construct, which also encodes the Flp site-specific recombinase,

must undergo a recombination event by Flp in order to express DT-A. Because Flp

transcription is driven by a modified promoter/enhancer of the human prostate

specific antigen (PSA) gene, DT-A expression is localized to prostate cells. When a

series of i.t. injections of nanoparticles containing C32 and the DT-A construct was

performed, the average growth rate of these tumors was suppressed twofold

compared with tumors injected with a mock treatment. 40% of the experimentally

treated tumors regressed in size. Combined with the data showing that C32

transfected healthy muscle poorly without noticeable toxicity, these experiments

provided evidence that PBAEs may be promising carriers for suicide gene delivery

for prostate cancer.

2.5.3 End-modification and ligand coating for cell-specific gene delivery

Because the high-throughput screening results highlighted the importance of

the terminal functional group, researchers in the Langer lab synthesized and

characterized a third-generation library of amine end-capped PBAEs[258 -2 60 . The

researchers were motivated by the desire to further expand the limits of the
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chemical space imposed by the conjugate addition reaction[2 611. To this end, in one

version of the library, they developed a synthesis scheme (Figure 2.9) that involved

the production of an intermediate acrylate-terminated C32 polymer, which was then

end-capped by reaction with each of 37 different amine molecules, including

primary monoamines and primary or secondary diamines [2591.

HO-" NH2
0 32 0 0

_ O O O N O O
o 90'C n

C C32-Ac OH

H2N R NH2
X

RT

H 0 0H
H2N' R N "-O O' N 'AO O, N R'NH2

0 + 0

C32-X OH

Figure 2.9 Synthesis of amine end-modified PBAEs
5-amino-1-pentanol (32) is added to an excess of 1,4-butanediol diacrylate (C) to
yield acrylate-terminated C32, which is then reacted with excess diamine to produce
amine end-modified PBAE.

The modification of the end groups had a significant impact on in vitro

transfection efficiency. Following optimization of the polymer:DNA weight ratio, five

of the 37 provided gene delivery performance better or equal to that of the

unmodified C32 polymer in COS-7 cells. The most effective polymers were those

conjugated with primary diamines, but even among these polymers, single carbon

differences in the end-capping group dramatically modulated DNA binding ability

and cellular uptake. Characterization of C32-117, a lead end-modified PBAE, relative
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to unmodified C32, showed that this polymer was able to complex DNA roughly

twice as efficiently, form nanoparticles that were 30% smaller, and mediate a

twofold improvement in plasmid cellular uptake[258 . Because the unmodified

polymer contained no primary amines, with its chains terminating in alcohol

groups, the authors reasoned that the addition of primary amine end-groups

increased the polymers' cationic charge, which improved DNA binding and

condensation[2611. For the first time, cationic polymers, including C32-117 and two

other end-capped PBAEs, were shown to be nearly as effective as adenovirus at

transfecting primary human endothelial cells.

The polymer group was also found to alter the specificity of in vitro gene

transfection in various cell lines[2 62 1. In a report that screened 60 additional end-

capped C32 variants for transfection efficiency in five different cell lines, it was

observed that in some cases, variants that yielded the maximum transfection

efficiency for delivery to one cell line mediated little or no transfection in others. For

example, C32-117 was found to yield high levels of transfection in the HeLa human

cervical cancer cell line and the HepG2 human hepatocellular carcinoma cell line,

but not in the DC2.4 immortalized murine dendritic cell line; in contrast, a different

end-modified variant, C32-254, had excellent performance in DC2.4 cells and poor

activity in HeLa and HepG2 cells. End-capped PBAEs have demonstrated particularly

efficient DNA transfection of cultured stem cells; for this reason, they have been

used to genetically modify mesenchymal stem cells and embryonic stem cell-derived

cells for the promotion of angiogenesis in a mouse ischemic hindlimb modell263, 2641.

Recently, end-modified PBAEs have been used for non-viral gene transfection of
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mouse mammary epithelial cells[2651, human endothelial cells[2 6 6 1, and human

glioblastoma cells[267, 2681.

End-modified C32 polymers were also found to have promising in vivo gene

delivery performance. In transgenic mice bearing ovarian tumors, C32-117 was able

to deliver and mediate strong expression of a luciferase gene in the tumors at a level

significantly higher than that of unmodified C32 following intraperitoneal

administrationl 25 8 .A follow-up study demonstrated preclinical safety and efficacy of

C32-117 complexed with a DT-A gene construct for suicide gene therapy of three

different mouse models of ovarian cancer[2691. Biodistribution data in mice

suggested that intraperitoneal administration of PBAE/DNA polyplexes yielded high

gene expression in the fat and stomach, whereas intravenous administration

resulted in expression concentrated in the lungs, liver, and spleen[2 91. Perhaps in an

analogous manner to the cell line preferences observed in vitro, the polymer end

group may play a role in dictating organ-to-organ differences in gene expression.

One of the long-term objectives in the drug delivery field has been the

incorporation of targeting functionalities to reduce possible adverse effects of

nonspecific delivery and to minimize the total drug dose required. As mentioned

earlier, these targeting functionalities include small molecules, peptides, proteins,

antibodies, or aptamers that recognize and bind to cell surface markers expressed

specifically in the tissue of interest. The integrin-binding arginine-glycine-aspartic

acid (RGD) peptide has been well-studied for its ability to enhance tumor-targeted

drug delivery due to the overexpression of xvp3 and avp5 integrins on the surface

of endothelial cells in many malignant tumors[2701.
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The use of RGD peptides to achieve targeted gene delivery with poly(p-amino

ester)s has been explored. In one study, the RGD peptide was chemically conjugated

to the side chains of poly(P-amino ester)s via disulfide linkages, which enabled the

targeting ligand to be cleaved upon encountering the reducing environment within

the cell[2 7 11. In another study, an RGD peptide was linked to a stretch of negatively

charged glutamate residues, and the anionic peptide was electrostatically coated to

the surface of positively charged PBAE/DNA nanoparticles by mixing at a slightly

acidic pH[27 21. RGD-coated C32/DNA nanoparticles were found to deliver DNA in a

ligand-specific manner to primary human umbilical vein endothelial cells (HUVEC).

It has been further reported that PBAE/DNA nanoparticles coated with various

peptides can mediate tissue-specific gene expression in mice even in the absence of

a particular targeting motif like RGD, although the mechanism at play is

unknown[2731. Electrostatically coated targeting ligands may be advantageous to

those that are chemically coupled because they may be less likely to alter the

chemical and biophysical properties of the polymer that enable efficient

delivery[2741.

2.5.4 Unsolved challenges

As illustrated above, PBAEs have shown tremendous potential as non-viral

vectors for gene therapy. Nonetheless, for this class of polymers, several challenges

and questions remain, among them the following three:

(1) Poor stability under physiological conditions: Aggregation in the blood poses a

serious challenge to the development of many cationic gene delivery

polymers for systemic administration. For PBAE/DNA polyplexes, one
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indication of poor stability is the rapid growth in particle diameter within

minutes of dilution in a high ionic strength buffer. As seen from dynamic light

scattering (DLS) measurements in Figure 2.10, at low salt concentration,

polyplexes remain relatively stable at either pH 5.2 or pH 7.55; however, at

physiological salt concentration (150 mM NaCI), nanoparticles demonstrate a

rapid increase in diameter, implicating salt as a major contributor to polyplex

aggregation. Another sign of instability has been breathing difficulty and

acute toxicity observed in some mice upon intravenous injection of

polyplexes, suggesting the possibility of embolism with lung capillaries.

1400

1200 25 mM NaOAC (pH 5.2)

1000

800 25 mM HEPES (pH 7.55)

6 800 25 mM HEPES + 150 mM

400 NaCl (pH 7.55)

200 PBS (pH 7.4)

0
0 5 10 15 20 25 30

Time after addition of indicated solution (min)

Figure 2.10 Aggregation of PBAE polyplexes under physiological conditions
Polyplexes consisting of the PBAE C32-122 and plasmid DNA were prepared at a
30:1 w/w ratio in 25 mM sodium acetate buffer (NaOAc) at pH 5.2. After a 5 min
incubation at RT, the polyplexes were diluted in the indicated buffers and the
diameters were measured by dynamic light scattering (DLS).

(2) Batch-to-batch variability: Inconsistency in the transfection performance of

various batches of PBAE polymers has sometimes been observed, as shown

in Figure 2.11. This variation was hypothesized to result at least in part from

subtle differences in the molecular weight distributions (MWD) of the
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batches. As a result, we were motivated to examine in detail the effect of MW

and MWD on the gene delivery properties of amine end-modified PBAEs, a

subject which had not yet received systematic investigation.
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Figure 2.11 PBAE batch-to-batch variability
Different batches of the PBAE C32-117 were complexed with GFP-encoding plasmid
DNA and incubated with HepG2 cells. Transfection efficiency was assessed after 24
h by FACS analysis.

(3) Limited understanding of cellular uptake and trafficking: The mechanisms by

which PBAE polyplexes are internalized and trafficked within cells have not

yet been studied. This lack of knowledge represents a hindrance to the

rational design of more effective gene carriers.

As suggested in the introduction, the thesis research detailed here aims to

make contributions within these areas that deepen our understanding of the gene

delivery properties of these polymers and facilitate their continued development as

non-viral gene vectors.
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3 DEVELOPMENT OF DEGRADABLE HYDROPHOBIC
POLY(BETA-AMINO ESTER) TERPOLYMERS FOR
ENHANCED GENE DELIVERY POTENCY AND
NANOPARTICLE STABILITY*

3.1 INTRODUCTION

Gene therapy is a promising treatment strategy for a variety of inherited and

acquired diseases, but safe and efficient delivery remains a challenge. Though gene

therapy mediated by viral vectors has recently made great clinical progress,

limitations associated with their use persist, such as the possibility of adverse

immune reactions, the difficulty of repeat dosing, and small DNA loading

capacities.[" 21 Non-viral vectors, meanwhile, continue to suffer from generally low

DNA delivery efficiency.[3 1 Nonetheless, the diversity of synthetic materials offers

potential for the identification and incorporation of functional motifs that confer not

only efficient gene transfection, but also formulation stability and

biocompatibility.[4

Poly(P-amino ester)s (PBAEs) are a class of cationic gene delivery polymers

that have been studied pre-clinically for applications including local cancer therapy

and the genetic modification of stem cells for treatment of ischemia[5 ,61. Synthesis is

relatively simple and versatile, and is based on the Michael-type conjugate addition

* This chapter has been published as Eltoukhy, A. A., Chen, D., Alabi, C. A., Langer, R.,
Anderson, D. G. Degradable terpolymers with alkyl side chains demonstrate
enhanced gene delivery and nanoparticle stability. Adv. Mater. 25, 1487 (2013).
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of a primary or secondary amine to a diacrylate. Using this approach, combinatorial

library synthesis and high-throughput screening methods have been developed to

identify polymers that deliver DNA with high efficiency and low cytotoxicity[7-91.

Through these experiments, structural features associated with highly active gene

delivery polymers have emerged, such as the presence of hydroxyl groups in the

side chains and the conjugation of certain primary amines to the chain ends[1013 1. In

addition to high transfection efficiency, the degradability of the polyester backbone

offers the possibility of reduced toxicity and rapid clearance, a feature that

distinguishes PBAEs from polyethylenimine (PEI), the most widely used gene

delivery polymer[141.

Cationic polymers can form polymer-DNA polyplexes that may aggregate

under physiological conditions[15-161. This potential aggregation in the blood

represents a serious barrier to the systemic delivery of nucleic acids, since large

aggregates can in some cases lead to embolism or otherwise may be quickly cleared

by the reticuloendothelial system[16,171. Colloidal stability is a complex phenomenon

influenced by many factors including concentration, surface charge, pH, ionic

strength, and the presence of serum proteins, but a common approach to improve

formulation stability is to introduce a polymer shield comprising polyethyleneglycol

(PEG), poloxamers, or other non-fouling polymers[181.Although attachment of PEG

can be covalent or non-covalent, the latter may be preferable to avoid potential

issues resulting from direct PEGylation of gene delivery polymers, such as impaired

DNA condensation and decreased uptake[19, 20. For nanoparticles with sufficiently

hydrophobic surfaces, one simple non-covalent approach entails coating the
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particles with PEGylated phospholipid conjugates[211. Therefore, we hypothesized

that the inclusion of long, linear alkanes in PBAE side chains might facilitate non-

covalent, hydrophobic interaction with PEG-lipid conjugates, resulting in stable

particle formulations upon nanoprecipitation with DNA at high concentration.

Because the modification of cationic polymers with hydrophobic groups has been

reported to increase the physical encapsulation of nucleic acids, promote cellular

adsorption, and reduce the positive surface charge associated with cytotoxicity and

aggregation, we further hypothesized that hydrophobic PBAE terpolymers might

deliver DNA more efficiently than PBAEs lacking alkyl side chains and might

condense DNA into polyplexes with greater aggregation resistance[22 -241.

3.2 MATERIALS AND METHODS

3.2.1 Materials

Diacrylate and amine monomers, as well as end-capping reagents, were

purchased from Sigma-Aldrich (St. Louis, MO, USA), Alfa Aesar (Ward Hill, MA, USA),

TCI America (Portland, OR, USA), and Monomer-Polymer & Dajac Labs (Trevose, PA,

USA). (PEO)4-bis-amine ("122") was acquired from Molecular Biosciences (Boulder,

CO, USA). All reagents were used without further purification. Plasmid DNA

encoding green fluorescent protein (gWiz-GFP) was purchased from Aldevron

(Fargo, ND, USA). PEG-lipid conjugate (1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxy(polyethylene glycol)-5000], or 18:0 PEG5000

PE) was obtained from Avanti Polar Lipids (Alabaster, AL, USA). Slide-A-Lyzer MINI

dialysis devices (20 kDa MWCO, 0.1ml) were purchased from Pierce Biotechnology
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(Rockford, IL, USA). HeLa cells (ATCC, Manassas, VA, USA) were cultured in DMEM

(Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum

(Invitrogen).

3.2.2 Polymer synthesis

The monomers were dissolved in DMSO (Sigma-Aldrich) to a concentration

of 200 mg ml 1 .Alkylamines generally required heating to 60'C to enable complete

dissolution. Library scale reactions were performed in glass shell vials (1 mL) with

polyethylene snap caps (Waters, Milford, MA, USA) in a 96-well reaction block

(Symyx, Santa Clara, CA, USA). To each vial equipped with stir bar, diacrylate

monomer, hydrophobic amine monomer, and hydrophilic amine monomer were

added such that their molar ratio was 1.2:0.3:0.7 and the total mass of monomers

was 100 mg. After heating and stirring at 90'C for 48 h, the reactions were allowed

to cool to RT, and to each vial, end-capping amine (0.2 mmol in 0.5 mL DMSO) was

added. The reactions were stirred at 40'C for 24 h, divided into aliquots, and then

stored frozen at -20'C. Top-performing polymers were resynthesized by scaling up

the reactions tenfold.

3.2.3 Analytical Gel Permeation Chromatography (GPC)

GPC was performed using a Waters system equipped with a 2400 differential

refractometer, 515 pump, and 717-plus autosampler. The flow rate was 1 ml min-'

and the mobile phase was tetrahydrofuran (THF). The Styragel columns (Waters)

and detector were thermostated at 352C. Linear polystyrene standards were used

for calibration.
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3.2.4 Preparative GPC/HPLC

DD24-C12-122 was subjected to GPC using a Phenogel 5pm MXL gel filtration

column (300 mm x 7.8 mm, Phenomenex, P/No. OOH-3087-KO) with THF as the

mobile phase at a flow rate of 1 ml min-'. The separation was performed on a 1200

Series Agilent HPLC system equipped with a UV diode array detector and a 1260

Infinity analytical scale fraction collector. The column compartment was kept at

40'C during fractionation. Based on the absorption of the polymer at 260 nm (Fig.

S2), polymer was collected between 5.2 and 7.7 min. The fractionated polymer was

transferred to a tared vial and dried until further analysis.

3.2.5 NMR

The HPLC-purified DD24-C12-122 polymer, along with the monomers and

end-capping reagent, was characterized on a Varian mercury spectrometer by 1H-

NMR spectroscopy (500 MHz, DMSO-d 6).

3.2.6 Transfection experiments

One day before transfection, 12,500 HeLa cells (100 Rl) were seeded into

each well of a 96-well polystyrene tissue culture plate. In a typical example, for a

150 ng/well DNA dose, gWiz-GFP plasmid DNA (5 mg ml-1) was diluted to 15 [tg ml-'

in 25 mm sodium acetate (NaOAc) buffer at pH 5.2. Polymers (100 mg ml-1) were

thawed immediately prior to transfection and diluted in NaOAc buffer to a

concentration of 300 Rg ml-1 (20:1 w/w polymer:DNA). To form DNA-polymer

nanoparticles, polymer solution (25 lI) was added to DNA (25 [l) in a half-area 96-

well plate, mixed by repeated pipetting using a multichannel pipette, and allowed to

79



incubate for 10 min at room temperature. Polymer-DNA complexes (30 [d) were

then gently mixed with fresh medium (195 [d) pre-warmed to 37*C. Conditioned

medium was removed using a 12-channel aspirating wand and replaced with the

complexes diluted in medium (150 d). Following a 4-h incubation, complexes were

removed with the aid of a multi-channel aspiration wand and replaced with fresh

medium (100 [d). Lipofectamine 2000 (Invitrogen) was used according to the

protocol provided by the vendor.

3.2.7 Fluorescence-activated cell sorting (FACS)

GFP expression was assessed 48 h after transfection. After aspirating

conditioned medium, cells were washed with PBS and detached with 0.25% trypsin-

EDTA (25 [d, Invitrogen). FACS running buffer (50 pil), consisting of 98% PBS and

2% FBS, was added to each well. Cells were mixed thoroughly and then transferred

to a 96-well round-bottom plate. GFP expression was measured using FACS on a BD

LSR II (Becton Dickinson, San Jose, CA, USA). To determine the viabilities of treated

cells relative to non-treated control cells, propidium iodide stain (Invitrogen) was

added to the FACS buffer (1:200 v/v). The relative viability was calculated as the

ratio of live treated cells per well to the mean number of live non-treated cells per

well. 2D gating was used to separate increased auto-fluorescence signals from

increased GFP signals to more accurately count positively expressing cells. Gating

and analysis were performed using FlowJo v8.8 software (TreeStar, Ashland, OR,

USA).
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3.2.8 Dye exclusion assay

A working solution of PicoGreen was prepared by diluting 80 [l of stock

solution in 15.92 ml NaOAc buffer. In each well of a 96-well plate, 50 [d of polymer

at 0.6, 1.2, or 2.4 mg ml-1 in NaOAc buffer was added to 50 RL of DNA at 0.06 mg ml-1

in NaOAc buffer. After 5 min, 100 R.l of PicoGreen working solution was added to the

complexes. After an additional 5 min incubation, 30 [l was transferred to 200 [l of

10% serum-containing medium in a black 96-well assay plate. The fluorescence was

then measured on a Tecan Infinite M1000 plate reader using the FITC filter set

(excitation 485 nm, emission 535 nm). The reduction in relative fluorescence (RF),

or the relative encapsulation efficiency, was calculated using the relationship (FDNA-

Fsample)/(FDNA - Fblank), where Fsample is the fluorescence of the polymer-DNA-

PicoGreen sample, FDNA is the fluorescence of DNA-PicoGreen (no polymer), and

FbIank is the fluorescence of a sample with no polymer or DNA (only PicoGreen).

3.2.9 Gel electrophoresis

Polyplexes were formed by repeatedly mixing 25 RI of polymer (0.04, 0.2, or

0.8 mg ml-1 in NaoAc buffer) with 25 [tl of plasmid DNA (0.04 mg ml-1 gWiz-GFP in

NaOAc buffer). After 10 min incubation at RT, 10 Rl of each sample (-200 ng total

DNA) was loaded into each lane of a pre-cast 0.8% agarose E-gel (Invitrogen)

stained with ethidium bromide. Control lanes were loaded with 200 ng of free

control pDNA and -5 tl of TrackIt 1 Kb Plus DNA ladder (Invitrogen). The gel was

run using the E-gel electrophoresis system (Invitrogen) for 30 min at RT, and the

bands were visualized with a gel imager.
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3.2.10 Particle formulation with PEG-lipid at high DNA concentration

Polymer in DMSO (100 mg ml-1) and 18:0 PEG5000 PE in ethanol (10 mg ml-

1) were co-dissolved in acetonitrile to yield final concentrations of 8 mg ml-1 and 10

mol%, respectively. gWiz-GFP pDNA (5 mg ml-1) was diluted to 0.4 mg ml-1 in 25 mm

NaOAc buffer. The polymer and PEG-lipid in acetonitrile (25 pl) was then added to

DNA (25 pil) and mixed by repeated pipetting. After incubation for 10 min, the

formulations were diluted in PBS (50 pl) and dialyzed against PBS (3 1) for 3 h at RT.

3.2.11 Dynamic light scattering (DLS) measurements

Particle sizes and ( potentials were measured using a ZetaPALS DLS detector

(Brookhaven Instruments Corp., Holtsville, NY, USA, 15-mW laser, incident beam

676 nm). Correlation functions were collected at a scattering angle of 90*, and

particle sizes were obtained from the MAS option of BIC's particle sizing software (v.

2.30) using the viscosity and refractive index of water at 25*C. Particle sizes are

expressed as effective diameters (z-average or hydrodynamic diameters) calculated

using the Stokes-Einstein relationship from the diffusion coefficient obtained by

cumulant analysis. Average electrophoretic mobilities were measured at 25"C using

BIC PALS (-potential analysis software, and (-potentials were calculated using the

Smoluchowski model for aqueous suspensions. For polyplex sizing, particles were

prepared in NaOAc buffer as for DNA transfection, except volumes were scaled up

by a factor of five. Once formed in NaOAc buffer, complexes were diluted fourfold in

either additional NaOAc buffer or PBS and then sized at the indicated times. For DLS

measurements of particles prepared by nanoprecipitation, particles (either freshly

prepared or dialyzed) were diluted 100-fold in NaOAc buffer or PBS as indicated.
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3.3 RESULTS AND DISCUSSION

3.3.1 PBAE terpolymer library synthesis and screening

In this study, we synthesized random PBAE terpolymers by step-growth

polymerization of three starting monomers: a diacrylate, a hydrophobic alkylamine,

and a comparatively hydrophilic amine. Previous work has shown the importance of

terminal amine groups[1" 121. Therefore, we used a two-step reaction scheme

involving co-polymerization of the amine monomers with excess diacrylate to yield

acrylate-terminated base polymer, followed by reaction with excess diamine to

produce amine end-modified PBAE terpolymer (Figure 3.1a). Because it is not easily

predicted which PBAEs would benefit from the inclusion of alkyl side chains, we

used combinatorial library synthesis and screening as a tool to accelerate their

development. Our initial library (Figure 3.1b) consisted of 80 amine-end modified

PBAE terpolymers synthesized using 8 diacrylates, 10 hydrophilic amines, one

hydrophobic amine (dodecylamine), and one end-capping diamine ("122"). Based

on pilot studies, we chose a monomer molar feed ratio of 1.2:0.7:0.3

diacrylate:hydrophilic amine:hydrophobic amine for the polymerization, and the

reactions were carried out in DMSO. Under these conditions, eight of the 80

polymers precipitated out of reaction, while the remaining library members were

soluble.
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Using these 72 polymers, we formed complexes with GFP-encoding plasmid

DNA and incubated them with cultured HeLa cells in serum-containing growth

medium for 4 h. As a screen for transfection efficiency, we performed fluorescence-
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activated cell sorting (FACS) 48 h later to quantify the proportion of cells expressing

GFP.

As shown in the heat map (Figure 3.2a), the top five PBAE terpolymers

transfected over 70% of HeLa cells, and four of these five, D90-C12-122, D60-C12-

122, D21-C12-122, and D24-C12-122, shared a common diacrylate structure based

on bisphenol A ethoxylate ("D"). The top two polymers from this screen

outperformed one of the best previously identified PBAEs lacking alkyl side chains,

C32-122, and rivaled the commercially available lipid reagent Lipofectamine 2000

in transfection efficiency (Figure 3.2b).

(a) 20 21 24 28 32 36 60 80 90 94 (b) 10Ong

A 3778 31-05 17.38 20.30 10.98 4.73 71.75 50.88 6035 insoluble F100' 3 200 ng
C 1.79 G91 4.97 &18 7.64 12.18 3.30 1.26 &47 insoluble o 300 ng

D 64 75 80.93 90.33 65.26 64.43 61.28 91.45 9.42 1$011.0

E 4.86 8.41 0.00 23 f14.63 7.53 894 insoluble 329 1.47 60

&M2 019 .1-1 b.1 32 .1,4 A 025 o1 $
T 7.43 10,22 12.65 6.46 9.94 29.97 1.1 O 0.26

JJ .w 0.76 0.7 .10 0 .0 O x0 41 ' # 2.11 insoluble 20
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.40 13 42.91 9&06Q

(c) 6 17 21 24 28 6o 71 76 80 90

D 39.50 33.38 41.70 72.93 36.65 79.65 73.73 83.70

DB 0.04 25.10 6.13 2.$b 5.88 '046
DC 1.06 3.73 1171 1.4, 4.77 6 1.74 204 -2.40
DD 53.73 26.15 69.80 SaO0 25.38 86.43 74.20 63.55 65.25

DF 46.95 38.45 29.03 44.83 38.50 85.16 58.68 32.80 51.10
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Controls treated DNA C32-122 LF2000

0.34W 0.46 1.37 84-50

Figure 3.2 Development of hydrophobic PBAE terpolymers with high DNA
transfection potency
a) Heat map of DNA transfection efficiencies of HeLa cells with the initial terpolymer
library (300 ng DNA/well; 20:1 polymer:DNA w/w), as determined by FACS
analysis. b) Transfection of HeLa cells with lead polymers from the initial library. c)
Heat map of HeLa transfection efficiencies with the second, focused library (150 ng
DNA/well).
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To investigate the structural space surrounding these polymers, we

synthesized a second library of hydrophobic PBAE terpolymers focused on

bisphenol diacrylate monomers (Figure 3.1c). When we screened this set of

polymers for transfection efficiency at half the DNA dose used in the first library,

five polymers emerged in addition to D60-C12-122 and D90-C12-122 that

transfected HeLa cells with greater than 85% efficiency (Figure 3.2c). After re-

synthesizing these polymers on a larger scale, and transfecting cells at reduced DNA

doses, we observed that these five polymers, based on DD24, DD90, DD60, DF90,

and DF60, exhibited transfection potencies in HeLa cells superior to Lipofectamine

2000 (Figure 3.3a-b). These polymers were generally short, ranging in weight-

average molecular weight (Mw) from 2.40 to 2.94 kDa with polydispersity indices

(PDI) from 1.7 to 2.3 (Table 3.1). DD24-C12-122, in particular, appeared to be the

most potent terpolymer to emerge from these screens, yielding -80% transfection

efficiency at the 50 ng dose without producing significant toxicity (Figure 3.3c). This

polymer was purified by preparative gel permeation chromatography (GPC) using

an HPLC system (Figure 3.4). The resulting polymer (Mw = 4.37 kDa, PDI = 1.43) was

characterized by 'H-NMR spectroscopy, which confirmed the incorporation of the

hydrophobic amine as well as the end-capping amine (Figure 3.5).
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Figure 3.3 Transfection performance of lead PBAE terpolymers at reduced
DNA doses in HeLa cells
a) DNA transfection efficiencies, b) geometric mean fluorescent intensities, and c)
relative viabilities of HeLa cells after treatment with the top PBAE terpolymers at
reduced DNA doses.
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Polymer Mw (Da) Mn (Da) PDI
D60-C12-122 2400 1167 2.057
D90-C12-122 2689 1356 1.983
DD24-C12-122 2891 1622 1.782
DD60-C12-122 2375 1381 1.712
DD90-C12-122 2811 1553 1.810
DF60-C12-122 2713 1176 2.307
DF90-C12-122 2939 1315 2.235
Table 3.1 MW of top-performing PBAE terpolymers
GPC analysis of top-performing PBAE terpolymers. Mw = weight-average molecular
weight, Mn = number-average molecular weight, PDI = polydispersity index =
Mw/Mn.

5' 10 15

Elution time (min)

Figure 3.4 HPLC/SEC purification of DD24-C12-122
An example chromatogram showing the elution of DD24-C 12-122 polymer from the
GPC column. Using a preparative HPLC system, eluted polymer was collected
between 5.2 and 7.7 min.
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HPLC-purifi ed DD24-CIZ-122 polymer

H OH hOH H

H-10y O~d O OXY__ H , DMSO
H O 9 h0H

OH DMSO
HO,, ,NH2

C12

H2N O -O O __NH2

8.0 75 70 65 60 55 50 45 40 35 30 25 20 15 1.0 05 00
f1 (ppm)

Figure 3.5 'H NMR spectra of DD24-12-122 and monomers
1H NMR spectrum (500 MHz, DMSO-d 6) of HPLC-purified DD24-C12-122 polymer
(top), compared with the spectra for the monomers (DD, 24, C12) and the end-
capping reagent (122). The structure of a representative DD24-C12-122 oligomer is
shown. The disappearance of the acrylate peaks (a-c for monomer DD) in the
polymer spectrum suggests that amine end-capped polymer was successfully
formed from acrylate-terminated base polymer.

3.3.2 Effect of alkyl side chain content on PBA Epolyplex stability and transfection

When we used dynamic light scattering (DLS) measurements to compare the

stabilities of D60-C12-122, D90-C12-122, and C32-122 polyplexes formed at low

DNA concentration, we observed that all three polymers formed stable, sub-100 nm

complexes with plasmid DNA under conditions of reduced pH and low ionic strength

(Figure 3.6a). However, when the polyplexes were diluted in phosphate-buffered

saline (PBS) at physiological pH and ionic strength, only the complexes formed from

89



the PBAE terpolymers remained stable, with effective diameters below 100 nm

(Figure 3.6b).

(a) NaOAc Buffer (pH 5.2) (b) PBS (pH 7A)

140- 800.

120 700-
21600-
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_______________ 060-012-122 1 6002-2
0.0 CL0
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0 200-

0 n0
0 30 60 0 3 60

Time (min) Time (min)

(c) (d)
D60-122 PBS (pH 7A)

100o 1.6

80- 1 -- Omol% C12
. 1  - 10 mol% C12

6 75 ng DNA/well C 20 mol% C12
150 ng DNA/wel 3- 30 mol% C12

1.2. ..- e- 40 mol% C12

20 -- 50 mol% C12
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Dodecylamine Feed Ratio (mol%) Time (min)

Figure 3.6 Effect of alkyl side chain content on PBAE polyplex stability and
transfection
a-b) Stabilities of polyplexes formed from C32-122, D60-C12-122, and D90-C12-122
after self-assembly in sodium acetate (NaOAc) buffer at pH 5.2 or after dilution in
phosphate-buffered saline (PBS) at pH 7.4. Polyplexes were formed at low DNA
concentration (0.03 mg ml-) with a polymer:DNA w/w ratio of 20:1. c) HeLa
transfection efficiencies and d) polyplex stabilities of D60-122 polymers
synthesized with varying dodecylamine molar feed ratios.

To examine the effect of alkyl side chain content on PBAE terpolymer

transfection efficiency and complex stability in greater depth, we synthesized D60-

C12-122 using a range of molar feed ratios for which the dodecylamine (C12) feed

varied from 0 to 50 mol% of the total amine feed, while the diacrylate:amine ratio

was kept constant at 1.2:1.0. An increase in the alkylamine feed ratio up to 30 mol%

C12 generally corresponded to an increase in transfection potency in HeLa cells,

with a rough plateau in efficiency between 30 and 50 mol% C12 (Figure 3.6c).
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Interestingly, the alkylamine feed ratio also appeared to correlate positively with

polyplex stability in PBS (Figure 3.6d). One hour after dilution in PBS, polyplexes

formed from D60-122 polymer lacking alkyl side chains grew 50% in diameter, in

contrast to <10% growth for those formed from D60-122 terpolymers synthesized

with C12 feed ratios at or above 20 mol%.

(a) C32-122 (b) DD24-122

-100- 100

60--- 0 mo1%
-- 10 mol%

- 40 - 40- -e 0ml20 mol%
JOB 30 mol%

20 20' -e- 40 mol%

8 10 12 14 16 8 10 12 14 16

Alkyl Side Chain Length Alkyl Side Chain Length

Figure 3.7 Effect of alkyl side chain length and content on PBAE transfection
efficiency
HeLa transfection efficiencies of C32-122 (a) and DD24-122 (b) polymers (100 ng
DNA/well) synthesized with varying chain lengths and molar feed ratios of
alkylamine. At these doses, C32-122 and DD24-122 synthesized with 0 mol%
alkylamine yielded transfection efficiencies of 0.2% and 4.2%, respectively.

To determine how the alkyl side chain length affects the gene delivery

efficiency of PBAE terpolymers, we synthesized C32-122 and DD24-122 using

alkylamines ranging from 8 to 16 carbons in length. We also varied the alkylamine

molar feed from 0 to 40 mol% of the total amine feed, with the diacrylate:amine

molar ratio fixed at 1.2:1.0. We observed a positive association between the alkyl

side chain length of C32-122 terpolymers and transfection efficiency of HeLa cells

(Figure 3.7a). As was true for D60-122, there was also a positive correlation

between alkylamine feed ratio and transfection activity of the C32-122 terpolymers.
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At this DNA dose, though, varying the alkyl side chain length and content of DD24-

122 terpolymers did not yield much variation in observed transfection efficiencies

of HeLa cells (Figure 3.7b). Nonetheless, for both C32-122 and DD24-122, the best-

performing hydrophobic terpolymers produced a marked enhancement in

transfection activity relative to the polymers synthesized without alkylamine (C32-

122: 0.22% vs. 78.1%; DD24-122: 4.2% vs. 87.5%).
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H

H2N - N

211
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H 2 N~N
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(b)

C C32-C12
MDD24-C12

Amine End-Modification
V

Figure 3.8 Effect of amine end-modification of PBAE terpolymer transfection
efficiency
a) Structures of diamine end-capping molecules. b) Effect of amine end-modification
on DNA transfection efficiency of HeLa cells with C32 and DD24 terpolymers.
Terpolymers were synthesized using a monomer molar feed ratio of 1.2:0.3:0.7
diacrylate:hydrophobic amine:hydrophilic amine. "None" refers to terpolymers
synthesized using an excess of amine monomers (1.0:0.36:0.84
diacrylate:hydrophobic amine:hydrophilic amine) and no end-modification.
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Because polymer terminal group modification has been previously shown to

affect transfection efficiency[1 111, we also synthesized C32-C12 and DD24-C12

polymers with end-capping diamines other than 122 (Figure 3.8a). For the C32

terpolymers, amine end-modification dramatically influenced transfection

efficiency, but for the DD24 terpolymers, there was less variation at this dose

(Figure 3.8b). We expect that at lower DNA doses, we would observe greater

variation in transfection activity as a result of changes to the alkylamine feed ratio

and terminal groups of DD24 terpolymers.

Due to their low molecular weights and high polydispersities, the polymers

resulting from the step-growth polymerization of the three starting monomers

likely represent a mixture of three species: copolymers of the diacrylate and the

hydrophilic amine, copolymers of the diacrylate and the hydrophobic amine, and

finally terpolymers incorporating all three monomers. To elucidate which species is

responsible for the observed enhancements in transfection potency and

nanoparticle stability, and whether there might be a synergistic interaction between

the relatively hydrophilic and hydrophobic copolymer species, we prepared four

PBAE variants containing the DD diacrylate: one synthesized with only the

hydrophilic 24 amine (DD24-122, DD:24 = 1.2:1.0 mol/mol, Mw = 2.48 kDa); another

synthesized with only the hydrophobic C12 amine (DDC12-122, DD:C12 = 1.2:1.0,

Mw = 5.38 kDa); a third synthesized with 70 mol% of the hydrophilic amine and 30%

of the hydrophobic amine (DD24-C12-122, DD:24:C12 = 1.2:0.7:0.3, Mw = 3.03 kDa);

and a fourth comprising a 70%:30% v/v mixture of DD24-122 to DDC12-122 (Mw =

3.44 kDa). To avoid polymer crosslinking that was observed at high molar ratios of
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the C12 amine, these end-capping reactions were performed at room temperature

rather than at 40"C.

PBS (pH 7A)

-0- DD24-122

-E- DDC12-122
-0- DD24-C12-122
-* DD24-122 / DDC1 2-122 mix

30
Time (min)

60

0 lOng
25 ng

fly
Cp,

Figure 3.9 Identification of polymer species responsible for polyplex stability
and transfection potency
Comparison of (a) polyplex stabilities in PBS and (b) DNA transfection efficiencies
of HeLa cells for a DD diacrylate-based PBAE synthesized with only the hydrophilic
24 amine (DD24-122, DD:24 = 1.2:1.0 mol/mol); a PBAE synthesized with only the
hydrophobic C12 amine (DDC12-122, DD:C12 = 1.2:1.0); a PBAE synthesized with
70 mol% of the hydrophilic amine and 30% of the hydrophobic amine (DD24-C12-
122, DD:24:C12 = 1.2:0.7:0.3); and a 70%:30% v/v mix of DD24-122 and DDC12-
122.

When we examined polyplex stabilities in PBS, only the relatively hydrophilic

DD24-122 was unstable, whereas DDC12-122, DD24-C12-122, and the polymer
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mixture all resisted aggregation (Figure 3.9a). When we compared their transfection

efficiencies, the polymer synthesized using all three monomers (DD24-C12-122)

was significantly more potent than the mixture of the DD24-122 and DDC12-122

polymers, as well as the hydrophobic DDC12-122 polymer alone (Figure 3.9b).

These data suggest that although a synergistic effect between the hydrophilic and

hydrophobic polymers may contribute to polyplex stability, the presence of

terpolymer species incorporating both the hydrophilic and hydrophobic amines is

most likely responsible for the enhanced potency of the alkane-containing PBAEs.

3.3.3 Effect of alkyl side chain content on DNA binding and encapsulation efficiency

10% FBSIDMEM
4 1.0-

00.8-

U0.6- C 710 w/w polymer:DNA
z 0 20 w/w polymer:DNA

0.4 40 w/w polymer:DNA

0 Z 0.2-

V 0.01
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Dodecylamine Feed Ratio (mol%/!)

Figure 3.10 Relative encapsulation efficiencies of C32-C12-122 terpolymers of
varying hydrophobicity
PicoGreen assay on polymer-DNA polyplexes formed from C32-C12-122
terpolymers of varying dodecylamine feed ratio. The complexes were formed in
NaOAc buffer (pH 5.2), and then diluted in 10% serum-containing medium
containing the fluorescent DNA-binding dye PicoGreen.

While some studies suggest that hydrophobic modification of polymers

decreases binding and encapsulation of nucleic acids (cite ZZZ), several others

report the opposite trend (cite ZZZ). We observed that C32-C12-122 terpolymer
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hydrophobicity was associated with increasing encapsulation of plasmid DNA upon

complexation, as reflected in the results of a PicoGreen dye exclusion assay

performed in 10% serum-containing media (Figure 3.10). Strictly speaking, it

should be noted that the dye exclusion assay measures the degree of protection

afforded to DNA by the polymer from intercalation of the fluorescent stain (i.e.

encapsulation), and not necessarily the polymer-DNA binding/complexation

efficiency, because PicoGreen could label both free DNA in solution as well as any

accessible polymer-bound DNA (e.g., on the nanoparticle surface).

%C12 010203 0j 0123040F

L F 0 1020 3040 010 20 3040 0 10 203040 F L

F: Free DNA
L: Ladder

1 w/w 5 w/w 20 w/w

Figure 3.11 Relative DNA binding efficiencies of C32-C12-122 terpolymers of
varying hydrophobicity
Polymer-DNA polyplexes were formed in NaOAc buffer (pH 5.2) from C32-C12-122
terpolymers of varying dodecylamine feed ratio and then electrophoresed on a 0.8%
agarose gel.

To assess the relative DNA binding efficiencies of these C32-C12-122

hydrophobic terpolymers, we used a gel retardation assay by forming polyplexes

with DNA at various weight ratios and then visualizing the relative quantity of free

DNA remaining by agarose gel electrophoresis. At polymer:DNA weight ratios of 5:1

or higher, which are most commonly used for transfection, we could not detect free
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DNA from any of complexes formed from the C32-C12-122 variants (Figure 3.11).

However, at a lower weight ratio of 1:1, it was observed that as the terpolymer alkyl

side chain content increased, the relative amount of retarded, polymer-bound

plasmid DNA at the top of the gel generally increased, and that of free DNA

decreased (Figure 3.11). Therefore, taking the results from the PicoGreen and the

gel retardation assays together, increasing hydrophobicity of C32 terpolymers was

correlated with increasing efficiency of DNA binding and encapsulation.

3.3.4 Formulation of terpolymer/DNA nanoparticles with PEG-lipid conjugates

Finally, to test our hypothesis that the incorporation of hydrophobic side

chains in PBAEs can facilitate their interaction with PEG-lipid conjugates, we used a

nanoprecipitation approach to formulate particles comprised of polymer and DNA

in the presence or absence of PEG-lipid. Working with C32-122 and D60-122-based

polymers, we dissolved either the copolymers lacking alkyl side chains (C:32 =

1.2:1.0 mol/mol; D:60 = 1.2:1.0) or the terpolymer variants (C:32:C12 = 1.2:0.7:0.3;

D:60:C12 = 1.2:0.7:0.3) in acetonitrile with or without PEG-lipid and mixed them

with DNA at high concentration in sodium acetate buffer at pH 5.2. To remove the

organic solvent, we then dialyzed the formulations against PBS for 3 h. Comparing

particle sizes before and after dialysis, we found that only the formulations

employing both the terpolymers and the PEG-lipid conjugate gave rise to well-

defined and stable nanoparticles (Figure 3.12a). At this high DNA concentration,

D60-122, for instance, produced large particles -1 pm in size whether or not PEG-

lipid was present. In contrast, when PEG-lipid was present, the terpolymer version,

D60-C12-122, produced particles that remained stable after dialysis at -250 nm in
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size; in the absence of PEG-lipid, the particles grew to >700 nm in diameter after

dialysis, a size which seemed poorly defined given the large variation between

replicate measurements.
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Figure 3.12 Effects of PBAE alkyl side chains (C12) and the presence of PEG-
lipid conjugate on nanoparticle formulation stability and transfection
efficiency at high DNA concentration
a) Particle sizes before and after dialysis against PBS. b) Transfection efficiencies of
HeLa cells using equal doses of each formulation (approximately 75 ng and 150 ng
of DNA/well).
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When we then transfected HeLa cells using identical volumes of formulation

per well, corresponding to approximately 75 ng and 150 ng of DNA, we found that

only the terpolymer formulations including PEG-lipid yielded significant

transfection (Figure 3.12b). Further support for non-covalent interaction of the

PEG-lipid conjugate was provided by (-potential measurements, which showed a

reduction in (-potential upon inclusion of PEG-lipid for particles formed from

hydrophobic C32-122 terpolymers, but not for particles formed from regular C32-

122 (Table 3.2). Taken together, these data suggest that at high DNA concentration,

PBAE terpolymers incorporating alkyl side chains, but not polymers lacking them,

are capable of interacting with PEG-lipid conjugates and DNA to form stable

nanoparticles, and that these particles retain the ability to mediate gene delivery.

No PEG-lipid(mV) PEG-lipid (mV)
C32-122 (0 mol% C12) 27.0 ± 4.1 27.2 ± 3.3
C32-C12-122 (20 mol% C12) 37.2 ± 5.1 11.1 ± 1.9
C32-C12-1 (40moI% ± 2.1 12.9 ± 2.5
Table 3.2 (-potential measurements of nanoparticles formed from C32-122
terpolymers of varying hydrophobicity
Formulations were prepared by nanoprecipitation of DNA with the polymers (20:1
w/w polymer:DNA) in the presence or absence of PEG-lipid conjugate (10 mol%).
Freshly prepared nanoparticles were diluted 100-fold in NaOAc buffer (pH 5.2)
prior to measurement (mean ± SD, n = 3).

Due to the commercial availability of functionalized PEG-lipid conjugates, the

capacity of the hydrophobic PBAE terpolymers to support formulation with PEG-

lipid represents a straightforward non-covalent method for attaching targeting

ligands such as peptides to the polymer/DNA nanoparticles. Although the particles

produced using a combination of PBAE terpolymers and PEG-lipid were rather large
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here, with effective diameters of -250-350 nm, there is likely significant potential

for optimization of particle size through variation of the PBAE alkyl side chain

length and content, the ratio of PBAE:DNA:PEG-lipid, the lengths of the lipid tails

and PEG polymer in the PEG-lipid conjugate, and the use of additional excipients

such as cholesterol or poloxamers. Furthermore, increasing the mixing rate with the

aid of a microfluidic mixing device should enable the formulation of smaller

nanopartices[25I.

3.4 CONCLUSIONS

In summary, we employed parallel synthesis and screening as a tool to

accelerate the development of degradable alkane-containing PBAE terpolymers for

gene delivery, guided by our hypothesis that they might provide superior

transfection potency and particle stability over polymers lacking hydrophobic side

chains. The top-performing PBAE terpolymers exhibited transfection potencies in

HeLa cells significantly higher than that of Lipofectamine 2000. Transfection

efficiency was generally positively correlated with increasing hydrophobicity, as

defined by either increasing the feed ratio of alkylamine monomer or increasing its

chain length. Increasing the hydrophobic content of the polymers also appeared to

be associated with greater polyplex stability at low DNA concentration. At high DNA

concentrations under conditions of physiological pH and ionic strength, these

hydrophobic PBAE terpolymers were better able to facilitate interaction with PEG-

lipid and DNA to yield stable, well-defined nanoparticles capable of transfecting

cultured cells in vitro. This simple yet powerful approach to improving the
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transfection potency and formulation stability of degradable cationic polymers may

facilitate the development of multifunctional, nanoparticulate gene delivery systems

suitable for in vivo application.
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4 DEVELOPMENT OF DEGRADABLE HYDROPHOBIC
PBAE TERPOLYMERS FOR CELL-SPECIFIC GENE
DELIVERY

4.1 INTRODUCTION

As presented in Chapter 3, the initial development of the hydrophobic PBAE

terploymers proceeded through library synthesis and screening in HeLa cells, a

cervical cancer cell line. Although this cell line has been commonly used in in vitro

assays due to its potential relevance to cancer biology and its ease of culture,

efficient gene transfection of HeLa cells is readily achieved through a variety of

means. In this chapter, we focus on the development of these degradable

hydrophobic PBAE terpolymers for gene transfection of difficult-to-transfect

primary cells with greater clinical relevance.

We identify terpolymers such as DD24-C12-122 and LL24-C12-122 that

mediate gene transfection of primary human umbilical vein endothelial cells

(HUVECs), mesenchymal stem cells, and primary neonatal rat cardiomyocytes with

greater efficacy than that of a widely used commercial reagent. We explore the

chemical space surrounding these polymers by synthesizing a small library of

structurally related terpolymers, characterizing their biophysical properties, and

screening them for gene delivery to HeLa cells, HUVECs, and rat cortical neurons.

Finally, we present preliminary experiments exploring the potential of these

polymers for systemic gene delivery in vivo.
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4.2 MATERIALS AND METHODS

4.2.1 Materials

Diacrylate and amine monomers, as well as end-capping reagents, were

purchased from Sigma-Aldrich (St. Louis, MO, USA), Alfa Aesar (Ward Hill, MA, USA),

TCI America (Portland, OR, USA), and Monomer-Polymer & Dajac Labs (Trevose, PA,

USA). (PEO)4-bis-amine ("122") was acquired from Molecular Biosciences (Boulder,

CO, USA). All reagents were used without further purification. Plasmids encoding

green fluorescent protein (gWiz-GFP) and firefly luciferase (gWiz-Luc) were

purchased from Aldevron (Fargo, ND, USA). PEG-lipid conjugates were obtained

from Avanti Polar Lipids (Alabaster, AL, USA). HeLa cells (ATCC, Manassas, VA, USA)

were cultured in DMEM (Invitrogen, Carlsbad, CA, USA) supplemented with 10%

fetal bovine serum (Invitrogen). Primary human umbilical vein endothelial cells

(HUVECs) were obtained from Lonza (Walkersville, MD, USA) and cultured

according to the vendor's protocols. Primary porcine mesenchymal stem cells

(pMSCs), primary neonatal rat cardiomyocytes (NRCMs), and primary rat cortical

neurons were isolated and cultured according to standard protocols.

4.2.2 Polymer synthesis

The monomers were dissolved in DMSO (Sigma-Aldrich) to a concentration

of 200 mg ml 1 . Dodecylamine required heating to -60'C to enable complete

dissolution. Library scale reactions were performed in glass shell vials (1 mL) with

polyethylene snap caps (Waters, Milford, MA, USA) in a 96-well reaction block

(Symyx, Santa Clara, CA, USA). To each vial equipped with stir bar, diacrylate

104



monomer, hydrophobic amine monomer, and hydrophilic amine monomer were

added such that their molar ratio was 1.2:0.3:0.7 and the total mass of monomers

was 100 mg. After heating and stirring at 90C for 48 h, the reactions were allowed

to cool to RT, and to each vial, end-capping amine (0.2 mmol in 0.5 mL DMSO) was

added. The reactions were stirred at 40C for 24 h, divided into aliquots, and then

stored frozen at -20"C. Top-performing polymers were resynthesized by scaling up

the reactions tenfold.

4.2.3 Analytical Gel Permeation Chromatography (GPC)

GPC was performed using a Waters system equipped with a 2400 differential

refractometer, 515 pump, and 717-plus autosampler. The flow rate was 1 ml min-'

and the mobile phase was tetrahydrofuran (THF). The Styragel columns (Waters)

and detector were thermostated at 352C. Linear polystyrene standards were used

for calibration.

4.2.4 Transfection experiments

One to three days before transfection, cells (100 tl) were seeded into each

well of a 96-well polystyrene tissue culture plate, clear bottom for GFP transfections

and white bottom for luciferase transfections (HeLa: 12,500 per well 1 d prior;

HUVEC: 9,000 per well 1 d prior; pMSCs: 4,500 2-3 d prior). In a typical example, for

a 150 ng/well DNA dose, plasmid DNA (5 mg ml-1) was diluted to 15 [tg ml-1 in 25

mm sodium acetate (NaOAc) buffer at pH 5.2. Polymers (100 mg ml-1) were thawed

immediately prior to transfection and diluted in NaOAc buffer to a concentration of

300 [tg ml-1 (20:1 w/w polymer:DNA). To avoid precipitation within the pipet tip,
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hydrophobic PBAE terpolymers were diluted by first adding polymer and then

adding aqueous buffer; maximum solubility for these poylmers was typically on the

order of 5 mg ml- in NaOAc buffer.

To form DNA-polymer nanoparticles, polymer solution (25 [d) was added to

DNA (25 Rl) in a half-area 96-well plate, mixed by repeated pipetting using a

multichannel pipette, and allowed to incubate for 10 min at room temperature.

Polymer-DNA complexes (30 [d) were then gently mixed with fresh medium (195

[tl) pre-warmed to 37C. Conditioned medium was removed using a 12-channel

aspirating wand and replaced with the complexes diluted in medium (150 Rl).

Following a 4-h incubation, complexes were removed with the aid of a multi-

channel aspiration wand and replaced with fresh medium (100 [d). Lipofectamine

2000 (Invitrogen) was used according to the protocol provided by the vendor.

4.2.5 GFP expression analysis

After aspirating conditioned medium, cells were washed with PBS and

detached using 25 [l per well of 0.25% trypsin-EDTA (Invitrogen). 50 pl of FACS

running buffer, consisting of 98% PBS, 2% FBS, and 1:200 v/v propidium iodide

solution (Invitrogen), was added to each well. Cells were mixed thoroughly and then

transferred to a 96-well round-bottom plate. GFP expression was measured using

FACS on a BD LSR II (Becton Dickinson, San Jose, CA, USA). Propidium iodide (PI)

staining was used to exclude dead cells from the analysis. PI staining was also used

to determine the viabilities of treated cells relative to non-treated control cells,

where the relative viability was calculated as the ratio of live (unstained) treated
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cells per well to the mean number of live non-treated cells per well. 2D gating was

used to separate increased auto-fluorescence signals from increased GFP signals to

more accurately count positively expressing cells. Gating and analysis were

performed using FlowJo v8.8 software (TreeStar, Ashland, OR, USA).

4.2.6 Luciferase expression analysis

Luciferase expression was analyzed using a Bright-Glo assay kit (Promega,

Madison, WI, USA). Briefly, Bright-Glo solution (100 [d) was added to each well of

the 96-well plate containing medium and cells. Luminescence was measured using a

Tecan Infinite M1000 plate reader.

4.2.7 Dynamic light scattering (DLS) measurements

Particle sizes were measured using a ZetaPALS DLS detector (Brookhaven

Instruments Corp., Holtsville, NY, USA, 15-mW laser, incident beam 676 nm).

Correlation functions were collected at a scattering angle of 90*, and particle sizes

were obtained from the MAS option of BIC's particle sizing software (v. 2.30) using

the viscosity and refractive index of water at 25*C. Particle sizes are expressed as

effective diameters (z-average or hydrodynamic diameters) calculated using the

Stokes-Einstein relationship from the diffusion coefficient obtained by cumulant

analysis. Particles were prepared in NaOAc buffer as for DNA transfection, except

volumes were scaled up by a factor of five. Once formed in NaOAc buffer, complexes

were diluted fourfold in additional NaOAc buffer, 1X PBS, or 10% serum-containing

media as indicated.
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4.2.8 Dye exclusion assay

A working solution of PicoGreen was prepared by diluting 80 RI of stock

solution in 15.92 ml NaOAc buffer. In each well of a 96-well plate, 50 [l of polymer

at 1.2 mg m-1 in NaOAc buffer was added to 50 [tL of DNA at 0.06 mg ml-l in NaOAc

buffer. After 5 min, 100 il of PicoGreen working solution was added to the

complexes. After an additional 5 min incubation, 30 [d was transferred to 200 d of

10% serum-containing medium in a black 96-well assay plate. The fluorescence was

then measured on a Tecan Infinite M1000 plate reader using the FITC filter set

(excitation 485 nm, emission 535 nm). The reduction in relative fluorescence (RF),

or the relative encapsulation efficiency, was calculated using the relationship (FDNA-

Fsample)/(FDNA - Fblank), where Fsampie is the fluorescence of the polymer-DNA-

PicoGreen sample, FDNA is the fluorescence of DNA-PicoGreen (no polymer), and

FbIank is the fluorescence of a sample with no polymer or DNA (only PicoGreen).

4.2.9 Nanoparticle formulation at high DNA concentration

Hydrophobic PBAE terpolymer in DMSO (100 mg ml-1) and various PEG-

lipids in ethanol as indicated (10 mg ml-1) were co-dissolved in acetonitrile to yield

final concentrations of 8 mg ml-1 and either 3 mol% or 10 mol%, respectively. gWiz-

GFP pDNA (5 mg ml-1) was diluted to 0.4 mg ml-1 in 25 mm NaOAc buffer. The

polymer and PEG-lipid in acetonitrile was then added to DNA and mixed by

repeated pipetting. After incubation for 10 min, the formulations were diluted in

PBS (1:1 v/v) and dialyzed against PBS (3 1) for 3 h at RT using a Pierce Slide-A-

Lyzer MINI dialysis devices (20 kDa MWCO, 0.1ml; Pierce, Rockford, IL, USA) for
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small volume formulations and a Pierce Slide-A-Lyzer G2 cassette (20K MWCO, 3

ml) for large volume formulations.

4.2.10 In vivo transfection experiments

In vivo transfection experiments were performed using 6-8 wk old, male

BALB/c mice (Charles River, Wilmington, MA). All mouse experiments were done in

accordance with protocols approved by MIT's Committee on Animal Care (CAC). As

described above, D60-C12-122 and D90-C12-122 were formulated with 16:0 PEG

5000 PE and gWiz-Luc using a 20:1 w/w ratio of polymer:DNA and a PEG-lipid

concentration of 10 mol%. After overnight dialysis at 40C, the nanoparticle

formulation was removed from G2 dialysis cassette. Due to wide variability in

measurements of total DNA concentration using the PicoGreen assay in combination

with a particle disruption agent such as heparin, the DNA concentration was

calculated based on volume change as a result of dialysis, and the formulations were

accordingly diluted to 0.1 mg ml-1 in sterile PBS and stored at 40 C until

administration. Using a 28-gauge 0.5-inch insulin syringe, 200 pl (-1 mg/kg dose)

was injected into the peritoneal cavity of a mouse (IP) or into the tail-vein (IV).

For C32-122/DNA complexes, polymer diluted in 25 mM NaOAc buffer (60 pl,

12 mg ml-1) was added to gWiz-Luc DNA (60 ul, 0.4 mg ml-1) diluted in 25 mM

NaOAc buffer to yield a 30:1 w/w polymer:DNA ratio. After a 5-minute incubation at

RT, 120 [d of a 20% w/v solution of glucose in PBS was added to the polymer-DNA

mixture. Of the resulting 240 [d volume, 200 p1 was injected immediately into the

peritoneal cavity of a mouse.
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4.2.11 Whole-animal bioluminescence imaging

Bioluminescence imaging was performed using an IVIS imaging system

(Xenogen, Alameda, CA) on whole mice at 6 h, 24 h, and 72 h after injection of

luciferase-encoding DNA nanoparticles. To capture the peak of luminescence

emission, a series of images were taken five min. apart for 30 min. on each

treatment group of isoflurane-anesthetized mice following IP injection of Xenolight

Rediject D-luciferin (150 mg/kg; Caliper Life Sciences, Waltham, MA). Xenogen

Living Image v. 4.2 acquisition and analysis software was used to quantify luciferase

expression from the optical images.

4.3 RESULTS AND DISCUSSION

4.3.1 PBAE terpolymer transfection of HUVECs, pMSCs, and NRCMs

To assess the potential of the hydrophobic PBAE terpolymers for transfection

of endothelial cells, we re-screened our initial library of -72 terpolymers (Figure

3.1a-b) for DNA transfection of primary human umbilical vein endothelial cells

(HUVECs). The polymers were complexed with GFP-encoding DNA at a 20:1 w/w

ratio and the resulting particles were incubated with HUVECs at a DNA dose of 100

ng per well for 4 hours. GFP expression and transfection efficiency were analyzed by

FACS measurements after two days.

The results of this screen in HUVECs (Figure 4.1) differed strikingly from

those of our initial one in HeLa cells (Figure 3.2). As with the results in HeLa cells,

the structure of the diacrylate monomer appeared to influence transfection efficacy

to a greater extent than that of the amine monomer; in the HeLa screen, the top-
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performing terpolymers were those formed from the bisphenol-containing

diacrylate monomer "D", but in HUVECs, there was a preference for the terpolymers

formed from long straight-chain alkyl diacrylates such as "JJ" and "LL." Four

terpolymers, including LL24-C12-122, LL28-C12-122, LL32-C12-122, and LL36-

C12-122 mediated gene transfection efficiencies of -30% or more in HUVECs, which

at this dose represented significantly higher potency than that of Lipofectamine

2000 (-10% efficiency). These terpolymers also significantly outperformed C32-

122, one of the top PBAE copolymers lacking alkyl side chains.

20 21 24 28 32 36 60 80 90 94

A #.1 071 0#4 .53 0.57 0.6 53 0.69 0.43 insoluble

C 126 3.77 0,2 088 8.16 14.88 0.63 0AQ 1.35 insoluble

D .72 089 1.06 .69 0.84 076 6.88 16.53 4.32 1.78

E 3.87 4.40 3.13 10.50 9.26 14.95 1,56 insoluble 3.01 5.32

J 0u$7 0A8 0.62 0.54 0.43 0.37 0.A3 045 0.M O0

T o.62 O.M 0.58 0.46 0,47 0.74 1.97 1.24 1.10 0.67

JJ 6.48 23.45 15.18 18.98 21.73 23.05 1.12 13.15 insoluble

LL 0.83 0.72 29.58 30.75 34.33 insoluble insoluble insoluble insoluble

Non-treated Naked DNA C32-122 LF2000
Controls 010 an .99 9.58

Figure 4.1 Screening the initial PBAE terpolymer library for gene transfection
of HUVECs.
Heat map of DNA transfection efficiencies in HUVECs with the initial PBAE
terpolymer library (100 ng DNA/well; 20:1 polymer:DNA w/w), as determined by
FACS analysis.

When the results of the two screens were plotted side-by-side or in a scatter

plot, no significant overlap was observed between the polymers that performed best

in HeLa cells and those that performed best in HUVECS (Figure 4.2). Besides the

difference in the DNA doses that were used for the screens, we hypothesized that

one factor contributing to the apparent lack of correlation could be the difference in

the transfection media between the two cell types. While the HeLa growth medium
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consisted of 10% fetal bovine serum (FBS), the HUVEC growth medium contained

only 2% FBS.

100 50
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U490 mHUVEC 4

TT 30
80+

T~f 20
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60 0
0 20 40 60 80 100

50 % GFP+ HeLa
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T~ T20 I

2- 30 T T T TT

20~I TII__
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Figure 4.2 Comparison of PBAE terpolymer library screen results in HeLa cells
and HUVECs
The results of the PBAE terpolymer library screens in the two cell types plotted
side-by-side. Inset: correlation between gene transfection efficiencies of HUVEC and
HeLa cells by hydrophobic PBAE terpolymers represented in the initial library.

To examine the effect of serum content on PBAE-mediated gene transfection

of HUVECs, we performed a side-by-side transfection of these cells in 2% FBS-

containing growth medium or 10% FBS/DMEM, i.e. regular HeLa medium (Figure

4.3). As a control, HeLa cells were transfected in parallel with the same polyplexes in

10% FBS/DMEM medium. The transfections were performed using the top nine

PBAE terpolymers identified in the HeLa cell screen as well as the top nine

terpolymers identified in the HUVEC screen. Interestingly, no significant difference

was observed with regard to the effect of growth medium on PBAE-mediated

HUVEC gene transfection. As expected, in this side-by-side transfection, HeLa cells
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proved more amenable to DNA transfection than HUVECs, and in general the same

trends were observed with regard to the influence of diacrylate structure on PBAE-

mediated cell-type specificity.

100

90 HUVEC 2% FBS -

80 HUVEC 10% FBS

70 HeLa 10% FBS T

60 T
50

40 T

30

20 T
-rT

10

Figure 4.3 Influence of growth medium on PBAE-mediated transfection of
HUVECs and HeLa cells
Side-by-side GFP transfection of HUVECs with top-performing PBAE terpolymers in
2% FBS-containing growth medium or 10% FBS/DMEM, and of HeLa in 10%
FBS/DMEM. A90-D90 (left to right) and C36 to LL36 represent the top nine PBAE
terpolymers identified in the HeLa cell screen and the top nine terpolymers
identified in the HUVEC screen, respectively.

Contrary to our expectations based on the initial screening results, some of

the LL-containing terpolymers, in particular LL24-C12-122, mediated highly potent

gene transfection in HeLa cells. This result was previously missed due to the higher

dose used in the initial screens (300 ng/well vs. 100 ng/well); at this high dose,

significant cytotoxicity was observed with the LL-containing polymers, but at

reduced doses, both viability and transfection were dramatically improved.

Moreover, a few of the polymers that had performed well in HeLa in the initial
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screen, such as A60 and D24, performed quite poorly in this particular experiment, a

difference that may likely be attributed not only to the reduced DNA dose but also to

potential degradation of the polymers since their synthesis (-3 months).

(a) 150 ng DNA/well

Non-treated C32-122 LL24-C12-122 DD24-C12-122 Upofectamine 2000

BF

GFP

(b) 4 350 1.4
40 T U 300 1.2

3- T TT
250 1 I I30 .E

0- 25 200 0.8 75 ng
0 150 >0.6

0100 - 0.4 15O ng
so ~ ~ 2e010 -0 0

Figure 4.4 Transfection of porcine mesenchymal stem cells by hydrophobic
PBAE terpolymers
Porcine mesenchymal stem cells (pMSCs) were transfected with a GFP-encoding
plasmid using various PBAEs and Lipofectamine 2000 (LF 2000). FACS analysis was
used two days later to quantify GFP expression efficiency (left), geometric mean GFP
fluorescent intensity (middle), and relative viability (right).

We next assessed the potential for the top-performing terpolymers to

emerge from these screens to deliver genes to primary mesenchymal stem cells

(pMSCs). Working with porcine MSCs, we transfected cells with a GFP plasmid using

C32-122, LL24-C12-122, DD-24-C12-122, or Lipofectamine 2000, and compared the

resulting transfection efficacies by microscopy and FACS analysis. At the low doses

applied, LL24-C12-122 and DD24-C12-122 mediated significantly greater GFP

transfection in the pMSCS than was achieved with C32-122 or Lipofectamine 2000
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(Figure 4.4). For instance, at the 75 ng dose, FACS analysis showed that LL24-C12-

122 yielded a pMSC gene transfection efficiency of -35%, in comparison with -3%

efficiency for Lipofectamine 2000. GFP expression in the LL24-C 12-122-treated cells

was -4-fold that of the Lipofectamine-treated cells. At this dose, there was a small

but non-significant reduction in relative viability for the LL24-C12-122-treated cells.

414 1.6
S12 -- $1-4T

10 1.2
z 8 0.8T 150 ng DNA/well

40.4 300 ng DNA/well
2 0.
0 --

*b I

Figure 4.5 Transfection of neonatal rat cardiomyocytes by hydrophobic PBAE
terpolymers
Neonatal rat cardiomyocytes (NRCMs) were transfected with a GFP-encoding
plasmid using DD24-C12-122, C32-C12-122, and Lipofectamine 2000 (LF 2000).
FACS analysis was used two days later to quantify GFP expression efficiency (left)
and relative cell viability (right).

We also evaluated the potential of hydrophobic PBAE terpolymers for

efficient DNA transfection of cardiac tissue. We performed a screen of a subset of

these polymers for transfection of primary neonatal rat cardiomyocytes (NRCMs).

NRCMs are notoriously difficult to transfect, and as expected, many of the PBAEs

that were screened, including the top performing polymers lacking alkyl side chains

such as C32-103, C32-117, and C32-122, showed minimal transfection (<2%

efficiency; data not shown). Nonetheless, a handful of hydrophobic PBAE

terpolymers, including DD24-C12-122 and C32-C12-122, showed modest but
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significant improvements in transfection potency over Lipofectamine 2000; for

example, C32-C12-122 achieved a transfection efficiency of nearly 12% compared

with -7% for Lipofectamine 2000 (Figure 4.5).

4.3.2 Combinatorial library of PBAE terpolymers centered on DD24-C12-122 and

LL24-C12-122

OH OH

DD O O O O

O 0
O C12 NH2

LL O
O 0

HO -, NH2 NH2
OH NH O.~N2HO, -',OHI

24 HO NH2  H OH 86 402

OH OH

OHH N NH OH OH
24R HO NH 26 HO OH 87 403 HON

OH OH OH

NH2OH NH2  HNH
24S 34 H O 401 HON NOH 405 HO -

HO,, NH2  HOD.<- OH H OH''O
H OH

122 H2N O,-, O NH2

Figure 4.6 Combinatorial library of 24 PBAE terpolymers centered on DD24-
C12-122 and LL24-122
Structure of diacrylate monomers (DD, LL), hydrophobic amine (C12), hydrophilic
amines (24-405), and end-capping diamine (122) used for the synthesis of the small
combinatorial library of PBAE terpolymers surrounding the chemical space of
DD24-C12-122 and LL24-C12-122. The diacrylate:hydrophobic amine:hydrophilic
amine molar ratio was 1.2:0.3:0.7.

Given the high potencies observed using DD24-C12-122 and LL24-C12-122

in multiple cell types, and the fact that they share a common hydrophilic amine

monomer ("24"), we explored the chemical space surrounding these terpolymers by

synthesizing and characterizing a small library of polymers built using the same
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diacrylate, hydrophobic amine, and end-capping amine reagents, but varying in

their hydrophilic amine monomers. Based on the structure of the "24" amine, 3-

amino- 1,2-propanediol, which notably features two hydroxyl groups, for the

combinatorial library we selected nine other hydrophilic amine monomers also

possessing multiple hydroxyl groups (Figure 4.6). Because the 24 monomer is a

racemic mixture, we also included the purified enantiomers, 24R and 24S, within the

library to determine whether polymer tacticity might influence its gene delivery

properties.

After synthesizing this small library of 24 terpolymers, we then applied GPC,

DLS, and a PicoGreen dye exclusion assay to rigorously characterize the biophysical

properties of these polymers and the nanoparticles resulting from their

complexation with DNA. As expected, GPC analysis showed that most of these

polymers were quite short, with M, ranging from 1.33 kDa for LL26 to 3.5 kDa for

DD24 (Figure 4.7a). (For brevity, the PBAE terpolymers in this library will be

referred to by only their diacrylate and hydrophilic amine monomers, since they

share the same hydrophobic amine monomer and end-capping reagent.) With

respect to the DD24 and LL24 terpolymers varying in tacticity, DD24R and DD24S

showed no significant difference in MWD, although these polymers were slightly

shorter than the polymer constructed from the racemic 24 monomer. The LL24

stereochemical variants showed minimal variation in MWD.
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Figure 4.7 Biophysical properties of the DD24- and LL24-focused
combinatorial library
(a) Mw and M of the terpolymers as determined by GPC analysis. (b) Particle
diameters of the terpolymer/pDNA complexes formed in NaOAc buffer (pH 5.2) and
then further diluted and measured by DLS as indicated. (c) Relative pDNA
encapsulation efficiencies of the terpolymers as determined by a PicoGreen dye
exclusion assay. Polyplexes were formed at a 20:1 w/w polymer:DNA ratio.

With respect to nanoparticle size, DLS measurements showed that most of

these polymers were capable of forming sub-100 nm complexes with DNA in NaOAc

at pH 5.2, with some swelling immediately after dilution in PBS at pH 7.4 (Figure

4.7b). However, the measured particle sizes in 10% FBS/DMEM media tended to be
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more variable and generally quite large, reflecting some degree of aggregation. Most

of the DD-containing polymers, with the exception of DD401, formed particles that

remained sub-300 nm in serum-containing medium, whereas only LL26, LL34, and

LL403 formed similarly tight particles in medium. The remainder of the LL-

containing polymers grew in size to 600 nm or larger upon dilution in serum-

containing medium. There was little variation in the nanoparticle sizes under these

three conditions for the DD24 and LL24 polymers varying in tacticity.

Finally, we measured the relative DNA encapsulation efficiency at 20:1

polymer:DNA w/w ratio using a PicoGreen DNA-binding dye exclusion assay. In

general, most of the DD-containing polymers were able to encapsulate ~-35% of the

DNA. However, DD86 was characterized by a lower encapsulation efficiency of only

-20%. Several of the LL-containing polymers, including LL24, LL25, LL86, and LL87,

were characterized by relatively high DNA encapsulation efficiencies approaching

50%. The stereochemical variants of DD24 and LL24 did not show significant

variation in DNA encapsulation efficiency.

When we transfected HeLa cells with these polymers, 21 of the 24 polymers

in the library outperformed Lipofectamine 2000 (LF 2000) at a DNA dose of 50 ng

per well (Figure 4.8). LL86, LL401, LL25, DD403, and DD87 in particular, showed

excellent transfection activities along with the original library members DD24 and

LL24. Polymer tacticity did not appear to affect transfection activity to a significant

extent. One of the polymers that had the lowest DNA encapsulation efficiencies,

DD86, also had the poorest DNA transfection activity in HeLa cells.
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Figure 4.8 HeLa transfection efficiencies of the DD24- and LL24-focused
combinatorial library
Transfection efficiencies in HeLa cells using the 24 members of the terpolymer
library at a polymer:DNA w/w ratio of 20:1. Efficiencies were determined by FACS
analysis of GFP expression two days after transfection of GFP-encoding p DNA.
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Figure 4.9 HUVEC transfection efficiencies of the DD24- and LL24-focused
combinatorial library
Transfection efficiencies in HUVECs using the 24 members of the terpolymer library
at a polymer:DNA w/w ratio of 20: 1. Efficiencies were determined by FACS analysis
of GFP expression two days after transfection of GFP-encoding pDNA.

In analogous fashion, we screened the polymers for DNA transfection

efficiency in HUVECs, and we found that LL86, DD403, DD401, and DD87 displayed

potent transfection activity along with the variants of DD24 and L L24. Notably,

LL86, DD403, and DD87 were also among those polymers that performed best in
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HeLa cells. At the other end of the performance spectrum, DD86, LL26, and LL34

again showed the three poorest transfection potencies, as they had in HeLa cells. As

with HeLa cells, 21 of the 24 polymers displayed transfection efficiencies rivaling or

outperforming LF 2000. These common trends suggest possible structural

convergence with respect to optimal transfection activity.
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Figure 4.10 Rat cortical neuron transfection activities of the DD24- and LL24-
focused combinatorial library
Transfection activities in rat cortical neurons using the 24 members of the
terpolymer library at a polymer:DNA w/w ratio of 20:1. Relative luciferase
expression was measured using a plate reader two days after transfection of
luciferase-encoding pDNA.

Nonetheless, when we then screened the polymers for transfection of

primary rat cortical neurons, we obtained very different results (Figure 4.10). In

contrast to the previous experiments using GFP DNA and FACS analysis, this

experiment was performed by complexing the polymers with luciferase-encoding

DNA, incubating the nanoparticles with the cells for 4 hours, and then assaying for

luminescence after two days. In this experiment, we observed that the structure of

the diacrylate significantly influenced the measured transfection efficacy. All DD-
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containing polymers, including DD86, demonstrated significantly enhanced

transfection activity relative to LF 2000, whereas the LL-containing polymers

displayed activity that was equivalent or worse. Surprisingly, only LL24 failed to

mediate significant luciferase expression.

Taken together, these screening results suggest weak correlations between

the measured polymer and nanoparticle properties and DNA transfection activity.

Although there was some correlation between polymer DNA encapsulation

efficiency and transfection activity, structural differences appear to account for most

of the variation in polymer transfection activity. In this study, polymer tacticity

showed no discernible influence on gene delivery properties. With respect to cell-

type specificity, HeLa and HUVECs generally appeared to share common preferences

with regard to gene delivery polymer structure. The intriguing preliminary

experiment that suggests very different structural preferences in rat cortical

neurons warrants further study to corroborate the observations and elucidate a

mechanism.

4.3.3 PBAE terpolymer/DNA formulation development and in vivo transfection

The in vitro results described so far in this chapter have been performed

using simple polyplexes, which tend to be relatively unstable at high concentrations

under physiological conditions (as covered in detail in the Chapter 3). Ultimately,

clinical application will require the development of stable formulations displaying

excellent in vivo biocompatibility without compromising gene delivery efficacy.

Toward this end, we explored the development of PBAE terpolymer nanoparticle

formulations suitable for in vivo use. Using the nanoprecipitation approach
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described previously, we co-dissolved D60-C12-122 (1.2:0.7:0.3 molar ratio of

D:60:C12) with various PEG-lipid conjugates in acetonitrile and then pipet-mixed

them with GFP-encoding plasmid DNA in sodium acetate buffer (pH 5.2). The PEG-

lipid conjugates varied in the structure of the lipid tail (phosphoethanolamine/PE

vs. ceramide; carbon chain length/saturation) as well as the PEG chain lengths (3

kDa or 5 kDa), and we used two molar ratios of the PEG-lipid conjugate to the

polymer content (3% or 10%). The polymer:DNA weight ratio was held fixed at

20:1. Once prepared, the formulations were dialyzed against PBS for 3 h, and their

transfection activities were compared in HeLa cells at a DNA dose of approximately

75 ng per well.

The results of this experiment demonstrate that the identity of the PEG-lipid

conjugate strongly influences the stability of the nanoparticle formulations and their

corresponding transfection efficacies (Figure 4.11). When the terpolymer/DNA

nanoparticles are prepared without PEG-lipid, HeLa transfection efficiency was

-20%. In contrast, transfection efficiency was -75% or higher with some of the

formulation prepared with PEG-lipid conjugates, particularly C18:0 PEG PE (5 kDa

PEG, 3 mol%), C16:0 PEG PE (5 kDa, 10 mol%), and C8 PEG ceramide (5 kDa, 10

mol%). Other formulations containing PEG-lipid conjugates did not improve

transfection efficacy over the simple polyplexes, such as those containing C14:0 PEG

PE (3 or 5 kDa, 3 mol%) and C16 PEG ceramide (5 kDa, 3 mol%).
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Figure 4.11 HeLa transfection efficiencies of D60-C12-122/DNA nanoparticle
formulations containing various PEG-lipid conjugates
D60-C 12-122 nanoparticle formulations containing various PEG-lipid conjugates
were prepared by nanoprecipitation with GFP-encoding plasmid DNA and used to
transfect HeLa cells 3 h after dialysis against PBS. FAGS analysis was used after two
days to quantify the proportion of cells expressing GFP.

In general, for the PEG-lipid conjugates containing phosphoethanolamine

(PE), longer lipid tails, longer PEG, and a higher molar ratio of the PEG-lipid

conjugate improved transfection efficacy. The observed trends make sense given

that these factors should in principle promote nanoparticle stability and aggregation

resistance during the dialysis against PBS. Nonetheless, for the PEG ceramide

conjugates, while higher molar ratio improved performance, the conjugate with the

shorter lipid tails (C8) was superior to that with the longer tails (C 16). With the

exception of one PEG ceramide formulation (C8, 5 kDa, 10 mol%), the PEG ceramide

formulations were generally less efficacious than their PEG PE counterparts. Taken

together, these data highlight the significance of certain structural features of PEG-

lipid conjugates contributing to improved polymer/DNA nanoparticle stability and

transfection activity.
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Figure 4.12 Intraperitoneal and intravenous gene delivery in mice using D60-
C12-122 and D90-C12-122 terpolymers
(a) Whole-animal optical images of luciferase expression in BALB/c mice 6 hours, 1
day, and 3 days after injection of D60-C12-122 and D90-C12-122 formulations and
C32-122 polyplexes. Radiance (photons/sec/cm 2/sr) is indicated in the color scale
bar at left. (b) Quantification of whole-body luciferase expression (total flux/mouse)
at various times after treatment as indicated (mean ± SD, n = 3 mice per group).

Using the results of this experiment, we then prepared D60-C12-122 and

D90-C12-122 nanoparticle formulations with luciferase-encoding plasmid DNA and

C16:0 PEG 5 kDa PE (20:1 w/w polymer:DNA; 10 mol% PEG-lipid). After dialysis

against PBS for 3 h and storage overnight at 4*C, the formulations were

administered to BALB/c mice via intraperitoneal (IP) or intravenous (IV) injections

at approximately a 1 mg/kg DNA dose. We also administered freshly prepared C32-
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122 polyplexes IP as a positive control. Whole-animal bioluminescence was assayed

for each group at three time points (6 h, 1 d, and 3 d) following injection. We

observed that the kinetics of expression varied for each of the treatment groups

(Figure 4.12). At 6 h after injection, we observed moderately strong luciferase

expression in the abdominal cavities of mice injected IP with the D60 and D90

formulations, with no detectable expression in the mice injected IV with these

formulations or in the mice injected IP with the C32-122 polyplexes.

However, one day after injection, significant luciferase expression in the

abdominal cavity was observed in the C32-122 treated mice, while luciferase

expression decreased in the mice treated IP with the terpolymer formulations. At

this time point, we also detected low but significant transgene expression in the tails

of the mice injected IV with the terpolymer formulations, and this signal persisted at

the 3 d time point. Meanwhile, at this 3 d time point, luciferase expression

significantly decreased in all of the IP-injected animals, with the most durable

expression observed in the mice treated with the D90 terpolymer formulations.

These preliminary in vivo data suggest that the terpolymer formulations are capable

of mediating significant transgene expression after IP or IV injection that persists for

at least three days. Further experiments will be necessary to characterize the

pharmacokinetics of expression in greater detail and to optimize the formulations

and dosing for maximal in vivo transfection efficacy.
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4.4 CONCLUSIONS

Through a series of screens, PBAE terpolymers were identified that mediated

superior gene delivery to various difficult-to-transfect cell types relative to a

popular commercially available lipid reagent, Lipofectamine 2000, and to one of the

top-performing PBAE copolymers lacking alkyl side chains, C32-122. PBAE

terpolymers, including DD24-C12-122 and LL24-C12-122, demonstrated excellent

transfection potency in HUVECs, porcine MSCs, and neonatal rat cardiomyocytes.

Synthesis and screening of a small library of terpolymers surrounding the chemical

space of DD24-C12-122 and LL24-C122 identified polymers with high transfection

efficacy in HeLa cells, HUVECs, and rat cortical neurons. While there was some

correlation between polymer DNA encapsulation efficiency and transfection activity,

structural differences appeared to account for most of the variation in polymer

transfection activity. Finally, formulation development with the terpolymer D60-

C12-122 suggested that the identity of the PEG-lipid conjugate strongly affects the

stability of the nanoparticle formulations and their corresponding transfection

efficacies. Following IP or IV administration, terpolymer formulations yielded

observable transgene expression in mice that persisted for at least three days.
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5 EFFECT OF MOLECULAR WEIGHT OF AMINE END-
MODIFIED POLY(BETA-AMINO ESTER)S ON GENE
DELIVERY EFFICIENCY AND TOXICITYt

5.1 INTRODUCTION

Gene therapy is a promising treatment strategy for many inherited disorders

including cystic fibrosis, severe combined immunodeficiency, and hemophilia, in

addition to cancer and infectious diseases such as AIDS. Despite recent clinical

progress[1I, concerns with the use of viral vectors, including immunogenicity, small

DNA cargo capacity, and difficulty of large-scale production, have led to continued

interest in the development of synthetic carriers[21 .A diverse collection of materials

has been studied for potential as synthetic gene delivery agents, including lipids,

polymers, polysaccharides, polypeptides, dendrimers, and inorganic

nanoparticles[ 3l. However, sub-optimal delivery efficiency in vivo relative to viral

vectors has inhibited their widespread clinical use[4 , 51. Though viruses have been

naturally selected to efficiently navigate the multiple intra- and extra-cellular

barriers to successful gene transfer, the flexibility of polymer chemistries offers

great potential to identify and incorporate functionalities that confer not only

t This chapter has been published as Eltoukhy, A. A., Siegwart, D. I., Alabi, C. A.,
Rajan, J. S., Langer, R., Anderson, D. G. Effect of molecular weight of amine end-
modified poly(P-amino ester)s on gene delivery efficiency and toxicity. Biomaterials
33, 3594 (2012).
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effective gene transfection, but also superior biocompatibility, enhanced

formulation stability, and low toxicity[6 ,71.

Toward this end, a more comprehensive understanding of the structure-

property relationship for gene delivery polymers is critical to the elucidation of

design principles for future generations of synthetic gene vectors. The molecular

weight (MW) and molecular weight distribution (MWD) of cationic polymers are

among the factors known to dramatically affect their gene delivery performance. For

example, it was reported that higher MW poly(2-(dimethylamino) ethyl

methacrylate (PDMAEMA), (Mw > 300 kDa) yielded greater in vitro gene transfection

than polymers with lower MW (Mw < 60 kDa)[81. This trend was confirmed more

recently by another group, which found that transfection activity increased with the

Mw of PDMAEMA up to at least 915 kDa[91. Similarly, for various other polymeric

carriers including trehalose-based glycopolymers[101, four-branched star vectors[11],

and quaternized celluloses[121, higher MW was correlated with increasing gene

delivery activity for the range of molecular weights examined. For poly(L-lysine)

(PLL), however, polymers of intermediate length (Mw = 54 kDa) produced optimal

gene transfection relative to longer (Mw = 225 kDa) or shorter (Mw < 22.4 kDa)

variants[1 31, a phenomenon that has been attributed to an optimal rate of vector

unpacking[14].

For polyethylenimine (PEI), there are a variety of studies on the relationship

between polymer MW and DNA transfection activity. Using branched PEls ranging

in MW from 0.6 to 70 kDa, one group found that higher MW variants mediated

significantly greater in vitro DNA transfection, which they speculated might owe to a
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greater capacity for endosomal escape [151. In contrast, another group reported that

in vitro transfection activity decreased with increasing MW for three branched PEls

ranging in Mw from 1.8 to 70 kDa [161. Likewise, in a comparison between a low MW

PEI (Mw = 11.9 kDa) with low degrees of branching and a high MW, highly branched

PEI (Mw = 1,616 kDa), it was observed the low MW variant had much greater

transfection potency and lower toxicity[17]. In another study, 25 kDa branched PEI

was fractionated by size, and a particular fraction with Mw of roughly 4-10 kDa

displayed optimal performance relative to higher or lower MW fractions[181. Finally,

with linear PEIs ranging in Mw from 1.0-9.0 kDa, it was observed that at low N:P

ratios, transfection generally increased with MW, but that at higher N:P ratios,

polymers of intermediate length were superior[191.

Poly(p-amino esters) (PBAEs) are a promising class of polymeric gene

vectors characterized by their ease of synthesis and biodegradability 20-241. With

their capacity to condense plasmid DNA (pDNA) into nanoparticles on the order of

50-200 nm in diameter, PBAEs have yielded high gene delivery efficiency to a

variety of cell types with low toxicity[25 ,261. The use of combinatorial polymer library

synthesis coupled with high-throughput screening and characterization has

revealed structural motifs associated with highly active gene delivery polymers; in

particular, the presence of hydroxyl groups in the side chains and the conjugation of

certain primary amines to the chain ends dramatically modulate the efficiency of

DNA transfection in different cell types[27-30I. Amine end-capped PBAEs, especially

those based on poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate) (C32), have

demonstrated potential for a number of clinically relevant applications, including
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suicide gene therapy for ovarian cancer[311, genetic modification of stem cells for

treatment of ischemia[321, and gene transfer to glioblastoma cells[ 3 3 1. However, the

impact of chain length on nucleic acid delivery has not yet been systematically

examined for this important group of degradable gene delivery polymers.

In this chapter, we applied two strategies to obtain amine end-modified

PBAEs with variation in MW: modulation of monomer stoichiometry and

preparative size exclusion chromatography (SEC). Using the first approach, we

observed that polymers of intermediate MW mediated optimal DNA transfection

activity. For these polymers, we did not observe a significant correlation between

polymer MW and toxicity. Optimal performance was associated with higher DNA

encapsulation efficiency and smaller nanoparticle size, but not with nanoparticle ;-

potential. However, using preparative SEC to obtain more monodisperse polymer

fractions from a polydisperse starting polymer, we found that the transfection

efficiencies of size-fractionated, well-defined PBAEs generally increased with MW.

In addition, this approach allowed us to isolate polymer fractions that were more

potent than the starting material, which indicates the potentially broad applicability

of this separation technique for gene delivery polymers synthesized by step-growth

polymerization.

5.2 MATERIALS AND METHODS

5.2.1 Materials

1,4-butanediol diacrylate ("C") and 5-amino-1-pentanol ("32") were

purchased from Alfa Aesar (Ward Hill, MA, USA). 1,3-diaminopropane ("103"), 1,3-
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pentanediamine ("117"), and 2-methyl-1,5-pentanediamine ("118") were obtained

from Sigma-Aldrich (St. Louis, MO, USA). (PEO)4-bis-amine ("122") was acquired

from Molecular Biosciences (Boulder, CO, USA). All reagents were used without

further purification. Plasmid DNA encoding green fluorescent protein (gWiz-GFP)

was purchased from Aldevron (Fargo, ND, USA). HeLa cells (ATCC, Manassas, VA,

USA) were cultured in DMEM (Invitrogen, Carlsbad, CA, USA) supplemented with

10% fetal bovine serum (Invitrogen). Quant-IT PicoGreen dsDNA reagent was

purchased from Invitrogen.

5.2.2 Polymer synthesis

Acrylate-terminated C32 poly(p-amino ester) was synthesized in -5 g

batches by reacting 1,4-butanediol diacrylate ("C") and 5-amino-1-pentanol ("32")

in bulk at 70"C for 48 h with stirring. To obtain MW variants, 15 monomer molar

ratios between 1:1 and 1.3:1 C:32 were chosen for polymerization: 1.0, 1.02 5, 1.04,

1.05, 1.06, 1.075, 1.1, 1.125, 1.15, 1.175, 1.2, 1.225, 1.25, 1.25, 1.275, and 1.3:1

(C:32). After cooling, 1 g of each batch was end-capped with 2 mmol of each of 4

different amines (103, 117, 118, and 122) by reaction in anhydrous tetrahydrofuran

(THF) overnight at RT at a concentration of 100 mg/mL. The following day, the 60

resulting C32 variants were purified by precipitation in anhydrous hexanes (1:3 v/v

THF:hexanes) and dried under vacuum for 24 h. Polymers were then dissolved at

100 mg/mL in dimethyl sulfoxide (DMSO) and stored at -20"C until use.

In a typical example, for the 1.1:1 C:32 molar ratio, 3.394 g C (17.12 mmol)

was added to 1.605 g 32 (15.55 mmol) in a 20 mL glass vial equipped with stir bar
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and sealed with a screw cap. It was heated in a reaction block at 70'C for 48 h with

stirring. For end-modification of this polymer with the 103 amine, the 5 g batch of

C32-Ac was cooled and then dissolved in 10 mL of anhydrous THF; of this solution, 2

mL was transferred to a 20 mL glass vial containing 8 mL of 103 amine at 0.25 M in

THF (2 mmol). After stirring overnight at RT, the polymer was isolated by

precipitation into hexanes and was then analyzed by SEC.

5.2.3 Analytical size exclusion chromatography (SEC)

Analytical SEC was performed using a Waters system (Milford, MA) equipped

with a 2400 differential refractometer, 515 pump, and 717-plus autosampler. The

flow rate was 1 mL/min and the mobile phase was THF. The Styragel columns

(Waters) and detector were thermostated at 352C. Linear polystyrene standards

were used for calibration.

5.2.4 in vitro GFP plasmid DNA transfection

One day before transfection, 15,000 HeLa cells in 100 [tL of medium were

seeded into each well of a 96-well polystyrene tissue culture plate. In a typical

example, for a 600 ng/well DNA dose, pDNA was diluted to 0.06 mg/mL in 25 mM

sodium acetate (NaOAc) buffer at pH 5.2. Polymers were thawed immediately prior

to transfection and diluted in NaOAc buffer to a concentration 20, 30, or 40 times

that of the DNA concentration, depending on the desired polymer:DNA w/w ratio.

To form DNA-polymer nanoparticles, 25 [tL of polymer solution was added to 25 1tL

of DNA in a half-area 96-well plate, mixed by repeated pipetting using a
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multichannel pipette, and allowed to incubate for 5 min at RT. 30 [tL of polymer-

DNA complexes were then gently mixed with 195 [tL of fresh medium warmed to

37'C. Conditioned medium was removed using a 12-channel aspirating wand and

replaced with 150 [tL of the complexes diluted in medium. Following a 4 h

incubation, complexes were removed with the aid of a multi-channel aspiration

wand and replaced with 100 pL of fresh medium. GFP expression was assessed 48 h

after transfection by fluorescence-activated cell sorting (FACS).

5.2.5 FA CS analysis

After aspirating conditioned medium, cells were washed with PBS and

detached using 25 ptL per well of 0.25% trypsin-EDTA (Invitrogen). 50 pL of FACS

running buffer, consisting of 98% PBS, 2% FBS, and 1:200 v/v propidium iodide

solution (Invitrogen), was added to each well. Cells were mixed thoroughly and then

transferred to a 96-well round-bottom plate. GFP expression was measured using

FACS on a BD LSR II (Becton Dickinson, San Jose, CA, USA). Propidium iodide (PI)

staining was used to exclude dead cells from the analysis. PI staining was also used

to determine the viabilities of treated cells relative to non-treated control cells,

where the relative viability was calculated as the ratio of live (unstained) treated

cells per well to the mean number of live non-treated cells per well. 2D gating was

used to separate increased auto-fluorescence signals from increased GFP signals to

more accurately count positively expressing cells. Gating and analysis were

performed using FlowJo v8.8 software (TreeStar, Ashland, OR, USA).
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5.2.6 Dynamic light scattering (DLS) measurements

To form complexes using the same concentrations and conditions that were

optimal for transfection (40 w/w polymer:DNA), 150 [tL of polymer at 2.4 mg/mL in

NaOAc buffer was mixed with 150 ttL of plasmid DNA (gWiz-GFP) at 0.06 mg/mL in

NaOAc buffer. After incubation for 5 min at RT, 1.2 mL of 10% serum-containing

medium was added to the mixture, which was then immediately subjected to DLS

measurements using a ZetaPALS DLS detector (Brookhaven Instruments Corp.,

Holtsville, NY, USA, 15-mW laser, incident beam 676 nm). To ensure that all

measurements represented the same time point of analysis, the size and -potential

data were obtained independently. Correlation functions were collected at a

scattering angle of 900, and particle sizes were calculated using the MAS option of

BICs particle sizing software (v. 2.30) using the viscosity and refractive index of

water at 25*C. Particle sizes are expressed as effective diameters assuming a log-

normal distribution. Electrophoretic mobilities were measured at 25*C using BIC

Phase Analysis Light Scattering (PALS) C-potential software, and -potentials were

calculated using the Smoluchowski model for aqueous suspensions.

5.2.7 Dye exclusion assay

The dye exclusion assay to determine polymer-DNA encapsulation efficiency

was performed as described previously[2 91. Briefly, a working solution of PicoGreen

was prepared by diluting 80 [tL of stock solution in 15.92 mL NaOAc buffer. In each

well of a 96-well plate, 50 RL of polymer at 2.4 mg/mL in NaOAc buffer was added to
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50 [tL of DNA at 0.06 mg/mL in NaOAc buffer. After 5 min, 100 [tL of PicoGreen

working solution was added to the complexes. After an additional 5 min incubation,

30 tLl was transferred to 200 tL of 10% serum-containing medium in a black 96-

well assay plate. The fluorescence was then measured on a Tecan Infinite M1000

plate reader using the FITC filter set (excitation 485 nm, emission 535 nm). The

reduction in relative fluorescence (RF), or the relative encapsulation efficiency, was

calculated using the relationship (FDNA- Fsample)/(FDNA - Fbiank), where Fsample is the

fluorescence of the polymer-DNA-PicoGreen sample, FDNA is the fluorescence of

DNA-PicoGreen (no polymer), and FbIank is the fluorescence of a sample with no

polymer or DNA (only PicoGreen).

5.2.8 Preparative SEC

Polymers were fractionated based on size with a Phenogel 5[im MXL gel

filtration column (300 mm x 7.8 mm, Phenomenex, P/No. OOH-3087-KO) using THF

as the mobile phase at a flow rate of 1 mL/min. The separation was done on a 1200

Series Agilent HPLC system equipped with a UV diode array detector and a 1260

Infinity analytical scale fraction collector. The column compartment was kept at

40'C during fractionation. Polymer fractions were collected at 0.2 min intervals

based on the absorption of the polymer at 254 nm. The fractions were transferred

into tared vials, dried, weighed, and then dissolved to 100 mg/mL in DMSO. They

were stored at -20*C until further use.
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5.3 RESULTS AND DISCUSSION

5.3.1 Synthesis and analytical SEC ofstoichiometric PBAE variants

One straightforward method for molecular weight control of polymers

synthesized by step-growth addition is to vary the stoichiometric ratio of the

starting monomers. According to the Carothers relationship, the weight-average

molecular weight Mw depends on the molar ratio of reactants r, the fractional

monomer conversion p, and the molecular weight of the polymer repeat unit Mo as

follows: Mw = Mo(1+p)(1+r)/(1-2pr+r). In this report, the PBAE C32 was synthesized

using a range of 15 monomer molar feed ratios between 1:1 and 1.3:1 "C" (1,4-

butanediol diacrylate) to "32" (5-amino-1-pentanol); these acrylate-terminated C32

polymers (C32-Ac) were then end-capped with each of four different amine

molecules (Figure 5.1). These end-capping amines, denoted 103, 117, 118, and 122,

were selected because they improved transfection performance relative to

unmodified C32 polymer 281.
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Figure 5.1 Synthesis scheme for end-modified poly(p -amino ester)s.
(A) 5-amino-1-pentanol (32) is added to an excess of 1,4-butanediol diacrylate (C)
to yield acrylate-terminated C32, which is then reacted with excess amine to
produce end-modified PBAE. (B) Structures of diamine molecules used for amine
end-capping.
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Figure 5.2 Relationship between Mw and C:32 monomer molar feed ratio for
amine end-modified PBAEs

As expected, SEC analysis revealed that the molecular weight of these end-

modified PBAEs decreased as the feed ratios deviated from stoichiometric unity

(Figure 5.2). The polymers ranged in Mw from a maximum of 16.4 kDa for C32-118

synthesized at a feed ratio of 1:1 C:32 to a minimum of 2.4 kDa for C32-103
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synthesized at 1.3:1 C:32. Because the end-modified polymers were synthesized

from the same 15 batches of intermediate C32-Ac polymer, the differences in MW

observed between end-modified PBAEs at the same monomer feed ratio may reflect

a limited extent of polymer cross-linking or degradation.

5.3.2 Plasmid DNA transfection and cytotoxicity

To investigate the relationship between the molecular weight of end-

modified PBAEs and in vitro transfection activity, we formed complexes using the

synthesized polymers and GFP-encoding plasmid DNA (pDNA), and then incubated

these nanoparticles with cultured HeLa cells in serum-containing growth medium

for 4 h. Two days after transfection, we used fluorescence activated cell sorting

(FACS) to quantify the proportion of HeLa cells expressing GFP.

When the transfection efficiencies of the various end-modified PBAEs were

correlated with Mw, we observed that for a given weight ratio of polymer:DNA,

polymers of intermediate length (Mw ~ 5-8 kDa) generally outperformed polymers

with higher or lower Mw (Figure 5.3). For example, at a polymer:DNA w/w ratio of

40:1 (equivalent to N:P ratio of -44:1), C32-122 with Mw = 5.5 kDa (synthesized at a

C:32 molar feed ratio of 1.125:1) successfully transfected -80% of HeLa cells, in

contrast to -26% for the highest MW variant (Mw = 11.7 kDa) and -49% for the

lowest MW variant (Mw = 3.0 kDa). At a lower polymer:DNA w/w ratio of 30:1 (N:P

- 33), this trend of optimal transfection activity for polymers of intermediate MW

persisted. However, at a w/w ratio of 20:1 or below (N:P - 22), none of the MW

variants yielded significant transfection.
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Figure 5.3 Correlation between polymer Mw and gene transfection efficiency in
HeLa cells for PBAE stoichiometric variants
Correlation between PBAE Mw and DNA transfection efficiency (mean ± SD, n = 4) in
HeLa cells for the stoichiometric variants of C32-103 (A), C32-117 (B), C32-118 (C),
and C32-122 (D). The DNA dose is fixed at 600 ng per well of a 96-well plate and
transfection was assessed by FACS 48 h.

Because of the frequent reports of a correlation between toxicity and

polymer MW for many polymers, including PEI, we examined this relationship by

staining transfected cells with propidium iodide immediately prior to FACS. When

the viabilities of transfected cells relative to non-treated control cells were plotted

against polymer Mw at the highest polymer:DNA w/w ratio used (40:1), we did not

observe any significant association between the length of end-modified PBAEs and

140

A

2 8 10
Mw(kDa)

C

50

40-

30-
w

20-

$ 10-

12 14

a

4 6



their toxicity during transfection (Figure 5.4). Although there was some toxicity

associated with C32-103 and C32-117, for each of these polymers, it did not increase

with increasing MW. Importantly, for the most effective end-modified PBAE, C32-

122, the relative viabilities of transfected cells were not significantly reduced. These

results suggest that PBAEs have low toxicity over a wide range of MW, and therefore

show promise as non-toxic transfection materials.
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Figure 5.4 Correlation between polymer Mw and relative viability of HeLa cells
following DNA transfection with PBAE stoichiometric variants
Correlation between polymer Mw and the relative viability (mean ± SD, n = 4) of
HeLa cells following DNA transfection with the stoichiometric variants of C32-103
(A), C32-117 (B), C32-118 (C), and C32-122 (D) at a polymer:DNA w/w ratio of
40:1. The DNA dose is held constant at 600 ng per well of a 96-well plate.

141

140"

D 120
100

ma 80-

a~60"

40-

20,

0

C

140

120.
-100-

an 80,

* 60

040

20

n [I

--I ---- - - --------------- ----------------------



5.3.3 Biophysical characterization of polymer/DNA nanoparticles

For various other polymeric gene delivery systems, the relationship between

MW and gene delivery has been associated with variation in nanoparticle size and

charge. To assess the hypothesis that the dependence of transfection efficiency on

the MW of end-modified PBAEs reflects biophysical characteristics of the

polymer/DNA nanoparticles, we used dynamic light scattering (DLS) to measure the

sizes and ;-potentials of complexes formed from our stoichiometric variants.

Polymers and plasmid DNA were mixed at the optimal weight ratio for transfection,

40:1 w/w polymer:DNA (N:P - 44:1). To replicate transfection conditions,

complexes were prepared by repeated pipetting in 25 mM sodium acetate buffer at

pH 5.2, incubated for 5 min at room temperature to allow for self-assembly, and

then subjected to DLS immediately following dilution in 10% serum-containing

medium.

We observed that for three of the four end-modified PBAEs, C32-118, C32-

122, and to a limited extent, C32-103, polymer/DNA nanoparticle diameters were

relatively uniform with respect to Mw up to -6-8 kDa, but above this threshold,

particle size increased with increasing Mw (Figure 5.5). The most effective end-

modified PBAEs generally yielded nanoparticles less than 200 nm in size. In contrast

to all of the other polymers tested, for C32-117, there was no clear association

between polymer length and nanoparticle size, with all polymer variants resulting in

complexes between 150-200 nm in diameter. Although for a given end-modified

PBAE, smaller nanoparticles generally mediated more efficient transfection (Figure
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5.6), the smallest complexes were never the most effective, which suggests the

significance of factors other than particle size.
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Figure 5.5 Correlation between polymer M. and polyplex diameter for PBAE
stoichio metric variants
Correlation between polymer Mw and diameter (mean ± SD, n = 3) of complexes
formed from DNA and stoichiometric variants of C32-103 (A), C32-117 (B), C32-
118 (C), and C32-122 (D) at a polymer:DNA w/w ratio of 40: 1. Polyplexes were
formed in sodium acetate buffer at pH 5.2 and then diluted in serum-containing
medium immediately prior to measurement.
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Figure 5.6 Correlation between gene transfection efficiency and polyplex
diameter for PBAE stoichiometric variants.
Correlation between transfection efficiency (mean ± SD, n = 4) in HeLa cells and the
mean diameters of complexes formed from DNA and stoichiometric variants of C32-
103 (A), C32-117 (B), C32-118 (C), and C32-122 (D) at a polymer:DNA w/w ratio of
40:1. Polyplexes were formed in sodium acetate buffer at pH 5.2 and then diluted in
serum-containing medium immediately prior to measurement.

Because we wanted a direct comparison with our in vitro transfection results,

we chose to perform DLS analysis, including the charge measurements, with

complexes that were diluted in serum-containing medium. Under these conditions,

we observed no significant variation in the nanoparticle -potential, with most

polymers producing complexes that were near-neutral in serum-containing medium

regardless of MW (Figure 5.7).
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Figure 5.7 Correlation between polymer M and -potential for PBAE
stoichiometric variants
Correlation between polymer M and c-potential (mean ± SD, n = 3) of complexes
formed from DNA and stoichiometric variants of C32-103 (A), C32-117 (B), C32-
118 (C), and C32-122 (D) at a polymer:DNA w/w ratio of 40: 1. Polyplexes were
formed in sodium acetate buffer at pH 5.2 and then diluted in serum -containing
medium immediately prior to measurement.

We speculated that either the lack of a buffering agent or the presence of

negative ly- charged serum proteins could generate spurious data or otherwise mask

an underlying trend. However, when we conducted charge measurements of C32-

122/DNA nanoparticles in 25 mM sodium acetate buffer at pH 5.2, all particles were

similarly characterized by near-neutral -potentials within a narrow range of -1 to

+1 mV (Figure 5.8). Therefore, for these end-modified PBAEs, the superior
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transfection activity of polymers of intermediate length depends to a certain degree

on smaller nanoparticle size, but is independent of nanoparticle charge.
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Figure 5.8 Correlation between polymer M, and c-potential for C32-122
stoichiometric variants in sodium acetate buffer
Correlation between polymer Mw and -potential (mean ± SD, n = 3) of complexes
formed from DNA and stoichiometric variants of C32-122 at a polymer:DNA w/w
ratio of 40:1. Polyplexes were formed and measured in sodium acetate buffer at pH
5.2.

5.3.4 Relative DNA binding efficiency

To assess whether the presence of an optimal polymer MW for transfection

reflects enhanced condensation and loading of free plasmid DNA into nanoparticles,

we quantified the DNA encapsulation efficiencies of these end-modified PBAE

variants by measuring the reduction in relative fluorescence due to the protection of

entrapped DNA from intercalation by the PicoGreen dye[34]. Using the same

conditions as those for transfection as well as for the DLS measurements above, we

found that for at least two of the four end-modified PBAEs, C32-103 and C32-117,

polymers of intermediate MW entrapped plasmid DNA with greater efficiency than
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higher or lower MW variants (Figure 5.9). For these polymers, the variants with the

greatest gene delivery activity in HeLa cells also encapsulated DNA the most

efficiently (Figure 5.10). For C32-118 and C32-122, however, encapsulation

efficiency generally decreased with polymer MW, and the variants most effective at

transfection did not coincide with those that entrapped DNA with the highest

efficiency.
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Figure 5.9 Correlation between polymer M. and relative DNA binding for
PBAE stoichiometric variants
Correlation between polymer M, and relative DNA binding efficiency (mean ± SD, n
= 3) of stoichiometric variants of C32-103 (A), C32-117 (B), C32-118 (C), and C32-
122 (D) at a polymer:DNA w/w ratio of 40:1.
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Figure 5.10 Correlation between gene transfection efficiency and relative DNA
binding for PBAE stoichiometric variants
Correlation between transfection efficiency (mean ± SD, n = 4) in HeLa cells and
relative DNA binding efficiency of stoichiometric variants of C32-103 (A), C32-117
(B), C32-118 (C), and C32-122 (D) at a polymer:DNA w/w ratio of 40:1.

From these data, we hypothesize that at least for C32-103 and C32-117, the

relatively high DNA entrapment efficiencies of polymers of intermediate MW

contribute to their enhanced transfection. Though useful in establishing trends

when comparing variants of a particular end-modified polymer, the encapsulation

efficiency values obtained from this dye exclusion assay in general appeared to have

limited predictive power with respect to transfection activity; for instance, C32-122

variants loaded DNA the least efficiently relative to other end-capped C32 polymers,

but actually transfected HeLa cells the most efficiently. These results suggest that
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for a given gene delivery polymer, DNA complexation efficiency is one important

factor among others, including chemical composition and nanoparticle size,

responsible for the variation in transfection activity due to polymer MW.

5.3.5 Preparative SEC

Although they vary in MW, the stoichiometric PBAE variants synthesized

above through step-growth polymerization are characterized by broad MWDs.

Besides their high polydispersity indices (PDIs), variation of the diacrylate:amine

ratio in the polymerization reaction could alter the degree to which polymers are

amine end-capped. To obtain polymers varying in MW, but characterized by a

narrower MWD, we re-synthesized a particular feed ratio variant of C32-122 (C:32 =

1.1:1; Mw = 6.69 kDa, PDI = 1.50) and subjected it to preparative SEC using an HPLC

system with an automated liquid fraction collector (Figure 5.11).
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Figure 5.11 Chromatogram of C32-122 eluting from the HPLC/SEC column
An example chromatogram showing the elution of C32-122 polymer from the SEC
column. Polymer fractions were collected at 0.2 min intervals between 5 and 9 min.
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Analytical SEC of -13 of the 20 fractions collected (representing -75% of the

total polymer mass loaded) revealed that Mw decreased smoothly with elution time

(Figure 5.12A). Furthermore, this method allowed for the isolation of fractions with

lower PDI (<1.2) than the crude polymer (Figure 5.12B).
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Figure 5.12 Preparative HPLC/SEC on C32-122
The Mw (A) and polydispersity indices (B) of various successive C32-122 polymer
fractions collected by preparative SEC. The dashed lines represent the values for the
crude, unfractionated polymer (Mw = 6.66 kDa, PDI = 1.50).

We performed a pDNA transfection experiment using these fractionated C32-

122 polymers and assessed the overall transfection efficiency in HeLa cells after 48

h. When polymer length was correlated with transfection efficiency at high DNA

doses and polymer:DNA w/w ratio, we observed that transfection efficiency

generally increased with polymer Mw (Figure 5.13). At a lower DNA dose, or at a

lower polymer:DNA w/w ratio, we found that some high MW fractions exhibited

dramatically greater potency than fractions with low MW. These high MW fractions

were also more potent than the crude, unfractionated polymer. For example, at a

DNA dose of 150 ng per well with a polymer:DNA w/w ratio of 40:1, C32-122 with a

150



Mw of 12.9 kDa transfected -62% of cells, in contrast to <10% for polymers below 5

kDa, and -39% for the crude polymer.
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Figure 5.13 Correlation between gene transfection efficiency and Mw of C32-
122 polymer fractions isolated by SEC
Correlation between DNA transfection efficiency (mean ± SD, n = 4) in HeLa cells
and Mw of C32-122 polymer fractions isolated by SEC. In the left plot (A), the DNA
dose per well of a 96-well plate is varied as indicated as the polymer:DNA w/w ratio
is held at 40:1. In the right plot (B), the polymer:DNA w/w ratio is varied as the DNA
dose is held at 300 ng/well. The filled symbols represent the activity of the crude
polymer sample (mean ± SD, n = 4).
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These transfection data underscore the importance of using freshly

synthesized materials when working with degradable gene-delivery polymers, since

the MW threshold for optimal performance can be rather narrow, and the

consequence of a small degree of degradation accordingly steep. Furthermore, the

isolation of monodisperse polymers improved consistency of physical properties

across the samples, and enhanced delivery at higher MW.

When we conducted DLS measurements of the DNA nanoparticles formed

using these size-fractionated polymers in serum-containing media, we did not

observe significant variation in particle diameter; however, the variation in relative

DNA binding efficiency among the size-fractionated polymers appeared to correlate

to a certain extent with the observed transfection activities (Figure 5.14).
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Figure 5.14 Correlation between nanoparticle biophysical properties and
polymer Mw for C32-122 SEC fractions
Effective diameters (A) and relative DNA binding efficiencies (B) of nanoparticles
formed from size-fractionated C32-122 at a polymer:DNA w/w ratio of 40:1 in
serum-containing medium. The filled symbols represent the values for the crude
polymer.
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In contrast to our data with the polymer feed ratio variants, we did observe

an association between polymer MW and relative cell viability following

transfection, which was most prominent at the highest dose and polymer:DNA

weight ratio tested (Figure 5.15). Given that under these conditions some polymer

fractions transfected nearly 100% of cells, the transfection and viability data taken

together imply that a careful selection of polymer MW, DNA dose, and weight ratio

(in addition to other known variables such as cell density) could permit highly

efficient gene delivery with low cytotoxicity.
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Figure 5.15 Correlation between Mw of C32-122 SEC fractions and relative
viability following gene transfection in HeLa cells
Correlation between Mw of C32-122 polymer fractions isolated by SEC and the
relative viability (mean ± SD, n = 4) of HeLa cells 48 h after transfection. In the left
plot (A), the DNA dose per well of a 96-well plate is varied as indicated as the
polymer:DNA w/w ratio is held at 40:1. In the right plot (B), the polymer:DNA w/w
ratio is varied as the DNA dose is held at 300 ng/well. The filled symbols represent
the activity of the crude polymer sample.

As suggested above, we hypothesize that the observed differences in trends

between the C32-122 feed ratio variants and the size-fractionated C32-122 polymer

likely result from the high polydispersity indices of the feed ratio variants as well as

possible heterogeneity in the extent of amine end-modification. For researchers
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working with gene delivery polymers synthesized by step-growth polymerization,

our data highlight the potentially broad utility of preparative SEC for the isolation of

well-defined, monodisperse fractions with higher transfection potency than the

starting material. We expect that this approach should also help to reduce

variability between batches of polymers.

Because both data sets suggested a role for DNA complexation efficiency in

modulating the relationship between polymer MW and transfection activity, we

hypothesize that the best gene delivery polymers owe their performance at least in

part to an optimal balance of the rates of complex formation during particle

assembly and unpacking within the cell. Additional studies are required to address

this hypothesis in greater detail.

5.4 CONCLUSIONS

Working with amine end-modified PBAEs, a promising class of degradable

gene delivery polymers, we investigated the effect of polymer MW on the

transfection activity, toxicity, and biophysical properties of the resulting polymer-

DNA nanoparticles. Using variation of monomer stoichiometry, we observed that

polymers of intermediate length mediated optimal DNA transfection in HeLa cells.

Characterization of these feed ratio variants suggested that optimal performance

was related to higher polymer-DNA complexation efficiency and smaller

nanoparticle size, but not to nanoparticle charge. In contrast, using preparative SEC

to obtain well-defined, monodisperse polymer fractions, we observed that the
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transfection activities of size-fractionated PBAEs generally increased with MW, a

trend that was weakly associated with more efficient DNA binding. Our ability to

isolate polymer fractions with higher transfection potency than the starting material

indicates the potentially broad utility of this approach. These results further our

understanding of the influence of polymer MWD on nucleic acid delivery, a critical

aspect of the structure-property relationship for gene delivery materials.
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6 THE CHOLESTEROL TRANSPORTER NIEMANN
PICK C1 PLAYS A CRITICAL ROLE IN DNA
INTERNALIZATION AND TRANSFECTION BY
POLY(BETA-AMINO ESTER)S

6.1 INTRODUCTION

The tremendous medical promise of gene therapy remains largely unfulfilled

due to the lack of safe and effective delivery vehicles[1 1. Though regarded as efficient

gene carriers, viral vectors also carry serious safety risks including insertional

mutagenesis and adverse immune responses[21. Non-viral gene vectors offer the

possibility of improved safety, but have generally failed to attain satisfactory

delivery efficacy in clinical testing[3 ,41. Unfortunately, the rational design of synthetic

carriers is at present extremely challenging because of the limited mechanistic

understanding of the numerous hurdles involved in gene delivery 51.

Cellular uptake constitutes an early step for which there is an increasingly

refined picture of the endocytic pathways available for use by nanoparticles[ 61. For

most cells types other than phagocytes, these endocytic mechanisms include

macropinocytosis, clathrin-dependent endocytosis, caveolae-mediated endocytosis,

and a growing number of clathrin- and caveolae-independent pathways such as

RhoA-dependent, Arf6-dependent, Cdc42-dependent, and flotillin-dependent

endocytosis[ 7 . A handful of nanocarriers appear to rely predominantly on a single

pathway. Certain kinds of poly(lactic-co-glycolic acid) (PLGA) nanoparticles, for

instance, were reported to be internalized by vascular smooth muscle cells via
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clathrin-dependent endocytosis 8 -10, whereas DOXIL@ and Abraxane@ nanoparticles

enter tumor cells via caveolae-mediated endocytosis 11 , 121. Macropinocytosis,

meanwhile, appeared to be the major pathway used for entry in HeLa cells by

siRNA-containing cationic lipid-based nanoparticles (LNPs) formulated with PEG[1 31.

Nonetheless, for most of the nanoparticles commonly used for non-viral gene

delivery, including poly-L-lysine (PLL) and polyethylenimine (PEI)-based

polyplexes, as well as various lipoplexes and liposomes, evidence exists for the use

of multiple endocytic mechanisms[ 14 2 1 1.

Poly(beta-amino ester)s (PBAEs) are biodegradable cationic polymers that

have demonstrated effective gene delivery in a variety of in vitro and in vivo

contexts, including suicide gene therapy of several animal models of cancer[22-24 1 as

well as genetic modification of stem cells for treatment of ischemia[25 . These

polymers have consistently shown superior performance and less toxicity in several

difficult-to-transfect cell types[26-281 compared to commercially available

transfection reagents such as Lipofectamine 2000 (LF 2000). The versatility of the

polymerization chemistry[291 has allowed a broad set of structures to be synthesized

and screened in a high-throughput manner[30-341, allowing systematic investigation

of key parameters affecting gene delivery potency such as polymer molecular

weight distribution[35 , hydrophobicity of the side chains[ 361, and amine end-group

structure[37-40 l. However, the endocytic mechanisms used by PBAEs for

internalization have not yet been studied.

In this chapter, we explore the uptake of PBAE/DNA nanoparticles through

complementary approaches including pharmacological inhibition and marker co-
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localization studies. We observe that PBAE/DNA nanoparticles appear to enter

immortalized mouse embryonic fibroblast (MEF) cells through multiple pathways,

with an apparent requirement for normal cholesterol trafficking. We show that

PBAE polyplex transfection efficacy is dramatically reduced in MEFs deficient in a

late endosomal and lysosomal cholesterol transport protein, Niemann-Pick CI

(Npc1), mutations of which are associated with a fatal disease characterized by

abnormal lysosomal accumulation of cholesterol[411.

Highlighting the role of this protein in endocytic uptake and cellular

trafficking, Npcl-deficient cells were recently identified to inhibit endosomal escape

and cellular entry of Ebola virus[4 2 4 4 1; in contrast, retention and efficacy of lipid-

based nanoparticles for siRNA delivery were greatly enhanced in Npcl-/- cells

(Sahay et al., forthcoming). Here, we find that Npcl knockout in MEFs greatly

inhibits PBAE-mediated DNA internalization, with a slight decrease in DNA uptake

mediated by PEI and no apparent effect on DNA uptake mediated by LF 2000. We

show that retention of various endocytic markers is altered in Npci-deficient MEFs,

with over 20-fold reduction in uptake of cholera toxin B, two-fold reduction in

uptake of transferrin, and -50%-increase in uptake of dextran. PBAE/DNA

polyplexes showed the greatest extent of co-localization with cholera toxin B,

suggesting the involvement of shared uptake pathways that are altered in cells

lacking Npc1. These studies provide further evidence that Npcl plays a key role in

regulating endocytic mechanisms affecting internalization and efficacy of

nanoparticles.
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6.2 MATERIALS AND METHODS

6.2.1 Materials

1,4-butanediol diacrylate and 5-amino-1-pentanol were purchased from Alfa

Aesar (Ward Hill, MA, USA). Dodecylamine was purchased from Sigma-Aldrich (St.

Louis, MO, USA). (PEO) 4-bis-amine ("122") was acquired from Molecular Biosciences

(Boulder, CO, USA). All chemical reagents were used without further purification.

Plasmids encoding green fluorescent protein (gWiz-GFP) and firefly luciferase

(gWiz-Luc) were purchased from Aldevron (Fargo, ND, USA). jetPEI (Polyplus

Transfection, Illkirch, France) and Lipofectamine 2000 were purchased from VWR

(Radnor, PA, USA) and Invitrogen (Carlsbad, CA, USA), respectively. Transferrin,

cholera toxin B, and 10,000 MW dextran, each labeled with AlexaFluor 647, were

purchased from Invitrogen. Cytochalasin D, dynasore hydrate, chlorpromazine

hydrochloride, filipin III, genistein, methyl-P-cyclodextrin, 5-(N-ethyl-N-

isopropyl)amiloride (EIPA), and U18666A were obtained from Sigma-Aldrich.

Immortalized mouse embryonic fibroblast (MEF) cell lineswere cultured in DMEM

(Invitrogen) supplemented with 10% fetal bovine serum (Invitrogen).

6.2.2 Polymer synthesis

To synthesize C32-122, acrylate-terminated C32 poly(p-amino ester) was

first prepared in a 5 g batch by reacting 1,4-butanediol diacrylate ("C") and 5-amino-

1-pentanol ("32") (1.2:1.0 diacrylate:amine molar ratio) without solvent at 900C for

24 h with stirring. After cooling to RT and dissolving the polymer in 10 mL of
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anhydrous THF, it was added to a vial containing 10 mmol of (PEO) 4-bis-amine (10

mmol in 40 mL anhydrous THF). Following overnight stirring at RT, the amine end-

modified polymer was purified by precipitation in anhydrous diethyl ether (1:3 v/v

THF:ether) and dried under vacuum for 24 h. C32-122 was then dissolved at 100

mg/mL in dimethyl sulfoxide (DMSO) and stored at -20'C with desiccant until use.

For synthesis of C32-122 terpolymers containing C12 alkyl side chains,

dodecylamine, 5-amino-1-pentanol, and 1,4-butanediol diacrylate were sequentially

added to a vial equipped with stir bar such that the total mass of monomers was 200

mg, the diacrylate:amine monomer molar ratio was 1.2:1.0, and the molar ratios of

the amines C12:32 varied as indicated (0% C12 = 0:1 C12:32, 10% = 0.1:0.9, 20% =

0.2:0.8, etc.). After heating and stirring at 90"C for 48 h, the reactions were allowed

to cool to RT, then dissolved in 1 mL of DMSO, to which a solution of (PEO)4 -bis-

amine (0.8 mmol in 1 mL DMSO) was added. The reactions were stirred at RT

overnight and then stored frozen with desiccant at -20"C.

6.2.3 DNA transfection experiments

One day before transfection, cells (100 pl) were seeded into each well of a

96-well polystyrene tissue culture plate (HeLa: 12,500 per well; MEFs: 9,000 per

well). For studies using the pharmacological inhibitors, conditioned medium was

removed 1 hour prior to transfection and replaced with fresh, pre-warmed medium

containing the indicated concentration of pharmacological inhibitor. For GFP

transfection experiments, gWiz-GFP (5 mg mla) was diluted to 160 [tg ml-' in 25 mm

sodium acetate (NaOAc) buffer at pH 5.2; for DNA uptake experiments, gWiz-Luc
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was labeled with Cy3 or Cy5 using the Labellt kit (Mirus, Madison, WI, USA)

following the manufacturer's instructions, and was diluted in NaOAc buffer as

above. PBAEs (100 mg ml1) were thawed immediately prior to transfection and

diluted in NaOAc buffer to a concentration of 3.2 mg ml[ (20:1 w/w polymer:DNA).

To form DNA-polymer nanoparticles, polymer solution (200 [d) was added to the

diluted DNA (200 [l), mixed by repeated pipetting, and allowed to incubate for 10

min at RT. Depending on the dose, polymer-DNA complexes were diluted in NaOAc

as needed, and then were gently mixed in a deep 96-well plate with pre-warmed

fresh medium (360 [l). For inhibition experiments, this medium was prepared with

the indicated concentration of pharmacological inhibitor, whereas for co-

localization experiments, labeled transferrin, cholera toxin B, or dextran were

present Conditioned medium was removed using a 12-channel aspirating wand and

replaced with the complexes diluted in medium (100 Rl). jetPEI and Lipofectamine

2000 were used according to the manufacturers' protocols.

For GFP transfection experiments, following a 3-h incubation at 37'C,

complexes were removed with the aid of a multi-channel aspiration wand and

replaced with fresh medium (100 [d), and the cells were analyzed for GFP

expression by fluorescence-activated cell sorting (FACS) after 24 h at 37"C. For DNA

uptake experiments, cells were washed three times at the indicated time point and

prepared for analysis by either confocal microscopy or FACS.
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6.2.4 FACS analysis

After aspirating conditioned medium and washing cells three times with PBS,

cells were detached using 25 iil per well of 0.25% trypsin-EDTA (Invitrogen).

Following a 5 min incubation at 37*C, fresh medium (50 il) was added to the cells,

which were mixed thoroughly and then transferred to a 96-well round-bottom

plate. Cells were then pelleted, re-suspended in fixation buffer (4% v/v

formaldehyde in PBS), incubated for 10 min at RT, pelleted again, and finally re-

suspended in ice-cold FACS running buffer (2% v/v FBS in PBS) containing 1:200

v/v propidium iodide (Invitrogen). The cells were kept at 4*C until FACS analysis

using a BD LSR II (Becton Dickinson, San Jose, CA, USA). Except for experiments with

Cy3-labeled DNA, propidium iodide (PI) staining was used to exclude dead cells

from the analysis. PI staining was also used to determine the viabilities of treated

cells relative to non-treated control cells, where the relative viability was calculated

as the ratio of live (unstained) treated cells per well to the mean number of live non-

treated cells per well. For GFP expression analysis, 2D gating was used to separate

increased auto-fluorescence signals from increased GFP signals to more accurately

count positively expressing cells. Gating and analysis were performed using FlowJo

v8.8 software (TreeStar, Ashland, OR, USA). Geometric mean fluorescent intensities

of transfected cells were normalized to those of the corresponding non-transfected

control cells.
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6.3 RESULTS AND DISCUSSION

6.3.1 Pharmacological inhibition studies

One approach toward identification of the endocytic mechanisms utilized by

nanomaterials involves the use of pharmacologic inhibitors known to interfere with

certain uptake pathways. However, this approach has concomitant disadvantages

including a lack of pathway selectivity and the induction of toxicity at excessive

doses. With these caveats in mind, we screened a set of such inhibitors for their

potential to reduce cellular internalization of labeled DNA by C32-122, one of the

top-performing amine end-modified poly(-amino ester) (PBAE) polymers[351. The

inhibitors we initially tested and the pathways these molecules are thought to

inhibit are provided in Table 6.1.

Cytochalasin D Actin-dependent 10, 1, 0.5, 0.05
pathways

Dynasore Clathrin & caveolar 100, 10, 1.0, 0.1
(dynamin-dependent)

Chlorpromazine Clathrin-mediated 100, 10, 1.0, 0.1

Filipin Caveolar 100, 10, 1.0, 0.1

5-(N-ethyl-N- Macropinocytosis 100, 10, 1.0, 0.1
isopropyl)amiloride (EIPA)

U18666A Cholesterol 100, 10, 1.0, 0.1
synthesis/trafficking

Table 6.1 Pharmacologic inhibitors tested in the initial screen
The set of pharmacologic inhibitors included in the initial screen along with the
pathways they target and the concentrations tested.
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Figure 6.1 Screen for small molecule-mediated inhibition of C32-122-
mediated DNA uptake in MEFs
MEFs were transfected with various doses of C32-122 polyplexes containing Cy5-
labeled DNA in the presence of the indicated concentrations of endocytic pathway
inhibitors. MEFs were pre-treated with the inhibitors 1 h prior to transfection. After
3 h, the cells were washed, fixed, stained with propidium iodide, and analyzed by
FACS to determine (a) cell viability of control cells treated with inhibitors (mean
SD, n = 3), and (b) DNA uptake efficiency (mean ± SD, n = 3) at various doses. DNA
uptake efficiencies plotted only for the 5 ng DNA/well dose.
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In the initial screen, immortalized mouse embryonic fibroblasts (MEFs) were

pre-treated with these inhibitors for 1 h, then transfected with various doses of C32-

122 polyplexes containing Cy5-labeled DNA in the presence of these inhibitors. After

3 h, the cells were washed, fixed, stained with propidium iodide to label dead cells,

and analyzed by FACS to quantify relative cell viability and DNA internalization

efficiency (Figure 6.1). To avoid the possibility of confounding effects, we omitted

certain inhibitor treatments that at high concentrations resulted in a major

reduction in cell viability. It is interesting to note that with some of the inhibitors, at

lower concentrations of the drug and higher concentrations of the DNA polyplexes,

uptake appears to be elevated, suggesting that the cells may compensate for

incomplete suppression by promoting alternate endocytic pathways[45 -481. In many

cases, this effect was not actually statistically significant due to the large standard

deviations observed for the cells transfected in the absence of inhibitors.

The clearest trends with respect to the effect of each inhibitor on C32-122

polyplex uptake are observed at the 5 ng DNA dose (Figure 6.1c). Dose-dependent

decreases in uptake efficiency are seen for cells treated with cytochalasin D,

dynasore, chlorpromazine, and U18666A. However, a one-way analysis of variance

(ANOVA) test indicates that the only treatments that caused statistically significant

decreases in uptake are cytochalasin D (10 pM) and U18666A (100 pM).

To follow-up on this screen, we repeated the pharmacologic inhibition

experiment using each inhibitor at a concentration just below the threshold for

toxicity and performed high-throughput (HT) confocal microscopy on the treated

MEFs. We included two other inhibitors of caveolae-mediated endocytosis, genistein

167



and methyl- P-cyclodextrin. To test the hypothesis that a component in serum might

interact with the PBAE polyplexes and contribute to internalization, we also

transfected cells in the absence of serum. The microscopy results were analyzed for

DNA uptake and quantified as presented in Figure 6.2.

0

'U
0.

0)

0

(b)

'C 4q96A~ < 2 %

Figure 6.2 C32-122-mediated DNA uptake in MEFs in the presence of various
endocytic pathway inhibitors
MEFs were transfected with C32-122 polyplexes containing Cy3-labeled DNA (red)
in the presence of various endocytic pathway inhibitors (5 pM U18666A, 50 gM
dynasore, 1 mM methyl-p-cyclodextrin, 10 gM genistein, 5 gM filipin, 5 pM
chlorpromazine, 10 pM EIPA, and 10 pM cytochalasin D). MEFs were pre-treated
with the inhibitors 1 h prior to transfection. After 3 h, the cells were washed, fixed,
treated with the nuclear stain Hoescht (blue), and analyzed by high-throughput
confocal microscopy to quantify (a) DNA uptake (mean ± SD, n = 3). Representative
images showing DNA uptake in MEFs (b) in the absence of an inhibitor and (c) in
the presence of U18666A.

In accordance with the initial screening data, we found that U18666A

significantly inhibited C32-122-mediated DNA uptake, as seen in the representative

microscopy images (Figure 6.2b-c). In contrast, treatment with dynasore yielded a

significant decrease in DNA uptake, and surprisingly, cytochalasin D treatment at
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this dose caused a significant increase in transfection. As suggested previously, it is

possible that the cells may overcome pharmacologic inhibition of one pathway by

upregulating alternate pathways through which the polyplexes enter.

The fact that none of the commonly used inhibitors of clathrin-dependent

endocytosis (chlorpromazine), caveolae -mediated endocytosis (filipin), and

macropinocytosis (EIPA) were effective suggests that PBAE polyplexes may use

multiple pathways to enter MEFs. This hypothesis is supported by the statistically

significant but inconsistent inhibition observed using cytochalasin D and dynasore,

which suppress a broad set of actin- and dynamin-dependent pathways,

respectively. Nonetheless, we observed clear and consistent inhibitory effects with

U18666A, which prompted us to perform further investigations of the dependence

of cholesterol regulation on PBAE-mediated gene delivery.

To determine if U18666A inhibits overall gene transfection by PBAEs, we

transfected MEFs with various doses of C32-122 polyplexes containing GFP-

encoding plasmid DNA in the presence of the inhibitor and assessed GFP expression

efficiency by FACS at 24 h. As was observed with DNA uptake efficiency, U18666A

significantly inhibited gene transfection at nearly all DNA doses tested (Figure 6.3).

U18666A is an amphipathic steroid with multiple actions, inhibiting both the

synthesis of cholesterol[49-s21 and its trafficking from late endosomes and lysosomes

to the plasma membrane and the endoplasmic reticulum[3-55I. As a result of the

latter action, it has also been widely studied as a means of inducing a model of

Niemann-Pick type C1 disease[56-581 and may in fact directly interact with and inhibit

the sterol sensing site of the Npcl protein[5 7,s59 ,60 .
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Figure 6.3 U18666A inhibits C32-122-mediated DNA transfection of MEFs
MEFs were pre-treated for 1 h with 5 iM U18666A prior to transfection with the
indicated doses of C32-122 polyplexes containing GFP-encoding plasmid DNA in the
presence of the inhibitor. After 24 h, GFP expression efficiency was analyzed by
FACS (mean ±SD, n = 4).

6.3.2 Studies with cell lines varying in Npcl expression

To ascertain whether the Npcl protein plays a role in inhibition of C32-122-

mediated DNA transfection, we compared gene transfection efficiencies in Npcl +/+

and Npcl-/- MEF cell lines (Figure 6.4). Fluorescence microscopy one day after

transfection with C32-122 polyplexes containing GFP-encoding plasmid DNA

showed that GFP expression was dramatically lower in Npcl-/- MEFs relative to

wild-type cells for the same DNA dose (Figure 6.4a). When FACS analysis was used

to compare the dose-response profiles of the two cell lines, we observed that the

ED50 concentration was approximately threefold greater for the Npcl KO cells than

that for the wild-type cells (Figure 6.4b). Even more strikingly, GFP expression

levels of positively transfected cells were reduced over tenfold in Npcl KO cells
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(Figure 6.4c). These data indicate that the Npcl protein plays a crucial role in gene

transfection by C32-122.
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Figure 6.4 Npcl knockout inhibits C32-122-mediated DNA transfection of
MEFs
Npcl 1+/+ and Npcl-/- MEFs were incubated for 3 h with various doses of C32-122
polyplexes containing GFP-encoding plasmid DNA, and GFP expression was
assessed by fluorescence microscopy and FACS after 24 h. (a) Representative
images showing decreased GFP expression in Npcl-/- MEFs relative to wild-type
MEFs, and FACS analysis of (b) GFP expression efficiency and (c) normalized
geometric mean fluorescent intensity (MFI) of GFP-expressing cells (mean ± SD, n =

4).

Inhibition of PBAE-mediated gene transfection in Npcl-deficient cells could

be the result of multiple factors, such as reduced cellular internalization or reduced

endosomal escape. To determine whether Npcl knockout reduces DNA uptake by
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C32-122, HT confocal microscopy was used to compare the fluorescent intensity

levels of Npcl+/+ and Npcl-/- MEFs treated with polyplexes incorporating Cy3-

labeled DNA (Figure 6.5). We observed that Npcl deficiency was associated with

significantly decreased uptake across a range of DNA doses tested.

(a) Npc1+/+ (b)

- 100
* Npcl+/+

10 o Npcl-/-
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Figure 6.5 Npcl knockout inhibits C32-122-mediated internalization of DNA in
MEFs
Npcl+/+ and Npcl-/- MEFs were transfected with various doses of C32-122
polyplexes containing Cy3-labeled plasmid DNA (green). After 3 h, the cells were
washed, fixed, treated with the nuclear stain Hoescht (blue), and analyzed by HT
confocal microscopy. (a) Representative images showing inhibition of uptake in
Npcl-/- MEFs, and (b) quantification of DNA uptake (mean ± SD, n = 3).

Characterization of Cy5-labeled DNA internalization by FACS analysis

confirmed that Npcl knockout significantly reduced both the efficiency and the

fluorescent intensity of MEFs transfected using C32-122 (Figure 6.6a). To determine

whether Npcl deficiency also affected DNA internalization mediated by other

transfection reagents, we conducted analogous experiments with polyethylenimine

(PEI) and Lipofectamine 2000 (LF 2000). For LF 2000, Npcl knockout had no
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significant impact on labeled DNA uptake efficiency or on the fluorescent intensity

of transfected cells (Figure 6.6c). In contrast, for PEI, Npcl knockout was associated

with a reduction in fluorescent intensity of positively transfected cells but had little

effect on uptake efficiency (Figure 6.6b). Comparing the uptake efficiency results, we

hypothesize that Npcl deficiency significantly affects certain early endocytic

mechanisms by which PBAE polyplexes are internalized, but not those upon which

PEI and LF 2000 rely. Based on the overall uptake results, we further speculate that

Npcl knockout is associated with a later downstream blockage of uptake - perhaps

a defect in endosomal escape - that prohibits accumulation of DNA delivered by

PBAEs and PEI, but not by LF 2000.
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Figure 6.6 Effects of Npcl knockout on internalization of DNA in MEFs
following transfection with C32-122, PEI, and Lipofectamine 2000
Npcl+/+ and Npcl-/- MEFs were incubated with various doses Cy5-labeled plasmid
DNA (green) complexed with (a) C32-122, (b) polyethylenimine (PEI), or (c)
Lipofectamine 2000 (LF2000). After 3 h, the cells were washed, fixed, and analyzed
by FACS to determine DNA uptake efficiency (top, mean ± SD, n = 4) and normalized
geometric mean fluorescent intensity (MFI) of Cy5-positive cells (bottom, mean
SD, n = 4).
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Figure 6.7 Increasing C32-122 terpolymer hydrophobicity improves genetransfection potency in Npcl-/- MEFs but does not rescue inhibition

Npcl+/+ and Npcl-/- MEFs were incubated for 3 h with the indicated doses of the
C32-122 terpolymer variants complexed with GFP-encoding plasmid DNA. GFP
expression efficiency (mean ± SD, n = 4) was assessed by FACS after 24 h.

Due to the differences in behavior observed for the three materials, we

hypothesized that modifying certain chemical properties of the material might

alleviate the impact of Npcl deficiency on gene transfection. We have previously

reported that hydrophobic PBAE terpolymers incorporating alkyl side chains

demonstrate enhanced gene delivery efficacy and nanoparticle stability[61 1.

Therefore, we synthesized C32-122 terpolymers of varying hydrophobicity and

compared transfection efficacy in wild-type and Npcl knockout MEFs (Figure 6.7).

Although increasing C32-122 terpolymer hydrophobicity was associated with

improved gene delivery in both Npcl+/+ and Npcl-/- MEFs, it did not rescue the
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inhibitory effect of Npcl knockout on PBAE gene transfection efficiency. We

speculate that the enhancement in gene delivery observed as a result of increasing

polymer hydrophobicity likely owes more to a biophysical property of the polyplex

such as increased DNA binding efficiency (cf. Figure 3.10, Figure 3.11) than to

alteration of the cellular internalization mechanism.

To further elucidate the effects of Npcl, we examined C32-122/DNA uptake

and transfection in Chinese hamster ovary (CHO) epithelial cell lines varying in

Npcl expression (Figure 6.8). These cell lines included wild-type CHO cells, Npcl-

deficient CHO cells (Null), CHO cells expressing Npcl with a missense mutation in

the sterol-sensing domain (SSD) resulting in defective cholesterol trafficking 6 21

(P692S), and wild-type CHO cells stably overexpressing human Npcl[ 631 (hNpcl). As

was observed with the immortalized MEFs, Npcl deficiency in CHO cells inhibited

both DNA uptake and transfection mediated by C32-122. In the P692S CHO cells,

uptake and transfection were inhibited to a nearly identical extent as the null cells,

confirming the specific dependence on Npcl's cholesterol-trafficking function for

PBAE-mediated gene delivery. Surprisingly, we observed increased C32-122-

mediated DNA uptake and transfection in the CHO cells stably overexpressing

human Npc1 (Figure 6.8). These cells have been reported to have a 1.5-fold increase

in total cellular cholesterol and a 2.9-fold increase in cholesterol at the plasma

membrane[63]. We hypothesize that increased cholesterol localization at the plasma

membrane may enhance the activities of certain endocytic mechanisms used by

PBAE/DNA nanoparticles. These observations raise the possibility of modulating

key cellular factors to improve non-viral gene delivery.
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Figure 6.8 C32-122-mediated DNA uptake and transfection in CHO cell lines
varying in Npcl expression
CHO cells varying in Npcl expression were incubated for 3 h with the indicated
doses of (a) Cy5-labeled plasmid DNA or (b) GFP-encoding plasmid DNA complexed
with C32-122 polymer. FACS analysis was used to assess the (a) Cy5 geometric
mean fluorescent intensities (MFI) of treated cells relative to non-treated cells
immediately after washing, or (b) the GFP geometric MFI of treated cells relative to
non-treated cells after 24 h (mean ± SD, n = 4).

To examine the hypothesis that Npcl deficiency affects endocytic processes

that contribute to PBAE polyplex entry, we assessed the relative uptake of various

known markers of endocytic pathways in Npcl+/+ and Npcl-/- MEFs. These

markers included fluorescently labeled transferrin, cholera toxin B, and 10,000 MW

dextran, which are thought to undergo internalization via clathrin-dependent

endocytosis, caveolin-mediated endocytosis, and macropinocytosis, respectively.

After a 3 h incubation with the cell lines and multiple washes, we observed

dramatically reduced uptake of cholera toxin B in the Npcl-deficient cells (Figure

6.9). Furthermore, transferrin uptake appeared to be slightly decreased and dextran

uptake slightly increased.
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Cholera Toxin B

Npc 1+/+

Npc 1-/-

Figure 6.9 Confocal microscopy analysis of relative endocytic pathway
activities in Npcl+/+ and Npcl-/- MEFs
MEFs were incubated for 3 h with media containing various AF647-labeled (red)
markers: 50 pig/ml transferrin (left), 55 ng/ml cholera toxin B (middle), or 100
jig/ml 10,000 MW dextran (right), traditional markers of clathrin-dependent,
endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively.
After 3 h, the cells were washed, fixed, treated with the nuclear stain Hoescht (blue),
and analyzed by HT confocal microscopy.

Quantification of these microscopy results by FACS analysis corroborated

these trends (Figure 6.10). Comparing Npc1-deficient cells to wild-type cells,

cholera toxin B internalization was reduced -20-30-fold; transferrin uptake was

reduced about twofold; and dextran uptake was increased by -50%. These results

demonstrate in a quantitative manner that Npcl knockout in MEFs significantly

alters normal activities of various endocytic pathways, implying significantly

decreased caveolae-mediated endocytosis, slightly reduced clathrin-mediated

endocytosis, and slightly upregulated macropinocytosis. However, it should be

noted that cholera toxin B is not necessarily a selective marker of caveolae-mediated
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endocytosis as some studies have reported its entry through alternative pathways

depending on the cell type[6 4 .

(a) Transferrin (b) Cholera Toxin B (C) Dextran
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Figure 6.10 FACS analysis of relative endocytic pathway activities in Npc 1+/+
and Npc1-/- M EF s
MEFs were incubated for 3 h with media containing various doses of AF647-labeled
(a) transferrin, (b) cholera toxin B, or (c) dexran. After 3 h, the cells were washed,
fixed, and analyzed for AF647 signal by FACS.

To determine whether PBAE polyplexes share common uptake pathways

with these markers during endocytosis, we incubated the C32-122 polyplexes

containing labeled DNA in the presence of each one of these markers and used

confocal microscopy to characterize the extent of co-localization in wild-type MEFs

at various time points (Figure 6.11). Confirming our hypothesis that PBAEs utilize

multiple endocytic pathways, we observed evidence of DNA co-localization with all

three markers. However, the greatest extent of co-localization occurred with cholera

toxin B. Moreover, the kinetics of PBAE/DNA uptake indicated on an intermediate

time scale corresponding more closely to that of cholera toxin B uptake than to

either the fast or slow kinetics of transferrin or dextran uptake, respectively (data

not shown). These results suggests that PBAE polyplexes and cholera toxin B may
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rely on common uptake pathways for internalization and retention in MEFs that are

dramatically altered in cells lacking Npcl.

(a) Transferrin (b) Cholera Toxin B (C) Dextran

Figure 6.11 Co-localization of internalized DNA delivered by C32-122 with
markers of distinct endocytic pathways in MEFs
Npcl 1+/+ MEFs were transfected with C32-122 polyplexes containing Cy3-labeled

DNA in the presence of AF647-labeled (a) 50 ig/ml transferrin, (b) 55 ng/ml
cholera toxin B, or (c) 100 ug/mi 10,000 MW dextran. After 3 h, the cells were

washed, fixed, treated with the nuclear stain Hoescht (blue), and analyzed by high-

throughput confocal microscopy for intracellular co-localization of DNA (green)

with each marker (red).

Taken together, these data imply that Npcl regulates certain uptake and

trafficking pathways that markedly affect internalization and retention of

PBAE/DNA polyplexes. Because Npcl plays a key role in regulating the trafficking of

cholesterol, and because cholesterol has been shown to be critically involved in both

caveolin- and clathrin-mediated endocytosis[ 65-6 91, it is quite plausible that Npcl

knockout would affect these processes. To our knowledge, although Npcl knockout

has been associated with altered intracellular localization of cholera toxin B and

lactosylceramide (LacCer),[ 59,701 two markers of caveolin-mediated endocytosis, and

with defective recycling of transferrin receptor[711, quantitative analysis of uptake

for multiple endocytic markers has not yet been reported. Despite previous reports

that fluid-phase uptake of horseradish peroxidase is impaired in Npcl knockout
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cells[7 2 , 7 31, possibly due to abnormal localization of annexin II, our results suggest

that macropinocytic internalization of dextran is slightly increased in Npcl-deficient

cells.

At present, the precise molecular mechanisms by which Npcl affects

endocytic processes is unknown. One group has recently reported that perturbation

of cholesterol content by U18666A can induce mislocalization of caveolin-1 from the

plasma membrane to late endosomes and lysosomes 6 5l. However, the authors did

not test whether this mislocalization also occurs in Npcl knockout cells. Another

study suggested that Npcl deficiency is associated with deregulation of lysosomal

calcium that is in turn responsible for sphingolipid accumulation as well as defects

in endosomal trafficking[74 . Further studies are needed to determine whether Npcl

plays a more direct role in regulation of early endocytic pathways. Such studies

would help to elucidate both the biology of endolysosomal trafficking and the

pathology of glycosphingolipid storage diseases.

Finally, the novel investigation of non-viral DNA transfection of Npcl-

deficient cells reported here demonstrates the importance of proper regulation of

cholesterol trafficking for certain delivery reagents such as poly(p-amino ester)s.

Future studies should evaluate whether Npcl plays a similar role in cell types other

than MEF and CHO cells, particularly human fibroblast and epithelial cells. In this

study, one of the most striking observations was that stable overexpression of Npcl

significantly improved DNA internalization and transfection by PBAEs. These

findings raise the tantalizing prospect of enhancing non-viral gene delivery through
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active modulation of cellular factors known to play key roles in internalization, such

as lysobisphosphatidic acid (LBPA), Rab5, and perhaps Npcl.

6.4 CONCLUSIONS

In this chapter, the uptake of PBAE/DNA nanoparticles was investigated

through pharmacological inhibition and marker co-localization studies. Our results

indicated that internalization of PBAE/DNA polyplexes in immortalized mouse

embryonic fibroblast (MEF) cells likely proceeds through multiple pathways, with

an apparent dependence on normal cholesterol trafficking. We showed that MEFs

deficient in a lysosomal cholesterol transport protein, Npcl, exhibit significantly

reduced PBAE gene transfection efficacy. Moreover, Npcl knockout in MEFs greatly

inhibited PBAE-mediated DNA internalization, with a slight decrease in DNA uptake

mediated by PEI and no apparent effect on DNA uptake mediated by LF 2000.

Strikingly, stable overexpression of human Npcl in Chinese hamster ovary (CHO)

cells was associated with enhanced gene uptake and transfection by PBAEs. We

observed that retention of various endocytic markers was altered in Npcl-deficient

MEFs, with significant reduction in uptake of cholera toxin B, a marker traditionally

associated with caveolae-mediated endocytosis. DNA internalized by PBAEs showed

the greatest extent of co-localization with the cholera toxin B marker, suggesting the

involvement of shared uptake pathways that are altered in cells lacking Npcl. These

studies provide additional support for the idea that Npcl plays a critical role in the

regulation of endocytic mechanisms affecting internalization and efficacy of

nanoparticles.
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7 NUCLEIC ACID CONJUGATION ENABLES EFFICIENT
INTRACELLULAR PROTEIN DELIVERY BY LIPID-
BASED NANOPARTICLES

7.1 INTRODUCTION

Since the approval of recombinant human insulin for diabetes treatment

nearly three decades ago, protein therapeutics now comprise a major class of

pharmaceuticals with a range of functions and applications, including enzyme

replacement, monoclonal antibodies, hormones, and protein-based vaccines[1].

However, most protein therapeutics act extracellularly or at the cell surface, or if

endocytosed, carry out their function within lysosomes. Effective intracellular

protein delivery remains an enormous technical challenge[ 2, 31, yet offers the

potential to broaden the scope of diseases amenable to this class of drugs and

circumvent the inherent risks of gene therapeutics[4].

Cell-penetrating peptides[5l represent one widely studied approach to

achieving intracellular delivery through covalent or non-covalent attachment of

protein transduction domains, which include TAT-derived peptides[ 6-8l, arginine-

rich peptides[9' 101, Antennapedia-derived penetratin peptides[111, and amphiphilic

peptide carriers such as Pep-1[121.A related approach involves fusion of a protein

known or engineered to achieve intracellular localization, such as herpes simplex

virus protein VP22[13, 141 or more recently, a supercharged variant of GFP[151.

Limitations with these methods include the lack of protection from proteases and

the absence of an active mechanism to achieve endosomal escape[16, 171.
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A number of materials have been described for encapsulation and

intracellular delivery of proteins, including lipids and liposomes[18'191, charge-

conversional polyionic micelles[201, cationic amphiphiles[ 211, and various polymers[22.

241. Nonetheless, because protein loading depends on the strength of non-covalent

interactions between the protein cargo and the material, these techniques may be

useful only for a subset of proteins with suitable physicochemical properties. A

more promising approach involves synthesis of a biodegradable polymeric shell

directly from the protein itself, so that the protein core is encapsulated within a

nanocarrier that facilitates intracellular delivery[25 . In general, most of these

materials have not yet achieved clinical or even preclinical demonstration of their

safety and efficacy for systemic delivery.

By comparison, a much wider array of materials has been developed for non-

viral delivery of nucleic acids[261. In particular, a group of lipid-like molecules

termed lipidoids has demonstrated safe, effective, and potent delivery of RNAi

therapeutics in preclinical studies involving mice, rats, and nonhuman primates[27 ,

281. We hypothesized that these lipid-based nanoparticle (LNP) formulations might

also mediate effective protein encapsulation and intracellular delivery if the protein

cargo were conjugated to one or more oligonucleotides (Figure 7.1). To our

knowledge, this simple idea has not yet been tested with other delivery reagents.
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Figure 7.1 Scheme for delivery of proteins by lipid-based nanoparticles via
oligonucleotide conjugation

In this chapter, we develop LNP formulations for intracellular delivery of

protein-oligonucleotide conjugates. Working with horseradish peroxidase (HRP) as

a model protein, we show that one particular lipidoid, C14-113, mediates effective

intracellular delivery of HRP-oligonucleotide conjugates to HeLa cells, that the

enzyme retains activity after delivery, and that delivery depends on HRP-

oligonucleotide conjugation. Similarly, with NeutrAvidin, a variant of avidin, we

show that oligonucleotide conjugation significantly improves intracellular protein

delivery by C14-113 in HeLa cells, likely owing to a threefold enhancement in

NeutrAvidin loading. When we formulated C14-113 LNPs with either free

NeutrAvidin or with NeutrAvidin-oligonucleotide conjugates and injected them

intravenously in mice, we observed that oligonucleotide conjugation significantly

enhanced intracellular protein uptake in macrophages and dendritic cells within the

spleen, suggesting delivery of protein-based vaccines as a potential application of

this approach.
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7.2 MATERIALS AND METHODS

7.2.1 Materials

Lipidoids were synthesized as previously described[271. Horseradish

peroxidase (type VI, 250-330 units/mg), copper (11) sulfate, tris(2-

carboxyethyl)phosphine hydrochloride (TCEP), tris[(1-benzyl-1H-1,2,3-triazol-4-

yl)methyl]amine (TBTA), cholesterol, and 0-phenylenediamine were purchased

from Sigma-Aldrich (St. Louis, MO, USA). Unlabeled NeutrAvidin, Oregon Green 488-

labeled NeutrAvidin, and AlexaFluor 488 carboxylic acid, succinimidyl ester, were

purchased from Invitrogen (Carlsbad, CA, USA). Cy5.5 mono-reactive NHS ester was

acquired from GE Healthcare (Pittsburgh, PA, USA). Three oligonucleotide variants

(unmodified, 5'-hexynyl, and 5'-biotin-PEG4-modified) with the following sequence

were custom synthesized and desalted by Integrated DNA Technologies (Coralville,

IA, USA): 5'-CGGGCGCGACTAGTGTGAAATCTGAATAATTTTGTGTTACTC-3'. NHS-

PEG 4-Azide crosslinker, Slide-A-Lyzer G2 dialysis cassettes (20K MWCO), and Zeba

Spin desalting columns (40K MWCO) were acquired from Pierce Biotechnology

(Rockford, IL). mPEG2000-DMG was synthesized by Alnylam (Cambridge, MA, USA)

as described[2 81. 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-

dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) were obtained from Avanti

Polar Lipids (Alabaster, AL, USA). HeLa cells (ATCC, Manassas, VA, USA) were

cultured in DMEM (Invitrogen) supplemented with 10% fetal bovine serum

(Invitrogen).
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7.2.2 Protein-oligon ucleotide conjugation

For DNA oligonucleotide conjugation to horseradish peroxidase (HRP), HRP

was first azide-functionalized using NHS-PEG 4-Azide crosslinker according to the

manufacturer's directions. Briefly, NHS-PEG 4-Azide (2.27 mM, MW = 388.37 Da) in

anhydrous DMSO was added to HRP (0.176 mM, MW = 44 kDa) in a total volume of

2.425 mL PBS (20 mM sodium phosphate, 0.15 M sodium chloride, pH 7.2) and then

incubated for 30 min at RT. To quench the reaction, 1 M Tris-HCl (pH 8.0) was

added to achieve a final Tris-HCl concentration of 0.1 M. The reaction was incubated

for an additional 5 min at RT and then dialyzed against 3 L PBS overnight at 4C

using a Slide-A-Lyzer G2 cassette (20 K MWCO) with two buffer exchanges. Azide-

functionalized HRP (72.5 iM) was then incubated with 5'-alkyne-modified

oligonucleotide (109 ptM, MW = 13.14 kDa), CuSO4 (1 mM), TCEP (4 mM), and TBTA

(100 [M) in a final volume of 3.9 mL for 5 h at RT, with minor modification from a

previous report[29 . The reaction was then purified by dialysis against 3 L PBS

overnight at 4"C using a Slide-A-Lyzer G2 cassette (20 K MWCO) with two buffer

exchanges. The HRP-oligo conjugate concentration was determined in two ways

with roughly equivalent results: absorbance measurement at 403 nm (EHRP, 403 nm

102 mM-1 cm-1) using a NanoDrop 1000 spectrophotometer (Thermo Scientific,

Waltham, MA, USA), and a BCA Protein assay (Thermo Scientific).

For oligo conjugation to NeutrAvidin (nAv), 5'-biotin-PEG4-functionalized

oligo (37.2 pM, MW = 13.46 kDa) was incubated with fluorescently labeled nAv

(18.6 pM, MW = 60 kDa) in a final volume of 0.75 ml PBS for 1 h at RT and used

without purification. nAv was pre-labeled with either Cy5.5 mono-reactive NHS
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ester (GE Healthcare) or AF 488 carboxylic acid, succinimidyl ester, (Invitrogen)

using the manufacturers' instructions and was purified prior to conjugation using a

Zeba Spin desalting column (40 K MWCO) equilibrated with PBS. For both labeling

reactions, the final fluorophore:protein labeling molar ratio was approximately 1:1

as determined with a spectrophotometer. The conjugate concentration was

determined by using the absorbance measurement at 280 nm (EnAv, 280 nm= 99.6 mM

1 cm-1).

7.23 Microfluidic device formulation of lipid nanoparticles (LNPs)

Stock solutions of lipidoid, cholesterol (MW = 387 Da), DSPC (MW = 790 Da),

and mPEG2000-DMG (MW = 2660 Da) were prepared in ethanol at concentrations

of 100, 20, 20, and 20 mg/mL, respectively. In most experiments, the components

were combined to yield molar fractions of 50:38.5:10:1.5; however, in one

experiment, DSPC was substituted with DOPE (MW =744 Da) at the same molar

fraction.

The HRP-DNA conjugate, or the free HRP control, was diluted in 10 mM

citrate buffer (pH 3.0) at a concentration of 0.5 mg/mL DNA, corresponding to an

HRP concentration of 1.13 mg/mL. Due to differences in stabilities between the free

nAv protein and the nAv-DNA conjugate, the nAv-DNA conjugate was diluted in 25

mM citrate buffer (pH 5.2) at a concentration of 0.375 mg/mL DNA (equivalent

protein concentration of 0.845 mg/mL), while the free nAv was diluted to 0.845

mg/mL in 10 mM citrate buffer (pH 3.0). The lipid solution was diluted as necessary

to yield a lipidoid:DNA weight ratio of 10:1.
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Microfluidic devices were synthesized as described previously[13 0 . To prepare

LNPs, the protein solution and the lipid solution were injected into the microfluidic

device at a relative volumetric flow rate of 3:1 (0.9 mL/min: 0.3 mL/min) using two

syringes (Gastight syringes, Hamilton Company, NV, USA) that were controlled by

two syringe pumps (PHD 2000, Harvard Apparatus, MA, USA). To remove ethanol,

the freshly prepared LNPs were dialyzed for 2 h against 3 L PBS using Slide-A-Lyzer

G2 cassettes (20K MWCO).

72.4 In vitro protein transfection

One day before transfection, HeLa cells (100 pL) were seeded in a clear 96-

well tissue culture plate at 15,000 cells per well. LNPs and naked protein/conjugate

control treatments were diluted in freshly warmed growth medium as necessary to

achieve the desired protein dose (generally 100 ng - 1 pg per 150 pL per well). The

conditioned medium was aspirated just before transfection and replaced with the

LNPs/proteins diluted in fresh medium. The nanoparticles were incubated with the

cells for 3 h at 37*C.

7.2.5 HRP activity assay

After incubation with the nanoparticles, the cells were washed 3 times with

PBS (200 pL) and treated with 0.25% w/v trypsin-EDTA (25 pL) for 5 min at 37*C to

detach cells as well as to digest any remaining membrane-bound HRP. Upon

addition of growth medium (50 pL), the cells were pipet-mixed, transferred to a

clear 96-well assay plate, pelleted using a centrifuge, re-suspended in 100 pL of
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substrate solution, and repeatedly pipet-mixed. Substrate solution was prepared by

dissolving a 15 mg tablet of o-phenylenediamine in 12.5 mL 100 mM sodium citrate,

pH 4.5, and adding 3.5 ptL of hydrogen peroxide solution (30% w/v) immediately

before use. The assay plate was incubated for 10 min at RT with orbital shaking

prior to addition of 50 jiL 2.5 M H2SO4 . The absorbance at 490 nm was then

immediately measured using a SpectraMax 190 microplate reader (Molecular

Devices, Sunnyvale, CA, USA). The activity assay was performed in an analogous

manner on a series of dilutions of the free HRP protein and the conjugate to

generate a standard curve for each.

7.2.6 FACS analysis

After aspirating conditioned medium and washing cells three times with PBS,

cells were detached using 2 5 l per well of 0.25% trypsin-EDTA (Invitrogen).

Following a 5 min incubation at 37"C, fresh medium (50 pil) was added to the cells,

which were mixed thoroughly and then transferred to a 96-well round-bottom

plate. Cells were then pelleted, re-suspended in fixation buffer (4% v/v

formaldehyde in PBS), incubated for 10 min at RT, pelleted again, and finally re-

suspended in ice-cold FACS running buffer (2% v/v FBS in PBS) containing 1:200

v/v propidium iodide (Invitrogen). The cells were kept at 4*C until FACS analysis

using a BD LSR II (Becton Dickinson, San Jose, CA, USA). Gating and analysis were

performed using FlowJo v8.8 software (TreeStar, Ashland, OR, USA).

7.2.7 Gel electrophoresis
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Oligos and protein-oligo conjugates were run on a pre-cast 4-20%

polyacrylamide-TBE gel (Bio-Rad, Hercules, CA, USA) for 1 h at 100 V. The gel was

then stained for 30 min with SYBR Gold (Invitrogen) and visualized with a Bio-Rad

GelDoc XR+ imager.

LNPs formulated with nAv or nAv-oligo conjugates were run on a pre-cast

Any kD mini-Protean TGX gel (Bio-Rad) for 30 min at 100 V. The gel was stained for

1 h with Bio-Safe Coomassie Stain (Bio-Rad), destained overnight, and visualized

using a Bio-Rad GelDoc XR+ imager. The entrapment efficiency was determined as:

(Sfree - SLNP)/Sfree, where Sfree is the total signal per lane for the free protein or

conjugate and SLNP that for the LNP-encapsulated protein or conjugate.

7.2.8 Animal experiments

Animal experiments were performed using 6-8 wk old, female C57BL/6 mice

(Charles River, Wilmington, MA) in accordance with protocols approved by MIT's

Committee on Animal Care (CAC). Mice were injected intravenously via the tail-vein

with 0.2 mL of LNP formulations, unformulated controls, or PBS at a nAv protein

dose of 2.5 mg/kg. After 2 h, the animals were euthanized, and the livers, spleens,

kidneys, lungs and heart were dissected and analyzed for fluorescence (ex = 675 nm,

em = 720 nm) using an IVIS imaging system (Xenogen, Alameda, CA). Xenogen

Living Image v. 4.2 acquisition and analysis software was used to quantify

fluorescent radiant efficiency of each organ from the optical images. The livers and

spleens were then frozen on dry ice using Tissue-Tek OCT (Sakura, Torrance, CA,

USA) and sectioned with a cryotome. Some frozen sections were scanned for Cy5.5
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fluorescence using a Li-COR Odyssey imager (Lincoln, NE, USA). The other frozen

sections were fixed and stained for analysis of Cy5.5-nAv uptake by confocal

microscopy.

For analysis of splenocyte uptake, spleens were harvested 2 h post-injection,

and the spleen cell suspension was analyzed for different immune cell populations

and for AF488-labeled nAv uptake by flow cytometry (CD11b+: cells of the

macrophage/monocyte lineage; CD11b+GR1+: neutrophils; CD11c+: dendritic cells;

GR1+: granulocytes; CD19+: B-cells; TCRb+: T cells).

7.3 RESULTS AND DISCUSSION

7.3.1 Intracellular delivery of horseradish peroxidase

Horseradish peroxidase (HRP), a 44 kDa enzyme with an isoelectric point of

approximately 8.0-9.0, was initially selected as a model protein for intracellular

delivery, since the enzymatic activity of the delivered protein could be readily

assayed. We prepared HRP-oligonucleotide conjugates via an azide-alkyne click

reaction. Briefly, HRP was azide-functionalized using an NHS-ester crosslinker with

a short PEG spacer. The azide-modified HRP was then conjugated to a 42 base 5'-

hexynyl-functionalized DNA oligonucleotide (oligo) with reaction conditions as

reported previously[2 91 using a molar ratio of 1.5:1.0 oligo:HRP.

A gel shift assay confirmed the presence of HRP-DNA conjugates bearing one

or more oligonucleotides (Figure 7.2a). To determine whether these HRP-DNA

conjugates still retained their activity, we compared the enzymatic activity of the

HRP-oligonucleotide conjugates to that of the free HRP protein (Figure 7.2b) using
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o-phenylenediamine (OPD). Surprisingly, the HRP-oligo conjugates displayed

greater apparent activity than unmodified HRP, a result that we initially attributed

to an underestimation of the conjugate protein concentration as determined by the

absorbance at 403 nm. However, an independent measurement of the conjugate

protein concentration using a bicinchoninic acid (BCA) assay yielded essentially the

same result to within 10% as that of UV/vis spectroscopy, so we relied on these

concentrations as measured for the ensuing transfection experiments.
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Figure 7.2 Characterization of HRP-DNA oligonucleotide conjugates.
(a) Polyacrylamide gel electrophoresis of free DNA oligonucleotide (42 nt) and HRP-
DNA oligo conjugates. (b) OPD-based assay of peroxidase activity for free HRP and
HRP-oligo conjugates.

We first screened a panel of lipidoid formulations for in vitro delivery of the

HRP-oligo conjugates. Sixteen lipidoids varying in their amine cores and alkyl tails

as described 271 were mixed with DSPC, PEG-DMG, and cholesterol and then

formulated with HRP-oligonucleotide conjugates. The resulting nanoparticle

formulations were incubated with HeLa cells for 4 h, after which the cells were
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washed 3 times with PBS and treated with trypsin to digest any remaining

membrane-bound HRP. Subsequently, the cells were transferred to an assay plate,

pelleted, and re-suspended in OPD substrate buffer for an HRP activity assay. As

shown in Figure 7.3, lipidoids bearing longer alkyl tails (C14) generally displayed

more effective delivery of active HRP-oligo conjugates. Using the top four lipidoids

from this screen, further optimization of formulation conditions indicated that

formulations including DSPC and cholesterol delivered HRP conjugates more

effectively than those containing DOPE (Figure 7.4). In particular, the lipidoid C14-

113 appeared to outperform the other lipidoids with respect to delivery activity.

0.4

0.3

- 0.2
U

0.1

0.0

Figure 7.3 Screen of various lipidoids for delivery of active HRP-oligo
conjugates
The indicated lipidoids were formulated with HRP-oligo conjugates (250 ng
HRP/well; 96-well plate) and incubated for 4 h with HeLa cells, which were then
washed, trypsinized, and subjected to an HRP activity assay.

199



1.5

5' 250 ng HRP

1.0 500 ng HRP

C 0.5

D5 I aA I

0.0 1- 4 4
a' Co 00 0 V D o D

0 PEG-DMG/DSPC/Chol PEG-DMG/DOPE

Figure 7.4 Optimization of LNP formulations for delivery of HRP-oligo
conjugates
Four lipidoids were formulated with HRP-oligo conjugates as indicated and
incubated for 4 h with HeLa cells, which were then washed, trypsinized, and
subjected to an HRP activity assay.

Having identified an LNP formulation mediating delivery of HRP-DNA

conjugates, we then tested whether effective delivery depends on oligonucleotide

conjugation. C14-113 LNPs were formulated in one of four ways: with HRP protein

alone; with a mixture of HRP protein and unconjugated, unmodified oligonucleotide;

with a mixture of free HRP protein and unconjugated, 5'-hexynyl-modified

oligonucleotide; or with the HRP-oligonucleotide conjugates prepared by click

chemistry. In addition to naked HRP protein and naked HRP-oligo conjugates as

control treatments, the formulations were incubated for 4 h with HeLa cells. As

shown in Figure 7.5, only the C14-113 LNPs formulated with HRP-oligo conjugates

yielded significant HRP activity after washing and trypsinizing the cells. This result

suggests that HRP-oligonucleotide conjugation is required to achieve significant

intracellular HRP delivery with these LNPs.
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Figure 7.5 Oligonucleotide conjugation is required for effective delivery of
HRP by LNPs
HeLa cells were incubated for 4 h with C14-113 LNPs formulated with HRP; with
HRP and free unmodified DNA oligo; with HRP and free hexynl-modified DNA oligo;
or with HRP-DNA oligo conjugates (500 ng HRP/well; 96-well plate). Controls
included naked HRP protein and naked HRP-DNA conjugates. The cells were then
washed, trypsinized, and subjected to an HRP activity assay.

To confirm that the HRP-oligonucleotide conjugates localized within the cells,

we performed immunocytochemistry (ICC) and confocal microscopy. The imaging

data revealed significant intracellular HRP staining within cells treated with LNPs

containing HRP-oligo conjugates, but no such staining in cells treated with naked

HRP-oligo conjugates (Figure 7.6). These results substantiate the conclusions from
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the enzymatic activity assay that the C14-113 LNP mediates intracellular

transfection of horseradish peroxidase-oligonucleotide conjugates.

(a)
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(b)

Figure 7.6 Intracellular localization of HRP-oligo conjugates
HeLa cells were treated in 6-well plates with (a) naked HRP-oligo conjugates or (b)
C14-113 LNPs formulated with HRP-oligo conjugates (10 ug HRP per well). The cells
were then washed, fixed, stained for various markers including HRP, and analyzed
by confocal microscopy. Blue: nuclei (DAPI), green: membrane (AF488-labeled
wheat germ agglutinin), purple: HRP (AF647-labeled anti-HRP).
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7.3.2 Intracellular delivery of NeutrAvidin

The same principle was illustrated for intracellular delivery of another model

protein, NeutrAvidin, a deglycosylated variant of avidin with a molecular weight of

60 kDa and an isoelectric point of 6.3. Fluorescently labeled NeutrAvidin-

oligonucleotide conjugates were prepared by incubating Oregon Green 488-labeled

NeutrAvidin (nAv), which has four biotin binding sites, with various stoichiometric

ratios of 5'-biotinylated oligonucleotides. The resulting conjugates were analyzed

with a gel shift assay, which showed efficient conjugation at the 1:1 and 2:1 molar

ratios of oligo:nAv (Figure 7.7a). Excess free oligo was detected in the mixture

prepared at a 4:1 oligo:nAv ratio, most likely due to interference of the fluorescent

label with one or more of NeutrAvidin's four potential biotin-binding sites. For

ensuing experiments, the oligo:nAv ratio was maintained at 2:1.

To determine whether oligonucleotide conjugation affected the

encapsulation efficiency of nAv within LNPs, C14-113 LNPs were formulated either

with free nAv or with nAv-oligo conjugates and characterized by SDS-PAGE

alongside naked nAv and naked nAv-oligo conjugates (Figure 7.7b). Quantification

of the gel results indicated that the encapsulation efficiency of nAv alone within

C14-113 LNPs was -11.0%, in comparison with -30.8% for nAv-oligo conjugates.

These data suggest that oligonucleotide conjugation enhances the encapsulation

efficiency of nAv within C14-113 LNPs by approximately threefold.
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Figure 7.7 Characterization of NeutrAvidin-oligonucleotide conjugates and
LNPs by gel electrophoresis
(a) Polyacrylamide gel electrophoresis (PAGE) of free (F) biotinylated DNA
oligonucleotide (42 nt) and NeutrAvidin-DNA oligo conjugates prepared at various
molar ratios of oligo:DNA (1:1, 2:1, and 4:1). (b) SDS-PAGE of naked nAv protein (P),
naked nAv-oligo conjugate (C), C14-113 LNPs encapsulating nAv protein (LP), and
C14-113 LNPs encapsulating nAv-oligo conjugates (LC).

To characterize the effect of oligo conjugation on intracellular nAv delivery in

vitro, HeLa cells were incubated with one of three C14-113 LNP formulations: those

encapsulating nAv protein alone, those encapsulating a mixture of nAv protein and

unconjugated, unmodified oligo; and those encapsulating the nAv-oligo conjugates.

HeLa cells were treated for 4 h with these formulations, along with the naked

protein and the naked conjugate treatments. The cells were then washed several

times, trypsinized, and analyzed by fluorescence-activating cell sorting (FACS) for

Oregon Green 488 signal. As displayed in Figure 7.8, neither the naked nAv nor the

naked nAv-oligo conjugates yielded significant cellular internalization. At the same

nAv dose, the C 14-113 LNPs encapsulating nAv-oligo conjugates transfected -65%

of HeLa cells, in comparison with -19% transfection efficiency for LNPs

encapsulating the nAv protein alone, and -5% transfection efficiency for LNPs

encapsulating a mixture of nAv and unconjugated oligo. These results demonstrate

that oligo conjugation significantly improves intracellular delivery of nAv mediated
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by C14-113 LNPs. Meanwhile, the reduction in transfection observed for LNPs

formulated with a mixture of nAv and unconjugated oligo compared with those

formulated with nAv alone suggests that the unconjugated oligo may compete with

nAv for loading into the C14-113 LNPs. The extent of protein uptake for these

treatments was also evaluated by microscopy, which confirmed that only the HeLa

cells treated with C14-113 LNPs encapsulating nAv-oligo conjugates showed

significant uptake (Figure 7.9).
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Figure 7.8 Oligonucleotide conjugation is required for efficient delivery of nAv
by LNPs
He La cells were incubated for 4 h with C14-113 LNPs formulated with nAv; with
nAv and free unmodified DNA oligo; or with nAv-DNA oligo conjugates (100 ng
nAv/well; 96-well plate). Controls included naked nAv protein and naked nAv-DNA

conjugates. For all treatments, nAv was labeled with OregonGreen 488. The cells
were then washed, trypsinized, and analyzed by FACS for uptake of nAv.
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Figure 7.9 Uptake of nAv-oligo conjugates in HeLa cells
HeLa cells were treated with naked nAv, with naked nAv-DNA oligo conjugates, with
C14-113 LNPs formulated with free nAv, or with C14-113 LNPs formulated with
nAv-DNA conjugates (100 ng nAv/well; 96-well plate). The cells were then washed,
trypsinized, and fixed. Red: Cy5.5-nAv.

To examine whether oligo conjugation also affects LNP-mediated protein

uptake in vivo, we investigated the biodistribution of these LNPs 2 h after

intravenous (IV) administration to mice. As displayed by fluorescence imaging of

the dissected organs, both the LNPs encapsulating the nAv-oligo conjugates (C14-

113/nAv-DNA LNPs) and the LNPs encapsulating the free nAv protein (C14-

113/nAv) were associated with greatly increased nAv-associated Cy5.5 signal in the

liver as compared with naked nAv-oligo conjugates (Figure 7.10). However, the C14-

113/nAv-DNA LNP-treated mice showed higher Cy5.5 signal within the spleens and

lower signal within the kidneys than those that were treated with C14-113 / nAv
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LNPs, suggesting altered biodistribution of the LNPs as a result of protein-oligo

conjugation.
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Figure 7.10 Biodistrlbution of nAv-oligo conjugates in mice
Optical images of Cy5.5 fluorescence in dissected mouse organs 2 h after
intravenous injection of the indicated Cy5.5-labeled nAy treatments (2.5 mg/kg nAy
dose). Radiant efficiency (photons/s/sr/ iiW) is indicated in the color scale bar at
left. L to R: liver, heart, lungs, spleen, kidneys.

To quantify the difference in protein localization observed in the spleens, we

imaged the organ sections using a Li-COR Odyssey near-infrared fluorescence

scanner (Figure 7.11). The results indicated approximately 2.5-fold higher uptake of

nAv in the spleens of mice treated with LNPs encapsulating the nAv-oligo conjugates

compared with those treated with LNPs containing the nAv protein alone.

Furthermore, comparing treatment with C14-113/nAv-DNA LNPs and treatment
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with naked nAv-DNA conjugates, encapsulation within LNPs increased spleen

protein uptake approximately 3.5-fold.
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Figure 7.11 Quantification of nAv-oligo localization in mouse spleens
Left: Near-infrared fluorescence scans of Cy5.5 signal in spleen sections harvested
from mice 2 h after IV injection of the indicated Cy5.5-labeled nAv treatments (2.5
mg/kg nAv dose). Right: Quantification of mean gray values of spleens for each
group (n = 3).

Immunohisto chemical staining and confocal microscopy confirmed increased

accumulation of CyS.5-labeled nAv in those mice treated with C14-113/nAv-DNA

LNPs (Figure 7.12). By comparison, much less accumulation was observed for those

mice treated with either naked nAv-DNA conjugates or with C14-113/nAv LNPs.

Moreover, in the spleens of mice treated with C14-113 / nAv-DNA LNPs, the nAv

signal was quite diffuse within the tissue, contrasting sharply with the punctate nAv

signal observed in the spleens of mice treated with the naked conjugates. This
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observation suggests the possibility of enhanced endosomal escape and cytosolic

localization of nAv-DNA conjugates mediated by the C14-113 LNPs.

Nuclei F-actin NeutrAvidin Me ed

PBS

Naked
nAv-DNA

C14-113 /
nAV LNP

C14-113 /
nAv-DNA LNP

Figure 7.12 Immunohistochemical analysis of mouse spleen sections following
nAv-oligo delivery
Immunohistochemical staining revealed increased accumulation of Cy5.5-labeled
nAv in spleen sections harvested from mice 2 h after IV injection of C14-113 / nAv-
DNA LNPs.

To determine more quantitatively which immune cell populations within the

spleen were transfected, mice were injected IV with LNPs encapsulating AF488-

labeled nAv protein or nAv-oligo conjugates, along with their naked counterparts.

Two hours after injection, the spleens were harvested and the spleen cell

suspension was analyzed by FACS for various immune cell markers as well as for
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AF488-labeled NAv uptake (Figure 7.13). Both LNP treatments showed increased

nAv transfection efficiency in splenic dendritic cells and cells of the

macrophage/monocyte lineage relative to naked nAv or nAv-DNA conjugates

(Figure 7.13a). Interestingly, comparing the two LNP treatments, the FACS data

showed only slightly higher or equivalent nAv uptake efficiency within

macrophages/monocytes (CD11b+) and dendritic cells (CD11c+) for the LNPs

encapsulating nAv-oligo conjugates. For example, the C14-113/nAv-DNA LNPs

transfected -37% of splenic dendritic cells, compared with -29% uptake efficiency

for C14-113/nAv LNPs, a statistically significant but relatively narrow difference.

However, analysis of the AF488 geometric mean fluorescent intensity (GMFI) of

transfected macrophages/monocytes and dendritic cells indicated 2-to-3-fold

enhancement in nAv uptake for the LNPs encapsulating the nAv-oligo conjugates

(Figure 7.13b). This enhancement is especially noteworthy considering that there

were no major differences in the uptake levels of transfected macrophages or

dendritic cells among the naked control treatment groups and the group treated

with LNPs encapsulating free nAv. These results suggest that protein-oligo

conjugation significantly increases the level of protein uptake in those immune cells

within the spleen susceptible to transfection by LNPs.
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Mice were injected IV with the indicated AF488-labeled nAy treatments, and the

spleens were harvested 2 h post-injection. The spleen cell suspension was analyzed
by FACS for different immune cell populations as well as for (a) nAy uptake
efficiency (% AF488+) and (b) geometric mean fluorescent intensity (GMFI) of
AF488+ cells. CD1 1b+: macrophages/monocytes; CD1 1b+GR1 +: neutrophils; CD1 1c+:
dendritic cells; GR1 +: granulocytes; CD1 9+: B-cells; TCRb+: T cells.

Recombinant protein-based vaccines are considered less toxic and easier to

produce than traditional vaccines based on whole organisms; however, the
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comparatively lower immunogenicity of protein-based vaccines requires the

development of methods for improved delivery to and activation of antigen-

presenting cells including dendritic cells and macrophages[ 31 , 321. In this regard, our

observation that oligonucleotide conjugation results in enhanced LNP-mediated

protein uptake within splenic dendritic cells and macrophages/monocytes

represents a promising preliminary finding. Further experiments are necessary to

determine whether this enhanced protein uptake is also associated with the

induction of a more robust immune response characterized by increases in relevant

cytokine levels and stimulation of specific T-cell and B-cell responses. Because

immunostimulatory oligos such as those enriched in unmethylated CpG motifs are

known to be potent vaccine adjuvants[ 33-35 , the approach outlined here could be

well suited for the delivery of a vaccine comprising a protein antigen conjugated to a

functional, immunostimulatory oligo adjuvant[361. Moreover, since many vaccines

are delivered intramuscularly or subcutaneously, future studies should evaluate

whether these administration routes similarly yield enhanced uptake of conjugates

in antigen-presenting cells not only within the spleen, but also within the lymph

nodes and the peritoneal cavity.

More broadly, the delivery studies with HRP and nAv offer potential for the

use of this oligonucleotide conjugation approach for LNP-mediated delivery of other

protein cargo. In many cases, the protein-oligonucleotide conjugation will likely

require optimization in terms of the number of attached oligos, their length, and

their cleavability in order to conserve protein function and achieve delivery. Further

study is needed to determine whether the properties of these nanoparticles can be
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tailored in terms of size and charge to achieve intracellular protein delivery to

specific organs and tissues other than the spleen. Successfully tuning both the

conjugation strategy and the properties of the lipid nanoparticles may permit

realization of a range of applications, such as the introduction of reprogramming

factors to generate induced pluripotent stem cells, enzyme replacement for

inherited liver diseases, and the transfection of engineered nucleases for genome

editing.

7.4 CONCLUSIONS'

In this chapter, using two distinct model proteins, we demonstrated that

intracellular protein delivery with LNPs is significantly enhanced through

conjugation of oligonucleotides to the protein cargo. Using click chemistry, we

synthesized conjugates of horseradish peroxidase (HRP) and a DNA oligonucleotide,

and we show that one particular lipidoid, C 14-113, mediates effective intracellular

delivery to HeLa cells of HRP-oligo conjugates but not free HRP protein. Similarly,

with NeutrAvidin (nAv), a variant of avidin, we show that binding to a biotinylated

oligo significantly enhances intracellular nAv delivery by C14-113 in HeLa cells.

When mice were injected intravenously with C 14-113 LNPs encapsulating either

free nAv or nAv-oligo conjugates, we observed that oligonucleotide conjugation

significantly improved intracellular nAv uptake in macrophage/monocytes and

dendritic cells within the spleen. These preliminary in vivo results suggest that this

approach may be suitable for improved delivery of protein-based vaccines by LNPs.
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8 CONCLUSIONS

8.1 MAIN CONTRIBUTIONS

The overarching aim of this thesis was to develop polymer and lipid-based

materials for safe, effective intracellular delivery of gene and protein therapeutics.

This objective was specifically motivated by a set of unaddressed challenges and

questions relating to two groups of materials, poly(p-amino ester)s (PBAEs) and

lipidoids. For the promising PBAE gene delivery polymers, these issues included the

poor stability of polymer/DNA polyplexes under physiological conditions, polymer

batch-to-batch variability, and a lack of knowledge regarding polyplex cellular

uptake and trafficking mechanisms. For lipidoids, the question was whether these

materials, which have demonstrated exceptional potency for delivery of

oligonucleotides, could also be applied toward effective intracellular delivery of

proteins.

To address the issue of PBAE polyplex stability, we developed novel,

degradable PBAE polymers displaying enhanced gene delivery potency and

nanoparticle aggregation resistance. We hypothesized that the inclusion of alkyl

side chains within PBAE polymers would render them sufficiently hydrophobic to

interact with PEG-lipid conjugates, and upon association with DNA, result in the

formation of ternary complexes with improved stability. Using a combinatorial

library approach to synthesize and screen over 120 structurally distinct

hydrophobic PBAE terpolymers, we identified several polymers that displayed
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transfection activities in HeLa cells significantly greater than that of the popular

commercially available transfection reagent Lipofectamine 2000. The most effective

PBAE terpolymers were characterized by transfection potencies in HeLa cells

approximately 10 to 20-fold that of C32-122, one of the top-performing amine end-

modified polymers from the previous generation of PBAEs. We observed that

increasing polymer hydrophobicity, as defined by either increasing the feed ratio of

alkylamine monomer or increasing its chain length, was associated with increasing

transfection activity, an observation which we attribute to tighter binding and

encapsulation of DNA. Furthermore, increasing polymer hydrophobicity was

correlated with greater polyplex stability at low DNA concentration. In a

confirmation of our hypothesis, at high DNA concentrations under conditions of

physiological pH and ionic strength, these hydrophobic PBAE terpolymers

facilitated interaction with PEG-lipid and DNA to yield stable, well-defined

nanoparticles capable of transfecting cultured cells in vitro.

Through a series of additional experiments, hydrophobic PBAE terpolymers,

including DD24-C12-122 and LL24-C12-122, were found to mediate superior

transfection of HUVECs, porcine MSCs, and neonatal rat cardiomyocytes relative to

C32-122 and to Lipofectamine 2000. Formulation development with the terpolymer

D60-C12-122 suggested that the identity of the PEG-lipid conjugate strongly affects

the stability of the nanoparticle formulations and their corresponding transfection

efficacies. Following IP or IV administration, D60-C12-122 and D90-C12-122

terpolymer formulations yielded transgene expression in mice persisting for at least

three days. Taken together, these findings suggest that modulation of
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hydrophobicity is a simple yet powerful approach to improving the gene

transfection potency and formulation stability of degradable cationic polymers.

Regarding PBAE batch-to-batch variability, we hypothesized that this issue

was related to subtle differences in the molecular weight distribution (MWD) of the

polymers. Therefore, we investigated the effect of PBAE MW on the transfection

activity, toxicity, and biophysical properties of the resulting polymer-DNA

nanoparticles. In spite of the tendency of these polymers to lose transfection activity

upon work-up, we developed a method based on size-exclusion chromatography

(SEC) that allowed isolation of well-defined, monodisperse PBAE fractions still

retaining transfection efficacy. We found that the transfection activities of size-

fractionated PBAEs generally increased with MW, a trend that was weakly

associated with more efficient DNA binding. We also observed a relatively steep

drop-off in transfection performance below a threshold polymer length, lending

support to our hypothesis that minor variation in the MW and MWD could in fact

account for the inconsistency in batch-to-batch performance. However, because this

method enabled the preparative isolation of monodisperse polymer fractions with

higher transfection potency than the starting material, it potentially represents a

robust solution to this issue.

To address the issue of limited mechanistic knowledge regarding PBAE

internalization, uptake of PBAE/DNA nanoparticles was investigated through

pharmacological inhibition and marker co-localization studies. Our results indicated

that internalization of PBAE/DNA polyplexes in immortalized mouse embryonic

fibroblast (MEF) cells likely proceeds through multiple pathways, with a potential
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dependence on cholesterol trafficking. Treatment with the cholesterol synthesis and

transport inhibitor U18666A resulted in reduced uptake and transfection efficacy.

Moreover, significantly decreased uptake and transfection efficacy were observed in

MEFs deficient in an endosomal/lysosomal cholesterol transport protein, Niemann-

Pick C1 (Npcl). In contrast, Npcl knockout was only associated with a marginal

decrease in DNA uptake mediated by polyethylenimine (PEI) and no apparent effect

on DNA uptake mediated by Lipofectamine 2000, suggesting that this cholesterol

trafficking dependence is relatively specific to PBAE polyplex uptake. To identify a

potential mechanism, we quantified internalization of various endocytic markers in

Npcl-deficient MEFs and observed significant reduction in uptake of cholera toxin B

(CTB), a marker traditionally associated with caveolae-mediated endocytosis. DNA

internalized by PBAEs showed the greatest extent of co-localization with the CTB

marker, indicating the possibility of shared uptake pathways that are reduced in

cells lacking Npcl. Combined with data indicating improved silencing potency for

lipidoid/siRNA nanoparticles in MEF deficient cells, these studies bolster the

hypothesis that Npcl plays a key role in the regulation of endocytic mechanisms

affecting uptake and efficacy of nanoparticles.

Finally, to develop lipidoids for protein delivery, we applied a simple strategy

showing that effective intracellular protein delivery could be achieved through

conjugation of nucleic acids to the protein cargo. For the model enzyme horseradish

peroxidase (HRP), we demonstrated that one particular lipidoid, C 14-113, mediates

effective intracellular delivery to HeLa cells of active HRP-DNA oligonucleotide

conjugates but not free HRP protein. Analogously, with NeutrAvidin (nAv), a variant
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of avidin, we showed that binding to a biotinylated oligo significantly enhanced

intracellular nAv delivery by C 14-113 in HeLa cells, most likely due to improved

protein entrapment. When mice were injected intravenously with C14-113 lipid-

based nanoparticles (LNPs) encapsulating either free nAv or nAv-oligo conjugates,

we found that oligonucleotide conjugation improved intracellular nAv uptake in

macrophages and dendritic cells within the spleen 2-3-fold. These preliminary in

vivo results indicate the potential utility of this nucleic acid conjugation approach

toward improved LNP-mediated delivery of protein-based vaccines.

8.2 FUTURE OUTLOOK

With a number of promising gene therapeutics currently under advanced

clinical development, the gene therapy field finally appears to be coming of age after

a notoriously turbulent history. Viral vectors remain the preferred delivery vehicle

in most active clinical studies, with considerations of efficacy outweighing concerns

regarding their safety risks. However, non-viral vectors are being employed in a

growing proportion of clinical trials, a trend that will likely persist with the

continued development of improved synthetic gene carriers.

A large focus of this thesis represents an attempt to advance that

development for one class of promising degradable gene vectors, PBAEs. The

development of novel hydrophobic PBAE terpolymers with dramatic enhancements

in gene delivery potency and nanoparticle stability should heighten their prospects

for clinical translation. Poor nanoparticle stability is an issue not only for the PBAEs,

but also for many gene delivery materials. The solution presented in this thesis,
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which involved the incorporation of alkyl side chains into the terpolymers and

formulation with PEG-lipid conjugates to produce stable nanoparticles, may

therefore be applicable to other polymers as well. Although preliminary

experiments suggested that these terpolymers are capable of mediating effective

gene delivery in vivo following intraperitoneal administration without obvious

toxicity, future studies are required to determine their potential for gene delivery

through other injection routes, their dose-response and toxicity profiles, and the

biodistribution and duration of gene expression. These experiments would lay the

groundwork for preclinical studies evaluating their suitability as gene delivery

reagents for therapeutic applications in animal models of disease. Furthermore, the

development of a robust, preparative technique based on size-exclusion

chromatography to isolate homogeneous, well-defined PBAE fractions should

reduce issues of molecular weight (MW) heterogeneity and batch-to-batch

variability that have been frequently encountered.

On a more fundamental level, while the data presented here elucidate some

important structure-activity relationships for these PBAEs, particularly with respect

to polymer hydrophobicity and molecular weight, future studies should investigate

in more detail potential explanations for the trends that were observed. For

example, for the PBAE terpolymers, optimal gene delivery activity was associated

with an intermediate degree of polymer hydrophobicity. One hypothesis is that this

optimum represents a balance between the rates or extents of DNA binding and

unpacking. This hypothesis could be tested experimentally by measuring the DNA

binding affinities of terpolymers of varying hydrophobicities by surface plasmon
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resonance (SPR). Similarly, as it was observed that the surface charge of the

polyplexes became more positive as the terpolymer hydrophobicity increased, a

variety of techniques including cryo-transmission electron micrscopy (TEM), atomic

force microscopy (AFM), sum frequency generation (SFG) spectroscopy, and

molecular dynamics simulations could shed light on the surface characteristics and

morphology of the nanoparticles.

The discovery of a critical role for cholesterol trafficking and regulation for

gene transfection by PBAEs should enable the identification of potential targets,

including Npcl, which might be selectively leveraged to further improve delivery

efficacy. As was observed, stable overexpression of Npcl was associated with

increased gene uptake and transfection by PBAEs. High-throughput screening of

small molecules or bioactive lipids may reveal compounds that enhance polymeric

gene delivery through modulation of critical cellular factors including Npcl. Given

the contradictory role of Npcl in PBAE/DNA and lipid/siRNA transfection,

respectively, future studies should elucidate the mechanisms responsible for this

discrepancy. One possibility is that in the case of lipid/siRNA transfection of Npcl-

deficient cells, the nanoparticles enter through a pathway that is uninhibited by

impaired cholesterol trafficking (such as macropinocytosis) and accumulate within

late endosomes due to a block in exosomal recycling. In contrast, internalization of

PBAE/DNA nanoparticles proceeds through alternate pathways (perhaps caveolae

and clathrin-mediated endocytosis) that are blocked due to a critical lack of

cholesterol at the plasma membrane, which may impair the formation of caveolae

and clathrin-coated vesicles.
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In some ways, intracellular delivery of protein-based therapeutics represents

a hedge against the risks inherent in gene therapy and therefore also merits suitable

research effort. Unfortunately, in contrast to nucleic acids, the wide range of

physicochemical properties that proteins possess impedes the development of a

generalized protein delivery platform. We have shown the utility of a simple

approach in which nucleic acids serve as a handle for encapsulation of proteins by

lipidoids, and the resulting LNPs are able to mediate effective intracellular delivery

of model proteins in vitro and in vivo. Future studies should determine the

generality of this approach for the delivery of protein-based vaccines as well as

other protein cargo of interest, such as enzymes for inherited liver diseases and

engineered nucleases for genome editing.
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