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Abstract

For a better understanding of how biology carries information within cells, it is not
sufficient to look at individual protein or gene interactions, but to understand these
networks of interactions as a whole. The goal of this thesis is to understand various
aspects of how cells in general and T-cells in particular function, using models built
from basic principles in chemical engineering, statistical physics and network theory,
together with experiments performed by our collaborators. The ultimate objectives
are to gain an insight into the mechanisms of certain key biological processes, under-
stand the cause of certain diseases and to generate new ideas for methods of treating
these diseases.

First, we look at an example of a specific network built from previously published
experiments and data collected by our collaborators, which governs the mechanism
of activation of the T-cell receptor (TCR) by its kinase Lck and a negative regulator
of Lck called Csk. We show that the mechanism by which the cell regulates TCR
levels, together with the manner in which Lck activates the TCR produces interesting
behavior, such as a "perfectly adaptive" system and a high-pass filter.

Second, we look at heterogeneity in cancer cells at the level of protein signaling
networks. Many common cancers are not treatable at the "source" or initial muta-
tion, so one has to target downstream effector molecules. However, different cell lines
bearing the same initial cancerous mutation exhibit varying signaling patterns due to
differing secondary mutations which makes this difficult. The objective of this project
is to try to characterize this heterogeneity and be able to identify molecules in the
cell which would be the most effective drug targets. A general model for signaling in
networks has been developed, analogous to models of neural networks, with mutations
modeled as changes in the topology of this network. Keeping in mind that cancer
cells are trying to maximize their growth, we are looking for patterns in secondary
mutation during the directed evolution of these networks. A method for looking at
free energy landscapes in topology space has also been developed. We find that low-
est degree nodes along the shortest paths from the driver mutation to effector nodes
tend to be the most conserved, and the frequency of multiple optima depends on the
number of feedback loops.

Finally, we look at the problem of constant activation thresholds for activation of
various types of T-Cells. Despite having different TCRs, T-Cells of a certain type
have a fixed activation threshold in terms of a peptide-MHC interaction strength
(and a corresponding time, earlier than which they do not activate). We built a
reaction-diffusion model for the network involved in the search process by which a
pMHC-TCR finds a coreceptor-Lck, which enables us to understand how the thresh-
old for activation is determined by the parameters of a particular cell type. We also
developed an analytical solution for a simplified Markov Chain form of the model,
which predicts how the activation rate scales with the parameters of interest in the
system. We find that this rate is proportional to the fraction of coreceptors with Lck,
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increases (slowly) with diffusion and is independent of the number of coreceptors on
the surface of the cell.
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Chapter 1

Introduction

This thesis attempts to describe several years' worth of work into understanding the

immune system using models built from a knowledge of the underlying physics, com-

putational tools and simulations. The immune system is one of the most complex

areas of biology, as it involves the body's response to internal and external threats,

making it central to the understanding of disease. This has led to it being at the

forefront of a great amount of research, both of fundamental questions of biology

as well as more applied medical-type translational research. With the emergence of

better experimental techniques in biology and the collection of large amounts of data

of multiple types across various experiments, it is important to be able to identify the

essential features of the underlying systems which result in the observed phenotypes.

Biophysics, which is the broad field in which most of the work involved in this the-

sis, is one such way of doing it, by combining physics-based models with computer

simulations, bioinformatics and other experimental methods. This work focuses on

building physics-based models of biological networks involved in the human immune

system, and tries to answer some questions of biological significance.

19



1.1 The immune system

The immune system plays a critical role in the survival of higher organisms. It

protects the host from a variety of external factors, such as invading bacteria and

viruses, using a wide range of defensive mechanisms. The immune system is divided

into two "parts", the innate immune system which is built to recognize common

patterns of pathogens and destroy them, and the adaptive immune system which

provides a pathogen-specific response along with "remembering" former invaders so

that responses to repeat attacks can be efficient. One of the key components of the

adaptive immune system is the T-cell, which detects antigen presented (in the form

of short peptide fragments derived from the pathogen) on the surface of antigen pre-

senting cells (APCs). The strength of the interaction between the peptide bound to

the major histocompatibility complex (MHC) molecule on the APC and the T-Cell

receptor (TCR) is an indicator of whether the peptide is derived from foreign or self;

thymic selection tries to ensure that strong pMHC-TCR interactions imply that the

peptide is foreign and a response needs to be mounted. This interaction along with

a few others, leads to a chain of signal transduction events in the form of protein

(chiefly kinases) interactions and phosphorylations within the T-Cell that determine

the response to be mounted. In this work, we look at problems involving the signal

transduction pathways post-interaction of the TCR and pMHC and try to make sim-

ple biophysical models that capture experimental results and help us understand the

biology of the processes involved. Sections 3 and 4 of this thesis deal with the regu-

lation of Lck, a key kinase involved in phosphorylation of the TCR; section 6 deals

with the search process by which the TCR-pMHC finds Lck bound to a coreceptor

molecule. Section 2 deals with a model of scaffolds, which are a ubiquitous feature

of signaling networks. Finally, section 5 deals with a more coarse-grained model of

networks and tries to understand how mutations affect them; this is inspired by the

problem of signaling heterogeneity seen in T-Cell lymphomas.
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1.2 TCR Signaling: Overview of the biology

During TCR-pMHC engagement, the kinase Lck which is bound to the CD4 or CD8

coreceptor gets recruited to the TCR-complex and is activated. Lck phosphory-

lates the immunotyrosine activation motifs (ITAMs) within the CD3- and (-chains of

the TCR complex[1]. Doubly phosphorylated ITAMs bind the kinase ZAP-70([2] [3]),

which is then activated by phosphorylation, either by other ZAP-70 molecules or Lck.

Activated ZAP-70 can then phosphorylate tyrosines on an adaptor molecule called

linker for activation of T cells (LAT)[4]. LAT contains nine conserved tyrosines that

when phosphorylated, bind to the SH2 domains of several other proteins to assemble

a signaling complex called the signalosome. The LAT signalosome involves molecules

such as Gads, SLP-76, Itk, Grb2, SOS, PLCyl, Vav, etc.([5][6][7][8][9]) Some of these

interactions stabilize the resulting complex (for example, PLCy1-SLP76 and Grb2-

SOS. Grb2-SOS enables the formation of LAT clusters, stabilizing the signalosome

further). This SOS that is bound to Grb2 activates Ras (converting RasGDP to Ras-

GTP), which in turn activates Raf and sets off the MAPK (ERK) signaling pathway.

Ras can also be activated by the guanine exchange factor RasGRP[10] and is deacti-

vated by RasGAPs[11].

Protein kinase cascades have been implicated in the processes involved in thymic

selection, T-cell activation and function[13] [14]. The three major groups of mitogen-

activated protein (MAP) kinases in mammalian cells are the extracellular signal-

regulated protein kinases (ERK), the p38 MAP kinases and the c-Jun NH2-terminal

kinases (JNK) [15] [16]. These protein kinases are activated by the same protein kinase

cascades that lead to MAP kinase activation in other cell types. However, the mech-

anisms that activate these cascades are distinctive in T cells and are still not fully

understood. The result of signal transduction through these cascades is the activation

of certain transcription factors[17], leading to transcription, translation and effector

functions such as secretion of cytokines. Another complication is that proteins are

constantly created by ribosomal synthesis and degraded (mediated by Cbl, for exam-
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Figure 1-1: A part of the T-Cell signaling network (See [12] for a more complete
figure). Most of the work done before, and the focus of this thesis, is on early

(membrane-proximal) signaling events: the TCR-pMHC interaction, coreceptor CD4
and Lck regulation. These lead to formation of the LAT complex, activation of Ras,
signaling through the MAP Kinase cascades and gene transcription.

ple). A cartoon of the TCR signaling pathway can be found in Figure 1.2.

1.3 Scope of the work and choice of methods

Immune responses are one of the most complex behaviors of biological systems, span-

ning many time and length scales, with feedback from larger to smaller scales. Inter-

actions important in just adaptive immune responses range from sub-molecular inter-

actions (for example, between the TCR and peptide-MHC), to interactions between

proteins (in signaling networks, for example, which comprises the major portion of

this thesis), between cells (cytokines) and so on. Time scales range from nanoseconds

for protein conformational changes to years (lifetimes of memory T Cells). Modeling

such responses, therefore, involves making mathematical models of complex processes

with many interactions and feedbacks between them. There are a large number of ex-

perimental results emerging daily in this field; one of the key challenges in this field is
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understanding all these different experiments and building simple models that provide

a unified explanation of these phenomena. Such simple models are valuable because

they strip away superfluous details and get to the key features of the system which

are most important in producing the phenomena observed. These underlying models

are built from basic first-principles physics, such as statistical mechanics, chemical

kinetics and so on that all systems must obey; using such physics-based approaches

ensures that the models developed are based on a sound theoretical footing and are

not just an exercise in fitting parameters to data.

The scope of this work does not involve the development of new mathematical meth-

ods, but rather in using results and methods which were originally deployed in var-

ious fields such as financial analysis, stochastic processes, control theory, machine

learning, and neurobiology to understanding aspects of the regulation of the immune

systems. The synthesis of computational techniques, together with biological data

and first-principles physics can produce novel insight and help unify varied biological

experiments performed in slightly different contexts by highlighting the key aspects

of the system which cause such phenomena. This is a critical first step in the rational

design of drugs and other therapies which have real-world impact.

Biological systems consist of many interacting components: they are an example of

a network. Networks are pervasive in biology, typically ranging from interactions

between proteins (PPI networks[18][19]) to form molecules to interactions between

species in an ecosystem (a food web[20]). Other common examples are gene interac-

tion networks[21], metabolic networks[22] and neural networks[23].

1.4 Simulation and Analysis of Chemical Reaction

Networks

Previously in the Chakraborty group, some of the chemical reaction networks in-

volved in early T-Cell signaling events have been studied computationally. Using
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lists of chemical reaction networks built from the literature, together with the corre-

sponding parameters (both from the literature and heuristic estimates), simulations

of early TCR-related signaling events have been performed [24] [25] [26]. For example,

an enzyme binding to a substrate would be one reaction, the unbinding would be an-

other and conversion of substrate to product would be a third reaction. Simulations

could show how the rate of production of substrate varied with, say, the number of

enzyme and substrate molecules. This generic scheme of an enzyme and substrate

corresponds to many examples in the biology of early T-Cell activation: Csk and Lck,

MEK and ERK, and so on.

Due to the fact that small numbers of molecules are involved (milli- and micro-

molar concentrations of proteins in cells), over small time and length scales (typically

nanometers to microns), these systems cannot always be treated simply using Ordi-

nary Differential Equations (ODEs) because of the discrete nature of molecules over

these scales. Solving ODEs using tools like MATLAB gives mean concentrations that

are the solutions at various time points, which may not be physically meaningful due

to the unique nature of biochemical systems.

1.4.1 The Gillespie Algorithm

An approach that can be used to overcome the problems with ODE-based simulation

of biochemical systems is stochastic simulation. It treats each molecule as a unit,

instead of grouping them all in terms of a single "concentration". This affords us

several advantages:

1. Small molecule numbers: In biological systems with small numbers of molecules,

the responses to systems can be driven by stochastic effects and be very different

from the mean-field solution of the underlying equations[27].

2. Many different trajectories: In the case of networks with multiple solutions

(bistabilities, for example) which lead to cellular decisions[28], deterministic

solutions do not provide us with an accurate description of the system. Different
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cells represent individual realizations of the underlying network, and stochastic

simulations can shed light on features such as the distribution of populations in

each steady state and stochastic transitions between these populations.

3. Spatial distributions: For spatially distributed systems, even those without

bistabilities, the exact solution involves dealing with coupled nonlinear partial

differential equations (derived from the diffusion equation). This is not easy, and

it can frequently be computationally easier to perform stochastic simulations.

In practice, the Gillespie algorithm[29] is used to simulate the evolution of bio-

chemical systems due to its ability to take into account stochastic effects. For each

reaction in a network, a rate equation1.1 can be written, in which ai represents the

propensity of reaction i, ki the rate constant of reaction i, C the concentration of

species j and vij the stoichiometric coefficient of species j in reaction i.

ai = ki fj Ci (1.1)

At each time step in the algorithm, the total propensity (ao) is computed by adding

all of the individual reaction propensities. Next, two random numbers are drawn from

a uniform distribution from 0 to 1. The first random number (ri) is used to compute

the time that has elapsed since the last reaction occurred at the previous time step

(r) using equation 1.2, and the second random number r 2 is used to determine the

identity yu of the next reaction using equation 1.3.

r = - log - (1.2)

P-1 p

L < r2 < a- (1.3)
j=1 a0  j= a0

Once the identity of the next reaction is determined, the numbers of molecules

for all species are changed according to the stoichiometry of whichever reaction has

occurred. The total time is kept track of by summing the time elapsed between re-

actions. All reaction propensities are then recalculated and the process continues
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until specified stopping criteria are met. The random element in which the next reac-

tion is determined by chance (Equation 1.3) allows for realistic stochastic simulations.

Previous members of our group have used these methods to investigate certain

aspects of the network involved in early T-Cell signaling. Early work in this area by

members of our group focused on understanding the role of the site of interaction

between a T-Cell and APC, called the immunological synapse[26][30][31]. Another

problem in this field was understanding the sensitivity of this activation process, how

a TCR could find a small number of foreign peptides in a sea of endogenous ones,

which was looked at using a model called the dimer model[32]. Work was done on

slightly more downstream parts of the signaling network as well: on Ras signaling[25]

and formation of the LAT cluster[24].

Some work in development of methods in this area has been performed as well by

former members of our group. Dennis Wylie developed algorithms for spatially het-

erogeneous systems where spatial effects of signaling matter[33]. Max Artyomov and

Mieszko Lis developed an efficient tool for stochastic simulation of reaction-diffusion

processes[34]. We use the spatial Gillespie algorithm to look at a problem involving

threshold ligands in T Cells in Chapter 6 of this thesis.

1.4.2 Models of signaling networks

Network theory is a field of physics that aims to characterize and investigate the

properties of various kinds of networks[35]. The identification of the structure of bio-

logical networks is an ongoing area of research. Networks are characterized in terms

of properties such as degree distribution, clustering coefficient and so on. Due to the

complexity of biological networks, they are typically divided into modules called "mo-

tifs," with each motif assumed to have certain unique characteristics[36] [37]. These

network motifs shape the spatio-temporal properties of the signals transmitted by

these networks [38] and are thought to provide specific biological functions [39]. Models
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of networks can be adapted to fit in with common statistical-mechanical models[40];

for example, one can write down the equations for the states of memories encoded by

neural networks in terms of a Hamiltonian energy dependent on the interactions of

the network[41] [42].

One of the problems with the analysis of signaling networks is the great com-

plexity in modeling them, both in the behavior of individual nodes and interactions

between them. Also, a lot of details about these networks are not known, not just in

the parameters that describe these systems but largely even in the topologies of these

networks themselves. Simplified forms of nodes and interactions are therefore used to

model biological signaling networks. The simplest form are Boolean networks[43] [44]

where the outputs to each node are just 0 or 1 and are a function of the input to

the node, with edge strengths also being binary. Bayesian networks, which are a

probabilistic model of activation based on parents of a node in the graph, are also

commonly used[45] [46] [47]. These models cannot account for input-output relation-

ships within nodes, however, and one needs to use more complex models for that

purpose, for example from neural networks. Signaling models based on neural net-

works have therefore been used before[48] and we adapt them to study the statistical

effect of mutations in signaling networks in the context of a form of cancer(Section

5). Flux-balance analysis [49] [50] is another form of network modeling that is typi-

cally used in metabolic networks, but it only gives the rates of each chemical reaction

rather than the concentration of each species of interest in the network. The prob-

lem of inferring networks from expression data is also a well-studied problem[51][52].

These problems usually just involve the identification of edges of the network, typ-

ically without consideration of edge strengths. Most techniques developed to solve

this problem use probabilistic networks and involve machine learning and regression,

usually using Bayesian networks (which cannot involve loops)[53], correlations [54],

simplified dynamic models[55][56] or trees[57]. Another common problem is that of

identifying similar nodes or groups of nodes[58][59]. In Chapter 5, we describe how

some of these models can be used to study the effect of changing network topology
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by mutations in a problem inspired by cancers of T-Cells.

1.4.3 Markov Processes

A Markov process is a stochastic process satisfying the property that the conditional

probability distribution of future states of the process depends only on the current

state, i.e. it is "memoryless." Conditional on the present state of the system, its

future and past are independent. Markov processes can be continuous- or discrete-

space and continuous- or discrete- time. In the case of interest, of chemical reac-

tion networks where we are interested in counts of individual molecules (rather than

bulk concentrations), the natural result is to model the system as a discrete-space,

continuous-time Markov process (a Markov Chain).

Typically in the case of chemical reaction networks, the set of numbers and loca-

tions of molecules in the system completely specifies the propensities of all reactions

that this system may undergo; this means that the current state of the system com-

pletely defines the rates of all transitions - making it a Markov process. This complete

specification, however, usually requires that a lot of variables be specified, making it

impractical in a lot of cases. This dramatic expansion of the state-space of the sys-

tem usually requires that some sort of approximations be made in order to model a

system effectively using a Markov model. Markov Chains are typically represented as

directed graphs, where the nodes are different states and edges represent the proba-

bilities (or rates) of transitions between states.

Let x E {X1, X 2 ,... X} be the set of states of the Markov Chain, and P(xi) the

probability of the system being in state xi. Let the rate of transition from state i to j

be given by 7yj. Then Equation 1.4 describes the evolution of the probability of state

dP(x) = - N kP(Xi) + 7iP(Xk) (1.4)
dt k=,i kfi
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This can be simplified to Equation 1.5, where F represents a matrix of transition

rates.

- P() = LP(x) (1.5)
di

Because of the form of Equation 1.5, the solution is a sum of exponentials (i.e.

the system can be analyzed by looking at the eigenvalues of F.

In Chapter 6, we use Markov Chains to coarse-grain a reaction-diffusion process

and compute the rate of activation of different types of T-Cells.

1.4.4 Dynamical Systems Theory

A dynamical system is system where a fixed rule describes the time evolution of a

point in a state space. At any given time a dynamical system has a state given by the

coordinates of a point in an appropriate state space. The evolution rule of the dy-

namical system is a fixed rule that describes how the current state evolves to a future

state and is deterministic[60]. Chemically reacting systems are examples of dynamical

systems: the state of a system is completely defined by the set of all molecules in the

system (for a homogeneous system; for a spatially distributed system, one must also

specify the location of each molecule). Dynamical systems may be either continuous-

state (flows) or discrete-state (maps), but converting the probabilistic nature of what

reaction occurs next into a dynamical systems framework is not possible (because

evolution must be deterministic in this framework). Therefore, dynamical systems

theory can only be applied to systems with large numbers of molecules that are in

the continuum limit (or we make such an approximation).

One can describe the evolution of a chemical reaction network in terms of the set

of rate laws that govern the evolution of the system from Equation 1.6, where the ajs

are propensities of individual reactions described by Equation 1.1 (this is an example
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of a homogeneous reaction network).

dC- =

= a
(1.6)

This takes the form of a set of coupled nonlinear ODEs. We can use these equations

to analyze the general behavior, i.e. the number and stabilities of solutions, of the

system of equations. To analyze the stabilities of a solution (fixed point) of the system,

we do a linear stability analysis. Typically the evolution of the system is described

the set of coupled nonlinear equations given in Equation 1.7, where x represents the

states and k the parameters.

= f (z, k)
dt

(1.7)

Let x* be the fixed point of interest. We expand the solution

by an increment 6x:

d] (,* + A)

around the fixed point

t = f (z* + 3z, A) = f (x* K) + J (f (_, k)) J=x- + Higher order terms
dt - -

(1.8)

The first term is zero, as x* is a solution (fixed point) of f (x, j) = 0; the second

term is the Jacobian of the system of equations given by f (x, k) evaluated at x*.

Stability is indicated by the eigenvalues of the Jacobian matrix; one or more positive

eigenvalues of the Jacobian imply an unstable system. Complex conjugate pairs of

eigenvalues indicate oscillatory solutions.

Possible behaviors of the system are:

* Only one stable solution: The simplest case, the system

steady state.

" More than one stable fixed point: The system can exist in

is possible when there is a switch, for example, and used

making[61]

has only one stable

multiple states; this

in cellular decision-

e Only an unstable fixed point, with a complex conjugate pair of eigenvalues:
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The system exhibits oscillations, such as those seen in Calcium in many cell

types [62].

The tools of dynamical systems theory are typically used to understand the na-

ture of the system at long times (steady-state). Biologically, most systems are not at

steady-state; however, this assumption is quite frequently made in order to simplify

problems and gain an understanding of the behavior of the system. Deterministic

chemical systems can also exhibit chaos[63]. The framework of dynamical systems

theory is used to examine two problems pertaining to the regulation of Lck in Chap-

ters 3 and 4.
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Chapter 2

The Effects of Mutations on

Scaffolds

2.1 Introduction

The motif of sequential activation of multiple protein kinases is a common one in

biology and is known to regulate many important cellular decisions([64], [65], [66]).

A well-studied example of this motif is the MAPK cascade, in which the kinases are

associated with a scaffold protein KSR. The scaffold protein is known to be required

for the activation of ERK in T Cells [67], and can help amplify or attenuate the signal,

depending on the context [68]. For systems involving a set of kinases modulated by

a scaffold protein, there is a well-known combinatorial inhibition or "pro-zone" effect

[69] whereby titration of the amount of scaffold in a system yields a bell-shaped curve

in the output signal of the cascade. In this work, we present a simple model that

describes the limits of protein concentrations for this effect and how mutations to this

scaffold system should behave.

Lin et. al.[70] performed a series of experiments looking at how addition of mu-

tants of KSR modified the pro-zone effect. The experiment involves over-expression

of the scaffold KSR of the MAP Kinase pathway in T Cells. To a normal in vivo

system containing the wild-type scaffold, extra scaffold (S') is added which is unable
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to bind one of the kinases of the pathway, and the output of the scaffolded system (in

terms of phosphorylated ERK, which is assumed to be a direct consequence of how

much complex was formed) was measured. They found that addition of extra scaffold

which did not bind MEK produced a qualitatively different sequestration curve, and

in this section we attempt to understand this finding.

SAg
Unstimulated Stimulated

GFP control

wt KSR

L (MKSR C809Y
(MEK binding mutant)

KSR FSFP/AAAP
(Erk binding mutant)

GFP

Figure 2-1: Variation of signal(pErk) with scaffold(KSR) concentration for different
scaffold mutants[70]. The X-axes are amount of scaffold (tagged with GFP); Y-axes
are the output of the scaffold system. KSR C809Y is a mutant that does not bind
to MEK, and KSR FSFP/AAAP is a mutant that does not bind ERK. Note that
the wild-type scaffold and Erk-binding mutant show the sequestration effect, but the
MEK binding mutant does not.

2.2 Model

The basic limits on what sets the maximum signal of a system with a scaffold can be

explained in a fairly simple equilibrium model. Consider a system with four compo-

nents: a scaffold, S, and kinases A, B and C which bind to the scaffold and sequentially

activate (in some arbitrary order). Without loss of generality, let the amounts of the

kinases be A < B < C. Assume, to begin with, that all equilibrium constants for
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binding of kinases to the scaffold proteins are infinity, there is no cooperativity in

binding, and that a complete SABC complex (output signal) is needed for activation.

The various phosphorylation steps are assumed to happen once all the components

are brought together by the scaffold; this is not considered explicitly.

When S is varied:

1. For S < A, there is enough A, B and C to bind to all the S molecules, so the

signal is equal to the amount of S

2. For A < S < B, all the S molecules are bound to B and C molecules, but there

is insufficient A to bind to them all; only that fraction which binds to A will

signal. Hence the signal is equal to the amount of A, which is the plateau in

the graph.

3. For B < S < C, all the S molecules are bound to C; however, A and B dis-

tributes among the S molecules leading to a sequestration of A and B molecules

away from each other. This reduces the signal, and it can be seen that the

signal decreases (because the sequestration is more prominent) with increasing

S (Figure 2.2).

4. For S > C, sequestration has already occurred. The amount of C (and in

general, any component more numerous than the scarcest two in the system)

has no bearing on the combinatorial inhibition effect.

In the case where some of the concentrations are equal, it is easy to see that the

same logic still applies and the above results still hold.

We now consider the case where mutant scaffold S' is added. The case where

this extra scaffold, S', is the same as the wild-type scaffold is trivial. The cases are

possible for the mutant scaffold:

1. A-mutant (S' cannot bind to A): In this case, no sequestration occurs until
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Figure 2-2: The variation of signal output from a scaffolded system as a function of
concentration of scaffold. There are three regimes: Increasing output with scaffold,
when the scaffold is limiting; saturation, when there is enough scaffold to form com-

plexes but not enough to separate the constituents; and decreasing output when the

scaffold sequesters the component molecules separately.

S + S' > B, which means the behavior of the system is the same as the wild-

type case.

2. B-mutant (S' cannot bind to B): When the amount of total scaffold S + S' is

greater than A, sequestration occurs; therefore, the signal starts decreasing even

when A < S + S' < B, which is earlier than in the wild-type case.

3. C-mutant (S' cannot bind to C): This is similar to the wild-type case, seques-

tration occurring after S + S' > B.

Note that it is not possible for the signal to decrease later than in the wild-type

case. For the MEK binding mutant in the experiment, absence of the expected de-

crease in signal with an increase in the amount of scaffold cannot be explained by any

stoichiometric argument - hence it seems that there is another previously unknown

effect present in this system. For example, it is known that MEK is constitutively

bound to KSR in certain systems[71]. Upon further investigation, it was found that

the effect of KSR in this system was more complicated than initially thought, and is

still not completely understood[70].
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Let us look at what happens if we relax the assumption of the equilibrium con-

stants for binding being infinity. For the sake of this analysis, drop constituent C

from the system, i.e. assume C is in sufficient excess not to matter. Now our system

consists of molecules A and B and scaffold S. Let the equilibrium constants for the

binding of A and B to S be Ka and Kb respectively. The equations for the system

are given in Equations 2.1 and 2.2.

S+SA+SB+SAB=So

A+SA+SAB= Ao (2.1)

B+-SB + SAB+Bo

[SA]
Ka=-[S] [A](2)

Kb [SB] _ [SAB] (2.2)
[S][B] [SA][B]

The other equilibrium relationship, Ka - is not independent of the spec-

ified three. This represents a system of 6 unknowns in 6 equations (3 of which are

non-linear), so the system is completely determined.

The system is normalized by setting total B (call this Bo) to be = 1. Total A

(call this AO) = some fraction less than 1 (taken as 0.1 for the following). The x-axis

of plots in Figure 2.2 is the amount of scaffold S plotted on a log scale; the y-axis

is the amount of signal SAB normalized the maximum possible amount of signal

(which is Ao). Note that the natural dimensionless parameters in this system are

(Concentration)*(Equilibrium constant for binding), since the dimensions of Ka and

Kb are 1/Concentration. Figure 2.2A looks at the effect of the parameter [Bo]Kb on

the shape of the curve. For small values of [Bo]Kb the amount of scaffold needed

to reach a peak signal is greater than BO. The above analysis is therefore correct

as long as [Bo]Kb is sufficiently greater than 1. [Ao]Ka = [Bo]Kb in all cases in the

above graph - so the graph appears symmetric. Figure 2.2B shows that changing

each parameter but keeping the product constant maintains the shape of the graph.
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Again, [Ao]Ka = [Bo]Kb in all cases. The position of the graph is shifted because Bo

is changed; all cases the decrease of signal starts happening once S > Bo.

IS1

151

Figure 2-3: Plots of the normalized output of a scaffold process with variations in pa-
rameters. (A) Variation with the strength of scaffold binding to the second-smallest
(limiting) component (B) Variation with concentration of the second-smallest com-
ponent, at constant equilibrium (C) Skewing the saturation curve for different equi-
librium constant for the smallest two components (by amount)

2.3 Discussion

In this section, using simple logical arguments, we have described the limits of protein

concentrations at which the scaffold pro-zone effect occurs. The work also describes

how simple experiments involving over-expression of the scaffold (and various mu-

tants) in the system can reveal previously unknown cooperative or nonlinear behavior.
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Chapter 3

Regulation of Src Kinases by CD45

in T and B Cells

The Src family kinases are a set of kinases with various, possibly redundant func-

tions in the activation of lymphocytes, and each kinase is known to have multiple

targets[72]. The set of Src family kinases includes Lck, Fyn, Lyn, etc. and different

kinases are thought to be expressed in different cell types. Lck is the prominent kinase

expressed in T cells and Lyn in B-cells[73]. These kinases have a similar structure

and are thought to be regulated in a similar manner. Lck is known to phosphorylate

the tyrosines of immunoreceptor tyrosine-based activation motifs (ITAMS) in T-cells,

which is a crucial step in their activation. In this chapter, we primarily examine a

specific aspect of how Lck is regulated, and briefly connect our findings to the regu-

lation of Lyn.

Upon antigen recognition (sufficiently strong binding) of peptide-major histocom-

patibility complex (pMHC) by the T cell receptor (TCR), one of the earliest signaling

events is the phosphorylation of the ITAMs of the CD3-zeta subunit of the TCR by

Lck. This leads to the binding of Zeta-associated protein of 70 kDa (ZAP-70) to the

TCR, initiating downstream signaling. In conditions like autoimmunity, T-cells signal

through the TCR even when not activated by a strongly binding antigenic pMHC.

Understanding how "upstream" molecules regulate of the activity of Lck, a key ki-
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nase of the TCR, could help select targets for inhibiting spurious activation of T cells.

Src kinases have two tyrosine sites which can be phosphorylated to modulate

their activity. There is an activating site (Y394) and an inhibitory site (Y505). In

the most active form of Lck only Y394 is phosphorylated, and in the least active form

only Y505 is phosphorylated. The form of Lck in which both sites are dephosphory-

lated is referred to as the "basal" state, with intermediate kinase activity. The kinase

for the Y394 site is Lck itself, i.e. there is autophosphorylation[74]. It is thought that

the phosphorylation of the inhibitory site changes the conformation of Lck in such

a way as to make the activatory site inaccessible to phosphorylation (the "tail-bite"

mechanism[75] in which the phosphorylation of Y505 causes the tail of Lck to contract

and close in on itself, rendering Y394 inaccessible). It is not entirely clear, however,

if the fourth state in which both sites are phosphorylated can exist; for example, Sun

et al. report that phosphorylation of Y394 blocks phosphorylation of Y505[76], but

Nika et al report the presence of a form of Lck phosphorylated on both activating

and inhibitory sites[77]. Table 3.1 shows the various possible states of Lck.

The kinase for the Y505 site, Csk, is known to be modulated by the activity of

Lck itself. It is thought that Csk is recruited to the membrane through its interaction

with an adaptor protein, Cbp/PAG[78][79], and that PAG needs to be activated in

order for it to recruit Csk. This activation (by phosphorylation) is thought to be

performed by Lck itself, creating a negative feedback loop which tempers the activity

of Lck.

The dephosphorylation of the two tyrosines of Lck, Y394 and Y505, is performed

by many, possibly redundant, phosphatases. CD45 is known to be a major phos-

phatase involved in regulation of both these sites[80], and is critical to TCR signaling

responses[81]. Since phosphorylation of the Y394 site tends to activate and phospho-

rylation of the Y505 site tends to inhibit Lck, CD45 has a potentially interesting role

as both an activator and inhibitor of Lck. There are other molecules involved in the
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system with possibly redundant roles. For example, Lyp/PEP is a protein tyrosine

phosphatase that is known to be involved in the deactivation of Lek by the dephos-

phorylation of the activating tyrosine[82]. SHP-1 is also thought to play a similar

role, for example, through a feedback loop involving ERK[14][83].

Antigen-presenting cell (APC)

pM HC

CD45 CD4
I r TCR

T Cell

Lck Inactive Lck Active
Y394 pY394
pY5O5 Y505

Downstream Signaling

Figure 3-1: Cartoon of the molecules involved in Csk-dependent activation of T-Cells.
Lck (dark green) phosphorylates TCR (yellow); Csk (blue) is a kinase for the Y505
site on Lek, Y394 autophosphorylates. Csk is recruited to the cell membrane on
binding with phoshorylated PAG. CD45 (purple) is a phosphatase for both tyrosines
on Lek. Phosphorylated ITAMs lead to downstream events via Zap70 and LAT.

Previous work on modeling the Lek activation mechanism has focused on two as-

pects. One is the types of qualitative behaviors that the system can show[84]. The

presence of competing positive (activation by trans-autophosphorylation of Lek) and

negative (modulation of Csk activity by phosphorylation of PAG) feedback loops in

the activation scheme of Lek could lead to bistabilities, oscillations, and pulses in Lek

activity, depending on the parameter regime in which the system operates. Another

model of the Src kinase activation scheme focuses on the interaction with receptor[85].

Neither work looks at the interesting effect on the system of CD45, which is thought

to be both an activator and repressor of Lek; this dual conflicting role of CD45 on

Lek activity could have interesting biological consequences.
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It is known that CD45-deficient thymocytes show diminished LAT, Akt and Zap70

and almost no ERK activation[86]. These experiments by Hermiston et al[82] provide

an opportunity to study cell lines with various intermediate levels of CD45, which

could help unravel how the different downstream signaling molecules are differen-

tially regulated. Recent experiments along these lines[87] have shed new light on the

mechanism of regulation of Lck by its phosphatase, CD45. A number of different cell

lines with varying amounts of CD45 expressed on the surface were generated using

an allelic series; the amount of CD45 varied from 5% of wild-type to 150% of wild

type. It was found that the level of pY394 is maximum for the genotype with in-

termediate levels of CD45 (Figure 3-2A), which corresponds to 50% of the wild type

level of CD45, whereas the level of pY505 monotonically decreases with increasing

CD45. The location of this peak in activity of CD45 as a function of the levels of

the rest of the molecules involved in the system is also of interest, as it could be

shifted by changing, for example, the amount of Csk in the system. Since CD45 is a

phosphatase to both the activating and inhibitory sites on Lck, it is not easy to intuit

the mechanism underlying these results for the cellular response as a function of the

level of CD45.

Changing the amount of CD45 in B-cells, does not produce a maximum in the

level of pY394 (Figure 3-2B). In B-cells, the dominant kinase is Lyn. CD45 dephos-

phorylates only the activatory site on Lyn[88]. Hence, changing the level of CD45

in B-cells should produce qualitatively different responses from those seen in T-cells.

Other phosphatases like PEP in T-Cells, which perform some redundant functions,

can be modeled in a similar way: since PEP only has an impact on the state of pY394

in Lck in T-cells, we would expect the qualitative behavior of a system in which PEP

was varied in T-cells to be similar to that of a B-cell system in which CD45 is varied.

Here we show that a simple model for the mechanism of regulation of the Src ki-

nase can explain the effects of different levels of CD45 in the system, and this model
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Figure 3-2: Western blots[87][88] showing the levels of the two phosphorylation sites
in Src kinases as a function of the amount of CD45 expressed, (a) Lck in T Cells and
(b) Lyn in B Cells. Src416 binds activating tyrosines of both Lck and Lyn[88]

is consistent across various cell types which express different types of Src kinase.

3.1 Model

The model we study consists of the following set of molecules: Lck, its kinase for

the inhibitory site, Csk, and its phosphatase, CD45. Let the total amount of Lck be

L, and the three possible states in which it can exist be A (activated state: pY394

phosphorylated, pY505 unphosphorylated), B (basal state, neither state phosphory-

lated) and I (inactive state, pY394 unphosphorylated, pY505 phosphorylated). One

could add if necessary a fourth state C in which both sites are phosphorylated. The

other molecules involved in modulating the activity of Lck are CD45 (D) and Csk

(S). CD45 dephosphorylates both sites of Lck; Csk phosphorylates the inhibitory site
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and the activating site is phosphorylated by Lck itself (Figure 3-3A).

State Abbreviation Inhibitory site Activating site Kinase Activity
Inactive I P Low
Basal B Moderate

C P P Moderate(?)
Active A P High

Table 3.1: The Various Activation States of Src Kinases

D A,B
(A) I B A

S* D

D A,B
(B) I B A

S* E

A/B

(C) pApp 
g

D

Figure 3-3: Schematic diagrams of the reaction networks simulated in the model: (A)
The minimal (toy) network in T Cells, comprised of the regulation of the various
states of Lck by Csk and CD45. (B) The minimal network in B Cells, comprised of
the regulation of the various states of Lyn by Csk, CD45 and PEP (C) Additional
reactions present in the full model: phosphorylation/dephosphorylation of PAG by
Lck and CD45, and requirement of Csk to bind to PAG to make it active. The full
model also contains another state C of the Src kinase with both sites phosphorylated,
and all reactions are Michaelis-Menten. The labels are A:active Src, B:Basal Src,
I:Inactive Src, D:CD45, S:Csk, P:PAG, E:PEP. Star denotes the "active" state for
Csk and phosphorylated state of PAG.

Csk is brought to the surface of T-cells by phosphorylated Pag/Cbp, which is

thought to be phosphorylated by Lck and dephosphorylated by CD45; the toy mod-

els do not contain this regulation of Csk by Lck and PAG, but both the toy and full

models show the same qualitative behavior. For the case of Lyn, PEP is the phos-

phatase that dephosphorylates the activating (Y416) site, whereas the inhibiting site

(Y507) is dephosphorylated by CD45. The rest of the network is similar to that of

Lck (Figure 3-3B).

The minimal model consists of the three forms A, B, and I of Lck, CD45 and
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Csk; all reactions in the minimal model are assumed to be of mass action form. In

the minimal model, Csk converts LckI to LckB, LckB autophosphorylates to result

in LckA, and both LckI and LckA are dephosphorylated by CD45 to give LckB. Dif-

ferent forms of the Src kinase phosphorylate their substrates at different rates, with

the inhibiting form being unable to phosphorylate its substrate, the basal form hav-

ing a low kinase activity and the activated form having a high kinase activity. We

shall see that this minimal model is sufficient to recapitulate the basic features of the

Lck-CD45-Csk system seen in experiments. The reactions in the minimal model are

chosen to be of mass-action form. The minimal model provides us the ability to solve

for the activities of the various forms of Lck analytically and provides insight into the

qualitative variation of these solutions with various parameters of the system, such

as the total amounts of Csk which one could potentially vary in experiments.

The full model, apart from using the more complicated and possibly more realistic

Michaelis-Menten form for reaction kinetics, also contains PAG, which is activated by

phosphorylation by Lck or Lyn, dephosphorylated by CD45 and acts as an adaptor

to bring Csk to the surface where it can interact with Lck (Figure 3-3C). In this case

as well, different forms of Src kinase phosphorylate PAG at different rates, the rate

constants assumed to be the same as their kinase activities to Lck. The complete

list of reactions and rate constants for the full model are noted in the supplementary

material (Section A). We obtain results for the full model numerically, as it is too

complex to analyze analytically. The qualitative behavior seen in the minimal model

is maintained when one goes to a much bigger, and more realistic full network, for a

certain choice of parameters; this qualitative behavior is also fairly robust to varia-

tions in the parameters (as seen in the parameter sensitivity analysis included in the

supplementary material).

The chemical reactions for the Lck network (Figure 3-3A), written in their simplest
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mass-action form, are:

I + D B* B+ D

A+D - :B+D

B+ S k2 > I +S (3.1)

B+B kB> A+B

A+ B k4 : A+ A

The parameters for this system are ki, the rate of CD45's phosphatase activity;

k2 , the rate of Csk's kinase activity; k3 , the rate of basal activity and k4 , the rate

of active Lck kinase activity (the latter two during autophosphorylation). The fact

that active Lck has a higher kinase rate than basal Lck is described by the constraint

k4 > k3.

From these reactions we can write a set of ODEs describing the evolution of the

dynamics of this system:

I=L-A-B
dB k1 (L - A - B) D + k1 AD - k2SB - kB 2 - k4AB (3.2)

=t -k 1 AD + kB 2 + k4ABdt

For the purpose of examining the qualitative behavior of this system, we choose

the following parameters: ki = 1, k2 = 1, k3 = 1, k4 = 2. We then look at the steady

states of this ODE system and the dependance of the steady state solutions on the

amount of CD45.

For our simple model of the action of Lyn (Figure 3-3B), we can write down the
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following set of equations:

I+ D kl : B+ D

A+ P k5 3: B+ P

B+3 k2 > I+S (3.3)

B+ B k3 > A+ B

A+ B k4*> A+ A

I=L-A-B
dB=k(L -A-B)D+k5AP-k2SB - k3B2 - k4AB (3.4)
__ = -k 5 AP-+k 3 B2 +k 4 AB
dt

3.2 Results

3.2.1 Qualitative trends for the regulation of Lek activity

derived from experiments

Note that in the minimal model L = total amount of Lck = A + B + I. The qualitative

feature of the experiments performed is (a) a maximum in pY394 activity as CD45

(denoted, D) is varied (b) monotonic decrease in pY505 as a function of increasing D

(Figure 3-4A). From these experimental findings, if we calculate the qualitative trends

in the variation of Lck states A and B with changes in CD45 expression, we find that

LckA goes through a maximum with increasing D and LckB monotonically decreases

with increasing D (Figure 3-4C). For the Lyn experiments, qualitatively, the level

of the activating site pY416 increases monotonically and the level of the inhibitory

site pY507 decreases (Figure 3-4B). In terms of the states of Lyn, this corresponds

to an increase in LynA and a decrease in LynI with CD45. However, since it is not

possible to obtain the qualitative trends for the variation of LynB which is total Lyn

(constant), minus the sum of LynA(monotonically increasing) and LynI (monotoni-

cally decreasing), we cannot make any definitive statement about LynB (Figure 3-4D).
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Figure 3-4: Qualitative trends of the levels of the various phosphorylation sites seen
from experimental data (top row) and what that would mean for the various states
(bottom row). Experimental data shows (a) a maximum in pY394 of Lck as a function
of CD45 and (b) a monotonic increase in pY416 of Lyn as a function of CD45; the
level of the inhibiting site pY505 of Lck and pY507 of Lyn decreases monotonically.
This converts to, in terms of the states of the Src kinase, (c) a maximum in LckA and
a monotonic increase in LckB and (d) a monotonic increase in LynA as a function of
CD45. No qualitative prediction can be made for the level of LynB; the inhibitory
states LckI and LynI decrease monotonically with CD45.

3.2.2 Solutions of Lck regulation models

We obtain the steady-state behavior by setting the left hand sides of Eqs.3.2 to zero,

and then solving the resulting algebraic equations simultaneously. Solutions for the

steady state levels of LckA and LckB are presented for the rate constants specified

above; the complete solution for the location of the maximum in A is shown. Full

solutions for steady states of LckA and LckB are presented in the supplementary

material. Using the minimal model for Lck, we find that there is a maximum in LckA

as CD45 is varied. We can then obtain the the level of CD45 that corresponds to the

maximum in LckA. One can think of the level of Csk in the system as a proxy for the

activation of the T-Cell. A low level of Csk in the cell would result in lower phospho-

rylation of Lck Y505, and therefore activate Lck by trans-autophosphorylation. We

can vary the amount of Csk, and explore what happens upon activation (say, by re-

ceptor stimulation or as recently done by using analog sensitive Csk constructs(19)).
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The steady states for LckA and LckB as a function of the amount of CD45 are given

in Table 2. The level of CD45 (Dmax) corresponding to the maximum in LckA is

given by the following expression:

k2 k3 S - k4 /kS 2 + k2 SL (k3 - k4 )
Dmax = 4 (3.5)

ki (k3 - k4)

The biologically realistic case, when active Lck has a higher kinase rate than basal

Lck, is described by k4 > k3. Substituting the rate constants chosen above,

Dmax (S, L) = -S + 2 2 - SL (3.6)

If there is no positive feedback loop (k 4 = 0), the location of the maximum is a

function of Csk only, and independent of the amount of Lck present in the system.

The result of the toy model for Lck, which is a plot of the levels of the various forms

of Lck as a function of CD45 for S = 50, L = 30 is plotted in Figure 3-5A. The

amounts of the various states of Lck, obtained by solving the full model for Lck, are

plotted in Figure 3-5. The red curves represent the activated state, green curve the

inactive state, and blue the basal state of Lck. There is qualitative similarity between

the two models: a maximum in LckA, monotonic increase in LckB and monotonic

decrease in LckI as a function of CD45; this is similar to what one would infer from

the experiment (Figure 3-4c).

In the minimal model, the levels of the two phosphorylation sites pY394 and pY505

correspond to the two states LckA and LckI respectively, since in the state B neither

site is phosphorylated (and state C does not exist in this model). The levels of the

various phosphorylation sites, as calculated from the full model, is plotted in Figure

3-5C, and shows qualitative experiment with the toy model and experiment (Figure

3-2A, Figure 3-4A). The presence of the maximum in pY394 as a function of CD45

is explained by the fact that CD45 has both a positive and a negative regulatory role

for the system as CD45 dephosphorylates both the pY394 and pY505 sites on Lck.
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Table 3.2:
ki = 1,k 2

Analytical Solutions to the toy model for the specific choice of parameters
= 1,k 3 = 1,k 4 = 2.

jx

A B C

Figure 3-5: Results of (A) the toy model and (B) and (C) the full model for Lek.
Red curves represent the activated state, green curve the inactive state, and blue the
basal state of Lck. (A) and (B) are plots of the levels of various states as a function
of CD45 for the toy and full model respectively; (C) is a plot of the levels of the
phosphorylation sites from the full model. The levels of the sites for the toy model
is the same as Figure (A), because in the toy model there is no site with both sites
phosphorylated and so in this case red curve = pY394 and green curve = pY505

At low CD45, it seems that the system is in a state with predominantly inactive Lck,

and the low amount of CD45 is not enough to overcome the inactivation caused by

Csk phosphorylating the inactivating site. As a result of this, not enough basal Lek is

formed and the positive feedback loop does not seem to be "ignited". With increasing

CD45, more and more basal Lek is formed because the dephosphorylation of pY505 by

CD45 overcomes its phosphorylation by Csk. This results in kicking off the positive

feedback loop in Lck, and we see a maximum in Lek activity. With a very high amount

of CD45, the dephosphorylation of pY394 is also significant and seems to keep the

positive feedback loop in check, decreasing the level of Lek activity again. Hence,
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(D+ S) (2L+ S+D - /4L 2 - 4S+D 2+2DS +S2
Lck A A(D, L, S)= L -D4 2D + 4S

Lck B B(D L S) = 2LD+DS+D2 - Dv/4L 2 - 4LS+ D 2 + 2DS + S2

2D+4S
-DuP - PS2 + 2DLS - 2DPS

Lyn A A(D, L, S, P) 2D(D2S)

_(D + S) \/-4L 2D2 - 4LDPS + D2P 2 + 2DP2 S + P 2S2

2D (D + 2S)
2D (D + 2S)2DL +PS +PD

Lyn B B(D, L, S,P)= = (+S

-v'4L 2D2 - 4LDPS + D2 P 2 + 2DP 2S + P 2S 2
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the maximum in Lck activity represents a tradeoff between having enough CD45 to

overcome the inhibitory role of Csk and not too much that dephosphorylates pY394.

The presence of the maximum in the activity of LckA as a function of CD45 level

begs the question, how much CD45 is needed to be at that maximum, and how do

the amounts of other molecules in the system affect the location of this maximum?

Analytically, the location of the maximum from the toy model can be calculated (see

previous section). Fig 5a is a plot of this expression, position of the maximum as a

function of amount of Csk (measure of the level of stimulation of the cell). We can

perform the same calculation for the full model; the results are in fig 5b. The amount

of CD45 required in the system for Lck to be maximally active increases with both

Csk and total Lck. The Csk-CD45 balance is relatively simple to understand: by

transfecting more kinase for Y505 (Csk), one would need more phosphatase (CD45)

to achieve a similar balance. The reason for the maximum increasing with increasing

total Lck is probably because of the positive feedback loop in Lck: increasing the

total amount of Lck in the system makes it more likely to set off the positive feedback

loop and phosphorylate Y394, and hence more CD45 would be needed to counter

this. Unlike LckA, the solution for LckB does not show a maximum as a function of

CD45 for any values of parameters.

I- -1 0 L-5-05 L4Ca~ of max In045

25

220

0Qa 000 2 4 6 a 1'0 2 14 18 M8 20

Figure 3-6: Location of the maximum in CD45 in T-Cells as a function of the amount
of Csk present in (a) the toy model and (b) the full model. Different curves represent
different amounts of total Lck
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3.2.3 Solutions of the Lyn/PEP model

The steady states for LynA and LynB are given in Table 2. In this case, there is no

maximum in activity of Lyn as a function of CD45, and the amount of active Lyn

increases monotonically with CD45. The results of the toy model for Lyn, a plot of

level of the levels of the various forms of Lyn as a function of CD45 for S = 50, L = 30,

P=10, are plotted in Figure 3-7 and the corresponding results for the full model are

plotted in e6b. We see that the qualitative features are the same as what one would

predict from experiment: a monotonic increase in LynA and decrease in LynI (Figure

3-4d). There is a maximum in LynB in the full model, but not in the toy model, and

we make no claim about the actual behavior for this state. In the case of Lyn, since

there is no tradeoff between activating and inhibiting effects of CD45, the effects are

straightforward: as CD45 inhibits only the inhibiting site Y507, the amount of active

Lyn increases and inactive Lyn decreases monotonically with increasing CD45.

Fig 6c is a plot of the levels of the phosphorylation sites from the full model. The

levels of the sites for the toy model is the same as fig 6a, because in the toy model

there is no site with both sites phosphorylated and so in this case red curve = pY416

and green curve pY507. This compares favorably to the experiment (Figure 3-2B,

Figure 3-4B).

A B C

Figure 3-7: Results of (a) the toy model and (b) and (c) the full model for Lyn.
Red curves represent the activated state, green curve the inactive state, and blue the
basal state of Lyn. (a) and (b) are plots of the levels of various states as a function
of CD45 for the toy and full model respectively; (c) is a plot of the levels of the
phosphorylation sites from the full model. The levels of the sites for the toy model
is the same as figure (a), because in the toy model there is no site with both sites
phosphorylated and so in this case red curve = pY416 and green curve = pY507.
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3.2.4 Parameter Sensitivity Analysis

A sensitivity analysis was performed for the full model. Each parameter in the original

model was doubled or halved and the system was simulated. The qualitative behavior

of the system (maximum in pY394 and monotonic increase in pY505 as a function

of CD45 for Lek) remained for all variations in parameters. A similar procedure was

carried out for the Lyn model, and the qualitative response in that case remains the

same. The graphs in the supplementary material show how the activities of the two

phosphorylation states and the various forms of Lek and Lyn change as parameters

of the system are varied. The qualitative features are the same when parameters are

varied within reasonable limits: the level of pY394 (red curve) always goes through a

maximum and pY505 always decreases monotonically, even when the rate constants

are doubled (dashed curves) or halved (dotted curves). For the corresponding plots

for Lyn, in section SC4, the level of pY416 (red) monotonically decreases and pY507

(blue curve) increases monotonically irrespective of changes in parameters. Variations

in the states of Lek and Lyn when parameters change are also plotted. The system

seems to be most sensitive to the rate constants kBcat and kPDcat representing the

catalytic activity of basal Lek and the rate at which CD45 dephosphorylates PAG.

3.3 Discussion

Motivated by experiments where the expression of CD45 was varied in lymphocytes

using an allelic series of mice, we have studied a simple biologically-inspired model

of regulation of Src kinases. The model captures and provides mechanistic underpin-

nings to the available experimental data. For example, it recapitulates the observation

that Lek activity exhibits a maximum for a specific CD45 level, while Lyn activity

varies monotonically with CD45 expression. Our model further suggests that the

amount of CD45 needed for maximal Lek activity increases with both increasing Csk

and total Lek in the system. This may be of considerable biological significance.

Lymphocyte activation corresponds to a lower level of Csk. Thus, according to our
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model, the amount of CD45 needed for maximal Lck activation is lower upon activa-

tion. This could be why CD45 molecules are excluded from the TCR cluster during

activation(20). Hence, the topology of the Lck regulatory network makes it possi-

ble to "tune" for maximal responsiveness in the activated case, while still keeping a

lower level of activity while Csk is high. By transfecting more Lck into the cell lines

and assessing whether the amount of CD45 at which pY394 is maximum changes or

is constant, one could better understand the magnitude of this positive feedback loop.

The qualitative difference in behavior between the Lck and Lyn systems is also

easily explained by the model. It is a direct result of the fact that CD45 cannot de-

phosphorylate the Y507 site of Lyn. As a result, we do not expect that Lyn activity

can be tuned for maximal signaling by CD45 exclusion. The differential ability of

T cells and B cells to tune kinase activity suggested by our model could be impor-

tant. For T-cell activation, upon TCR-pMHC interaction, it is known that CD45

is excluded from the TCR protein island[89]. Depending on the amount of CD45

originally present, this could result in either activation or deactivation of Lck as per

our model. Removal of CD45 from the BCR rich region in B cells, however, would

only result in a decrease in the activity of Lyn.

This model would also suggest that the only experimentally observable qualita-

tively interesting feature of the system is the maximum in pY394 of Lck as a function

of CD45. The exact location of this maximum in the pY394 site of Lck is dependent

on the parameters of the system and the amounts of various molecules. The other

phosphorylation site pY505 of Lck and the sites of Lyn will show only monotonic

behavior in these CD45 allelic series lines, irrespective of the amount of Csk or total

Lck in the system.
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Chapter 4

Small-Molecule (Csk) Activation of

T-Cells

In the previous chapter we described how the levels of the various phosphorylation

sites of Lck and Lyn can be described by a simple model. In this chapter, we use the

results from the previous one in a wider context, that of the activation of T-Cells by

small molecules. Inhibitors are a key class of drug used to regulate aberrant signaling,

but most inhibitors interact with multiple members of the protein kinase family[90].

Therefore, it is important to understand the function of different kinases involved in

cellular signaling. Doing so not only helps us understand the basic biology of the

systems under consideration, but helps understand what side effects may occur as a

result of using non-specific inhibitors. Knocking-in analog-sensitive kinase (as-kinase)

by substituting for or in addition to the endogenous wild type kinase in cells or organ-

isns followed 1)y treatment with a specific inhibitor allows for the investigation of the

role of a single kinase[91]. In order to examine the effect of Lck signaling, Schoenborn

et al. developed an analog-specific version of Csk, a key regulator of Lck[92] together

with 31B-PP1, a pyrazolopyrimidine-1 (PP1) derivative to inhibit it[93].

Csk is a key kinase that controls lymphocyte development and prevents spurious

activation of immune cells; Csk-/- mice are embryonically lethal[94] [95]. The mech-

anism by which Csk influences TCR phosphorylation is through the Src kinase Lck
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as described before. Various forms of Lck can phosphorylate the ITAMs on the CD3(

region of the TCR[96]. Phosphorylation of CD3( leads to recruitment of Zap70, which

in turn activates LAT and sets off events downstream. CD45 is known to be a major

phosphatase involved in regulation Lck activity[80], and is critical to TCR signaling

responses[81]. There are other molecules involved in the system with possibly redun-

dant roles. For example, Lyp/PEP is a protein tyrosine phosphatase that is known

to be involved in the deactivation of Lck by the dephosphorylation of the activating

tyrosine[82]. SHP-1 is also thought to play a similar role, for example, through a

feedback loop involving ERK[14][83]. In this work only CD45 is considered, and is

the sole phosphatase that dephosphorylates both specified sites on Lck.

The amount of TCR in T-Cells is not constant; it is regulated by a complex

mechanism. It is known that the degradation of TCR subunits is antigen- and

dose- dependent [97] [98]. TCR-CD3( complexes are constitutively internalized and

recycled [99] [100], and triggering of the T-Cell leads to the failure of the TCR to re-

cycle back to the surface due to their targeting by lysosomes[101]. This degradation

is thought to happen by Cbl-mediated ubiquitination[102][103]. It was also found

that the rate of degradation in unstimulated T-Cells is much lower than in triggered

T-Cells[104] [103].

4.1 Experiments

In order to examine the potential for using analog sensitive inhibitors of Lck, exper-

iments were performed by Jamie Schoenborn and others in the Art Weiss lab with

Jurkat T-Cells[92]. Jurkats were transiently co-transfected with CskAS (or pEF6A, a

control) vector and pEF-GFP. 18 hours post transfection, cells were rested in serum-

free media for 20 minutes and were used for assays. Cells were first incubated with

DMSO or 31B-PP1 inhibitor for 15 minutes, then either assayed directly, either un-

stimulated or stimulated with C305 for 2-15 minutes. A number of variants of CskAS
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were used, with different N-terminal tags that localize to different parts of the cell and

thus have different effective activities towards Lck. The strongest variant is lipid-raft

CskAS (Lcknj ), the weakest the cytoplasmic versions of CskAS (Koz2- and dPdM-).

The non-raft membrane localizing version (dP-) is of intermediate activity.

Figure 4-1[92] shows FACS data on the activation of T-Cells by CskAS and PP1.

The left half of the figure represents the control, where PP1 is not added. The first row

represents unstimulated cells, which is the main case of interest; other rows represent

activation by C305 (a-CD3) for 2, 5 and 15 minutes respectively. The following

observations can be made:

" Adding PP1 to unstimulated cells which had CskAS activates T-Cells

* Only the cells which expressed high amounts of CskAS could be activated in

this manner

" For C305-stimulated cells (but no PP1) to which CskAS was added, cells with

high levels of Csk did not activate. This is mainly true for the lipid raft-localized

CskAS (the strongest version).

To test the strength of activation by CskAS/31B-PP1 vs. activation by C305(a)-

CD3), Schoenborn et al[92] looked at western blots of the phospho-tyrosines (Figure

4-2). The levels of pCD3( for Csk/stimulation by PP1 is much higher than the levels

from DMSO(control)+C305 stimulation, suggesting that activation of T-Cells using

CskAS/PP1 is much stronger than the usual method of using a-CD3.

Figure 4-3 is a plot of the strengths of activation by each variant of Csk. The left

panel shows histograms of phospho-CD3 for unstimulated and C305-stimulated cells

(for 2, 5 and 15 min) for different variants of CskAS; the right panel is a quantification

of the mean pCD3 in each case. We see that the strongest version of CskAS (Lck1l)

activates the strongest (has the highest value of pCD3 upon activation) when PP1 is

added; the non-raft LckdP next strongest and so on - the mean level of pCD3 is di-

rectly proportional to the strength of CskAS used. We also note that the histograms
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Figure 4-1: FACS data on the activation of T-Cells by CskAS and PP1[92]. The
left half of the figure represents the control, where PP1 is not added. The first row
represents unstimulated cells, which is the main case of interest; other rows represent

activation by C305 (a-CD3) for 2, 5 and 15 minutes respectively. Each panel is a

count of cells with the X and Y axes representing numbers of pERK and transfected
Csk.

and mean values of pCD3 are the same for all unstimulated cells, irrespective of the

strength of CskAS used. This is unexpected because presumably, different variants

of CskAS should cause differences in Lck activity, which should translate to different

pCD3 levels in unstimulated cells. The fact that this does not happen suggests that

phospho-CD3 is regulated by a mechanism which ensures that its level at equilibrium

is independent of the activity of Lck (which, as we shall see, is a consequence of the

mechanism of regulation of CD3 levels).

The regulation of CD3 levels is further explored in Figure 4-4. The left panel

shows how total CD3 (not just phospho-) levels vary as a function of the amount of

CskAS. We are interested in the cases where PP1 has not been added (because that

removes CskAS from the cell membrane). We see that the level of CD3 increases with

the amount of CskAS present, and this increase (the slope of the CskAS-CD3 distri-

bution) is greater when Raft CskAS is used (than cytoplasmic CskAS). This suggests

that, in general, the higher the activity of CskAS, the more total CD3 is present on

the surface of the T-Cell. The right panel of Figure 4-4 shows the levels of surface CD3
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for different cell types which have different inherent expressions of CD3. For all these

cell types, we see that the levels of total CD3 increase with the activity of CskAS used.

+DMSO mLsk LckdmCakTG
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Figure 4-2: Western blots showing the induction of pCD3( upon activation[88]. The
left half of the figure represents the control, where PP1 is not added. Columns labeled
0 represent no addition of a-CD3; Columns labeled 0, 1, 2 and 5 represent activation
by C305 (a-CD3) for 1, 2 and 5 minutes respectively.

4.2 Model

The major conclusions from the experiment are:

" Activation of T-Cells by adding CskAS and the PP-i is stronger than activation

using a-TCR.

" The level of pCD3 is resting T-Cells is constant, independent of whether CskAS

has been transfected in (and what the activity of the transfected CskAS is).

" The amount of total TCR on the surface of resting T Cells is directly related

to the activity of CskAS added.
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Figure 4-3: Histogram plots gated on live, GFP+ cells[92]. Left, grey histograms are

unstimulated cells treated with DMSO; black overlay are unstimulated cells treated

with 31B-PP1 (both are shown in graphs of stimulated cells for reference). Light blue

overlays are cells treated with DMSO and stimulated with C305, dark blue overlays

are cells treated with 31B-PP1 and stimulated with C305. Right, quantitation of

mean fluorescence of pCD3-zeta.

The reasons for these experimental observations are not obvious, so we make a model

involving the key molecules and interactions present in this system to try to under-

stand the underlying mechanisms.

4.2.1 Full Model

The model consists of the key molecules in the system: Lck, CD45, Csk, and TCR.

Lck has two phosphorylation sites, as described in the previous chapter, which are

phosphorylated by Csk and Lck itself; the various states of Lck have different kinase

activities towards CD3. CD3 is created by protein synthesis, phosphorylated by Lck,

and internalized and recycled. Internalized pCD3 is degraded. Activation of the cell

is measured in terms of pCD3 and RasGTP, the latter being created via Sos (which

itself is created from pCD3 - this is a shortcut for a series of biological processes

involving pCD3, Zap70 and LAT). The nature of the process of knocking off CskAS

using PP1 yields a transient response if no positive feedback loop is present (but real

responses last for tens of minutes, as the data has shown). It is known that this

60



Vector only mDMSO m
MM50 aa-TCR

5061 3IPPt W0 TCR
Cytoplasmic Raft 4Nc

vector Csk CSkAS we

+DMSO L!I27 .7 3.M M.0 3. 2MC

unstim A ik M MiE

a-TCR A

1-TC

WJira JRfl2 PPA Pb.

Cytopiasmic CskAS

4-

Wr ~a~t JRT.T34 Pft4 Pee-s
Lipid raft CskAS

'UU4

Figure 4-4: Left: FACS data showing joint population distributions of CskAS and
CD3. Right: Experiments repeated in T cell lines with reduced or lacking TCR
surface expression: WT Jurkats (CLi), TCR beta-deficient (JRT3.3-5), TCR beta-
deficient reconstituted with TCR beta cDNA (PF2.4 = 60% of WT; PF2.8 = 15%
of WT). The data represent 3 independent experiments, combined to show error bars
where available[92].

activation is dependent on Zap70 and LAT ([92], data not shown), so a positive feed-

back loop has been put in by which Ras stabilizes the activated forms of Lck. Each

reaction is modeled using chemical kinetics, and this results in a system of coupled

nonlinear rate equations.

The full model consists of a set of ODEs that govern the system. We assume a

plasma membrane area of 4 pm 2 and the total depth 20 nm, yielding a volume of 0.08

pm 3 . Rate constants and concentrations have been converted to this volume (many

of the values are estimates, and we expect the basic results to remain qualitatively

the same even when rate constants are changed, but a full sensitivity analysis has not

been performed). Within this box, we assume that all molecules are well-mixed, and

no distinction is made between a membrane-bound and cytosolic reaction. A full list

of reactions, rate constants and concentrations used are given in the supplementary

material (Section B).
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The simulations are performed using MATLAB's Simbiology Toolkit[105]. Cells

are initialized to the normal resting state, and the system is allowed to equilibrate.

At time t = 104 s, CskAS is transfected into the cell, and the cell allowed to equili-

brate once again. At t = 2 x 104 s, PP1 is added to the cell which "knocks off' the

CskAS that had been added. We plot the concentration profiles of various molecules

of interest as a function of time.

Figure 4-5 shows plots of concentrations of the various molecules as a function of

time. Figure 4-5A suggests that the level of CD3 increases dramatically upon addition

of CskAS and returns to basal after addition of PP1, but the level of phospho-CD3

at equilibrium is always the same. Figures 4-5B shows the activation of downstream

signaling molecules as a result of adding PP1 at t = 2 x 10' s. Figures 4-5C and

D show the states of various forms and phosphorylation sites on Lck. The sharp

transient that leads to activation at t = 2 x 104 s is seen, and the new stabilized is

stabilized by the feedback loop (the amount of active Lck after t = 2 x 10 4 s is higher

than the resting state, before t = 104 s.

To look at the other aspects of the experiment, we re-run the model for a range

of CskAS amounts transfected in at 10' s (Figure 4-6). Figure 4-6A shows that in

resting cells, the amount of CD3 increases with CskAS (corresponding to experi-

ments depicted in Figure 4-4) and the amount of CD3p is constant (Figure 4-3). The

strength of activation upon addition of PP1, shown in Figure 4-6C and measured as

the maximum value of pCD3, increases with the amount of CskAS added (the analog

of experiments shown in Figure 4-3, right panel).

The model shows a couple of interesting features. First, there is a sharp spike in

the activity of Lck upon addition of PP1. This is possibly due to the mechanism of

regulation of the various states of Lck. Upon decreasing the level of Csk (by PP1),

there will be an accumulation of basal Lck, and due to its activation by autophos-
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phorylation, a spike in the level of active Lek as well before it returns to the level

in resting cells (this spike is partially stabilized by the feedback loop that has been

put in, in the model). The second feature is the amount of CD3 is high just before

activation. The combination of these two effects, a sharp increase in the activity of

the kinase (Lek) as well as an abundance of its substrate (CD3) seems to be what

leads to the extremely strong activation of T-Cells by this method.
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Figure 4-5: Concentration profiles from the full model: plots of (A) CD3, phospho-
CD3 (B) Recruited Sos and RasGTP (C) Levels of the various states of Lek (D)
Levels of the phosphorylation sites on Lek. CskAS was added at t = 104 s and PP1
at 2 x 10' s. The numbers on the axes are estimates and these qualitative features
are representative.
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Figure 4-6: How the results of the full model vary with the amount of CskAS. Con-
centration profiles are (A) CD3, phospho-CD3 (B) Levels of the phosphorylation sites
on Lck (C) Strength of activation, measured by the maximum of the CD3p peak (D)
Levels of the various states of Lck. The numbers on the axes are estimates and these
qualitative features are representative.

4.2.2 Toy Model

So far, we have shown that a model with many of the biological reactions present in

the system successfully capture the essence of the experiments that were depicted. In

this section, we use simple toy models to gain a deeper understanding of the mecha-

nisms involved.

In general, the CD3 network can be described thus: CD3 is produced at some rate

# (which may be dependent on the state of the cell, for example). It can be inter-

nalized (at rate ki, say) and recycled (at rate kR). It can be phosphorylated by Lck,

and phospho-CD3 may be dephosphorylated(at rate k). Phospho-CD3 is internal-
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ized similarly to unphosphorylated CD3 (actually, both are internalized by the same

mechanism), but internalized pCD3 is then degraded (at rate kd, say). The network

is described in Figure 4-7.

[:C Lck
k,,

k1  kR kI

C1  Cp $

Figure 4-7: A toy model of CD3/TCR regulation and activation. CD3 (C) is created
at a constant rate # by protein synthesis, is phosphorylated by Lck (L) to pCD3(C,).

C, can get dephosphorylated; both C and C, get internalized at rate k1 and recycled
at rate kR; internalized C, degrades at rate kd.

We can write a set of ODEs that describe the evolution of the system:

dC =C (Cp) - k1 (C) + kR (CI) - kp (C, L) + ku (Cp)

=k,(C) -kR (CI)

P kp (C, L) - k, (Cp) - ku (Cp)

k_= k1 (Cr) - kd (C1 )
dt

In these equations, the brackets imply "a function of', so for example, the rate of

creation of CD3, #, is a function of the amount of phospho-CD3 (which presumably

specifies the state of the cell, whether it is activated or not). The steady state solution

to this system of equations is: f3 (C,) = k1 (Cp), #3 (Cp) = k, (L, C)

The first of these solutions implies that the steady state amount of pCD3 is given

by the solution of one equation, which is independent of the amount of Lck or un-

phosphorylated CD3, i.e. the steady-state level of pCD3 is a constant, given by the

solution of that equation. The second of these two describes the relation between

pCD3, Lck and total CD3 present in the system. The relation between the various

molecules is not evident, however, from these solutions, so we simplify them to un-

cover the qualitative trends.
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Figure 4-8: A simplified toy model of CD3/TCR regulation and activation. CD3 (C)

is created at a constant rate # by protein synthesis, is phosphorylated by Lck (L) to

pCD3(Cp), which degrades at rate kd.

A simplified form of the model which keeps all the necessary detail is as follows:

CD3 is created at a constant rate #, is phosphorylated in a second-order reaction by

Lck (L) with a rate constant k, to form phospho-CD3 (Cp); pCD3 degrades with rate

constant kd. This is shown in Figure 4-8.

The set of ODEs describing the simplified system is given in Equation 4.2.

dC

3 kpLc -C(4.2)

dt k -L C - kdCp

The steady-state solutions to these equations are Cp, and C kL. This
kd kL

suggests that the steady-state amount of pCD3 is given by the ratio of its production

and degradation rate (even though it is CD3, not the phospho-form which is created

by protein synthesis), and is a constant. The total amount of CD3 (unphosphory-

lated) is inversely proportional to the amount (or in general, activity, since there are

many states) of Lck present in the system. In this case, since the amount of Lck

present in the system is a function of (inversely related to) the activity of Csk.

This CD3 creation-degradation machinery is an example of a biological network

that displays "perfect adaptation" [106], which means that the output of the network

(CD3p) is constant, independent of the input (Lck). Network topologies exhibiting

such perfect adaptation are found in many biological systems, including bacterial

chemotaxis[106], migration of neutrophils[107], osmo-response in yeast[108], sensory

cells in mice[109] and calcium homeostasis in mammals[110]. This topology is an

example of perfect adaptation by integral feedback control[111].
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4.2.3 Consequences of the model

It is interesting to explore a few of the properties of a network whose structure is

as given in Figure 4-8. We use the simplified system to look at dynamics (these are

difficult to test experimentally, however). The question here is, if the activity of Lck

L is a function of time, how does the amount of phospho-CD3 behave?

Assume we start with the system described before, at the steady state C(0)= k'

C(0) = We examine three conditions for how L varies with time:
kPLo

1. Step change: L changes instantaneously to L 1 , i.e. L(t) = Li (Equation 4.3).

=(t) - - -L1 - C(t)

dt (4-3)
C( k L1 -C(t) - kdCp(t)
dt

These equations can be solved with the initial conditions given above, and the

solution is given in Equation 4.4.

C(t) = k I + Li -kpLlt
kp, (LO (4.4)

C(t) = 0 + k - (L (e-kpLlt - e-kdt

kd kd - kp, Lo )

This step change models the extreme limit of an infinitely fast change in the

activity of Lck (in reality, even if the change in Csk level is extremely rapid, say

upon PP1 introduction, the response of Lck will not be so). However, we can

use this limit to ensure some basic checks are satisfied: the system goes back to

the steady state for C, = (-, and is dependent on the rates of phosphorylation

and degradation.
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2. Ramp: L varies as L(t) = Lo + at (Equation 4.5).

dC(t) - k - (Lo + at) - C(t)

dCd (t) (4.5)dCt k (Lo + at) -C(t) - kdCp(t)
dt -

with the initial conditions given above. These equations are hard to solve ex-

actly analytically; however, we can calculate the long-term limit of the solution

(as t -+ o) using the final value theorem of Laplace transforms[112]:

lim C,(t) = lim sC(s) = (4.6)tno 00s-0 kd

where C(s) is the Laplace transform of Cp(t). The final steady state is the same

as the initial state and is independent of the rate of change of Lck activity a;

however, the transient depends on a as shown in Figure 4-9A. The interesting

thing about his result is that even though the activity of Lck is growing without

bound, the steady state of C, is still reached. Due to the nature of the final

value theorem and the limit, we can say that any increase in L that is linear

or sub-linear with time will reach the steady state. Figure 4-9B shows that

the faster the change in L (steepness of the ramp, in this case), the higher the

magnitude of the response.

3. Sinusoid: We can calculate the linearized frequency response of L(t) when it

is a sinusoid, say with frequency w (Equation 4.7).

dC(t) -3 - kp - L(t) - C(t)
dt (4-7)dC(t) k - L(t) -C(t) - kdCp(t)
dt

In this case L(t) = Lo + a sin wt, and the linearization approximation means we

set C(t) = 3 + 6c(t) and Cp(t) = + ocp(t). The linearized equations are
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Figure 4-9: (A) Time profiles of CD3p for different activation rates a for L(t) =

Lo + at. Faster activation leads to faster but higher-magnitude transient responses.
The final value of CD3p is always the same as the initial value. (B) Variation of the
magnitude of the response as a function of steepness of the ramp a.

given in Equation 4.8.

d [c (t) -Lo 0 [c (t) 1 sin [-11
dt [ 6c,(t) J L Lo kd J L 6c,(t) J kL s 1j(4.8)

The amplitude of the response as a function of frequency of Lek variation can

be analytically calculated:

oc3

| =d (4.9)
a (kLo + W2) (k + w 2)

This is a band-pass filter, meaning it has a maximum amplitude at intermediate

frequencies. Biologically, the reason is the following: if the Lek concentration

fluctuates too rapidly, there isn't enough time for it to affect the rate of for-

mation of phospho-CD3; if the changes in Lek concentrations are too slow, the

CD3 creation-degradation mechanisms have time to adjust and hence the pCD3

concentrations, again, do not change much. Intermediate rates of change of Lek

activity, too fast for CD3 creation-degradation to adjust but slow enough that

it does not average out the phosphorylation of CD3, yields responses of the
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highest possible magnitude.

These results illustrate a key feature of the model: not only is the level of pCD3 a

constant, but sharp and high-magnitude responses are required to produce significant

amounts of pCD3. If we assume that there is a barrier to be crossed in terms of

number of pCD3 molecules to start downstream signaling, this mechanism ensures

that the height of the barrier is independent of the concentration of CD3 and activity

of Lek (and other parameters which affect the cell through CD3 or Lek). Small-

magnitude but extremely high-frequency changes (noise) and very slow, sustained

changes in Lek activity are filtered out by this regulatory network, allowing only

rapid, high-magnitude changes in Lek activity to activate the T-Cell.

4.3 Discussion

We have built a model of activation of T-Cells using the negatively-regulating ki-

nase CskAS and its inhibitor PP1. The really strong activation of T-Cells using

CskAS/PP1 is likely a combination of two effects: an increased concentration of un-

phosphorylated CD3 molecules on the cell surface before addition of PP1 and a sharp

spike in the activity of Lek due to the nature of its regulation. This behavior is

captured not only by an ODE model consisting of many of the relevant reactions

of these molecules, but also by a simple toy model consisting of just CD3 and Lek.

These models also predict other features seen in the experiment: increasing the ac-

tivity of Csk increases the amount of CD3 present on the surface of the T-Cell before

activation, and the level of phospho-CD3 levels at long time is constant. This toy

model suggests that the topology of the network involved in the Lck-CD3 regulation

mechanism displays a form of perfect adaptation, and ensures that the barrier to ac-

tivation (in terms of the amount of pCD3 needed to set off signaling) is independent

of amount of CD3, activity of Lek and other parameters in a cell which are highly

variable. This mechanism also ensures that slow changes in activity of Lek, even if

sustained, does not set off downstream signaling, and that rapid and high-magnitude
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changes in Lck activity are required to activate T-Cells.
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Chapter 5

Properties of scale-free signaling

networks under a directed

evolutionary pressure

5.1 Introduction

A common approach to the treatment of many cancers involves the targeting of spe-

cific molecules in signaling pathways[113]. The main problem with this approach is

the great degree of heterogeneity shown by even a single type of cancer, for example,

in recent studies by Hartzell et. al.[114] of Ras signals in T-cell leukemia. Given

the heterogeneity of the downstream signaling responses, it is unclear which proteins

would make the optimal drug targets. A knowledge of the specific mutations has

been shown to be useful: for example, personalizing medicine using gene-expression

patterns in cancers has been attempted[115]; however, complete sequencing of cancers

is a time-consuming and expensive process and in this work we ask whether there are

constraints or patterns in these mutations.

Each specific instance of a tumor is fundamentally characterized by a set of mu-

tations which have occurred in the development of that tumor; since mutations are
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stochastic, different realizations of the same cancer have different sets of mutations.

Mutations are changes the nucleotide sequence of DNA; some changes in DNA af-

fect the protein sequence (through the processes of transcription and translation) and

hence protein structure. These changes in turn affect protein-protein interactions and

therefore intracellular signaling, and the response of the cell is a function of the levels

of certain signaling molecules. Going from a change in DNA sequence to cellular

response, while fundamentally sound, is impractical on many levels and in this work

we look to coarse-grain out some of the steps to simplify the approach of going from

mutations to cellular function.

Normal cells in the human body are optimized for certain functions, with an

"error-correcting" machinery to set the cell right in case anything untoward happens;

however, cancerous cells have somehow managed to bypass these error corrections,

and evolve to maximize their own growth[116]. The growth of cells depends on the

levels of certain downstream effector molecules (such as c-Myc) within their metabolic

and signaling network. In this way, cancer cells are selected for growth and not just

allowed to mutate freely. This selection for growth should constrain the patterns of

mutations in cancerous cells in such a way as to make them more predictable and

easier to understand. The question is whether the mutations of proteins in a signaling

network that aim to optimize some function of the network (in this case, growth) lead

to predictable patterns (or probability distributions thereof) of mutations. Network

evolution models have been built from scratch for specific functions [117], but as of

now, there exists no known study trying to connect mutations in the topologies of

general classes of signaling networks to function. Studies have also been performed of

the importance of nodes to the overall viability of the network[118], but such studies

are too blunt for modeling cancer mutations, where there are more subtle changes

to network topology in terms of only changes in certain protein-protein interactions,

rather than wholesale removal of proteins.

The fact that there is heterogeneity in cancer falls out naturally from the above
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framework: since mutations are stochastic, there might be many patterns of muta-

tions which lead to optima in growth, i.e. if the growth function (energy landscape) is

rough. Each optimum in topology space would therefore represent a different pattern

of mutations which maximizes growth of the cell. One of the questions we ask in this

model is, can one understand what the heterogeneity of cancers depends on? This ap-

proach assumes several things, which are currently not very well known: a knowledge

of the underlying signaling network, which one may have a first guess at from, say,

protein-protein interaction data; a set of possible changes in the network (mutations);

a model for propagation of signal for each node (an input/output relation for each

node) and a model for growth as a function of signals. We put in a set of biologically

motivated first approximations to these underlying features and see how the results

vary with them, and explore if this model has any general detail-independent features

that we can understand.

In this work we have built a biologically motivated model to try to predict pat-

terns in mutations in cancers, focusing on changes in protein interactions rather than

at the level of DNA. We attempt to quantify the changes the topology of signaling

networks due to mutation in terms of the basic metrics of the network (degrees, loops,

paths) that differ between optimized and randomly mutated networks. This general

framework would be applicable not just to protein kinase signaling networks, but also

to gene regulatory networks, cytokine signaling, etc. which share the same basic idea

of directed interactions between components which can change as a result of muta-

tion. The key results are (1) degree distributions of nodes (proteins) in the network

are not a good metric for measuring mutation likelihoods (2) the more constrained

the system, the clearer the pattern in mutations in the system (3) loops and paths

are modified differently in optimized networks as compared to randomly mutated net-

works (4) the likelihood of seeing multiple optima, which is hypothesized to be the

analog of variants of the same cancer, increases with the number of loops and paths

in the networks, and is a stronger function of feedback loops.
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5.2 Building the Model

5.2.1 Connecting mutations to intracellular signaling

To try to understand how the mutation-selection evolution process could lead to pat-

terns of mutations in cancers, we shall try to build the simplest possible model that

gives this behavior. The key, therefore is to try to connect structure to function: to

figure out how changes in DNA sequence lead to changes in growth of the cell. Gener-

ally speaking, this happens in a sequence of two stages: mutations in DNA change the

structure of proteins that they transcribe/translate to, and changes in structure affect

the function of these proteins. Protein functionality, in general, happens through in-

teractions with other proteins, predominantly by changing the characteristics of that

protein-protein binding process, which in turn leads to a change in the "signals" being

transduced through the cell, rates of metabolic processes, and so on. We assume that

growth of cells is ultimately determined by the level of certain downstream signaling

molecules ("effector" molecules) within these cells. The mutations as described above

change the PPI network, which in turn changes the levels of these effector molecules

to change the growth. Hence, to relate mutations to growth, we need a two-part

model: to relate mutations to the signals being transduced within these cells, and to

connect these signals to the growth.

To look at how mutations or changes in PPI networks affect the cellular signals

being transduced within cells, we need a way of relating network structure (topology)

to signaling. Neural networks provide us with a way of connecting network topology

to signals. The basic equation of neural networks is:

Ti y +xi = f ( Wixi + ci (5.1)
(j=1

In neural network models, xi represents the signal at node i (neuron i), r is the time

constant of node i, Wij is the connection from node j to node i, ci is the basal signal

of node i and fi is a non-linear function representing the input-output relationship for
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node i. These classes of models have an easy way of representing topology Wij, and

relating them to signals xi. For the purposes of our model, we use xi to represent the

output of protein i, which is the "signal level" of node i. This could typically be the

level of the phosphorylated state of protein i, for example. Wij would represent the

activity of protein j on i, which would be zero if protein j does not influence protein

i. Note that matrix W does not need to be symmetric, i.e. in general Wij T Wji and

feedback loops are allowed. Positive values of Wij represent activation, and negative

values represent inhibition. We set ci, which represents the basal signal of node i, to

zero for all nodes except the node with the driver mutation, and set the basal signal of

that node to a high value, i.e. ci is large. Note that, if there was no driver mutation,

all cis would be zero, and all our choices of input/output relationship for a node have

to satisfy the condition that f (0) = 0, meaning that if an intermediate node does

not have any net signal input, it does not have any output as well. The input/output

relationship for each node, f (x), is in general a form that saturates in some way. We

are also looking at the limit of long-time responses, in which the cancerous cells have

time to fully adjust to a mutation before making another. In this limit, the cellular

signaling mechanism is assumed to have reached a steady state, so the equation that

governs the signaling output of protein i is:

N

xi A= f% Wigx + ci (5.2)
(j=1

To find the entire signaling profile within the cell, we solve simultaneously the set of

equations, one for each component of the network:

x = f (Wx + c) (5.3)

The solution to this set of coupled nonlinear system of equations describe the signal-

ing profile within the network of topology W and basal signal c.

Values of the individual elements of Wij, in general, would be representative of

strengths of protein-protein interactions within this network. These values can be
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either positive, representing activation, negative, representing inhibition, or zero if

protein j has no effect on protein i. This model inherently assumes linear effects

of proteins: for example, there is no xixj term within f (which could, for example,

model a dimerization step), or higher (trimeric) complexes etc. Another model for

concisely representing biochemical reaction networks are S-systems[119], but does not

have such a simple representation of topology.

5.2.2 Mutations on this framework and the loss-of-function

approximation

Mutations in this framework are changes in elements of W. In general, elements of

W could change in magnitude, sign, or both. Changes of sign would imply that an

interaction that was previously activating has now become inhibitory, or vice versa,

and are unlikely; changes in magnitude could be a measure of, for example, changes

in binding strength between proteins before and after the mutation. In principle, one

could go from structure (mutation in DNA), leading to change in codons transcribed

and protein translated, to change in protein structure as a function of sequence, to

change in protein interactions. In a complete framework, each element of Wij would

be allowed a set of possible values obtained from how mutations change the structure

of proteins involved in that interaction. However, this is intractable at this point, so

we just coarse-grain out these details and say that each element of Wij can have two

values, its initial value (unmutated interaction) and zero. The zero value is the limit

where mutations completely destroy protein binding, i.e. the loss-of-function limit; it

is much more common than the other limit where mutations can create interactions

between proteins.
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5.2.3 Correlated Systems

When each element of W is allowed to vary independently, the mutations to various

links connected to one node are uncorrelated, implying that the various protein-

protein interactions that one protein participates in can be modified independently

by mutation. Any correlation between different effects of one protein due to a mu-

tation are modeled by changing groups of interactions of the same protein, i.e. sets

of elements of Wij with the same i or j, together. To model this, we divide each

protein up into a set of domains, each domain consisting of a subset of all the edges

which that node is a part of. A mutation to that domain affects the entire subset

of links which comprise the domain; for a link between two proteins to be retained,

the assumption made is that both domains of which that link is a part of has to

be wild-type. A mutation in either of the domains of the two proteins at the ends

of that edge destroys that interaction. Mutations to a domain also destroy all links

which that domain is involved in; which is the origin of correlations between effects

on protein interactions due to a mutation. The number of domains increases with

the degree of that protein in the interaction network, and input and output links to

a protein are considered to be parts of separate domains.

5.2.4 Growth as a function of certain effector nodes

Growth is considered to be determined by the levels of activation of certain "effec-

tor" signaling nodes. The number of effector nodes is a variable; one effector node is

always chosen to be the greatest distance away from the source mutation so that the

maximum fraction of the network affects signaling. The other effector nodes in the

network are chosen randomly. In general, with an increasing number of effector nodes,

a greater fraction of the network contributes to signal modulation and mutations to

nodes or links within this fraction of the network affects growth.
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5.3 Solving the model

5.3.1 Constructing the network

Protein interaction networks are generally scale-free[120], with a degree distribution

of P(k) ~ k-7. The specific choice of the exponent -y depends on the system; different

networks have different values of -y. For this work, 'y has been chosen to be equal to

1.78 [121].

Scale-free networks of size N=50 with exponent -y = 1.78 are constructed using the

method described in [122]. Once edges have been assigned according to this algo-

rithm, we assign directions and signs (activating or inhibiting) randomly with equal

probability. An example of a network generated in this way is shown in Figure 5-1.

The initial mutation is chosen to be the node in the network which has the max-

imum of nodes downstream to it, either directly or indirectly. This helps in reducing

the edge effect mentioned in the previous section, and makes sure that the largest

number of mutations are not neutral or useless to the signals in the cell. The initial

mutation is chosen to be the only node for which ci f 0, so that there is a signal in

the network.

5.3.2 Total model size and trade-offs

Real protein interaction networks are of the order of thousands of nodes, the number

of distinct proteins in the human proteome being of the order of 30000 [123]. However,

it is not efficient to simulate such large networks computationally for the present pur-

pose for reasons that will be described. However, if one goes to too small a network,

most of the nodes will be "edge nodes", and will not affect others within the network.

To look at this metric for our simulations, we plot a histogram of the number of nodes

downstream of a particular node in these networks, as a function of network size in

figures 5-2A-C. The figure shows that the network can be divided into two parts, a
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Figure 5-1: A sample signaling network generated by the algorithm described in text.
Each node or oval represents a protein; directed arrows represent protein influences
on each other. The model includes activating (arrows) and inhibitory (bars) protein-
protein interactions. The driver mutation is indicated by a diamond, and effector
nodes (which are optimized) as pentagons.

"bulk" where most of the network is connected internally, and a set of edge nodes,

which are not connected to most others. With increasing total size of the network,

we see that the separation between the two becomes clearer; so if a network is chosen

that is too small in size, one would expect most of the nodes to be edge nodes, unlike

in a real PPI network, which often consists of thousands of proteins. However, the

simulations described later are computationally very expensive, and simulation time

scales very strongly with the size of the network. For the purposes of the rest of

this work, we have used networks of size 50 as they represented a reasonable tradeoff

between reasonable network size and ability to simulate in a reasonable time.

5.3.3 Initial Mutation

The initial mutation is chosen to be the node in the network which has the maximum

of nodes downstream to it, either directly or indirectly. This helps in reducing the
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Figure 5-2: A, B and C: plots of histograms of number of nodes downstream of any
given node. There are broadly two parts to these networks, the bulk of the network
and the edge; the edge nodes in these networks become less pronounced as the size
of these increases. figure D is a plot of the maximum effectiveness of a mutation in
these networks, i.e. the maximum of figures A-C.

edge effect mentioned in the previous section, and makes sure that the largest number

of mutations are not neutral or useless to the signals in the cell. The initial mutation

is chosen to be the only node for which ci # 0, so that there is a signal in the network.

5.3.4 Choices for functional forms

Like in the case of neural networks, one needs to make a choice for the input/output

behavior of each node. Two choices are made in this work. The first one is a sigmoidal

function, as a large number of cancerous mutations are disproportionately present in

protein kinase domains[124], and switches are a ubiquitous feature of kinase signaling

cascades:

82

1000 1000 -Size 30

- Size 50
800 - Size 75

600

400

200

0 20 40 60 0
Number of downstreeam nodes



S2 ifx>0

f x)= +2 (5.4)
-2 ifx<0

This is representative of many kinds of signaling motif behavior like multiple

phosphorylation motifs which yield sigmoidal behavior. Another assumption that is

made is that each node is a Potts spin, with an output of -1, 0 or 1 depending on the

input:

-1 if x < 0

AX) 0 if x = 0 (5.5)

1 if X > 0

This Boolean-type approximation is also commonly used to model signaling networks[125].

Let the set of effector nodes in this system be denoted by M. The functional form

of growth is also chosen; in general, increasing the level of the effector molecule should

increase growth, but only up to a point. Too high a transcription/translation of some

proteins will cause, for example, resource limitations in other parts of the cell, and

hamper growth. High levels of certain signaling molecules also cause pathways that

induce senescence. We select a functional form for the growth that is convex and has

a maximum. The simplest such form, which is chosen for the base model, is:

g (_) = (Xk - Xk,max)2 (5.6)
kcM

We have also examined the result of coupling between nodes in the growth func-

tion. For this case, we have assumed g to be of the form (where m is the number of

effector nodes):

2

Xk Xkmax 
6 (Xk) (57)

T kM kEM )kEM
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In this case, the signals in all the effector nodes are coupled and the sum of these

signals contributes to the growth function. The last term containing delta functions

is implemented in order to make sure that the network does not get completely dis-

connected by mutations (which was allowed in the previous case).

For the Boolean model, since the values that the signal at any node can take are

discrete rather than continuous as before, the previous approach to a growth function

has to be slightly modified. Since Boolean networks may exhibit regular periodic

oscillations at long times, rather than just steady behavior, the average value of the

signal at the effector node over a cycle has been used in place of Xk in equation (5.6)

The four classes of models that have been examined are:

1. Sigmoidal f(equation (5.4)), uncoupled g(equation (5.6)), referred to as the

"base model"

2. Sigmoidal f(equation (5.4)), coupled g(equation (5.7))

3. Potts f(equation (5.5))

4. Correlated mutations

5.3.5 Solving the model

In order to look for optima using this framework, we use a Metropolis Monte Carlo

algorithm. We set it up in a manner similar to that of the evolution of real cancers:

start with many realizations of a given (initial) network, make mutations stochasti-

cally, compute the steady state signals in the network after each mutation, and then

calculate the new growth function for systems with that mutation. If the growth

increases, the mutation is accepted; otherwise, it is accepted with some probability

proportional to the Boltzmann factor of the change in the growth rate.

e Generate an initial W
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" Pick a "sufficiently influential" node for the initial mutation, ci / 0

" Pick a set of effector nodes

" For each of the above, run a set of trajectories with the same starting state

" Each trajectory consists of a set of mutation-selection steps:

1. Solve for x:

x=f (WX + c) (5.8)

2. Calculate g (x)

3. Mutate W to W'

4. Solve for x' : x' =f (W'x' + c)

5. Calculate g (4')

6. Probability of accepting the mutation:

Paccept - mi 9(L)-gO)) 1 i) (5.9)

Figure 5-3 shows an example of a starting network evolving to two different final

realizations (optima) after the Monte Carlo process.

In this framework, to calculate the steady state of the system, one needs to solve

a set of coupled nonlinear equations(Equation (5.8)). Since each step involves the

calculation of a new steady-state signal after making a mutation, we use the previous

steady state as the initial guess and solve the system in two parts: (1) evolve the sys-

tem for a fairly long time, as a set of ODEs, as in equation (5.1). Then we solve the

set of equations simultaneously using a standard optimization package, MATLAB's

fsolve[105].

There are various parameters within this framework that one might choose. Ten

trajectories have been run with each starting network, and each trajectory consists of
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Figure 5-3: An example of a network evolving to multiple different structures.
starting network is depicted in A, and two final realizations in B and C.

The

105 attempted mutations. This Metropolis MC scheme attempts to find the topology

W that maximizes growth g; it essentially evolves the system in topology space in

the framework of an energy landscape defined by the negative of the growth function.

The fitness of each topology is given by e-Q-xW-)), and one can use the parameter

Oto control how likely it is that unfavorable mutations will be accepted - it is an

analog to inverse temperature in statistical mechanics. Simulations performed at high

temperature (low # have a greater chance of unfavorable mutations being accepted,

and at high #are analogous to zero temperature where only favorable mutations are

accepted. Physically, one may compare #to various things that are present in a real

cancer system but ignored in this model: since this system is monoclonal, unlike real
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tumors which are polyclonal, beta can be thought of as an analog to the size (num-

ber of cells) of the tumor, where larger tumors are much harder for an unfavorable

mutation to take over. Of course, in real systems, even favorable mutations may not

get fixed in the population, but that consideration is ignored here.

Real cancer tumors typically contain a few driver mutations, and many passenger

mutations[126]. In this model, however, we are evolving the system for many steps

until it does not change anymore, i.e. presumably reaching an optimum. Drivers and

passengers in this scheme are not treated differently from each other. All mutations

made are thought to be functional in the sense of affecting a protein-protein inter-

action; some of these do affect the growth and others (for example, those which are

completely disconnected from the part of the network containing the initial mutation)

do not. In the base model, which is the least constrained, typically 30-40 % of the

initial links have been removed at the optimum, and this seems to be an overesti-

mate. The coupled growth model, with its constraint that effector nodes cannot be

disconnected completely from the network, has a much smaller number of mutations

present finally.

The exact determination of whether a network topology is an optimum is compu-

tationally very expensive, so we monitor the functional value and ensure that it does

not change with a large number of attempted mutations being made. The number

of attempted mutations is on the order of 10', for networks with typically 50 nodes

and a hundred or so links. We can see in Figure 5-4 that the growth usually reaches

its final value in the first 10% of the attempted simulation steps after going to zero

temperature, which supports the hypothesis that the simulation method is driving

network topology to a local optimum. Results are similar for the other models (data

not shown).

87



Time to final growth for the base model
450

400

350

300

250-

200 -

150 -

100 -

5 0- 2 18

00 2 4 6 8 to 12 14 16 18

Number of simulation steps (x 104) after setting T = 0 required to reach the final value of g

Figure 5-4: Number of simulation steps required for the network to reach its final
growth value for the base model.

5.3.6 Modeling Inhibition and Escape

We can use the same framework to model the effect of adding drugs, such as in-

hibitors, to a signaling network. Assume, for example, that an inhibitor is added

which decreases the signal output at node q by a factor 3. The input-output relation

for that node becomes Equation 5.10, and remains Equation 5.2 for all other nodes.

We can then solve the entire system of equations, with this one equation modified,

as described in Section 5.3.5.

N

Xq = fq ( Wqix + c) (5.10)
(j=1

This gives us the signal profile of the network after inhibition. Since cancers can

mutate subsequent to the addition of a drug, we let mutations occur on the inhibited

system and the network evolve as described earlier. Ten different trajectories are run

after the inhibition of each node; we look at the value of the growth function after

the escape mutations occur. Only the base model has been explored in the inhibi-

tion/escape mutation context.
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5.4 Results

To identify the patterns of mutations which are caused by selection toward optimal

growth, we compare with a baseline of a randomly mutated network (which just

consists of the original network with the same fraction of edges removed). In the

correlated model, this is the probability that a domain was mutated in the final net-

work. The randomly mutated network is then constructed by starting with the initial

network and removing edges (or domains, in the fourth case) with that probability.

Once that is done, we can use various metrics of networks to see how non-random

the mutations are after selection, and compare the evolved cases with the randomly

mutated networks.

5.4.1 Probability of Multiple optima

Multiple optima are important as a measure of the diversity of the cancer; broadly,

the higher the probability of multiple optima, higher will be the likelihood of seeing

heterogeneous behavior in the cancerous system. In these simulations, we look at the

final growth of the ten trajectories obtained by evolving each starting network, and

see how many values of the growth function are present to calculate the probability of

multiple optima. Figure 5-5 is a plot of the probability of multiple optima as a func-

tion of the number of effector nodes, loops and paths in the starting network. We see

that the probability of multiple optima increases with the number of optimized nodes,

but then saturates; potentially, in these small systems, the number of effector nodes

is a proxy for what fraction of the network is "in play", i.e. involved in signaling, and

a few nodes are enough for the whole of the network to be involved. The probability

of multiple optima also increases with the number of feedback loops and paths in

the system, but is most affected by the number of loops. This suggests that in some

way, feedback loops are inherent in the heterogeneous responses of cancer evolution

with mutation. Results for other models are presented in the supplementary material

(Section C).
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Figure 5-5: Probability of multiple optima as a function of the number of optimized
nodes.

5.4.2 Degree Distributions

The most basic metric to consider when dealing with a network is the degree dis-

tribution. The degree distributions represent the probability that a given node has

k connections; a comparison between optimized (evolved) networks and randomly

mutated networks by this metric would reveal whether nodes of a certain degree are

mutated more frequently in cancers. Figure 5-6 shows overall degree distributions for

the base model. We see that the initial degree distribution (thick black) is a straight

line, representing a scale-free network. The other curves are for degree distributions

for the optimized networks and the randomly mutated network, with the number of

effector nodes varying between one and ten. The initial degree distribution has nodes

of degree one and greater; however, after mutations (removal of edges), it is possible

that in networks with completely disconnected nodes result. So the other curves start

at a degree of zero. The greatest difference between the initial and mutated networks

is present at high degree - because of the large number of links from high-degree

nodes, it is probable that mutations affect such nodes disproportionately. We also see

that such mutations seem to affect the optimized and random cases similarly with re-

gard to this metric, so it is not possible to differentiate between them using this metric.
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A similar situation is seen for the Boolean model. However, in the case of cou-

pled effector nodes, we see that a lot fewer mutations occur, and they are mostly at

high-degree nodes. This is probably due to the constraint that enforces that none of

the effector nodes get completely decoupled from the rest of the network. Even in

these cases though, it is hard to distinguish between the randomly mutated and opti-

mized networks. The correlated mutation model shows similar results to the coupled

growth model: the constraint that links are coupled seems to result in much fewer,

high-degree mutations (see Supplement).

10' Initial and Final Overall Degree Distributions

10

10-2

0 1 Opt

10

- O -pt

10-5 p

Randomly Mutated

10

Degree(k)

Figure 5-6: Overall degree distributions for the base model. Plot is the probability
P(k) of having a node with degree k. This distribution is plotted for the initial
network (black), Randomly mutated network, and networks with 1 to 10 optimized
nodes.

Apart from the overall degree distribution, one can look at various specific de-

gree distributions. Since the network under consideration is a directed network with

signed edges, one can look at the in- and out- degree distribution, and the degree

distribution of activating (+) and inhibiting (-) nodes. Figure 5-7 shows these degree

distributions for the base model. The initial distribution in this case contains half the

links of the overall distributions given earlier, and since there may be nodes with only

incoming (no outgoing) or only activating links, nodes of degree zero are possible in

this case, even initially. Again, the relative difference between initial and final distri-
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butions is greatest at high degree, and this metric does not help us tell the difference

between the optimized and randomly mutated networks. Even though the growth

function has to be maximized, and this would involve the value of x at specific nodes

be positive, we do not see a significant bias in activating nodes vs. inhibiting nodes.

This is potentially because of the large system size and the fact that inhibiting an

inhibitor can result in activation. The specific degree distributions for the Boolean,

coupled growth and correlated mutation models are shown in the supplement and

also show the same feature: they are not good metrics for distinguishing between

optimized and randomly mutated networks.

5.4.3 Degree - degree probability maps

In order to examine more closely the changes in degrees, we can look at the probability

distributions of degree changes, i.e., if a node starts out with a certain degree, say k,

what are the probabilities that it will end up with degrees of 0 to k - 1? Figures 5-8A

and 5-8B show these distributions for different initial degrees for both the optimized

and randomly mutated cases. To be able to pick out the differences between the

optimized and randomly mutated networks, we show the difference between the two:

optimized - random, in Figure 5-8C. This figure shows which kinds of mutations are

more likely in the optimized networks (red) than in the randomly mutated network.

The differences are small and unclear. To parse out the finite size edge effects and

the fact that many mutations might take place in nodes that are not between the

driver and effector nodes, we can look at the nodes along the shortest path from the

driver mutation to the effector node (in the case of multiple effector nodes, the union

of all such shortest paths is considered). The low- degree nodes along the shortest

path from driver to effector are most likely to be conserved, and this effect decreases

with the degree of the node. This is potentially due to the fact that removing links

from low-degree nodes would completely disconnect the network.

Results for the other models are presented in the supplementary material. For the

case of the coupled growth model, apart from the conservation of low degree nodes,
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there seems to be a trend in the evolution of the higher degree nodes: a small decrease

in their degree, meaning that they get slightly mutated. This is reasonable because it

is another way of avoiding the complete disconnection of the network. The Boolean

model shows similar trends to the base model, but clearerly. In the correlated muta-

tion model, single mutations can have drastic effects on network structure, and even

though the growth function is not coupled in this case, the effects of the constraints

seem to be similar to that of the coupled growth model. However, one does not see

a preservation of the pattern for the low degree nodes along the shortest path.

5.4.4 Loops and paths

Another basic network structure characteristic is the number of feedback loops in the

network and the number of paths (similar to feed-forward loops). Feedback loops

are typically used to regulate signaling, and so one would expect feedback loops to

play a role in achieving optimal growth in this framework. The sign of the feedback

loops are measured by the overall polarity of the loop, i.e. by multiplying the signs

of the various edges comprising the loop. These networks are small enough for a

brute-force method of counting all loops in the system to be viable. The probability

distributions of number of feedback loops in the system for the initial, optimized and

randomly mutated cases are shown in Figure 5-9A-C. Figure 5-9A shows all feedback

loops, 5-9B shows positive feedback loops and 9C shows negative feedback loops. We

see that the number of positive feedback loops in the optimized networks is slightly

higher, but the number of negative feedback loops is very similar to randomly mu-

tated networks. This slight prevalence of positive feedback loops is potentially due

to needing to control the value of signal at the optimized nodes. Since the feedback

loops could, irrespective of their sign themselves positively or negatively impact the

effector nodes, the difference between positive and negative feedback is mitigated and

not strongly seen. Francois and Siggia[127] [128] find a similar result of feedback loops

influencing complexity of evolved networks in the case of a model of development.
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Similarly, the number of paths from driver mutation to all effector nodes is shown

in figure 5-10. Once again, we calculate the sign of these paths as the product of

the signs of the individual nodes comprising the path. Figure 5-10A is for all paths,

5-10B for paths with positive polarity, and 5-10C for paths with negative polarity.

Figure 5-10B shows that there are many more paths with positive polarity in the

optimized networks than by random chance; this is because there is a positive value

of the signal at the effector node that gives maximum growth.

Similar results of path and loop evolution for the other models are shown in the

supplementary material. For the case of the coupled growth model, growth seems to

be maximized by decreasing the number of negative feedbacks rather than increasing

the number of positive feedbacks and a preservation of positive polarity paths. The

Boolean model seems to preserve loops and paths in all cases.

5.4.5 Inhibition and Escape

To evaluate where it is optimal to inhibit these networks, we look at the values of

growth of these trajectories at three points in time: (1) After the cancer has evolved to

reach its "optimal" growth (2) When an inhibitor is added to the fully evolved cancer

(3) After the inhibited cancer is allowed to make mutations in order to escape from

the pressure imposed by the drug. We use the metric of the total degree to character-

ize each node: this can be the initial degree before the cancer (which is presumably

known for each node in a real network), the degree at inhibition and the degree after

escape mutations occur. Figure 5-11 shows results for inhibition and escape; the top

row depicts the change in growth upon addition of the inhibitory drug. All values in

these two plots are negative, referring to the decrease in growth upon addition of the

inhibitor. Figures 5-11 A and B show that the maximum decrease in growth upon

inhibition happens for high-degree nodes in general; nodes with the highest degree

after cancer evolution are the best targets for inhibitors. Since these may not be easy

to measure practically, nodes with the highest degree at the beginning represent a
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suitable proxy. To measure how much these cancers can mutate around the effect of

these inhibitors and regain their growth, we plot the difference in growth as a result

of making escape mutations. Figures 5-11 C and D plot the difference in growth

upon making escape mutations; these are all positive showing that making escape

mutations increases the growth of these systems. The maximum increase in growth

occurs for nodes that have a high degree at the time of inhibition(after the cancer

has evolved).The magnitude of decrease of growth after inhibition is roughly equal

to the increase after escape mutations, suggesting that these systems are recovering

most or all of their ability to grow despite addition of the drug.

To look in more detail at whether adding an inhibitor is beneficial at all, we plot

the difference in growth between the cancer after escape mutations and before inhi-

bition (difference of the previous two figures). Figures 5-12 A and B shows a plot of

this difference in growth as a function of node degrees; the values of this difference are

slightly smaller than zero in most cases suggesting that addition of the inhibitor has

a beneficial but small effect in general. The best effect, once again, is for nodes with

a high degree at inhibition (Figure 5-12A); it is difficult to make statements about

the degree after escape due to the small number of data points and large amount of

noise (Figure 5-12B).

5.5 Discussion

We have built a simple model of the signaling consequences of mutations in cancers,

in which a scale-free network is optimized(natural selection) for a function (growth)

of signaling in the network by means of changes in topology (mutations). We asked

the question: are there patterns of mutations in cancers that are derived as a result

of this constraint? We attempt to quantify the changes in topology of signaling net-

works due to mutation in terms of the basic metrics of the network (degrees, loops,

paths) that differ between optimized and randomly mutated networks. This basic
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computational framework can also be used with other models of networks and in-

teractions: for example, using a chemical kinetics model of reactions in the network

where mutations represent changes in rate constants.

The key results from this model are (1) degree distributions are not a good metric

for measuring mutation likelihoods (2) the more correlated the system, the clearer

the trend in mutations in the system (3) loops and paths are modified differently in

optimized networks as compared to randomly mutated networks (4) low-degree nodes

along the shortest path from driver mutation to optimized node are more likely to be

conserved and (5) the likelihood of seeing multiple optima, which is hypothesized to

be the analog of variants of the same cancer, increases with the number of loops and

paths in the networks, and is a stronger function of feedback loops. This framework

has also been extended to test the statistical efficacy of drugs for different nodes and

cancers to generate escape mutations to bypass the drug. We find that inhibiting

high-degree nodes provides the greatest decrease in growth, but is also the easiest to

escape from.
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Initial and Final Incoming Degree Distributions 
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Initial and Final Activating Degree Distributions
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Initial and Final Outgoing Degree Distributions
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Initial and Final Inhibiting Degree Distributions
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Figure 5-7: Specific degree distributions for the base model. Plot is the probability
P(k) of having a node with degree k. These can be the degree distributions of (A)
edges going in to a given node; (B) edges going out of a given node (C) Activating
edges; (D) Inhibitory edges. Note that the distributions for optimized and randomly
mutated networks coincide.
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Figure 5-8: Probability distributions of final degree for different initial degrees for

(A) Optimized networks (B) Randomly mutated networks. Figure (C) is a plot of
the difference in probability, optimized - random. Red shading represents cases which
are more probable in optimized networks than by random; blue ones represent less

probable. (D) is an analog of (C), but only nodes along the shortest path from initial
mutation to optimized node are considered: we see that low-degree nodes along the

shortest path tend to be conserved. This trend is seen across different model types.
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Figure 5-9: Plots of probability distributions of number of loops present in the network
for (A) all (B) positive and (C) negative feedback loops. Plots are made for the initial
(black), optimized (blue) and randomly mutated (red) networks.
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Figure 5-10: Plots of probability distributions of number of paths (without any cy-
cles) present in the network for (A) all (B) positive and (C) negative polarity paths.
Plots are made for the initial (black), optimized (blue) and randomly mutated (red)
networks. The polarity of a path is defined as the product of the signs of the various
edges that make up the path.
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Figure 5-11: Change in growth of model systems upon inhibition and escape. Plots
consist of change in growth as a function of degree of the node inhibited. (A) and
(B) Change in growth upon inhibition. (C) and (D) Change in growth as a result of
escape mutations. The largest effects are for high degree nodes.
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Figure 5-12: Overall effectiveness of adding an inhibitor. Plots consist of change in
growth, the difference between growth after escape and growth before inhibition, as
a function of degree of the node inhibited. Inhibitors in this framework are only
marginally effective.
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Chapter 6

Threshold ligands for different cell

types

6.1 Introduction

Developing thymocytes pass through a series of distinct stages, marked by changes

in expression levels of the TCR and other cell-surface proteins. The levels of cell sur-

face markers CD3 (TCR) and coreceptors CD4 and CD8 are typically used to identify

which stage a cell is in, and differentiate between different T-Cell lineages[129] [130] [131].

After VDJ gene rearrangement, o3 T-Cells cells start off as "double positive" CD4+CD8+ [132].

These undergo positive selection, in which TCRs which either do not bind to MHC

at least weakly die due to neglect, eliminating those T-Cells which would not be

functional. These then undergo lineage commitment, in which they become either

CD4(CD4+CD8-) or CD8(CD4-CD8+) "single-positive" T-Cells. Then, single posi-

tive cells undergo a process called negative selection in which those that bind too

strongly to self-pMHC apoptose, so that immune responses towards self can be

avoided in the periphery. The processes of selection are driven by the affinity of

TCR to pMHC: some affinity is required to be positively selected but too strong an

affinity leads to negative selection.

It has been proposed that a T-Cell detects ligand affinity by measuring how long

peptide-MHC complexes remain bound to a TCR (called the dwell time); this is

103



called the kinetic proofreading model of T-Cell activation[133] [134]. Since the pMHC-

TCR complex can also bind to coreceptor-Lck, there is in effect a larger complex

that is stabilized by multiple interactions[135]. This prolongs the dwell time and re-

sults in an apparent increase in the affinity of the TCR-pMHC interaction [136][137].

There is a narrow apparent affinity threshold between the possible outcomes of thymic

selection[138]. This threshold has been measured experimentally for different MHC

Class I restricted TCRs, and was found to be a KD of around 6 pM (half-life of

around 2 seconds) in all cases[139]. Similar results were found for other T-Cell types,

with different thresholds for each cell type[140]. The question still remains as to what

is the biophysical basis for this constant affinity threshold for each cell type.

6.2 Experiments

Positive Selection Negative Selection

thymus I
G4 V4 Q4H7 T4

I H s ii

periphery Ignorance Homeostatic aciv

Class I MHC Restricted

Thymus DP

Thymus DP 8.4

Naive T

KD ~ 6 riM, dwell time 4 sec

Positive Selection Negative Selection

Positive Selection Negative Selection

Ignoanc HomostticActivating / Autoimmunme

KD ~ 40 pM, dwell time 0.6 sec

Figure 6-1: An overview of the experimental results for CD8s. A series of peptides
were used to measure if different TCRs would activate, and the threshold KDs and

dwell times for each T-Cell type were found to be constant.
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Cell Type KD(PM) tl/ 2 (ms) Dwell Time (ms)

MHC I restricted DP Thymocyte 6 2000 4000
MHC I restricted Naive Peripheral T Cell 40 300 600
MHC II restricted DP Thymocyte 300 40 80
MHC II restricted Naive Peripheral T Cell 300 40 80

Table 6.1: Experimental results: The "universal" threshold for activation, for different

cell types. Equilibrium constants for TCR-pMHC binding KDs and dwell times.

The typical diameter of a T-Cell is about d = 5pm, which gives a surface area

(assuming a spherical cell) of about wrd 2 = 78.54pm 2 . Total numbers for various

molecules on the surface of the T-Cell is given in Table 6.2.

Molecule Type DP Thymocyte I Peripheral CD8 Peripheral CD4 Chimera CD8.4

Coreceptor CD8 273000 320000 256000
Coreceptor CD4 112500 218000 91000
TCR 2500 53000 91000 8000
% of CD8 with Lek 1.4% 15.1% 9.8%
% of CD4 with Lek 15.9% 24.1% 19.4%

Table 6.2: Concentrations of various molecules on the surface of T Cells

Simulations are performed on a 1pm x 1pm patch of membrane; the diffusion

constant is assumed to be D = 0.08pm 2s-i for all molecules. A "lattice spacing" I of

0.01pm is assumed, and molecules can interact if they are closer than this distance

(This is needed to convert second order rate constants and diffusion).

Kinetic constant 11 Symbol Value Reference

Unbinding of MHC and CD8 without Lek ku 20s-1  [135]
Binding of MHC and coreceptor kb 1000s-1 [135]
Diffusion kdiff 800s- 1  See text
pMHC-TCR binding rate kon 150s 1 [135]
pMHC-TCR unbinding rate koff varied See text
Phosphorylation rate of TCR by Lek k, 0.05s-1 [135]; see text

Table 6.3: Rate constants for the T-Cell early activation system
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6.3 Complete Models: Simulations to analyze qual-

itative behavior

The model consists of the four main molecules involved in the activation of T Cells:

the coreceptor CD8 or CD4, Lek, TCR and pMHC. The coreceptor and TCR are

present on the surface of the T-cell, pMHC on the surface of the APC and Lek is a

cytosolic protein within the T Cell. However, to simplify the model, we assume that

they are all present on a single membrane. A square patch of membrane is looked

at, sized 1 pm. by 1 pm,, and this is divided into a 100x 100 grid in order to provide

spatial resolution.

The following pairs of molecules can interact with each other: TCR and pMHC,

MHC and coreceptor, coreceptor and Lek, and Lek and TCR. Each of these bind-

ing/unbinding reactions is assumed to follow mass action kinetics and can happen only

when the molecules are in the same grid point. The following species are assumed to

diffuse on the membrane: Coreceptor, Lek, TCR, pMHC, Coreceptor-Lck pair and

TCR-Lck pair; larger complexes do not diffuse. All species diffuse at the same rate

and the diffusion constant has been varied (and this is one of the parameters of inter-

est in understanding the behavior of the system). TCR has two phosphorylation sites

and the simulation readout is fully phosphorylated TCR. TCR bound to Lek can get

phosphorylated, whether or not it is bound to pMHC; the effective stabilization of

the TCR-pMHC-coreceptor-Lck complex is what makes the result dependent on the

other rate constants of the system. Free TCR can get dephosphorylated by first-order

kinetics. The simulations are run for a long time (105 seconds) and we analyze the

long time, steady-state behavior.

In different cell lines, the fraction of coreceptor that is bound to Lek varies signif-

icantly. In order to vary this fraction in our system, we change the off rate between

coreceptor and Lek. The relationship between fraction of coreceptor that has Lek and

off rate is quite stable and is independent of other parameters in the system, like the
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off rate between TCR and pMHC (Figure 6-2).

Calibration curve for CD8-Lck
100-

koff-pMHC-TCR
80-

---- 0.0002
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____0.002
60 ___ 0.006
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-0.240 - 00 0.6

6
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0

-20
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log,0 (k,, CD8-LCK)

Figure 6-2: Fraction of CD8 bound to Lek as a function of koff between CD8 and
Lek. Different curves are for different values of koff between MHC and TCR

6.4 Results of the complete model

6.4.1 Threshold Ligand Strengths

We first examine the effect of changing the diffusion constant in the system. Diffusion

could have multiple opposing effects in this system: increasing the diffusion constant

would bring molecules together much quicker, but it would also mean that they are

close to each other for a shorter period of time and hence less likely to react. A

plot of the amount of fully phosphorylated TCR as a function of TCR-pMHC affinity

and diffusion (Figure 6-3) shows two regimes: for low values of diffusion constant, the

amount of fully phosphorylated TCR increases with diffusion, whereas for high values

of diffusion, the reverse is true. The variation with TCR-pMHC binding strength is

easy to understand: stronger TCR-pMHC binding (lower koff between TCR and

pMHC) results in stronger activation.

We speculate that in the low diffusion coefficient regime, the bottleneck is the

ability of different molecules to find each other within the relevant timescale. Hence,

the activation level increases with the diffusion rate (at a fixed pMHC affinity). In
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Activation vs pMHC-TCR strength, low diffusion regime Activation vs pMHC-TCR strength, fast diffusion regime
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Figure 6-3: Amount of fully phosphorylated TCR as a function of TCR-pMHC

strength and diffusion. The X-axis is the K - off of TCR-pMHC binding, so weaker

ligands are to the right. The location of the inflection point in these curves is a mea-

sure of threshold ligand strength needed to activate these systems. This threshold

is highest (weakest ligands can activate) at intermediate diffusions of around 5 (SSC
units)

the high diffusion coefficient regime, species diffuse fast enough to find each other

within the relevant timescale. However, a very high diffusion coefficient means that

species are more likely to diffuse away when they are each other, and the probability

of a binding event is lower, which leads to lower a probability of reaction. This seems

to be the regime in which the biological system is operating.

We can then plot the number of fully phosphorylated TCRs as a function of koff

TCR-pMHC and the fraction of coreceptor with Lck in Figure 6-4.

In order to understand the composite effect of the three independent parameters of

the system (TCR-pMHC strength, diffusion and fraction of coreceptor that is bound

to Lck) we can choose an arbitrary level of the amount of fully phosphorylated TCR

as the "threshold" at which the T-cell activates (modifying this value does not change

the qualitative results). In Figure 6-4, three possibilities for the required threshold

level of phosphorylation have been chosen: TCRpp = 25, 50 and 80. In each of these

three cases we calculate the maximum kff between TCR and pMHC that enables

the cell to reach that level of activation. For example:

* At threshold TCRpp of 25: a koff (MHC-TCR) of 0.006 is required to activate

at less than 5% Lck; koff of 0.02 can activate at 15% Lck; and koff of 0.06 can
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Activation as a function of amount of Lck and peptide affinity
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Figure 6-4: Amount of fully phosphorylated TCR as a function of TCR-pMHC
strength and fraction of coreceptor that is bound to Lek. The number of fully phos-
phorylated TCR (a measure of activation strength) increases with the amount of Lek
bound to CD8 and decreases with greater koff of the TCR-pMHC interaction.

activate at 60% Lek.

" At threshold TCRpp of 50: a k0qf (MHC-TCR) of 0.002 is required to activate

at less than 5% Lek; koff of 0.006 can activate at 10% Lek; and koff of 0.02 can

activate at 50% Lek.

" At threshold TCRpp of 80: a koff (MHC-TCR) of 0.0006 is required to activate

at less than 5% Lek; koff of 0.002 can activate at 15% Lek; and koff of 0.006

can activate at 65% Lek.

Since only the qualitative behavior is of interest, it does not matter what the

threshold level of TCRpp is. For Figure 6-5, a threshold TCRpp of 50 has been

chosen. We then plot of the threshold koff (defined here as the koff between TCR

and pMHC where amount of phosphorylated TCR = 50) as a function of both the

diffusion rate and the amount of CD8 bound to Lek:

With increasing amount of CD8 bound to Lek, the threshold koff increases for all

diffusion rates, i.e. weaker ligands can activate. There is a maximum in the curves

with respect to the diffusion rate: at too low diffusion, molecules do not have time

to find each other, and at too high diffusion, molecules move past each other before

they are able to react. This qualitative behavior is independent of the fraction of
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Figure 6-5: Maximum koff between pMHC and TCR for which the cell can activate

(50 TCR.s phosphorylated) as a function of diffusion and fraction of coreceptor bound

to Lck. The threshold koff increases (weaker ligands are sufficient) with increasing

fractions of CD8 bound to Lck, but there is a maximum effectiveness for intermediate

values of diffusion.

CD8 bound to Lck.

6.4.2 Activation Timescale

The other question of interest is how long the TCR needs to be bound to the APC for

the cell to activate. In the limit that all reactions are fast and the rate-limiting step

is the time taken for a TCR-pMHC to find a coreceptor with Lck, we can calculate a

diffusion-limited rate. For the case where concentration of TCR = Concentration of

coreceptor/MHC = c 100 molecules/pim 2 , the mean distance between molecules r

is obtained from 7rr2 =1, so r- = 1 = L = 0.056pm. For a diffusion coefficient

of D = 0.01pjmi2/s, the diffusion time to find another molecule is T ~ r 2 /D =

(0.056pm)2 = 0.31 sec. This value will vary with the diffusion coefficient as 1 (the solid
0.01pm /s

line in Figure 6-6).

We calculate from simulations the fist-passage time distribution (FPTD) to phos-

phorylating n TCRs, where n = 2, 5, 10, 25; and vary the parameters.
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To quantify the effects of various parameters on the first passage time distribu-

tion, we plot the mean of those distributions as a function of various parameters.

Figure 6-6A shows the MFPT for 2 TCRs to be fully phosphorylated. The solid line

is the diffusion limit scaling, r = 2. Scaling for the limit of the real data is different,

suggesting that a process other than diffusion is limiting the rate of phosphorylation

of TCR.

WPT ve diffusion for different values of koff-*C-TCR

I
I

I

i I

-1 0
10 10 10

kdiff

IFPT v. koFff-C*k For differn v-lu- of diffusim

Figure 6-6: (A) Mean First-passage time for phosphorylation of 2 TCRs as a function
of diffusion, for different pMHC-TCR binding strengths. The solid line is the diffusion
limit, r = 12 /D. (B) MFPT as a function of fraction of coreceptor bound to Lck.

Similar plots for different thresholds for MFPT of activated TCR: TCRpp = 5,

10 (top row) and 25, 50 (bottom row) are plotted in Figure 6-7. There is a threshold

strength of ligand above which MFPT is independent of koff, but MFPT increases
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with weaker ligands. We also see that there is an intermediate value of diffusion at

which the system activates fastest, and this is den-pendant on the strength of the

ligand. Figure 6-6B suggests that the MFPT for activation is not a strong function

of the fraction of CD8 that is bound to Lck.

MFPT for Phosphorylating 5 TCR MFPT for Phosphorylating 10 TCR

10~ 100 k 10' 102 103 10

MFPT for Phosphorylating 25 TCR

10
3

10 0
102 10

MFPT for Phosphorylating 50 TCR

101 100
k df

Figure 6-7: The Mean First-Passage Time (MFPT) for activation of 5, 10, 25 and
50 TCRs as a function of pMHC-TCR koff and diffusion. There is a minimum in
the MFPT for an intermediate value of diffusion, suggesting that moderate diffusion
rates are most efficient. The location of this minimum varies with ligand strength
and number of TCRs phosphorylated.

6.5 Markov Chain Model

We illustrate the analytical model with the example of CD8-restricted MHC Class I

with peptide activating the DP Thymocyte. On the surface of the T Cell there are

2500 TCR and 273000 CD8 (of which on 1.4% has Lck). For a T-Cell of diameter

112

10

103

102

pMHC-TCR ko

- 0.0002 10'
S0.0006 10 2

-4- 0.002 10

-4-0.006
0.02

-m--0.06
0.2

- -0.6 104

+2

10 102

a.
LL
M

a

'is

10',

LL
2



d = 5prm, this works out to c = 273000 =3476 coreceptor molecules (of which 49

have Lck) and 32 TCRs on a 1pm x 1pm patch of membrane. Assuming a lattice

spacing of 0.01pm, the diffusion constant of 0.08im 2 801 works out to a hopping rate

of kdff = D = 0.08 800s-1. For the initial model, we assume there is only oneof diff = 12 - 0.0121

pMHC-TCR complex in this patch, and this does not dissociate (the limit of a very

strong ligand) so we can analytically determine a formula for the time required to

activate. The average distance between the pMHC-TCR and a coreceptor is r =

I - 3475 0.0096pmi, which yields an average time taken to find the target

t = 2 = 0 = 0.00115s or a corresponding "finding rate" of kf = = 868s-1.
5 0.08 t

A physical description of the process involved in a pMHC-TCR being activated is as

follows: the pMHC-TCR diffuses around on the surface of the T Cell, where it can

encounter coreceptors either with or without Lek. It can bind to and unbind from

either, but only a coreceptor bearing Lck can phosphorylate it. This process can be

modeled as a Markov Chain as follows: A free pMHC-TCR (state "TM"), diffuses

around on the surface of a T Cell and can encounter either coreceptor without (C) or

with Lck (LC). There are rates at which these processes happen, described by rate

constants kfo and kfi respectively. If pMHC-TCR and coreceptor are close by (in

the same lattice site), they can either bind or diffuse apart; these processes happen

with rate constants kb and kdiff respectively. Each of the bound states can unbind

with a rate constant of ka, and the pMHC-TCR-coreceptor-Lck complex can get

phosphorylated at rate kp. This is visualized in Figure 6-8, and the states are listed

in Table 6.4. The rate constants for transitions between these states are given in

Table 6.5.

ko ffk55 kf1 kbl k

TM: C TM+CC TM TM+ LC TM: LC-: T,
kbo kf0 kd5ff k01

Figure 6-8: The full Markov Chain model for activation of T Cells. A description of
states and parameters are given in Tables 6.4 and 6.5

The initial State of Markov Chain is free TCR-pMHC (state " TM"). The activated

state(T,) is an absorbing state. We can numerically evolve the set of ODEs that
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State Description

TM:C TCR-pMHC bound to coreceptor without Lek. "False Complex"

TM + C TCR-pMHC next to coreceptor without Lek. "False Pair"

TM Free TCR-pMHC. "Free"
TM + LC TCR-pMHC next to coreceptor with Lek. "True Pair"

TM:LC TCR-pMHC bound to coreceptor with Lek. "True Complex"

Tp Product

Table 6.4: The states of the Markov Chain Model

Description I Symbol [Value

Unbinding of MHC-coreceptor without Lek kuO ku
Binding of MHC-coreceptor without Lek kbo kb

Diffusion kdf5f kdf5f
Rate of pMHC-TCR finding CD8 without Lek kfo kf x 3437-49 - 0.986kf

Rate of pMHC-TCR finding CD8 with Lek kfo 0.014kf
Unbinding of MHC-coreceptor without Lek kui see text

Binding of MHC-coreceptor without Lek kbo kb

Phosphorylation k see text

Table 6.5: The transition rate parameters of the Markov Chain Model

describe the evolution of probabilities of the various states with time; the result is

plotted in Figure 6-9A. By varying the two unknown parameters (stability of the full

complex, described here by kui and rate of phosphorylation of TCR kp), we can plot

the probability of activation in 5 seconds (Figures 6-10A and 6-10B respectively).

These suggest that the maximum probability of activation in five seconds is around

0.46 and the fastest time for 50% activation is about 6.3 seconds (100.8). The result

for the original parameters (CD8 without Lek having the same values as CD8 with

Lek) is represented by the black dot near the top left. The fact that the probability of

activation never goes above 0.5 in five seconds, even at the limit k, -+ 00 and ku1 -* 0,

suggests that the rate-limiting step is the formation of the TM:LC complex. To look

at this limit, we can re-run the simulations with k, = 0 and ki = 0, and plot the

probability of the various states as a function of time. (Now the "True Complex"

effectively becomes an absorbing state, instead of the product, and this simplified

Markov Chain model is shown in Figure 6-11).
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Evolution of state probabilities for the reduced Markov Chain Model
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Figure 6-9: A: Time courses for various states of the full Markov Chain model. Note
that the probabilities of many of the states are relatively constant with time. Ordinate
is log-scaled. B: Time courses for various states of the reduced model.
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Figure 6-10: (A) Probability of activation of the full Markov Chain model after 5
seconds, as a function of two parameters (TCR phosphorylation rate k, and stability
of the full complex k1). The result for the original parameter set is given by the dot
in the upper right corner of this plot. (B) Time taken for the probability of activation
of the full Markov Chain model to be 0.5. Again, the original parameter set is given
by the dot in the upper right corner.

6.5.1 Approximate Analytical Solution of the Markov Chain

Model

The full set of ODEs describing the system is given in Equation 6.1.
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Figure 6-11: The reduced Markov Chain model for activation of T Cells. A description
of states and parameters are given in Tables 6.4 and 6.5.

dPT M:c

dt =kuPTM:C + kbPTM+C
dPTM+C kuPTM:c - (kb + kd)PTM+c + kfoPTM

dPTdPTM = kd(PTM+C + PTM+LC) - (kfo + kfl)PTM (6-1)
d TM+LC

dt = kf1PTM - (kd+ kb)PTM+Lc
dPTM:LC

dt kbPTM+LC

In Figure 6-9, we see that the probabilities of the False Pair and True Pair states

are low and approximately constant through the simulation. We make a pseudo-

steady state assumption[141] to try to simplify and analytically solve - set the 2nd

and 4th equation to zero (PSSA) which gives us the ODEs in Equation 6.2. This ap-

proximation essentially means that the system spends most of its time in the states

where pMHC-TCR is bound to CD8 without Lck or in the "free" state; the states

where pMHC-TCR is next to a coreceptor are short-lived and the molecules very

quickly either bind or diffuse apart.

dPTM:c kbkfoPTM - kukdPTM:C

dt kb+ kd
dPTM _ kdkuPTM:C - (kfo + kfl )kbPTM (6.2)

dt kb+ kd
dPTM:LC _ kbkfl PTM

dt k + kd

The initial conditions are PTM: C(0) = 0, PTM(0) = 1, PTM:LC(0) = 0. This set of

equations can be solved analytically but results in complicated expressions. This

analytical simplified solution seems to be close to the full Markov Chain solution

(Figure 6-12A).

As the peptide-MHC seems to extremely quickly find a coreceptor without Lek

and the probability of being in the free state is also quite low, we can assume that
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A

Figure 6-12: Comparison of solutions of the Markov Chain model. Comparison of
(A) the approximate analytical solution (PTM+C = constant, PTM+LC = constant)
with the full numerical solution (B) the even-more approximate analytical solution
(PTM+c = constant, PTM = constant, PTM+LC = constant) with the full numerical
solution. The approximations are reasonably good.

the initial state of the system is state PTM:C in the above model, and that PSSA can

be applied to free TCR-pMHC also. Simplified equations are shown in Equation 6.3.

dPTMc= -kuPTM:C + kbPTM+C
dt

d PTM+C
dt kuPTM:c - (kb+ kd)PTM+C + kfoPTM = 0

dPTMdPTm = kd(PTM+C + PTM+LC) - (kfo + kfl)PTM = 0 (6-3)
dJ$M+LC

dt = kf1PTM - (kd+ kb)PTM+LC 0
dPTM:LC kbPTM+LC

dt

The solution of the middle three equations for PTM+C, PTM and PTM+LC is shown
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in Equation 6.4.

kdkuPTM:c
PTM - kb(kfo + kfl)

kk1df kuPTM:C
PT M+LC =kb(kb + kd)(kf0 + kfi)

PTM±+ (kbkf50 + kdkfo + kbkfl)kuPTM:c
kb(kb + kd)(kfo + kfi)

We use the expressions in Equation 6.4 to simplify Equation 6.3, and get Equation

6.5.

dPTM:c (kbkfo + kdkfo + kbkfl)kuPTM:c -kdkf1kuPTM:C

dt " + (kb + kd)(kfo + kI1) ( kb + kd)(kf0 + kf1)
dPTm:LC _ kdkfkuPTM:c

dt (kb + kd)(kfo + k1)
(6.5)

The initial conditions PTM:c(O) = 1, PTM:LC(O) = 0. Solutions to Equation 6.5

are PTM:c(t) = eA, PTM:LC(t) = 1 - e At , where A = kdk1ku
(kb + kd)(kf5o + kf1)

A comparison of plots, this very approximate analytic solution with the full MC

model, is shown in Figure 6-12B. We see that the approximation is quite good. For

a solution of the form PTM:LC(t) = 1 - eAt , where A = kdk1k - , the
(kb + kd)(kfo + kf1)

short-time behavior(small t) is PTM:LC(t) = At. This short-time behavior gives us a

way to understand the scaling of the response with parameters.

6.5.2 Scaling

We can use this analytic solution to see how the results scale with various physical

parameters, which differ between the various cell types:

The rate constant in three dimensions is k2 = 10 5Mls- 1 . To convert the 3D value

of k2 into the two-dimensional kA+Bc, we have to know a characteristic length

h, corresponding to the confinement of the proteins to the 2D membrane. Usually

we assume that membrane proteins can move in a direction perpendicular to the

membrane within the distance of h = 1OA = 10- 3pm. The lattice spacing I in pm,
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so 1 Im 2 area has - lattice chambers.

The conversion is given in Equation 6.6.

k L to k ( chamber

2mol x sec tmolecules x sec)

k2 oL s ( 10-3m3 k2  10-3 X 101Pm 3
Smol X sec 6 x 1023molecules x sec 6 x 1023molecules X sec

k2 pmn 3 k2  1 chambers

6 x 108 molec.sec 6 x 108 12 molecules x sec
k2 1 chamber

6 x 108 12 x h molecules x sec
(6.6)

pm 2 X
The scaling of the diffusion constant is kdigf = D )

sec 12 pm2

Scaling of other rates with concentrations of molecules is calculated as follows:

" C = number of coreceptor molecules on cell surface

" A = surface area of T-Cell

* c C - number of coreceptors on patch under consideration
A

e f = Fraction of coreceptors bound to Lek

We can calculate the rate of finding coreceptor using the average distance to the next
1 D

coreceptor r. r is related to c as - = Trr
2 , so kf - - 7rcD

c r

We can calculate the rate of finding coreceptor with and without Lck by multiply-

ing this rate by the fraction of coreceptors with and without Lck: kfI = rfcD and

kfo = r (1 - f) cD

D
Therefore, the scaling of rates in the Markov Chain works out to: kd = D,

kfi = wrfcD, kfo = 7r (1 - f) cD, kb = 1 The rate of activation at short times A

therefore scales as shown in Equation 6.7.

A - r fcD. k_ f Dku
A = 2) (f+(I-f))wcD + (6.7)
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Equation 6.7 suggests that the initial rate of activation A is independent of 1 and c
D

and is oc D and is oc f. The results for the reduced Markov Chain model
D + const

(numerical solutions) when D, 1, C and f are varied are plotted in Figures 6-13.

The black dot in each figure represents the original parameter set, and we look at

how good the PSSA results are around this point. The analytic solution suggests

that probability of activation is independent of number of coreceptors C and lattice

spacing 1, which shows good agreement with the full MC solution (Figures 6-13A and

D). The model suggests that probability of activation increases linearly with fraction

of coreceptors with Lck f, like in Figure 6-13C (note that the X-axis is log-scaled;

saturation at high f is because the activation probability is close to 1). The variation

with diffusion is not as large (Figure 6-13B), corresponding to the D scaling of

the model.

The scaling with k, should be the same as the scaling with f, as the probability

of activation is proportional to k, (at fixed kb). This is seen Figure 6-14A (subject to

saturating at a probability of 1). Since kb = -, where y appears in the Equation 6.7,

and 1 is the lattice spacing, we have P 1 onst+kb, which is the scaling on the right

hand side of the plots in Figure 6-14. For small kb, P increases with kb. In the model,

increasing kb makes TCR-pMHC bind faster to coreceptor both with and without

Lck; binding to coreceptor without Lck slows down the search process, but binding

to coreceptor with Lck is required. These two behaviors are seen in the figure (but

not in the analytical solution, which captures only one of them - this suggests that

the approximation made is not valid in this case). For small kb, the TCR-pMHC will

not bind to coreceptor without Lck and will mostly be in the free state. However, the

model assumes that it is always bound - probably where the approximation breaks

down. If only the equilibrium constant ku/kb is known, we have kb =Oks. In this

case, the analytical solution simplifies to A f Dk or A ku This is theOkl 2 ±D ku-j-const~

scaling seen in Figure 6-14C.

To understand why the PSSA fails at low C and high 1, we plot the time courses
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Figure 6-13: Plots of the activation probability in 5 sec as a function of (A) Number of
CD8 on cell surface (B) Diffusion coefficient (C) Fraction of coreceptor with Lck and
(D) Lattice Spacing. The black dot in each figure represents the original parameter
set.
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Figure 6-14: Plots of the activation probability in 5 sec as a function of MHC core-
ceptor (A) unbinding rate (B) binding rate (C) unbinding rate, if the equilibrium
constant is fixed. The black dot in each figure represents the original parameter set.
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Figure 6-15: Time courses (probability of each state vs. time) for situations where
the PSSA fails (A) For large lattice spacing (B) Small number of coreceptors on the
cell surface. The PSSA assumes that the probabilities of the False Pair, Free and
True Pair states are constant with time.

for the full Markov Chain models (Figure 6-15) for these cases. For the case of low

c (C = 104 molecules on the surface of the T-cell, as compared to 273000 normally),

we see that the probability of the system being in the "free" state is high (as fewer

coreceptors are present) and the PSSA fails. For the case of large lattice spacing I

(I = 0.1pm, ten times its default value), the reason for PSSA failing is unclear.

6.6 SSC Simulations of the Markov Chain

There are two major approximations made while formulating the analytical model.

They are (1) TCR-pMHC dissociation is ignored and (2) Spatial effects are neglected.

We cannot analytically solve the system without making these approximations, so we

run stochastic reaction-diffusion simulations of the system using SSC[34]. The SSC

simulations are similar to the previous MC model. Molecules can diffuse around on a

1lym x 1[m patch of membrane which is divided into a 100 x 100 grid, and molecules

on the same lattice site can react. On this patch of membrane, there are C = 3425

coreceptors without and CL = 49 coreceptors with Lck. There is one TCR-pMHC

which can dissociate and associate with rates kqff and kon. The diffusion constant is

kdiff = 800s- 1; MHC-Coreceptor on and off rates are kb = 1000s 1 and k, = 20s 1 .

Reactions are similar to that of the Markov Chain model, and we look at the for-
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mation of the TCR-pMHC-CD8-Lek complex (product). 1000 trajectories were run

for each parameter set and statistics collected. The difference between the previous

model looking at evolution of probabilities and the SSC simulation should be the

spatial effect. In the simulation, rebinding should happen more frequently because

"escape," i.e. jumping one lattice site away, does not necessarily mean the particles

are now well mixed. However, there are now 10000 lattice sites and about 3500 core-

ceptor molecules, so the density of coreceptor molecules is high.

The first two plots are histograms of (a) Time at which the TCR-pMHC first finds

a CD8 with Lck and (b) Free time distribution for pMHC-TCR (histogram of times

for which it is actually free and diffusing around): We can also from the SSC results

look at the efficiency of the search, i.e. the number of coreceptors that it must sample

to first find one with Lck: The simulation also tells us, on average, how many times

each coreceptor was sampled. The x axis of this figure represents the total number of

different coreceptors bound at any point of time during the simulation, and the y axis

represents the number of times a coreceptor to pMHC-TCR binding event occurred

in that time. The data is (roughly) clustered around the line y = 1.3x, meaning that

each coreceptor was on average bound 1.3 times by the TCR-pMHC.

6.7 Comparison of different cell types

6.7.1 CD8s

We can perform the same set of calculations for various cell types in the experiment.

There are 3 CD8 cell types: DP restricted with MHC class I, peripheral (naive) CD8s

and the CD8.4 chimera hybrid cell line. The main differences between these cell

types are (1) DP CD8s have only 1.4% of coreceptor bound to Lck, as compared to

the peripheral or chimeras which have 15.1% and 9.8% respectively(Table 6.2 - since

activation rate scales linearly with this fraction, we should expect these cell lines to

activate about an order of magnitude faster than the DPs. This is indeed the case,
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Figure 6-16: Quantification of various features of the stochastic search process. (A)
Distribution of times for TCR-pMHC to find coreceptor-Lek for a strong ligand. (B)
Number of different coreceptors bound before finding one with Lck. Mean of this
distribution is around 66. (C) Distribution of times for which the TCR-pMHC is
free, i.e. not bound to any coreceptor. These times are small compared to the overall
search time. (D) A plot of number of binding events vs. number of coreceptors
bound. The data is clustered around the line y = 1.3x, meaning that each coreceptor
is bound 1.3 times on average.

both in experiment (4 sec vs. 600 ms dwell times) and in the simulations (Figure

6-19). The other major difference is that the number of TCRs is much higher, but

the effect of this is not directly captured in the model, only in simulations.

Figure 6-17 shows the result of simulations: the probability of activation for var-

ious CD8s and various pMHC-TCR kff as a function of time. DP CD8s activate

much slower than peripheral or chimeric T-Cells; strongest ligands activate fastest at

short to moderate times, as expected. Some curves seem to cross at long times; this
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crossing is more prominent in Figure 6-18 and is probably because the simulations

start with pMHC and TCR bound. In the small number of cases that these unbind,

fast diffusion means that they diffuse apart and it is harder for pMHC to find TCR

again on these timescales, which leads to a decrease in the activation probability.

This is potentially the reason that we see an optimal diffusion rate in the first part

of this work (for example, Figures 6-3 and 6-5). The D scaling for diffusion forD-hconst

short times is also seen in Figure 6-18.

DP CD. Peripheral CD8 CD8.4 Chimera

0.9 0.8 0.9

0.8 0.7 0.8

0.7 0.7
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0.6 0.5 0.6
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Figure 6-17: Activation curves for various cell types as a function of pMHC-TCR
strength: DP CD8 (A), Peripheral CD8 (b) and the CD8.4 Chimera (C). Note the
differing time scales on the X-axis; activation of the DP CD8 much slower than the
other cell types.

A comparison of theory, experiment and simulation for CD8s is shown in Figure

6-19. The plots show activation curves from simulation (black, red and blue curves for

various TCR-pMHC strengths), the theoretical curve in the limit of zero kff (green

curve), and experimentally determined dwell time necessary for activation (vertical

magenta line). The dwell time lines intersect the theoretical and simulation curves

at probabilities between 0.4 and 0.6. This suggests that the time for which TCR and

APC need to be in contact in experiments (the dwell time) correspond, in theory

and simulation, to the time taken for the same cell to have an activation probability

of 50%. This shows excellent agreement between model and experiment, suggesting

that the dwell time needed for activation is largely determined by the fraction of

coreceptor that is bound to Lek.
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Figure 6-18: Effect of diffusion on activation of DP CD8s. Plots are for D = 0.008,0.08
and 0.8pm 2S-1 for different koffs. Broadly, increasing diffusion speeds up activation
up to a point, similar to the D scaling suggested by the analytical method.D+const
However, some curves cross at long times.
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Figure 6-19: Comparison of the Markov Chain model, simulations and experimental
dwell times for (A) DP CD8s, (B) Peripheral CD8s and (C) CD8.4 Chimera cells.
The blue curves (strongest ligands) should correspond most closely to the model, and
black curves least closely.

6.7.2 CD4s

It is known that the binding between coreceptor and MHC for CD4s is a factor of

2 to 20 weaker than CD8s[142]. We can model this decreased binding in two ways,

by changing either the MHC-coreceptor on (kb) or off (ku) rates. It is also known

that CD4s activate much faster than CD8s, by a factor of 10 or more. The model
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predicts that the activation rate varies as A fDku where y is proportional to kb.

So decreasing the binding constant kb would not have as great an effect on activation

rate as increasing the unbinding rate k,. This is because increasing k, makes only

the the "false" TCR-pMHC-coreceptor complex (without Lek) less stable (the true

complex is assumed not to dissociate on the timescale during which phosphorylation

happens), and decreasing kb affects formation of both complex with and without Lek.

So in the following, we vary ku and we can see how much weaker the CD4-MHC inter-

action must be as compared to CD8s in order to get activation times of around 80 ms.

Figure 6-20A and B consist of probability of activation of DP CD4s and periph-

eral CD4s as a function of time, and are for the strongest ligand (kff = 0.02s1).

All kus described are in units of s-. Plots are for various strengths of CD4-MHC

unbinding; the value for CD8s is 20s. Since pMHC-CD4 strengths are thought to

be a factor of 2- to 20- fold lower than for CD8s, the ku should be a factor of 2- to

20- fold higher. Dots are SSC simulations and solid lines are Markov Chain model

results. With increasing unbinding from the false pair state, the cell activates faster;

we can compare kus by using the time for 50% activation. Figures 6-20 represent time

taken for 50% activation as a function of ku. The analytical model gives the result

for probability of activation for short times as P(t) = At, where A = '4k. Since we

are looking at the case where P = 0.5(constant), we expect the scaling of activation

time to be t oc 1/ku. The plots are therefore of time for 50% activation vs. 1/kU,

and we can get the value of ku for which t = 80 ms = 0.08 sec (experimental dwell

time). For DP CD4s, we get ku = 513 and 154 from simulations and model respec-

tively, about 8- to 25- fold weaker than CD8s, whereas for Peripheral CD4s, we get

ku = 66 and 59 from simulations and model respectively, about 3- fold weaker than

CD8s. These are all similar to the range of the 2- to 20- fold less affinity as thought

previously. (Note that we are estimating ku from a line that scales as 1/kU, near zero,

so the errors in this estimation can be pretty large.) It is not clear why the ku = 200

curve for DP CD4 is quite far off from theory. Also, these calculations assume all

the Lek is capable of phosphorylating TCR (basal or active Lek). The probability
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Activation curves for Peripheral CD4s for various values of ku
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Figure 6-20: Activation probabilities and times for CD4s. The top row of figures are
plots of activation curves: probabilities of activation vs. time, for (A) DP CD4s and
(B) Peripheral CD4s for various values of the MHC-coreceptor unbinding constant,
k. which is an unknown parameter. Lines indicate model results and dots are from
SSC simulations. Bottom row: Plots of time for which probability of activation =
0.5 vs. 1/k, for (C) DP CD4s and (D) Peripheral CD4s. The points are data from
simulations, lines are the best-fits. Experimentally, the dwell time is about 0.08 sec,
so we can calculate the value of k, that would correspond to these dwell times.

of activation P is proportional to the fraction of coreceptor with Lck (f), so if only

about 26% of the Lck is capable of phosphorylating TCR (as some of the new data

suggests), the model and simulations will be about 4 times slower than what it is now.
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6.8 Discussion

In this section we have shown how the threshold activation strength and dwell time

required for different T Cell types to activate is determined by the search process

of a TCR-pMHC finding a coreceptor with Lck. Even for a pMHC that binds ex-

tremely strongly to a TCR (infinite half-life), the cell cannot activate before the TCR

has found an Lck molecule to phosphorylate it. The first requirement for this is the

formation of the four-body TCR-pMHC-coreceptor-Lck complex. We have built a

model for the rate of formation of this complex, and find that this timescale closely

corresponds to the dwell time required for the T Cell to activate, for many different

cell types. This seems to indicate that the formation of this complex, rather than

the subsequent phosphorylation step, is rate-limiting and determines the dwell time.

Since the TCR and pMHC have to remain bound during this process, this also sets

a threshold koff for a TCR-pMHC interaction for each cell type above which the cell

cannot activate.

We find that this search process depends on various parameters that differ between

T Cell types. Running spatial SSC simulations of the full system suggest that the

rate of activation should increase with the fraction of coreceptor bound to Lck and

is maximum at some intermediate value of the diffusion constant. We built a simple

Markov Chain based model and solved this analytically using the pseudo steady-state

approximation. The solution, which is valid in the limit of a small fraction of core-

ceptor bound to Lck, suggests that the rate of activation increases linearly with the

fraction of coreceptor bound to Lck and saturates with diffusion. The activation rate

is also independent of the total amount of coreceptor and the lattice spacing used to

discretize the problem. The activation rate being independent of the total amount of

coreceptor is easy to rationalize: the total amount of coreceptor increases both the

number of targets and temporary traps by the same factor, and therefore has no net

effect on the total rate of activation.
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The behavior with diffusion is contrary to what the full simulations show; the

difference is probably in the fact that the first set of simulations is allowed to run for

a long time and we are looking at steady-state behavior. The decrease in activation

with diffusion (beyond the optimum) in the long-time limit is presumably because in

this case, all when complexes unbind, fast diffusion means that components diffuse

apart before they can rebind. This is also seen in the SSC version of the simplified

system: at long time, the slower- diffusing cases activate to a larger extent than the

faster- diffusing ones. Again, this is probably a consequence of the way these models

are set up: since we start with the TCR bound to pMHC and let them unbind, slow

diffusion means that rebinding to the same TCR (rather than the pMHC having to

search for another TCR) is more likely; however, this effect is important only in the

case where the TCR-pMHC has (1) not yet found a coreceptor with Lck and (2) has

unbound, so the time much be larger than 1/kff. The scaling of the ana-
D + const

lytically approximate solution also warrants some comment: at the infinite diffusion

limit, one might naively expect no complex to form because the components would

diffuse away as soon as they are brought together; however, the rate of bringing to-

gether these components also becomes very large. The effective result seems to be

that the rate of formation of the complex saturates with diffusion to some finite limit.

These results suggest that the primary reasons why the CD4s activate much faster

than CD8s are twofold. First, CD4s have a larger fraction of coreceptor that is bound

to Lck than CD8s (this is also why naive peripheral CD8 T Cells tend to activate

faster than DP CD8 thymocytes). Second, the weaker MHC-coreceptor binding in

CD4s means that the temporary traps where TCR-pMHC is bound to coreceptor

without Lck are much less effective, and hence the Lck-bearing coreceptors are found

much faster.
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Chapter 7

Conclusions

This thesis attempts to take a "system-wide" or "network" view of some key reaction

networks involved in T Cell signaling. Many problems in immunology in particu-

lar (and biology in general) are just beginning to be thought about in this sort of

framework, where we consider networks as a whole and try to understand how these

particular networks (topologies) of interactions define the behavior of the system. The

major downside to this approach is, in many cases, the lack of detailed knowledge

of these interactions, and statistical-mechanical approaches may help shed light on

such problems. The objective of these models is three-fold: (1) to understand the

mechanisms of the underlying biological processes (2) to describe these systems from

the principles of physics (such as statistical mechanics and network theory), which

ensures that these models have a sound theoretical basis and (3) to make testable

predictions, which can help in model discrimination. The key benefit of such mech-

anistic insights, of course, is that in enables us to tweak the system in more logical

ways, for example, as the first step towards rational drug design.

In the previous chapters, we have looked at a variety of problems involving the

modeling of different aspects of protein kinase reaction networks. Chapters 2, 3 and

4 describe the modeling of spatially homogeneous reaction networks, and the relation

between network topology and behavior. These chapters show how one may use sim-

ple dynamical systems-based models to describe chemical reaction networks and infer
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details about biological mechanisms from these models. In Chapter 3, we use these

models to analyze how the amount of the CD45 changes the activity of Src kinases.

The experimental observation that T-Cells show a maximum activity of Lck at an

intermediate concentration of CD45, but B-Cells do not with Lyn, can be attributed

to a difference in the corresponding reaction networks. The dependence of this ac-

tivity on the amount of CD45 also suggests that this process may have a function

consequence in enabling the activation of Lck by clustering CD45.

Chapter 4 is a model of TCR activation by up-regulation and knocking off the

negative regulator Csk. Our models suggest that the extremely strong activation is

a consequence of two effects: an increase in the amount of unphosphorylated TCR

due to effect of increased Csk (and the TCR creation-degradation mechanism), and

a temporary surge in the activity of Lck upon removing the excess Csk which was

transfused into the system. This reaction network is an example of a "perfectively

adaptive" system and shows interesting behavior in a control-theoretic sense, such as

being a band-pass filter.

Chapter 5 describes an attempt to understand the heterogeneity in cancers at

the level of protein kinase signaling networks. A general model for signaling in net-

works was been developed, analogous to models of neural networks, with mutations

modeled as changes in the topology of this network. Modeling cancer growth as a

mutation-selection problem, we looking for patterns in secondary mutations during

the directed evolution process. We found that lowest degree nodes along the short-

est paths from the driver mutation to effector nodes were the most conserved, and

the frequency of multiple optima depended mainly on the number of feedback loops

present in the starting networks. A model of the effect of inhibitors and escape was

also made, suggesting that inhibiting high-degree nodes had the greatest initial effect

but was also the easiest to escape.

Finally, in Chapter 6, we look at the problem of constant activation thresholds
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for activation of various types of T-Cells. We built a reaction-diffusion model for the

network involved in the search process by which a pMHC-TCR finds a coreceptor-Lck,

which enabled us to understand how the threshold for activation is determined by

the parameters of a particular cell type. We also developed an approximate analyt-

ical solution for a simplified Markov Chain form of the model, which predicted that

the activation rate scaled linearly with the fraction of coreceptors with Lck, increases

(slowly) with diffusion and is independent of the number of coreceptors on the surface

of the cell. These models suggest that this search process, rather than phosphory-

lation, is the rate-limiting step in the activation of TCR, and CD4s activate much

faster than CD8s because of (1) the weaker coreceptor-MHC bonds in CD4s and (2)

the fact that they have more Lck.
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Appendix A

Supplementary Material for the

CD45 Model

Name I Initial Amount Units
Lck 100.0 molecule
CD45 25.0 molecule
PAG 1000.0 molecule
Csk 10.0 molecule

Table A.1: List of Initial Concentrations in the Src Kinase Model

153



N. Name Value Units
1 kLLon 0.1 1/(molecule*second)
2 kLLoff 1.0 1/second
3 kAcat 1.0 1/second
4 kBcat 0.1 1/second
5 kCcat 0.02 1/second
6 kDLon 1.1 1/(molecule*second)
7 kDLoff 0.1 1/second
8 kDLcat394 0.3 1/second
9 kDLcat505 0.8 1/second
10 kLSon 0.8 1/(molecule*second)
11 kLSoff 0.1 1/second
12 kLScat 0.1 1/second
13 kLPon 1.0 1/(molecule*second)
14 kLPoff 0.1 1/second
15 kPSon 1.0 1/(molecule*second)
16 kPSoff 0.1 1/second
17 kPDon 3.0 1/(molecule*second)
18 kPDoff 0.1 1/second
19 kPDcat 1.0 1/second
20 kLdephos 0.001 1/second

Table A.2: List of Rate Constants in the Src Kinase Model
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N. Reaction [Rate Expression

I LckI + CD45 - [LckI:CD45] kDLon*LckI*CD45

2 [LckI:CD45] -+ LekI + CD45 kDLoff*[LckI:CD45]
3 [LckI:CD45] -+ LckB + CD45 kDLcat505*[LckI:CD45]
4 LckB + [Csk:PAGp] -* [LckB:Csk:PAGp] kLSon*LckB*[Csk:PAGp]
5 [LckB:Csk:PAGp] - LckB + [Csk:PAGp] kLSoff*[LekB:Csk:PAGp]
6 [LckB:Csk:PAGp] -+ LekI + [Csk:PAGp] kLScat*[LckB:Csk:PAGp]
7 LckB + LckB -+ [LckB:LckB] kLLon*LckB*LckB

8 [LckB:LckB] - LckB + LckB kLLoff*[LckB:LckB]
9 [LckB:LckB] -+ LckA + LckB kBcat*[LckB:LckB]
10 LckB + LckA -+ [LckB:LckA] kLLon*LckB*LckA
11 [LckB:LckA] -+ LckB + LekA kLLoff*[LckB:LckA]

12 [LckB:LckA] - LckA + LckA kAcat*[LckB:LckA]
13 LckA + CD45 -+ [LckA:CD45] kDLon*LckA*CD45
14 [LckA:CD45] -4 LckA + CD45 kDLoff*[LekA:CD45]
15 [LckA:CD45] -+ LckB + CD45 kDLcat394*[LekA:CD45]
16 LckI + LckB -- [LckI:LckB] kLLon*LckI*LckB

17 [LckI:LckB] -+ LekI + LckB kLLoff*[LckI:LckB)
18 LckI + LckA -+ [LckI:LckA] kLLon*LckI*LckA

19 [LckI:LckA] - LekI + LckA kLLoff*[LckI:LckA]
20 LckC + CD45 - [LckC:CD45] kDLon*LckC*CD45
21 [LckC:CD45] - LckC + CD45 kDLoff*[LckC:CD45]
22 [LckC:CD45] - LckA + CD45 kDLcat394*[LckC:CD45]
23 [LckC:CD45] -+ LekI + CD45 kDLcat505*[LckC:CD45]

24 LckB + LckC -+ [LckB:LckC] kLLon*LckB*LckC
25 [LckB:LckC] - LckB + LckC kLLoff*[LckB:LckC]
26 [LckB:LckC] -4 LckA + LckC kCcat*[LckB:LckC]
27 LckI + LckC -+ [LckI:LckC] kLLon*LckI*LckC
28 [LckI:LckC] - LekI + LckC kLLoff*[LckI:LckC]
29 LckA + PAG -+ [LckA:PAG] kLPon*LckA*PAG
30 LckB + PAG [LckB:PAG] kLPon*LckB*PAG
31 LckC + PAG -+ [LckC:PAG] kLPon*LckC*PAG
32 [LckA:PAG] -+ LckA + PAG kLPoff*[LckA:PAG]
33 [LckB:PAG] - LckB + PAG kLPoff*[LckB:PAG]
34 [LckC:PAG] -+ LckC + PAG kLPoff*[LckC:PAG]
35 [LckA:PAG] - LckA + PAGp kAcat*[LckA:PAG]
36 [LckB:PAG] - LckB + PAGp kBcat*[LckB:PAG]
37 [LckC:PAG] - LckC + PAGp kCcat*[LckC:PAG)
38 Csk + PAGp -* [Csk:PAGp] kPSon*Csk*PAGp
39 [Csk:PAGp] - PAGp + Csk kPSoff*[Csk:PAGp]
40 PAGp + CD45 -+ [PAGp:CD45] kPDon*PAGp*CD45
41 [PAGp:CD45] -+ PAGp + CD45 kPDoff*[PAGp:CD45]
42 [PAGp:CD45] -+ PAG + CD45 kPDeat*[PAGp:CD45]
43 LckA - LckB kLdephos*LekA
44 LckC -+ LckB kLdephos*LekC

45 LckI - LckB 15b kLdephos*LckI
46 LckA + [Csk:PAGp] - [LckA:Csk:PAGp] kLSon*LckA*[Csk:PAGp]
47 [LckA:Csk:PAGp] - LckA + [Csk:PAGp] kLSoff*[LckA:Csk:PAGp]
AR rT kA -(Ck-PA( Onl Tr TkC -4- [Cqk-PACnl kT1,qnt*[1TekA-Cqk-PAOnl
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Appendix B

Supplementary Material for the

Csk Model
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N. Reaction Rate Expression

1 cd45 + Icki -+ cd45lcki kcd451ckon*cd45*lcki

2 cd45 + Icke - cd45lckc kcd45lckon*cd45*lckc

3 cd45 + Icka - cd45lcka kcd451ckon*cd45*lcka

4 cd45lcki -+ cd45 + icki kcd45lckoff*cd451cki

5 cd45lckc - cd45 + lckc kcd451ckoff*cd45lckc

6 cd45lcka - cd45 + Icka kcd45lckoff*cd451cka

7 cd45lcki - cd45 + lckb klckib*cd451cki

8 cd45lckc - cd45 + lckb klckcb*cd45lckc

9 cd45lcka - cd45 + lckb klckab*cd45lcka

10 2 lckb - lckbb klckon*lckb*lckb

11 lckbb -+ 2 lckb klckoff*lckbb

12 lckbb - 2 icka kautolckb*lckbb

13 pag + Icka - pagicka klckpagon*pag*lcka

14 pag + lckb - paglckb klckpagon*pag*lckb

15 pag + icke - pagIcke klckpagon*pag*lckc

Continued on next page



Table B.1 - continued from previous page

N. Reaction Rate Expression

16 paglcka - pag + Icka klckpagoff*paglcka

17 paglckb - pag + lckb klckpagoff*paglckb

18 paglckc - pag + Icke klckpagoff*paglckc

19 paglcka - pagp + icka klckapagphos*paglcka

20 paglckb - pagp + lckb klckbpagphos*paglckb

21 paglckc -+ pagp + lckc klckcpagphos*paglckc

22 pagp + csk -+ cskp kcskpagon*pagp*csk

23 cskp - pagp + csk kcskpagoff*cskp

24 cskp + Icka - cskplcka kcsklckaon*cskp*lcka

25 cskp + lckb -+ cskplckb klckcskon*cskp*lckb

26 cskplcka - cskp + Icka klckcskoff*cskplcka

27 cskplckb - cskp + lckb klckcskoff*cskplckb

28 cskplcka - cskp + lckc klckcskphos*cskplcka

29 cskplckb -+ cskp + Icki klckcskphos*cskplckb

30 cd45 + pagp -+ cd45pagp kpagcd45on*cd45*pagp

31 cd45pagp -+ cd45 + pagp kpagcd45off*cd45pagp

32 cd45pagp -+ cd45 + pag kpagcd45cat*cd45pagp

33 Icka + lckb -+ lckalckb klckon*lcka*lckb

34 lckalckb -4 Icka + lckb klckoff*lckalckb

35 lckalckb - 2 Icka kautolcka*lckalckb

36 lckc + lckb -+ lckclckb klckon*lckc*lckb

37 lckclckb - icke + lckb klckoff*lckclckb

38 lckclckb - lckc + icka kautolckc*lckclckb

39 cd45 + cd45 - X kcddon*cd45*cd45

40 X -+ 2 cd45 kcddoff*X

41 cskas + lckb + lckbas kcskason*cskas*lckb

Continued on next page
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N. Reaction Rate Expression

42 lckbas -+ eskas + lckb kcskasoff*lckbas

43 lckbas -+ cskas + Icki kcskascat*lckbas

44 eskas + icka -+ lckaas kcskason*cskas*lcka

45 lckaas - cskas + Icka kcskasoff*lckaas

46 lckaas - eskas + Icke kcskascat*lckaas

47 eskas + ppl -+ Y kppl*cskas*ppl

48 lckb + cd3 -± lckbcd3 klckcd3on*lckb*cd3

49 lckbcd3 - lckb + cd3 klckcd3off*lckbcd3

50 lckbcd3 - lckb + cd3p klckbcat*lckbcd3

51 icka + cd3 -+ lckacd3 klckcd3on*lcka*cd3

52 lckacd3 - icka + cd3 klckcd3off*lckacd3

53 lckacd3 - icka + cd3p klckacat*lckacd3

54 cd3p - cd3 kcd3dphos*cd3p

55 cd3p - null kcd3deg*cd3p

56 null -+ cd3 kcd3born

57 lckc + cd3 -* lckccd3 klckcd3on*lckc*cd3

58 lckccd3 -+ lckc + cd3 klckcd3off*lckccd3

59 lckccd3 + lckc + cd3p klckccat*lckccd3

60 Icka + sh - lckash klckshon*lcka*sh

61 lckash - lcka + sh klekshoff*lckash

62 lckash -+ lcka + shp klckashp*lckash

63 lckb + sh - lckbsh klckshon*lckb*sh

64 lckbsh -+ lckb + sh klckshoff*lckbsh

65 lckbsh lckb + shp klckbshp*lckbsh

66 lckc + sh - lckcsh klckshon*lckc*sh

67 lckcsh -+ Icke + sh klckshoff*lckcsh

Continued on next page
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N. Reaction Rate Expression

68 lckcsh -+ lcke + shp klckcshp*lckcsh

69 shp -+ sh kshpdeg*shp

70 icka + shp -+ shplcka kshplckon*lcka*shp

71 shplcka - icka + shp kshplckoff*shplcka

72 shplcka + lckb + shp kshplckcat*shplcka

73 lckc + shp -+ shplckc kshplckon*lckc*shp

74 shplckc -+ icke + shp kshplckoff*shplckc

75 shplckc -+ Icki + shp kshplckcat*shplckc

76 T + Icka -+ Tlcka kTlckaon*T*lcka

77 Tlcka - T + Icka kTlckaoff*Tlcka

78 Tlcka - T + plcka kTlckacat*Tlcka

79 plcka + cd3 -+ plckacd3 klckcd3on*plcka*cd3

80 plckacd3 - plcka + cd3 klckcd3off*plckacd3

81 plckacd3 -+ plcka + cd3p klckacat*plckacd3

82 plcka -+ icka kplckadeg*plcka

83 cd3p -+ sos + cd3p kcd3psos*cd3p

84 sos -> null ksosdeg*sos

85 sos + R -+ sosaR ksosaRon*sos*R

86 sosaR -+ sos + R ksosaRoff*sosaR

87 sos + R - soscR ksoscRon*sos*R

88 soscR -+ sos + R ksoscRoff*soscR

89 sos + T -+ sosaT ksosaTon*sos*T

90 sosaT - sos + T ksosaToff*sosaT

91 sosaR + R -+ sosaRcR ksosaRcRon*sosaR*R

92 sosaRcR - sosaR + T ksosaRcRcat*sosaRcR

93 sosaRcR - sosaR + R ksosaRcRoff*sosaRcR

Continued on next page
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N. Reaction Rate Expression

94 sosaRcR -+ soscR + R ksosaRoff*sosaRcR

95 sosaT + R -+ sosaTcR ksosaTcRon*sosaT*R

96 sosaTcR -* sosaT + T ksosaTcRcat*sosaTcR

97 sosaTcR -+ sosaT + R ksosaTcRoff*sosaTcR

98 sosaTcR -+ soscR + T ksosaToff*sosaTcR

99 soscR -+ sos + T ksoscRcat*soscR

100 T + gap -+ Tgap kTgapon*T*gap

101 Tgap -+ T + gap kTgapoff*Tgap

102 Tgap - R + gap kTgapcat*Tgap

103 pIcka + pag -+ pIckapag klckpagon*plcka*pag

104 pickapag -+ plcka + pag klckpagoff*plckapag

105 pIckapag - picka + pagp klckapagphos*plckapag

106 R + grp - Rgrp kRgrpon*R*grp

107 Rgrp - R + grp kRgrpoff*Rgrp

108 Rgrp -+ T + grp kRgrpcat*Rgrp

109 cd45 + picki -+ cd45plcki kcd451ckon*cd45*plcki

110 cd45 + plckc - cd45plckc kcd451ckon*cd45*plckc

111 cd45plcki -+ cd45 + picki kcd451ckoff*cd45plcki

112 cd45plckc - cd45 + pIcke kcd45lckoff*cd45plckc

113 cd45plcki -+ cd45 + plckb klckib*cd45plcki

114 cd45plckc - cd45 + plckb klckcb*cd45plckc

115 cd45 + pIcka -+ cd45plcka kcd45lckon*cd45*plcka

116 cd45plcka - cd45 + picka kcd45lckoff*cd45plcka

117 cd45plcka -+ cd45 + plckb klckab*cd45plcka

118 plckb + lckb -+ plckblckb klckon*plckb*lckb

119 plckblckb -+ plckb + lckb klckoff*plckblckb

Continued on next page
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N. Reaction Rate Expression

120 plckblckb -- pIcka + Icka kautolckb*plckblckb

121 plckb + plckb -+ plckbplckb klckon*plckb*plckb

122 plckbplckb - plckb + plckb klckoff*plckbplckb

123 plckbplckb -+ pIcka + pIcka kautolckb*plckbplckb

124 pIcka + lckb - plckalckb klckon*plcka*lckb

125 Icka + plckb lckaplckb klckon*lcka*plckb

126 pIcka + plckb -* plckaplckb klckon*plcka*plckb

127 plckalckb -+ pIcka + lckb klckoff*plckalckb

128 lckaplckb - icka + plckb klckoff*lckaplckb

129 plckaplckb -+ pIcka + plckb klckoff*plckaplckb

130 plckalckb - plcka + Icka kautolcka*plckalckb

131 lckaplckb - icka + pIcka kautolcka*lckaplckb

132 plckaplckb - picka + pIcka kautolcka*plckaplckb

133 plckc + lckb -+ plckclckb klckon*plckc*lckb

134 icke + plckb + lckcplckb klckon*lckc*plckb

135 picke + plckb -+ plckcplckb klckon*plckc*plckb

136 plckclckb - plckc + lckb klckoff*plckclckb

137 plckclckb - pIcke + Icka kautolckc*plckclckb

138 lckcplckb -+ lckc + plckb klckoff*lckcplckb

139 lckcplckb lckc + picka kautolckc*lckcplckb

140 plckcplckb - plckc + plcka kautolckc*plckcplckb

141 plckcplckb -+ plckc + plckb klckoff*plckcplckb

142 pag + plckb - pagplckb klckpagon*pag*plckb

143 pag + plckc - pagplckc klckpagon*pag*plckc

144 pagplckb - pag + plckb klckpagoff*pagplckb

145 pagplckc -+ pag + pIcke klckpagoff*pagplckc

Continued on next page
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146 pagplckb -+ pagp + plckb klckbpagphos*pagplckb

147 pagplckc - pagp + pIcke klckcpagphos*pagplcke

148 cskp + pIcka - cskpplcka kcsklckaon*cskp*plcka

149 cskp + plckb -c eskpplckb klckcskon*cskp*plckb

150 cskpplcka -+ cskp + pIcka klckcskoff*cskpplcka

151 cskpplckb - cskp + plckb klckcskoff*cskpplckb

152 cskpplcka - cskp + plckc klckcskphos*cskpplcka

153 cskpplckb - cskp + picki klckcskphos*cskpplckb

154 cskas + plcka -+ cskasplcka kcsklckaon*cskas*plcka

155 eskas + plckb - cskasplckb klckcskon*cskas*plckb

156 eskasplcka -+ eskas + pIcka klckcskoff*cskasplcka

157 cskasplckb - eskas + plckb klckcskoff*cskasplckb

158 eskasplcka -+ eskas + pIcke kcskascat*cskasplcka

159 cskasplckb - eskas + plcki kcskascat*cskasplckb

160 plckb + cd3 - plckbcd3 klckcd3on*plckb*cd3

161 picke + cd3 - plckccd3 klckcd3on*plckc*cd3

162 plckbcd3 -+ plckb + cd3 klckcd3off*plckbcd3

163 plckccd3 - pIcke + cd3 klckcd3off*plckccd3

164 plckbcd3 -+ plckb + cd3p klckbcat*plckbcd3

165 plckccd3 -+ picke + cd3p klckccat*plckccd3

167 plckb -+ lckb kplckadeg*plckb

168 plckc - lckc kplckadeg*plckc

169 pIcka + sh - plckash2 klckshon*plcka*sh

170 plckb + sh - plckbsh2 klckshon*plckb*sh

171 plckc + sh -+ plckcsh2 klckshon*plckc*sh

172 plckash2 -+ pIcka + sh klckshoff*plckash2

Continued on next page
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N. Reaction Rate Expression

173 plckbsh2 - plckb + sh klckshoff*plckbsh2

174 plckcsh2 - plckc + sh klckshoff*plckcsh2

175 plckash2 -- plcka + shp klckashp*plckash2

176 plckbsh2 - plckb + shp klckbshp*plckbsh2

177 plckcsh2 -+ plcke + shp klckcshp*plckcsh2

178 plcki -+ icki kplckadeg*plcki

Table B.1: List of Reactions in the Csk Model
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N. Name Value Units

1 kcd45lckon 1.Oe-03 1/(molecule*second)

2 ked45lckoff 1 1/second

3 kickib 1.0e-01 1/second

4 kickeb 5.0e-01 1/second

5 klckab 1 1/second

6 kIckon 1.0e-03 1/(molecule*second)

7 kickoff 1 1/second

8 kautolckb 1 1/second

9 kcskpagon 1.0e-02 1/(molecule*second)

10 kcskpagoff 1 1/second

11 klckpagon 1.Oe-03 1/(molecule*second)

12 klckpagoff 4.0e-01 1/second

13 klckapagphos 5.0e-02 1/second

14 kpagcd45on 1.Oe-02 1/(molecule*second)

15 kpagcd45off 1 1/second

16 kpagcd45cat 1 1/second

17 klckbpagphos 1.0e-02 1/second

18 klckcpagphos 2.0e-02 1/second

19 klckcskon 1.0e-01 1/(molecule*second)

20 klckcskoff 1.0e-01 1/second

21 klckcskphos 1.Oe-01 1/second

22 kautolcka 10 1/second

23 kautolckc 1 1/second

24 kcddon 1.0e-03 1/(molecule*second)

25 kppl 1.Oe-01 1/second

26 kcddoff 1.Oe-02 1/second

27 kcskason 4.0e-02 1/(molecule*second)

Continued on next page
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28 kcskasoff 1.Oe-01 1/second

29 kcskascat 9.20e-01 1/second

30 klckcd3on 1.0e-02 1/(molecule*second)

31 klckcd3off 1.0e-02 1/second

32 klckbcat 1.Oe-01 1/second

33 klckacat 2 1/second

34 kcd3dphos 2.50e-02 1/second

35 kcd3deg 1.0e-02 1/second

36 kcd3born 5.0e-01 molecule/second

37 klckccat 4.0e-01 1/second

38 kcsklckaon 1.0e-04 1/(molecule*second)

39 klckshon 1.Oe-03 1/(molecule*second)

40 klckshoff 1 1/second

41 klckashp 1 1/second

42 klckbshp 1.Oe-01 1/second

43 klckcshp 2.0e-01 1/second

44 kshpdeg 5 1/second

45 kshplckon 5.0e-01 1/(molecule*second)

46 kshplckoff 1 1/second

47 kshplckcat 1.Oe-01 1/second

48 kTlckaon 1.Oe-02 1/(molecule*second)

49 kTlckaoff 1 1/second

50 kTlckacat 1 1/second

51 kplckadeg 2.0e-01

52 ksosaRon 2.50e-02 1/(molecule*second)

53 ksosaRoff 3 1/second

Continued on next page
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N. Name Value Units

54 ksosaTon 2.50e-02 1/(molecule*second)

55 ksosaToff 4.0e-01 1/second

56 ksoscRon 1.40e-04 1/(molecule*second)

57 ksoscRoff 1 1/second

58 ksoscRcat 6.0e-04 1/second

59 ksosaRcRon 1.0e-02 1/(molecule*second)

60 ksosaRcRoff 1 1/second

61 ksosaRcRcat 3.0e-03 1/second

62 ksosaTcRon 1.50e-02 1/(molecule*second)

63 ksosaTcRoff 1.0e-01 1/second

64 ksosaTcRcat 4.0e-02 1/second

65 kTgapon 5.0e-02 1/(molecule*second)

66 kTgapoff 1 1/second

67 kTgapcat 1.0e-01 1/second

68 kcd3psos 4.0e-03 1/second

69 ksosdeg 1.0e-01 1/second

70 kRgrpon 3.20e-01 1/(molecule*second)

71 kRgrpoff 1 1/second

72 kRgrpcat 1.0e-02 1/second

Table B.2: List of Rate Constants in the Csk Model
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Name Initial Amount Units
CD45 200 molecule
Lck (Total) 1200 molecule
PAG 200 molecule
Csk 500 molecule
CskAS 1000 molecule
PP1 1000 (Introduced) molecule
CD3 Created Zeroth-Order molecule
Shp 1000 molecule
Ras 1000 molecule
RasGAP 15 molecule

Table B.3: List of Initial Concentrations in the Csk Model
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Appendix C

Supplementary Material for the

Cancer Model

Figure C-1: Coupled Growth Model: Overall Degree distributions
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Figure C-6: Potts-Like Model: Overall Degree distributions
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