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Abstract

Scientists, both academic and industrial, develop two main types of drugs: 1) small

molecule drugs, which are usually chemically synthesized and are taken orally and

2) large molecule, biotherapeutic, or protein-based drugs, which are often synthe-

sized via ribosome transcription in bacteria cells and are injected. Historically, the

majority of drug development, revenue, and products has come from small molecule

drugs. However, recently biotherapeutic drugs have become more common due to

their increased potency and specificity (the ability to chemically bond to the tar-

geted protein of interest). Researchers now estimate that as much as 50% of current

drug development activities (pre-market approval) are focused on these protein-based

drugs.

There are several well-documented steps necessary in the development of a new

large molecule drug. One critical element during the end of the biotherapeutic drug

discovery phase and the beginning of the manufacturing phase is known as pre-

formulation or formulation development. During this stage scientists systematically

test the effects of adding various excipients (non-protein additives added to enhance

the protein stability, solubility, activity of the drug, etc.) to the potential large

molecule drug. Differential scanning calorimetry (DSC) is a common technique used

to perform these formulation studies.

In a classic DSC experiment, a protein is heated from 20-800 C and the heat

absorbed while the protein unfolds is measured. Many researchers prefer the use

of a DSC instrument because of its label-free nature, meaning that no fluorescent

or radio-labeled tag is necessary to perform the measurement. The heat absorbed

during the unfolding event(s) is directly measured. However, current commercial

DSC instruments suffer from high protein consumption (especially when compared to

other labeled techniques), low sensitivity, and slow throughput.

The aim of this thesis is to address two of the three areas mentioned above: high

protein consumption and slow throughput. Since many formulation development

studies are performed at therapeutic or high protein concentrations, one can reduce

the experimental cell volume and thereby reduce the amount of protein material con-

sumed. However, since there is less sample, less heat is produced. While in the
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literature there are several heat transfer models that describe how a DSC instrument
functions, there are surprisingly few heat transfer models that detail how ambient
temperature disturbances impact the thermal measurement. To better describe this
behavior, a simplified state-space thermal model was created to predict the distur-
bance rejection of a custom DSC instrument. This model was verified experimentally
using linear stochastic system identification techniques.

To reduce sample throughput, the prototype calorimeter cell was made from dis-
posable materials. Because the majority of protein systems are thermodynamically
irreversible, at elevated temperatures the protein solution often aggregates and needs
to be cleaned before a subsequent experiment can be run. This cleaning process con-
stitutes a significant portion of the overall time to run an experiment. This thesis
documents a fully functional DSC instrument that, while not completely disposable,
has been designed, built, and tested with disposable microfluidic materials. Future
work would then solve the technical hurdles of repeatably loading disposable microflu-
idic cells into the DSC instrument.

Thesis Supervisor: Ian Hunter
Title: Hatsopoulos Professor of Mechanical Engineering
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Chapter 1

Introduction

To introduce the topic of this thesis, the development of a new differential scanning

calorimeter, it is important to provide context with respect to the use of calorimetry

in the life sciences. As a result, this introductory chapter is split into the following

three sections:

* Drug development

e Calorimetry

" Differential scanning calorimetry applications

1.1 Drug Development

According to the United States Food and Drug Administration (FDA) a drug is

defined as follows [4]:

" A substance recognized by an official pharmacopoeia or formulary.

" A substance intended for use in the diagnosis, cure, mitigation, treatment, or

prevention of disease.

" A substance (other than food) intended to affect the structure or any function

of the body.
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* A substance intended for use as a component of a medicine but not a device or

a component, part or accessory of a device.

" Biological products are included within this definition and are generally cov-

ered by the same laws and regulations, but differences exist regarding their

manufacturing processes (chemical process versus biological process.)

Proteins are responsible for controlling and regulating human body functions and

are therefore the target of any drug. There are two broad categories of drugs: agonists

and antagonists. An agonist drug chemically binds to a protein to facilitate a normal

protein function. An antagonist drug chemically binds to a protein of interest to

prevent a normal protein function. For example, there are several antagonist cancer

drugs that are designed to bind to the signaling protein that initiates the formation of

vasculature feeding a cancerous growth or tumor. The goal is to prevent the protein

from performing its natural process of signaling other proteins to start the growth of

blood vessels that bring nutrients to the cancer cells.

The development of new drugs is a highly complex and risky venture. Current

numbers vary, but industry experts estimate that the development of a new drug

costs between $1-1.2 billion and takes 12-15 years to develop and receive regulatory

approval. In addition, of the roughly 5,000-10,000 potential drug compounds that

show initial promise, only five will make it to human trials, and only one will become

a regulatory approved drug [1,10, 22].

The development of a new drug can be subdivided into five major phases [221:

e Drug discovery

" Pre-clinical trials

" Clinical trials

" Manufacturing

" Marketing/regulatory approval

14



Each step in the process, with the exception of drug discovery (the R&D phase of

the project), is highly regulated and must conform to established regulatory laws and

practices. Currently the three largest drug markets are North America, Europe, and

Japan, and they are regulated by the U.S. Food and Drug Administration (FDA),

the European Medicines Agency (EMEA), and Pharmaceuticals and Medical Devices

Agency (PMDA) respectively. The clinical trial phase consumes about half of the

total drug development time allotment and roughly one third of the total development

cost [1].

At present there are two main types of drugs developed and produced: 1) small

molecule drugs and 2) large molecule, biologic, biotherapeutic, or protein-based drugs.

Small molecule drugs are checmically sythnesized, often taken orally, and typically

smaller than 500 Da (In biochemical vocabulary a dalton, Da, is equivalent to one

unified atomic mass unit, u, and is an accepted SI unit). Examples of small molecule

drugs include Lipitor (cholesterol-reducing drug from Pfizer), Plavix (used to pre-

vent blood clots from Bristol-Myers Squibb), and Nexium (acid reflux reducer from

AstraZeneca).

While small molecule drugs have traditionally dominated the drug development

scene, the development of biotherapeutics is on the rise. This is due to the increased

potency and higher specificity (the ability to chemically bond to the targeted pro-

tein of interest) of protein-based drugs [22]. Large molecule or biologic drugs are

typically larger than 1000 Da. Researchers now estimate that as much of 50% of cur-

rent drug development activities are allocated to the creation of new large molecule

drugs [32]. Figure 1-1 shows a graph of the approved biotherapeutic drugs over the

past 30 years [25]. Examples of large molecule drugs include Enbrel (arthritis drug

from Amgen/Wyeth), Herceptin (breast cancer drug from Genentech/Roche), and

Avastin (colon cancer drug from Genentech/Roche). As more researchers turn to

biologic drugs, scientists and engineers will develop new technologies to facilitate this

development.

While the drug discovery process is similar for both small and large molecule

drugs, the manufacturing of these products is significantly different. Small molecule
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Figure 1: FDA Approvals of New Biopharmaceutical Products. 1982-2012

= recombinant proteineMabse
a non-recombinant biopharmaceutloals. (mostly vaccines and blood products)

Figure 1-1: Graph showing the number of large molecule/protein-based drugs ap-

proved by the FDA [25].
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drugs are chemically synthesized. Large molecule drugs are often produced through

ribosome transcription in a living bacteria, mammalian, or virus cell. Then these

proteins are purified from other cellular byproducts via liquid chromatography.

Differential scanning calorimetry (DSC), with respect to life sciences applications,

is primarily used as an analytic tool in the development and manufacture of biother-

apeutic drugs, which will be discussed in more detail in the following sections.

1.2 Calorimetry

Calorimetry is the measurement of heat. The earliest known calorimetry experiments

were conducted by Joseph Black in 1760 [39]. While calorimetry is a broad technique,

the following discussion will only address calorimetry as it has been applied to life

sciences. There are two basic calorimetry techniques that are employed within the

life sciences community: 1) isothermal titration calorimetry (ITC) and 2) differential

scanning calorimetry (DSC).

Isothermal titration calorimetry was first demonstrated in a physical device in

1981 by Spokane and Gill at the University of Colorado [27]. In a traditional experi-

ment, a potential drug compound (small or large molecule) is titrated into a solution,

which contains the target protein. Equation 1.1 describes the simple equilibrium re-

action. There are complex thermodynamic models that describe these reactions, but

the output of an ITC measurement is the direct measurement of the binding stoi-

chiometry, n; binding affinity or strength of the chemical bond, kd; and the enthalpy

of the reaction, h. From these parameters the entropy, S, and Gibbs free energy of

the reaction, AG, can be calculated [27]. ITC is typically used near the end of the

drug discovery phase of drug development to help researchers quantify the aforemen-

tioned attributes of the chemical reaction between the target protein and potential

drug candidate.

A+ B - AB+Q (1.1)

where A is a protein of interest, B is a potential drug (large or small molecule),

17



AB is the bound protein-drug complex, and Q is the heat produced from the reaction.

Differential scanning calorimetry for life sciences applications was first developed

in Russia by Privalov et al. in 1964 at the Institute of Protein Research [24]. In a

routine experiment, a protein solubilized in a buffer solution is scanned from 20-80 0C

and can be described by a simple equilibrium reaction (see Equation 1.2). Similar to

ITC, there are also complex thermodynamic equations that describe the unfolding of

these protein systems [5]. While Equation 1.2 shows a simple two-state transition,

it is possible for a protein to exhibit multiple transitions in the midst of a tempera-

ture ramp. Each state transition is experimentally characterized by a distinct peak.

Equation 1.3 contains the simplest expression for the thermodynamic equation that

describes the single protein unfolding domain, named a two-state model (folded and

unfolded states), and shown chemically in Equation 1.2.

A ;- A'+ Q (1.2)

where A' is a separate state of the protein A or the unfolded state of the protein.

KA(T)AHm~Cp(T) = KA(T)) 2 R2 (1.3)
(1 + KA(T) B2 RT 2
{f-IAd_ T )

KA(T) = e{RT TmA (1.4)

where HmA is the enthalpy of unfolding, R is the gas constant, T is the absolute

temperature, and TmnA is colloquially referred to as the melting temperature or more

formally the temperature at which 50% of the protein has unfolded.

Figure 1-2 displays a simple two-state simulated RNase A protein unfolding ex-

periment as described by Equation 1.3. It is common for calorimeter instruments

to be calibrated using resistive heaters to display the power produced from the heat

measurement. However, during data analysis, using non-linear least squares fitting

techniques, power is converted to specific heat using the first law of thermodynamics

(see Equation 1.7).

18
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AU = Q+AW (1.5)

(mCpT) = Rscan) +(0) (1.6)

PAT 

(

- mTRscan

where AU is the change in internal energy of the system, Q is the heat added to

the system, AW is work performed on the system, m is mass of the protein, C, is the

specific heat of the protein, T is the instantaneous temperature of the protein, P is

the power absorbed by the protein as it unfolds, AT is the temperature scan range,

and Rscan is the scan rate of the linear temperature ramp.

1.3 Calorimeter Instrument Development

As mentioned previously, calorimetry was first applied to the study of a biochemical

system in 1964 [241. Figure 1-3 shows a summary of the patents generated in the field

since this early work. The majority of the early work, from the 1960s through the

1980s, was performed in the Soviet Union. Beginning in the early 1980s additional

groups in the United States and Great Britain also began to develop calorimeters for

the study of biomolecular interactions.

Table 1.1 displays a list of calorimeters that have been developed over the past 30

years. The sensor type, volume, and sensitivity are values reported in the cited pa-

pers. The protein consumed and protein concentrations columns represent calculated

values based on RNase A protein (Sigma-Aldrich R5500) with a pH of 5.5, scanned at

200 0 C/hr, and a signal-to-noise ratio of 1000:1. Although different researchers used

different techniques to quantify the performance of their respective calorimeters, for

a course comparison this simplistic analysis should be sufficient. While researchers

often focus on volume and sensitivity, this comparison highlights some biochemical

limitations, namely protein concentration. Proteins are extremely difficult to solubi-

lize above 60 mM. These calculations suggest that many of these calorimeters would

20



Microcalorimetry Patents Patents by Country
40

35

30
* Russia

25 (USSR)

20 N United
States

15 Great Britain

10 MOther

5

0
1970s 1990s

1960s 1980s 2000s

Figure 1-3: Life sciences calorimetry patents by decade and country.

not be able to perform a successful DSC measurement because a sample could not be

prepared with a sufficient concentration such that it could be measured.

Figures 1-4 and 1-5 graphically display the information contained in Table 1.1.

In Figure 1-4 the x-axis represents cell volume and the y-axis represents calorimeter

sensitivity or noise threshold. Researchers often suggest that an ideal calorimeter

would lie in the lower left portion of the plot, with low cell volume and low short-

term noise. The author of this thesis does not dispute this proposition. However, this

ideal does not take into consideration any biochemical limitations. Figure 1-5 plots

the information to highlight those attributes that are important to a biochemical

scientist, namely protein concentration and protein consumed. The x-axis represnets

protein concentration and the y-axis represents protein consumed. Again, an ideal

calorimeter would fall in the lower left portion of the plot. However, note the red

vertical line in the plot at approximately 60 mM. This represents a conservative

solubility limit for proteins. At concentrations above 60 mM it is nearly impossible to

solubilize the protein. As a result, a scientist could not perform equilibrium protein

unfolding experiments in a system to the right of the red line in Figure 1-5. The

calorimeter described in this thesis is the only known calorimeter to the left of the
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Table 1.1: Literature survey summary of life-sciences focused calorimeters. Adapted and expanded from Lee et al. 2009 [17]

Group

McKinnon et al. 1984 [21]

Wiseman et al. 1989 [38]

Berger et al. 1996 [7]

Lerchener et al. 1999 [18]

Verhaegen et al. 2000 [31]

Johannessen et al. 2002 [15]

Zhang and Tadigadapa [41]

Chancellor et al. 2004 (cite!)

Wang et al. 2005 [36]

Baier et al. 2005 [6]

David and Hunter 2007 [9]

Recht et al. 2008 [26]

Wang et al. 2008 [34,35]

Xu et al. 2008 [40]

Lee et al. 2009 [17]

Lubbers and Baudenbacher 2011 [20]

Kopparthy et al. 2012 (cite!)

Wang and Lin 2012 [33]

McEuen 2013

GE Healthcare VP Capillary DSC

TA Instruments Nano DSC

Sensor Type

Thermopile

Bi-Te thermopile

Bimetallic cantilever

Al-Si thermopile

Al-Si thermopile

Au-Ni thermopile

Au-Si thermopile

Bi-Ti thermopile

Bi-Te thermopile

Bi-Sb thermopile

Liquid expansion

Si thermistor

Cr-Ni thermopile

Thermopile

Au-Ni thermopile

Bi-Sb thermopile

Bi-Sb thermopile

Bi-Sb thermopile

Bi-Te thermopile

Bi-Te thermopile

n/a

Volume

200 pL

1.4 mL

1 pL

6 [pL

100 pL

15 nL

15 nL

50 pL

n/a

6 pL

2 pL

500 nL

800 nL

5 nL

3.5 nL

2.5 nL

5 pL

1 pL

10 pL

135 pL

300 pL

Sensitivity

250 nW

20 nW

1 nW

50 nW

1 pW

13 nW

300 nW

150 nW

3 nW

30 nW

n/a

50 nW

50 nW

22 nW

4.2 nW

1 nW

n/a

10 nW

60 nW

30 nW

15 nW

Protein

Consumed

1 mg

100 pg

6 pg

300 pg

6 mg

70 pg

2 mg

800 Ig

n/a

200 pg

n/a

300 pg

300 pg

100 pg

20 pg

6 pg

n/a

60 pg

300 pg

200 pg

80 pg

Protein

Concentration

500 uM

6 pM

400 M

3 mM

4 mM

400 mM

8.2 M

1 kM

n/a

2 mM

n/a

40 mM

30 mM

1.8 M

500 mM

200 mM

n/a

4 mM

3 mM

90 PM

20 pM

Protein

Concentration

7 mg/mL

0.08 mg/mL

6 x 106 mg/mL

50 mg/mL

60 mg/mL

5000 mg/mL

100000 mg/mL

20x 106 Mg/mL

n/a

30 mg/mL

n/a

600 mg/mL

400 mg/mL

30000 mg/mL

7000 mg/mL

2000 mg/mL

n/a

60 mg/mL

30 mg/mL

1 mg/mL

0.3 mg/mL



red line that has also been designed with disposable materials that would cost less

than $10 for the disposable.

The remainder of this thesis will address the design and development of this new

potentially disposable calorimeter.

23



Survey of Life Sciences Focused Calorimeters: Research and Commercial

OVerhaegen et al. 2000

OZhang and Tadigandapa 2004
OMcKinnon et al. 1984

O Chancellor et al. 2004

OMcEuen 2013
OWang et al. 2008

O Lerchner et al. 1999
O Baier et al. 2000DGE Healthcare

OXu et al. 2008

OJohannessen et al. 2002
OWang and Lin 2012

O Wiseman et al. 1989
OTA Instruments

O Lee et al. 2009

10- O Berger et al. 1996 O Lubbers and Baudenbacher 2011

10 10
Calorimeter Volume [L]

Figure 1-4: Life-sciences focused calorimeter literature survey: sensitivity vs. cell volume
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Protein Consumption vs. Protein Concentration for RNase Protein Unfolding
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Chapter 2

Calorimeter Design

This chapter documents the design and construction of a potentially disposable differ-

ential scanning calorimeter (DSC). The chapter is divided into the following sections

to discuss the design and testing of the calorimeter.

" DSC System and Operation

" Cell Material Selection

" Fluid Handling

" Data Acquisition

e Calorimeter Design

Chapters 3 and 4 discuss calorimeter disturbance modeling and temperature con-

trol. These topics were separated from the present chapter so that they could be

discussed in greater detail.

2.1 DSC System and Operation

First, to familiarize the reader with the calorimetric system, Figures 2-1 and 2-2 show

its hardware and fluidic block diagrams. In addition, Table 2.1 contains details for

each block in the hardware and fluidic block diagrams.
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Table 2.1: Brief

Block Diagram Name

Real-time PC

A/D

D/A

Thermal actuator I amplifier

Temperature sensor I amplifier

Temperature sensor II amplifier

Thermal actuator I

Temperature sensor I

Thermal actuator II

Temperature sensor II

Syringe pump

Valve

Reference/sample cell

*RTOS - real-time operating system

description of hardware used in block diagrams, Figures 2-1 and 2-2

Hardware Part Number Comments

Speedgoat 4U ATX MathWorks xPC target RTOS*

General Standards PMC-66-18AI32SSC1M-16-18B 16 channel 18-bit A/D

General Standards PMC66-18AO8 8 channel 18-bit D/A

AE Techron LVC608 Low-noise linear amplifier

Custom design See Chapter 4

EM Electronics A1O 300 pV RMS, 1 second filter

TE Technology CH-38-1.0-0.8 17 W circular peltier

Heraeus 100485-4 Ni RTD 6720 ppm/ 0 C

Vishay Y1625100R000Q9R 100 Q 0.2 ppm/0 C 1206 resistor

Thermix OTT-65-1.3-140 65 junction Bi2Te3 thermopile

LabSmith SPS01 Programable 40 iL syringe pump

LabSmith AV201 3 port, 2 position rotary valve

Custom design See Section 2.5



Figure 2-1: Calorimeter hardware block diagram.

The basic operation of any biochemical DSC includes four simple steps: 1) sample

preparation, 2) sample loading, 3) temperature scan, and 4) data analysis. First a

buffer solution is prepared for the reference cell, and a protein solution is prepared

for the sample cell. It is important that the protein solution is prepared using the

same buffer as that prepared for the reference cell because the purpose of the DSC

is to measure the thermal events associated with the protein and not the thermal

events from variation in the buffers. It is standard biochemical practice to prepare

a buffer solution and then prepare the protein solution using buffer from the parent

solution. When this is not possible, a biochemist may dialyze the solutions to ensure

the buffers match. Lastly, it is common to degas the samples before loading them

into the instrument.

Next the buffer solution is manually or automatically loaded into the reference

cell. Likewise the protein solution is manually or automatically loaded into the sample

cell. Although the majority of protein systems unfold well before 1000 C, this is not
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Figure 2-2: Calorimeter fluidic block diagram.
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universally true. As a result, if the temperature scan range exceeds 1000 C, external

pressure, typically through an external nitrogen tank, must be applied to the reference

and sample cell. It is also common to perform a control experiment in which a buffer

solution is loaded into both the reference and sample cell. The DSC of this study

uses LabSmith hardware and software to automatically load samples (see Figure 2-2

and Table 2.1).

After the samples have been prepared and loaded, the instrument will cycle the

reference and sample cells over the temperature range of interest. A thermal actuator,

usually a peltier or resistive heater, heats the cells and a temperature sensor closes the

feedback loop. A typical scanning range starts at 20 0 C and stops at 80 0 C, performed

as a linear temperature ramp. Common scan rates span 50-200 0C/hr. While the

instrument throughput could be increased through faster scan rates, there is evidence

for some protein systems that at faster scan rates the protein unfolding kinetics

can become rate limiting. In addition, depending on the nature of the transition,

it is beneficial to scan slower to gain greater TM temperature resolution, especially

during a pre-formulation/formulation rank ordering study, as discussed in Chapter

1. The DSC of this study uses a single peltier device for heating and a Ni RTD for

temperature feedback (see 2-1 and Table 2.1).

Finally after the experimental data is collected, it is analyzed. If a control exper-

iment was performed, it is subtracted from the protein scan. Then a non-linear least

squares fitting algorithm fits a thermodynamic model to the data. Over time vari-

ous scientists have developed different thermodynamic models that describe protein

unfolding [5]. However, since these models have already been well established and

documented, this study does not explore them in detail.

Figure 2-3 displays a picture of the complete assembled calorimeter, including

automated fluid handling. The LabSmith fluidic components are located on the left;

there are three valves and two syringe pumps. The calorimeter is on the right and

encased in a large block of rigid foam insulation. There is a black heat sink on top of

the calorimeter that actively, via a fan, cools one side of the peltier device. Although

difficult to see in the picture, there are borosillicate tubes that enter the calorimeter
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Figure 2-3: Picture of PhD Calorimeter setup.

below the black heat sink.

2.2 Cell Material Selection

With respect to the cell material selection for this calorimeter, there are two main

requirements: 1) potential to be disposable and 2) bio-compatibility. Currently avail-

able commercial calorimeters (such as the VP Capillary DSC from GE Healthcare or

the Nano DSC from TA Instruments) have non-disposable fixed cells, tantalum for

the VP Capillary DSC and platinum for the Nano DSC. While there is a continual

effort to design a consumable element into any instrument platform as an additional

revenue source, in this case the driving force behind a disposable cell is technical

and not commercial. Since a typical DSC experiment will scan a temperature range

of 20-80 0C, an irreversible protein-which the majority of proteins are-will aggregate

and clog the fluidic pathway of the device. In addition to the increased time needed

to clean the cell, leftover aggregated protein can impact the data quality and bio-
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chemistry of subsequent experimental runs. This may potentially lead to incorrect

conclusions regarding the unfolding characteristics of said proteins.

There are several recent researchers who have developed sensitive calorimeters us-

ing MEMS fabrication techniques while citing disposability as a potential character-

istic of their devices [17,30,34]. However, with current manufacturing technologies it

would be difficult to produce and sell these devices for less than $10-20, which is about

the maximum amount a single-use disposable would fetch in a typical biochemical lab.

Currently there is one known company, Xensor Integration (http://www.xensor.nl),

that markets a MEMS based calorimeter sensor device, which depending on the model,

will cost roughly $150-250 per device. Since this price is indicative of the cost of a

MEMS based calorimeter sensor, it would be cost prohibitive to make it disposable.

As a result, a significant aim of this work was to find a potential method to make

a disposable calorimeter cell. Instead of using MEMS techniques and integrating

all of the critical calorimeter sensor elements such as heaters, sensors, fluidics, and

thermal isolation into a signal device, all these key elements were fixed except the

microfluidic cell. Therefore, manufacturing techniques such as injection molding and

hot embossing could be used to create an inexpensive microfluidic cell for pennies

per cell. While the results of this thesis demonstrate that an unintegrated polymer

microfluidic cell is capable of successfully performing DSC experiments, the technical

challenges regarding how to repeatably use a disposable polymer microfluidic cell in

a system were not the focus of this thesis. Thus polymer cells used for this thesis

where attached to the thermopile with a conductive adhesive tape from 3M (part

number 8805) and were not truly disposable. To the author's knowledge this is the

only calorimeter approach that has the potential to create a disposable cell platform

for less than $10-20 per cell.

The second important factor in cell material construction is bio-compatibility. It

is critical that any material that comes in contact with protein solutions not biochem-

ically alter the behavior of the biochemical system under study. Traditional material

selections include various stainless steel alloys. More recently, however, polyether

ether ketone (PEEK, an organic thermoplastic) and polyetherimides (PEI, also an or-
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ganic thermoplastic) are becoming more common in biochemistry labs. While it was

cost prohibitive to commission the tooling necessary to create injection molded parts

out of PEEK or PEI for this study, the bio-compatibility of a readily available, high-

temperature polycarbonate stereolithography resin analog, DSM Somos ProtoTherm

12120, was studies. As a result, monolithic microfluidic cells were designed and man-

ufactured using stereolithography techniques. This allowed rapid design iteration and

testing.

Since the purpose of this study did not include an in-depth biochemical study of

protein unfolding but rather the design and construction of a disposable calorimeter,

ribonuclease A (RNase A, Sigma Aldrich R5500) was chosen as the protein system to

gauge bio-compatibility and performance testing. A 0.06 mM RNase A solution was

prepared in a 50 mM potassium acetate buffer (KAc, Sigma Aldrich P-5708). Acetic

acid (Sigma Aldrich A-0808) was added to the buffer until a pH of 5.5 was measured.

These samples were prepared by the author's GE Healthcare colleague, Sheila Crofts.

Figures 2-4 and 2-5 show DSC scans of 0.06 mM RNase A with and without cured

DSM Somos ProtoTherm 12120 shavings in a GE Healthcare VP Capillary DSC.

While RNase A is one of the few known reversible proteins, it is not 100 percent

reversible. After each rescan, the signal generated by the protein unfolding event

became slightly smaller because of this irreversibility. Furthermore, both figures show

the same results: the size, shape, and location of the unfolding peak does not change

for both cases. Figure 2-4 does show some additional noise in the scans compared to

Figure 2-5. However, this is a known artifact and is due to particles being present

in the solution and not from any biochemical interaction. As a result, this data

demonstrates that there is not any detrimental effects between RNase A and cured

DSM Somos ProtoTherm 12120. Therefore, all polymer cells built in this study were

made from cured DSM Somos ProtoTherm 12120.
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Figure 2-4: Thirteen scans of RNase A protein and DSM Somos ProtoTherm 12120
shavings in a GE Healthcare VP Capillary DSC.
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Figure 2-5: Ten scans of RNase A protein in GE Healthcare VP Capillary DSC.
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2.3 Fluid Handling

Protein consumption, as discussed in Chapter 1, is one of the most important require-

ments of a biochemical calorimeter. The fluid handling platform for this study was

carefully considered to minimize the loss of precious protein sample as fluidic dead vol-

ume, sample that is not needed for the experiment. Many research calorimeter designs

fail to adequately address fluid handling. For example, there are several researchers

who have designed calorimeters with cell volumes less than 5 nL [7, 8,17, 20,40,41].

However, since calorimeter data is highly dependent on concentration, how does one

effectively integrate these sub 5 nL devices with academic, biotech, and pharma com-

pounds and compound libraries without significantly impacting the concentration due

to evaporation? It is difficult to do so, unless the dead volumes are large, potentially

hundreds of nanoliters. As a result, a key driver for a small volume cell, protein

consumption, is lost due to the large dead volume needed to interact with the device.

The cell volume of this device, 10 puL, was specifically chosen such that the fluidic

dead volume would be a fraction of the total volume. As detailed in Figure 2-2

and Table 2.1 all fluidic handling components were purchased from LabSmith. The

LabSmith hardware was controlled by a simple custom script generated within their

software. Figure 2-6 shows an image of the LabSmith software and custom script.

In addition, 360 pm OD x 100 pim ID borosilicate capillary tubing connected all of

the valves, syringe pumps, and cells. The total dead volume of the current prototype

setup is approximately 5 pL, where 4 piL are from the capillary tubing and 1 pL

is from the combined dead volume of all three valves. With a more refined design,

it should be possible to reduce the total dead volume to less than 2 pL. 12 p per

experiment is approximately 30-40 times less than commercially available instruments

with respect to the total amount of sample required for a single experiment. However,

this calorimeter is not as sensitive as these commercially available devices and so the

lower volume is only of benefit for high concentration studies such as those performed

in pre-formulation and formulation development as discussed in Chapter 1.
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Figure 2-6: LabSmith custom script that drives the syringe pumps and valves to
automatically load the calorimeter.
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2.4 Data Acquisition

Figure 2-7 displays a frequency domain comparison of several different data acquisi-

tion strategies. The Institute of Electrical and Electronics Engineers (IEEE) Stan-

dards 1057, IEEE Standard for Digitizing Waveform Recorders, and 1241, IEEE Stan-

dards for for Terminology and Test Methods for Analog-to-Digital Converters, docu-

ment several testing procedures to experimentally determine the dynamic range of an

analog-to-digital data acquisition system [2,3]. The recommended testing protocol in

IEEE Standard 1241 was followed. See Chapter 4, Figure 5 of the standard, to com-

pare the noise performance of four different data acquisition strategies: 1) an Agilent

34792A unit with an integration period of two power line cycles (PLC), 2) a Data

Translation DT9824 unit (24 bit delta-sigma A/D converters), 3) an 18-bit General

Standards (labeled as Speedgoat in Figure 2-7) PMC-66-18AI32SSC1M-16-18B card

sampled at 10 Hz, and 4) an 18-bit General Standards PMC-66-18AI32SSC1M-16-

18B card sampled at 40 kHz averaged (using a simple unweighted FIR filter) and

decimated to 10 Hz [3]. A 16-bit Agilent 33220A function generator was used to

generate a 50 mHz 9.95 V sine wave as the input to each of the four systems. It

should be noted that as recommended by the IEEE 1241 standard, a simple RC filter

(f = 2RC = 1 Hz) was inserted between the function generator and the data ac-

quisition system to more accurately quantify the noise of the data acquisition system

below the noise threshold of the sine wave source. Finally, to generate Figure 2-7 a

fast fourier transform (FFT) was calculated for 1024 points for each system using a

Hanning window.

A number of important observations can be made regarding the four different data

acquisition systems displayed in Figure 2-7. First, the apparent resonant peaks of the

Agilent 34972A setup are not an artifact. The test was run at a different sampling

frequency and similar peaks were present. The source of the peaks is unknown. Sec-

ond, an oversampled and averaged 18-bit successive approximation register (SAR)

data acquisition system is capable of nearly achieving the performance of a 24-bit

delta sigma data acquisition system. Both show more than six orders of magnitude of
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separation between the input 50 mHz 9.95 V sinusoidal waveform and the respective

data acquisition noise floor. This is equivalent to more than 20 bits of noise free

performance. Finally, while the DT9824 system was the most sensitive, the oversam-

pled and averaged 18-bit system was chosen for convenience. Speedgoat is a Swiss

company that provides a real-time data acquisition environment that seamlessly in-

tegrates with MATLAB and Simulink products from MathWorks. As a result, it was

faster to develop and perform real-time digital control loops with Speedgoat hardware

(i.e., 18 bit A/D and D/A boards described in Table 2.1). Except for the development

of a temperature control circuit, as described in Chapter 4, an oversampled and av-

eraged Speedgoat data acquisition system was used for the development and testing

of this differential scanning calorimeter.

2.5 Calorimeter Design

Temperature measurement is ubiquitous. Table 2.2 contains various temperature

measurement technologies and theoretical minimum sensitivities. The derivations of

the temperature sensitivities for thermistors, thermopiles, and RTDs are straight-

forward and can be found in several sensor measurement texts. As was mentioned

in Table 1.1, the majority of life sciences' specific calorimeters use thermopiles as

the fundamental sensing technology. This is not surprising considering that from a

fundamental temperature sensitivity limit, thermopiles are the second most sensitive

device in the table. A 65 junction bismuth-telluride, Bi2 Te3 , thermopile was chosen

from Thermix Ltd. as the sensing technology for this calorimeter.

While a liquid expansion technique shows more potential sensitivity, it would be

difficult to use in a scanning instrument. In order to increase the sensitivity of a

liquid expansion device the diameter of the fluid filled vessel must be small, 10-100s

of microns. David and Hunter built a liquid expansion calorimeter that achieved a

temperature sensitivity of 1 p0 C [9]. It should be noted that this device was setup in

an absolute, not differential manner. As a result, more than eight orders of magnitude

(1 p 0C-100 0C) of dynamic range would be necessary for this sensor technology to be
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Figure 2-8: Simple steady-state heat transfer calorimeter model.

used in a scanning calorimeter. Such a large dynamic range could be achieved with

an interferometer as was used in the published work. Unfortunately, in order to

measure the liquid expansion, a microscope objective lens was used to focus the laser

interferometer beam on the fluid meniscus. As a result, the working distance of

the objective lens chosen limits the dynamic range of the measurement considerably,

roughly 1 nm - 1 mm or six orders of magnitude. Therefore, with a similar setup, it

would not be possible to build a scanning calorimeter with this technique. However,

if a differential liquid expansion setup could be designed such that the dynamic range

is no longer limiting, a liquid expansion sensing technology could show tremendous

promise in future calorimeter designs.

After a thermopile sensor was chosen, a model was created to estimate the per-

formance of a thermopile based calorimeter. There are a number of examples of

calorimeter models that describe the equations that govern the performance of a

thermopile based calorimeter [12,34, 37]. The following derivation pulls ideas from

the cited papers above. Figure 2-8 shows a simple model of the performance of a

thermopile based calorimeter.

Equation 2.1 demonstrates how to calculate the temperature gradient produced

by a protein unfolding event.
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Table 2.2: Brief description of common temperature sensing technologies and theoretical minimum sensitivities.

Technology Theoretical Sensitivity [0 C] Fundamental Physics

Thermistor

Thermopile

RTD

Liquid expansion

Bimetallic

IC Thermometer

Quartz Thermometer

9x10-7

4x10-8

4 x 10-8
4x10-6

7x10 10

1 x 10-5

1 X10-7

1x 10-4-1x 10-6

TNoise 2RV4kSTRAf

T Vose 4kBTRTpdfTNoise nT

TNoise dRgT)'7
dT , Ts

TNoise - rDaL [9]

T =20(2 t4 +4E A E Bt3 B+6E AE Et2t2 +4E AEBt At2B+E2t4B
TNoise (X2

+ 6 2
)[6EAEBtAtB(tA+tB)(aA-aB)]

see p. 11-48 in [23]

[29]



AT = QRsen

where AT is the temperature gradient across the cells measured by the thermopile,

Q is the power produced by the protein unfolding, Rsen = is the thermal resistance

of the thermopile sensor, L is the distance through which heat flows, k is the thermal

conductivity of the material, and A is the cross sectional through which heat flows.

This simplistic equation assumes that the thermal resistance of the thermopile

sensor is much less than any other thermal resistance (i.e., thermal pathway) to

the outside world. Examples of other thermal pathways include: electrical leads for

resistive heaters that are attached to the cell, fluidic connections to the cells, and any

other conductive, convective, or radiative heat transfer pathway. To a limited degree

the designer has control over these additional thermal pathways and materials and

geometries can be chosen such that this assumption holds. For example, Lee et al.

used a mechanical vacuum pump in their calorimeter design to increase the thermal

resistance of a convective heat transfer pathway to ensure that the heat from the

experiment passed through the thermopile sensor [17].

Equation 2.2 links the temperature gradient across a thermopile to the self-

generated voltage of the thermopile as modeled by the Seebeck effect. It should

be noted that it includes a theoretical sensitivity limit due to Johnson noise of the

thermopile.

AV = nSAT + v4kBRElecAf (2.2)

where AV is the self-generated thermopile voltage, n is the number of thermocou-

ple junctions, S is the combined Seebeck coefficient of the material pair used in the

thermopile, kB is Boltzman's constant, T is the absolute temperature of the device,

RElec is the electrical impedance of the thermopile, and Af is the bandwidth of the

measurement.

Equation 2.4 combines Equations 2.1 and 2.2 and solves for the minimum de-

tectable power Qin.

44

(2.1)



QMin -V 4kBTREIecAf (2.3)
nS (6)

kAV4kBTRElecAf (2.4)
nSL

From a calorimeter design perspective, the goal should be to minimize QMin. How-

ever, it is important first to note that kB, T, and Af are essentially constant. Boltz-

man's constant, kB, is a measured value and cannot be changed by the designer. The

absolute temperature, T, is constrained by the calorimetry application; protein char-

acterizing calorimeters perform measurements in the maximum temperature range

of 10-150 0 C. As mentioned previously, however, most experiments are performed be-

tween 20-80 0 C. Finally, the measurement bandwidth is determined by the scan rate

used in the experiment. Because of studies that have shown protein unfolding kinetic

limitations above 2000 C/hr, a typical experiment may last between 30-60 minutes,

which is basically 0 Hz or DC. The upper limit is 1 Hz since protein transitions

occur over tens of seconds for fast protein unfolding transitions. As a result, the

measurement bandwidth is 1 Hz (i.e., Af = f2 - fi = 1Hz - 0Hz = 1Hz)

Therefore the designer has k, A, RElec, n, S, and L left to minimize Equation 2.4.

As mentioned in Section 2.2, this calorimeter design is intentionally separating the

microfluidic cells from the rest of the device and is not using MEMS techniques to

fabricate the device. As a result, while other researchers have had a great deal of

latitude in impacting the thermopile parameters above, this thesis was constrained

by the need to find an off-the-shelf thermopile sensor that minimized QMin [14,17,19,

33,34,40]. The Thermix Ltd. Bi 2Te3 thermopile sensor was chosen to minimize Qgin.

Table 2.3 contains values used in this thesis for the parameters in Equation 2.4.

Compared to previous measured values (see Table 1.1), this calculated value of 1.9

nW seems reasonable. Furthermore, for isothermal titration calorimeters (ITC) where

the experiments are performed at a constant temperature, this limit is starting to

become limiting [17]. However, for scanning calorimeters the author has not found

any evidence in the literature of a thermopile based calorimeter that is within one
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order of magnitude of this fundamental limit. This may be due to the dynamic nature

of performing a calorimetric experiment while ramping temperature. In addition,

those papers that discuss a measured power sensitivity close to the the theoretical

limit performed the experiment while thermostating at a constant temperature and

not during a temperature ramp. The device described in this thesis demonstrates

the same behavior: the calibrated short-term power noise is significantly less while

thermostating then during a scanning experiment.

Table 2.3: Realistic
Parameter
k
A
kB

T
REec

Af
n

S
L
QMin

parameter
Value
1.2
30 x 10-6
1.38x 10
350
24
1
64
200x 10-6
1x 10-3
1.9

values for Equation 2.4
Units

W/m-K
mn2

23 m2 kg/s 2 -K
K
Q
Hz
n/a
V/ 0 C
m

nW

As a result, since the thermopile sensor is not sensitivity limiting in a scan-

ning calorimeter, the major aim of this thesis, in addition to designing a disposable

calorimeter, is to understand how to minimize the impact of outside disturbances on

the measurement of protein unfolding. Chapters 3 and 4 detail how to model the in-

fluence of these outside disturbances and how to improve the noise on the temperature

ramp.
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Chapter 3

Modeling

3.1 Analytic Heat Transfer Model

Figure 3-1 contains an abstract transient heat transfer model to capture the transfer

function between the calorimeter base temperature and the temperature measured

across the thermopile sensor. Note that C refer to thermal capacitors Ri refer to

thermal resistors, and T refer to temperatures. Although in this simplified model,

the thermal capacitors of both cells are assumed to be equivalent, their transient

behavior is independent of one another. As a result, there are three independent

energy storage elements in this model: 1) the sample cell thermal capacity - C1, 2)

the reference cell thermal capacity - C1, and 3) the thermal capacity of the thermopile

sensor - C 2 .

Figure 3-2 contains a labeled circuit model; the Qi terms are heat fluxes. Equa-

tions 3.1-3.3 contain the governing differential equation for each independent energy

storage element.

dTR
2 = C1dt (3.1)

Q = ,dTs (3.2)
dt

d7 = C2 (3.3)
dt
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Figure 3-1: Transient heat transfer model abstraction from calorimeter hardware.
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C1 TB C1

Q5 Q2

Figure 3-2: Transient heat transfer network model for the calorimeter.
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where the subscripts R, S, T, and B refer to reference cell, sample cell, thermopile,

and base.

Use the thermal equivalent of Kirkoff's voltage law and Ohm's law to simplify

Equations 3.1-3.3.

dTR 1[( N11-- - -- +-I TR+- T + I-TB] (3.4)
dt C1 R1 R2 R2 R1

dTs 1 [ 1 1 T 1T 1T(35- = - - -- + I Ts+-ITT +1 TB] (3.5)dt C1 . R1 R3 R3 R1

dTT 1 [1 1 1 13i
-- = -- TR + 3TS - T (3- 0)dt C2 .R 2  R s R 2  R3

Now take Equations 3.4-3.6 and put into state-space form. Note that the desired

output is the difference between the reference and sample cell temperatures, y =

TR - Ts, since this represents the temperature measured and subsequently amplified

by the thermopile temperature sensor.

0T1 R [

To _1 1 1 + -1- T 0
. . _ R 2C2 C2 C R 2 C R 1 R 1C 1

y =R 1 - 1 0TT + 1 TB

1 T

In order to fit an experimental model to this system, the state-space form must

be converted into a continuous transfer function in the Laplace domain. Equation

3.7 displays the transfer function using the common state-space to transfer function

formula: H(s) = C (sI - A) 1 B + D, where A, B, C, and D are the state-space

matrices and I is the identity matrix.
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as
H(s) = s (3.7)

s3+ ks2 +JS +m

(C 2R1R 2 - C2R (38)
C2 C2R 2 R2RR

k CR1R2 +C1RR 3 + CC 2R1R 2 +C1C2R3  R3+2C1C2R1R2R 3
C2 C2R 2R2R3

(2ciRi + C2R1 + 2C1R1R 2 + 2C1 R1 R3 + C2 R2 R 3  (3.10)
C2 C2R 2R2R3

2R1~ +12+Rm = R2±R3 (3.11)
CYC2R1R2R3

(3.12)

This transfer function displays an interesting mathematical property. The formula

shows that if R 2 = R 3 , the calorimeter will fully attenuate any disturbances from the

base. Although not the topic of this thesis, part of the future work should be to

investigate what strategies can be used to ensure that R 2 and R3 are as close to each

other as possible.

In order to fit experimental data to this model, the inverse laplace of Equation

3.7 must be calculated. However, before proceeding knowledge regarding thermal

dynamic systems can be applied to simplify the potential mathematical cases for this

function. Unlike mechanical, electrical, and fluidic systems, there is no equivalent

inertial term in thermal systems. As a result, in an open loop thermal system reso-

nance cannot physically happen. In order for resonance to occur in a dynamic system

there must be both an inertial term and potential energy storage term. Therefore,

the transfer function in Equation 3.7 can be rewritten to factor the denominator into

real roots (i.e., resonance leads to complex roots). Equations 3.13-3.15 show the new

generic transfer function in the Laplace domain and the impulse response in the time

domain.
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as
H(s) = (3.13)

(s + b)(s + c)(s + d)
h(t) = -1 {H(s)} (3.14)

( be-bt cet de -t
= aI- + + 1 (3.15)

(b-c)(b-d) (b-c)(c -d) (b-d)(d -c)

where b, c, and d are real roots of the cubic polynomial in the denominator of the

transfer function.

With the derivation of an analytic heat transfer model, it is important to create

an experiment to verify the validity of said model. The next section describes a

linear stochastic test that was used to measure the impulse response function of the

calorimeter.

3.2 Linear Stochastic System Identification

There are several experimental methods to experimentally identify a dynamic system.

Linear stochastic system identification is one method that can be used to identify a

dynamic system. Figure 3-3 displays the experimental setup of the stochastic test

used for this calorimeter. A hard-limited stochastic signal was applied to the peltier

device, and the nickel RTD temperature and thermopile voltage were measured. The

thermopile voltage was converted to a temperature gradient across the thermopile

using Equation 3.16. The experiment was run for 5000 seconds.

AT = (3.16)
nSG

where AT is the temperature gradient across the thermopile, V is the amplified

thermopile voltage, n is the number of thermopile junctions, S is the thermopile

Seebeck coefficient, and G is the gain of the electronic thermopile amplifier.

The model in Figure 3-1 and Equation 3.15 shows the relationship between tem-

perature base input, Ni RTD, and thermopile output. As a result, when the impulse

response was calculated the Ni RTD signal was treated as the input (as opposed
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Figure 3-3: Linear stochastic system identification of calorimeter.

to the hard-limited peltier voltage input) and the thermopile voltage as the output.

The impulse response of this input output relationship was calculated using notes

from Professor Ian Hunter's MIT 2.131 Spring 2009 course notes [13]. Equation 3.17

calculates the impulse response function.

hEst = Fs (C cXX ) (3.17)

where hEst is the calculated impulse response function, Fs is the sampling fre-

quency, C is the inverse of a Toeplitz matrix of the input auto-correlation function,

and c., is the input-output cross-correlation function.

Now that a model has been created and a test to verify the model has been deter-

mined, the final section will discuss the non-linear least squares fit to the experimental

data.
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3.3 Non-Linear Least Squares Fitting

In order to verify the quality of the analytic model described in Section 3.1, it is

critical to fit the model against experimental data and compare it with calculated

values. Equations 3.18-3.20 show expressions for conductive and convective thermal

resistances and thermal capacitance.

L
RConduction = ~nuto (3.18)RkAoonductio

1
RConvection - hA onvection (3.19)

CThermal = pVCP (3.20)

where Rconduction is the conductive thermal resistance, RConvection is the convective

thermal resistance, CThermal is the thermal capacitance, L is the thickness through

which heat flows, k is is the thermal conductivity, AConduction is the cross-sectional

area through which heat flows, h is the convective coefficient, Aconvection is the surface

area through which convective heat flows, p is the density of the material, V is the

volume of the material, and Cp is the specific heat of the material.

Table 3.1 contains material and geometric properties of the calorimeter in ques-

tion. Many of these values are reported as ranges because those are values that are

reported by material manufacturers. Other then the geometric properties, which have

been verified by direct measurement, the material properties have not been directly

measured.

Equations 3.21-3.25 contain specific expressions for the calculation of the relevant

thermal resistors and capacitors of the PhD calorimeter.
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Table 3.1: Geometric and material
Parameter Value

Pwater 1000

PPolymer 1150
PBiTe 7700
PAIO 3950
CP,Water 4180
CP,Polymer 1200-2
CP,BiTe 154-54
CP,AlO 837-88
kpolymer 0.1-0.71
kTIM 0.6
h 5-25
VWater 10e-9
VPolymer 26e-9
VBiTe 26e-9
VAlO 26e-9
Aconvection 1.le-3
APolymer 30e-6
ATIM 30e-6
LTIM 125e-6
LPolymer 1.2e-3
RThermopile 100

properties of PhD Calorimeter.
Units

kg/m 3

kg/m 3

kg/n 3

kg/m3
J/kg-K

100 J/kg-K
:4 J/kg-K
0 J/kg-K

W/m-K
W/m-K
W/m 2-K
W/m-K
W/m-K
W/m-K
W/m-K
m2

m2

m2

K/W
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C1 PWaterVWaterCP,Water + PPolymerVPolymerCP,Poymer (3.21)

C 2  PBiTeViTeCP,BiTe + PAIOVAloCP,Aio (3.22)

R1 1 (3.23)
hAconvection

R2 RThermopile + LI + LPolymer (3.24)2 krimATim kpolymerAPolymer

R3 =R2 (3.25)

Figure 3-4 displays the estimated (non-parametric) impulse response, the fitted

(parametric) impulse response, and the impulse response using the state-space model

above with the fitted parameters. A non-linear least squares fitting algorithm was

used to fit Equation 3.15 to the experimental data discussed in Section 3.2. One

determination of the quality of fit is known as the variance-accounted-for (VAF).

Equation 3.26 calculates the VAF the model fitted to the estimate of impulse response

function generated through the linear stochastic system identification. The VAF in

Figure 3-4 is 96.8%. The state-space impulse response function was also plotted to

confirm that the time based impulse response function from the state-space dynamic

model description was calculated correctly (i.e., algebra check).

VAF = 100 1 - o (hmodel - hEst )2(

a- (hEst)
2

where o-(x) is the standard deviation operator, o-(x) = E_-J (Xi - t) 2 , [t is the

mean, hmodel is the fitted model impulse response function, and hEst is the estimated

impulse response function using linear stochastic system identification techniques.

Finally Table 3.2 compares the calculated model values with the fitted values

achieved during the fit performed in Figure 3-4. The fitted values, with the exception

of C1 and C2, fall within the calculated ranges, and even C1 and C2 are near the

predicted values. Although Equations 3.21-3.25 define the expressions for C1 and C2,

in a real system definitions of where C1 ends and C2 begins does not necessarily need

to match the definitions in Figure 3-1. In addition, a second plausible explanation
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Figure 3-4: Non-parametric, parametric, and state-space impulse response functions
for the calorimeter from Ni RTD input to Thermopile output.
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Table 3.2: Comparison between non-linear least squares fitted parameters and calcu-
lated parameters based on material and geometric properties of the calorimeter.

Parameter Fit Calculated Units
C1 0.072 0.078-0.110 J/K
C2 0.340 0.150-0.280 J/K
R1  81 36-180 K/W
R2 440 180-460 K/W
R 3  320 180-460 K/W

for the discrepancy of C1 and C2 from the fitted values may be due to the reported

material properties used in the calculation. Because the calculated values match the

fitted values so well, the analytic model can be used with greater confidence going

forward to improve the calorimeter design. This model points to two methods of

improving the disturbance rejection of the calorimeter: 1) better matching of R 2

and R 3 and 2) improved control of the base temperature TB. The improvement of

temperature control is discussed in the next chapter.
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Chapter 4

Temperature Control

To perform sensitive calorimeter measurements, it is important to precisely control

temperature. In choosing a temperature sensor for temperature control, three main

criteria were considered: 1) high linearity (to facilitate controller design), 2) sensi-

tivity, and 3) availability. From the list in Table 2.2, thermistors and RTDs were

investigated as potential feedback sensors for temperature control. While thermis-

tors are more sensitive than RTDs at room temperature, their significant non-linear

behavior complicates controller design over a large temperature range (20-80 0C). To

compensate for the relative lack of sensitivity, an RTD was chosen for the calorimeter

temperature feedback sensor. Ni RTDs have a temperature sensitivity that is roughly

twice that of the ubiquitous platinum RTD (6720 ppm/0 C vs. 3850 ppm/ 0 C). Be-

cause nickel easily oxidates at higher temperatures it has a reduced recommended

temperature range (-60-250 0C vs. -70-650 0 C). However, for this specific application

the sacrificed temperature operating range does not limit the performance of a bio-

chemical calorimeter.

There are two common ways to measure a resistance: 1) bridge circuit topology

and 2) current source topology. Both methods were explored in this work and are

described in the following sections.

59



R6

R5
R2

vs
R

C

Figure 4-1: Simple RTD bridge circuit diagram.

4.1 Two-Wire Bridge RTD

Figure 4-1 displays an analog circuit to measure the resistance change of RTD due to a

temperature change. While this is a simple circuit, a noise analysis was performed to

predict the potential sensitivity of the circuit. While a Ni RTD was ultimately chosen,

as mentioned above, for the temperature feedback sensor for this study, initially a

platinum RTD was used.

To estimate the noise of this circuit, first the noise of the bridge and instrumen-

tation amplifier stage was analyzed. Instrumentation amplifiers have four main noise

sources: 1) resistor noise, 2) current noise, 3) input noise, and 4) voltage noise [16].

Equation 4.1 demonstrates how to compute the resistor noise referred to one of the

inputs of the instrumentation amplifier, which has units of V/V/if .

VN,Res -V kBTREq (4.1)

where VN,Res is the instrumentation amplifier resistor input noise, kB is Boltz-

mann's constant (kB = 4.138 x 10-23 J/K), T is the absolute temperature in K, and

REq is the input impedance of the input of the instrumentation amplifier (the input

impedance of the positive input is R 2 //R 4 and R 1 //R 3 for the negative input).
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Hence, Equation 4.2 displays the total resistor noise referred to the instrumenta-

tion amplifier input, VT,Res for the instrumentation amplifier. This assumes the the

resistor noise is Gaussian and uncorrelated such that the sum of the resistor noise is

not the linear sum but rather the square root of the sum of the squares.

VT,Res = V/4kBT(Rl//R 3)) + (4kBT(R 2 //R 4)) (4.2)

Equation 4.3 calculates the current noise, VN,Cur for each instrumentation amplifier

input.

VN,Cur = REqN (4.3)

where iN is the current noise with units of A/v'H and typically found in the

instrumentation amplifier data sheet.

Similar to the total resistor noise referred to the input, the total current noise,

VT,Cur, is calculated in Equation 4.4

VT,Cur =" (( R1||Rs)iN)2 + ((R2/R)N (4.4)

The input voltage noise, VN,Input is typically listed in the instrumentation amplifier

data sheet. Likewise, the output voltage noise, VN,Output, is also listed in the data

sheet. To refer the noise to the input, divide by the gain of the amplifier, G. Therefore

the total noise in the bridge and instrumentation amplifier referred to the input,

VN,Total, is calculated in Equation 4.5.

VN,Total (VT,Res)2 + (VN,Cur) 2 + (vN,Input ) 2  VN,Output 2 (4.5)

This total noise number is the spectral noise and has units of V/V/ . A closer

examination of Equation 4.5 reveals that all of the terms with the exception of VN,Input

can be reduced through careful circuit design choices (i.e., smaller bridge resistors and

a large gain). As a result, a good design will have a total spectral noise that is close to

the input spectral noise of the amplifier. The second key piece to a low noise design is
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Figure 4-2: Spectral noise plots for two Texas Instrument instrumentation amplifiers,
INA 163 on the left and INA333 on the right.

the selection of the instrumentation amplifier. However, it is critical to consider the

shape of the spectral noise of the amplifier. Equation 4.6 calculates the root mean

squared (RMS) voltage noise, VN,Total-RMS, of the bridge and instrumentation amplifier

circuit.

VN,Total-RMS =N, (VTotal(f)) df (4.6)

where fi and f2 are the lower and upper measurement bandwidth frequencies.

Figure 4-2 contains two different spectral density plots for two different Texas

Instruments instrumentation amplifiers. Many amplifiers display 1/f noise at low

frequencies (as shown in the left spectral density plot of Figure 4-2), a noise whose

amplitude is inversely proportional to frequency. Because of Equation 4.6, in low

bandwidth applications, it is often desirable to choose a an amplifier that does not

exhibit any 1/f noise, such as that on the right in Figure 4-2. Even though Texas

Instruments INA333 has an input voltage spectral noise density of 50 nV/x/ii2, that

noise integrated from DC to 1 Hz is less than the integrated noise from the INA163

over the same bandwidth, despite a much lower reported input voltage spectral density

of 1 nV/ V .

Finally if the spectral density is constant in the bandwidth of interest, Equation

4.6 simplifies to Equation 4.7
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VN,Total-RMS = (KFilter f2 - fi) VN,Total (47)

where KFilter is a constant to account for the non-brickwall nature of the circuit's

filter. For a single pole filter, KFilter 1.57.

In addition to the noise analysis performed on the instrumentation amplifier, a

similar noise analysis can be performed on the non-inverting operational amplifier

stage. However, as long as the output referred noise (i.e., GVN,Tota1-RMS) of the in-

strumentation amplifier stage is 3-5 times greater than the input referred noise of

the non-inverting operational amplifier stage, one can ignore the noise contributions

of the non-inverting operational amplifier stage. Again this assumes that the noise

is Gaussian and uncorrelated such that these two noise sources sum as the square

root of the sum of the squares. As a result, if the prior stage's output noise is 3-5

times greater than the input noise of the next stage, the next stage will maximally

contribute only an additional 10% to the total noise; therefore, it can be neglected.

In this study the non-inverting operational amplifier stage was designed such that the

noise of the instrumentation amplifier stage would dominate.

Equation 4.8 calculates the total RMS noise at the A/D input. Similar to the

non-inverting operational amplifier stage, the data acquisition system was chosen

such that its noise was 3-5 less than the total noise of the RTD circuit.

VN,RTD-Circuit-RMS =G (1 + VN,Total-RMS (4.8)

where (I + is the gain of the non-inverting operational amplifier stage in

Figure 4-1.

Finally, now that the performance of the circuit can be modeled electrically, it is

important to connect the electrical noise to the estimated temperature noise. Equa-

tion 4.9 is the Callender-Van Dusen equation that relates the temperature of an RTD

to the resistance.

RRTD =fO (1 + AT+ BT 2) (4.9)
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where RRTD is the resistance of the RTD, Ro is the nominal resistance of the

RTD at a reference temperature (typically 00C), and A and B are experimentally

determined constants.

Differentiate Equation 4.9, ignore the higher order terms, and substitute into

Ohm's law. Then a relationship between voltage noise and temperature noise can be

determined (see Equation 4.12).

dRRTD
dT RoA (4.10)

AR VN,Total-RMS
I

(UN,Total-RMS
TNITN= (t ) (4.12)

Ro A

where I is the current through the RTD (I = R±,) and TN is the equivalent

temperature noise.

Figure 4-3 displays the results of a 24-hour test of the RTD bridge circuit. A

temperature stable 130 Q resistor (0.5 ppm/0 C) was used to simulate an RTD so

the noise performance of the circuit could be measured. The standard deviation was

calculated for each 1-hour run and varied between 15-25 uV (16 uV calculated - see

Table 4.1). The analysis performed above captured the short-term noise amplitude of

the circuit remarkably well. However, there is a significant long-term drift exhibited

by the circuit, which is even higher when people are present in the building. The

10 runs that demonstrate the least amount of long-term drift occurred between the

hours of 10 pm - 6 am. After an exhaustive search for the cause of the long-term

drift, the copper leads that connected the circuit to the RTD simulation resistor were

identified as the source.

A common technique to minimize the long-term drift that is due to the wire leads

is to implement a four-wire resistance measurement topology. The next section will

discuss a four-wire current source resistance measurement topology.
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Table 4.1: Component and calculated values of RTD bridge circuit. A Texas Instru-
ment INA333 was chosen for the instrumentation amplifier.

Parameter Value Units

Vs 2.048 V
R1 1000 Q
R 2  100 Q
R3 1000 Q
R 4  100 Q
R5  1000 Q
R 6  1000 Q
A 0.385 1/ 0 C

iN 100 fA/ /I-e
VN,Input 50 nV/V/l

VN,Output 200 nV/ /llz

G 100 n/a
KFilter 1.57 n/a

fi 0 (DC) Hz
f2 1 Hz
REq 107 Q
VT,Res 1.8 nV/ /III

VT,Cur 0.015 nV/ Vlls

VN,Total 50.1 nV//ill
VN,Total-RMS 79 nV RMS
VN,RTD-Circuit-RMS 16 pV RMS
TN 120 y 0C
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24 Hour Test, 2 Wire RTD Bridge Circuit, Data Translation 9824, Noise = 15 - 25 uV, RMS
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Figure 4-3: A 24-hour test, each 1-hour trace is mathematically offset from the pre-
vious trace, of the temperature stability of a two wire RTD bridge measurement

circuit.
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A/D
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Figure 4-4: Simple schematic of how to perform a four-wire resistance measurement
using a low-noise current source (see [28]).

4.2 Four-Wire Current Source RTD

Figure 4-4 displays a simple schematic for a four-wire current source resistance mea-

surement. As long as the input impedance of the voltage measurement is very high,

no current will flow through the measurement leads, and regardless of the resistance

changes due to temperature of those leads, there is no corresponding voltage drop.

As a result, the noise of the circuit is simple to calculate (see Equation 4.13)

VN,Cur RRTDiN,Cur (4.13)

where VN,Cur is the voltage noise of the measurement, RRTD is the resistance of the

RTD, and iN,Cur is the noise of the current source.

However, depending on the current source circuit implemented, it is difficult to

estimate the noise of the current source, iN,Cur. In addition, there are limitless cur-

rent source circuit topologies. After a literature search, a current source design was

adopted from a Burr-Brown (now part of Texas Instruments) application note [28].

Similar to the previous 24-hour RTD circuit test (see Figure 4-3), Figure 4-5
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24 Hour Test, RTD Current Source Drift, Data Translation 9824, Noise = 57-75 uV, RMS
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Figure 4-5: A 24-hour test, each 1-hour trace is mathematically

ous trace, of the temperature stability of a current source RTD
offset from the previ-
measurement circuit.

displays the results of a 24-hour circuit test for the four-wire current source RTD

measurement circuit. While the circuit does not exhibit any long-term drift as ex-

pected from a four-wire measurement, the short-term noise is significantly higher than

the previous two-wire bridge measurement.

In the next section, the combination of a bridge circuit with a four-wire measure-

ment will be addressed with the goal of high sensitivity, but low long-term drift.

4.3 Four-Wire Bridge RTD

Finally, to combine the sensitivity advantages of a bridge circuit design and the

minimal long-term drift advantages of a four-wire design, a hybrid four-wire bridge

topology was designed and tested. While this is not a new topology, it is uncommon.
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Figure 4-6: Hybrid circuit topology including bridge and four-wire characteristics.

Figure 4-7 contains a diagram of the bridge portion of the new circuit. A bridge

circuit amplifies the difference in voltage between the two legs of the bridge, which is

due to the resistance differences between the legs. However, common mode changes,

those changes that are common to both legs, will not be amplified. As a result, to

minimize/eliminate the impact of test lead resistance changes, due to temperature

fluctuations, one strategy is to ensure that both legs experience the same changes.

Therefore in the construction of this circuit, the leads leading to the RTD were made

of a four conductor twisted wire assembly, two to connect to the RTD, and two that

were soldered for continuity near the RTD.

In addition, a nickel RTD was implemented in the this hybrid circuit to further

increase the temperature sensitivity of the measurement. Since the sensitivity of the

a Ni RTD is about twice that of a Pt RTD, the gain of the instrumentation amplifier

was reduced from 100 to 50. As a result, the estimated noise of this noise circuit

was 8 pV RMS or 72 p 0C, not 16 ptV RMS or 120 t 0 C that was calculated for the

two-wire Pt RTD bridge circuit (see Table 4.1). Figure 4-7 displays the results of a

16-hour test, conducted in the same manner as the 24-hour test discussed previously.

Not surprisingly the new Ni RTD circuit is roughly two times more sensitive than the
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16 Hour Test, 4 Wire RTD Bridge Circuit, Data Translation 9824, Noise = 8-15 uV, RMS
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Figure 4-7: A 16-hour test, each
vious trace, of the temperature
circuit.
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1-hour trace is mathematically offset from the pre-
stability of a four-wire RTD bridge measurement

previous Pt RTD circuit. The long-term stability has also been significantly reduced.

While attempts to ensure that the leads were thermally coupled together as best as

possible, clearly it is not perfect since there is still some remaining long-term drift in

the circuit.

Table 4.2 summarizes the modeling and measured results for the three designed

RTD measurement circuits.

Now that a suitable temperature feedback sensor has been identified, the digital

Table 4.2: Summary of RTD modeled and experimental results.
Circuit Topology Modeled Value Measured Value

Two-wire Pt RTD bridge circuit 16 pV 18 ± 4.3pV
Four-wire current source Pt RTD circuit n/a 64 ± 5.7pV
Four-wire Ni RTD bridge circuit 8 pV 11 i 2.6pV
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10 Temperature Ramps from 20-80 deg C, 200 deg C/hr
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Figure 4-8: Ten calorimeter temperature ramps, 20-800C, at 2000C/hr

controller that was designed to perform the temperature ramp will be discussed.

4.4 Temperature Controller Design and Performance

A simple digital PID controller was used to control temperature in this calorimeter.

The PID controller was tuned using Ziegler-Nichols tuning methods [42]. Figure 4-

8 displays 10 temperature ramps from 20-800C, where were scanned at 200 deg/hr.

Before each scan was started the calorimeter thermostated at 20' C for 500 seconds.

In addition, scans 2-10 (scan 1 is the blue trace) required significantly more time to

return to 200 C. This is due to the subsequent runs cooling from the previous 800

ending temperature from the previous scan.

Figure 4-9 displays the -temperature error (command - measured) for Figure 4-

8. During the ramping phase of the scan, there is steady-state error. This is not
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10 Temperature Ramp Error Plots from 20-80 deg C, 200 deg C/hr
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Figure 4-9: Ten calorimeter temperature ramp error plots, 20-80 0 C, at 200 0C/hr. The

short-term temperature noise average is 406 p 0C.

surprising since a PID controller only has one integrator and in order to have zero

steady-state error during a ramp (that is controlling a first order system with no zeros)

a second integrator is needed. However, the temperature noise is of more interest than

the steady-state error in this application. The average short-term temperature noise

during the ramp portion of the signal for all 10 runs is 406 p0 C. This is roughly six

times greater than the estimated noise of the temperature sensor.

The next chapter will discuss the calorimetric results achieved in the final inte-

grated calorimeter.
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Chapter 5

Results and Future Work

5.1 Results

One of the goals of this thesis was to develop a calorimeter that is capable of measur-

ing a protein unfolding event with 10 pg of protein. As was mentioned in Section 2.2,

RNase A was the biochemical system used to verify the performance of the calorime-

ter. Figure 5-1 displays four separate RNase A runs at 100, 50, 25, and 12.5 mg/ml.

A control run was subtracted from each protein run, as discussed in Section 2.1. In

addition, a simple FIR filter processed each run. The last dilution, 12.5 mg/ml of

RNase A, is near the detection limit of the current device, and represents 125 pg

of protein consumed per experiment for the 10 pl cell. As is common with other

instruments and academic efforts, the performance of the device is limited more by

long-term drift than short-term noise. This is slightly more than 10 times less sensi-

tive than the original goal. However, this is the first known example of a system that

has the potential to be disposable, meaning that the cells could realistically be made

for less than a dollar per cell.

Figure 5-2 displays a similar RNase A dilution series as Figure 5-1 but with 10

repeats at each concentration. Although the long-term drift of these 40 experiments

is large, the data does demonstrate the repeatability of the entire calorimeter system

including the semi-automated fluid handling and temperature control. Part of the

long-term drift expressed in these results is mathematically induced. As discussed
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Figure 5-1: Summary of best results achieved on PhD Calorimeter. This plot contains
four concentrations of RNase A protein unfolding at 200 0C/hr.
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DSC Scans: RNase Dilution Series
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Figure 5-2: 40 repeat RNase A unfolding experiments: 10 at 100 mg/ml, 10 at 50
mg/ml, 10 at 25 mg/ml, and 10 at 12.5 mg/ml.

in Section 2.1, it is common practice to interleave control experiments between each

run for subtraction. In these tests, however, no control runs were introduced between

each protein run. As a result, a single control run was subtracted from all of the

protein runs. While this explains some of the long term drift, it also highlights a

long-term performance stability issue of the calorimeter.

5.2 Future Work

In a continuation of this work two main areas need to be addressed:

1. Now that the heat transfer model shows promise in capturing the transient

behavior of the calorimeter, it needs to be used to design a better calorimeter.
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2. While this study shows that disposable materials can be used in cell construc-

tion, additional work must be done to ensure that polymer cells can repeatably

be inserted into the calorimeter and generate consistent results.

Chapter 3 showed that an analytic heat transfer model captured more than 96%

of the measured impulse response function. In addition, Table 3.2 showed that non-

linear least squares fitted values were within or near the ranges predicted by the

analytic model. As a result, this model needs to be used with greater confidence

to design an improved calorimeter. With a clearer link between design input and

calorimeter performance, it may be possible to build a disposable device that con-

sumes less than 10 pg of protein per experiment. In addition to using the model,

it will become important to directly measure the material properties of the various

calorimeter components.

This study demonstrates the potential feasibility of using polymer materials in

calorimeter cell construction; it does not solve all of the remaining technical hurdles

required to measure the unfolding behavior of biochemical systems in a repeatable

fashion. For example, resistive heaters that are attached to the cell can be replaced by

non-contact heating technologies, such as infrared, laser, or inductive heat sources.

Also, to increase the reliability and repeatability of thermal interface between the

microfluidic cell and the thermopile sensor, a kinematic coupling could be used to

bring the two parts into direct contact.

5.3 Summary

In summary, there are two main contributions from this thesis: 1) the feasibility of

inexpensive disposable cells has been demonstrated and 2) an analytic heat transfer

model has been experimentally verified, which shows how ambient disturbances cor-

rupt the calorimetric measurement. There have been many calorimeters developed

that highlight disposability as a design feature. However, the costs of these calorime-

ters would be too high to be a consumable in an academic or industrial setting. This

thesis has shown a method to only make the calorimeter cells disposable, and these
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cells could potentially be produced less than one dollar per cell. While there are vari-

ous analytic models that describe how a calorimeter functions, this is the first known

study that models what prevents a scanning calorimeter from achieving the theoret-

ical minimum sensitivity for a thermopile. This model can now be used to better

understand what design elements can be changed to further improve the sensitivity

of scanning calorimeters.
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Appendix A

Calorimeter Source Code
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Listing A.1: Calorimeter control script

%% Calorimeter Control File

% Scott McEuen, 2013-04-08

close all;

clear all;

clc;

% input parameters

ThermostatTime = 500; % amount of time to wait before ramp

starts /sec]

%% load feedfoward control parameters into setup

% load ('D:\MA4TLAB\PhD\ Jacket Volt. mat');

load ( 'D: \MATLAB\PhD\ JacketVolt2 . mat');

TimeTable = PartTime; % comment out if using Jacket Volt. mat

%% Setup experiment

Fsi = 5350;

% Fsl = 5;

Fs2 = 5;

FIRLength = 1070;

% FIRLength = 1;

StopTime = 1100+ThermostatTime;

% StopTime = 500+ Thermostat Time;

NumExp = 20;

% % turn off DSC event through resistor

% DSConoff = 1;
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% big for loop to run multiple experiments

% preallocation memory

ShortAll = zeros (StopTime*Fs2 ,NumExp);

DPAll = zeros (StopTime*Fs2 ,NumExp);

JRTDAll = zeros (StopTime*Fs2 ,NumExp);

SRTDAll = zeros (StopTime*Fs2 ,NumExp);

JVoltAll = zeros(StopTime*Fs2,NumExp);

SVoltAll = zeros (StopTime*Fs2 ,NumExp);

RedTwistVoltAll = zeros (StopTime*Fs2 ,NumExp);

GreenTwistVoltAll = zeros(StopTime*Fs2,NumExp);

TimeAll = zeros (StopTime*Fs2 ,NunExp);

for i = 1:NumExp

% interleave 'buffer ' scan with 'protein ' scan

if mod(i ,2) = 0

DSConoff = 1;

DSConoff = 0;

else

DSConoff = 0;

end

% open target simulink models

open SimulinkPhDControl-v5;
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% compile and load target application on Speedgoat

rtwbuild ( 'SimulinkPhDControl-v5 ') ;

% start model and target application that sends workspace

variables to Speedgoat

tg.start;

pause (StopTime+5);

%% data unpacking from target machine

% Attach to the target PC file system.

f=xpctarget . fs ;

% Open the file, read the data, close the file.

h=fopen(f , 'data. dat ');

TargetData=fread(f ,h);

fclose (f ,h) ;

% Unpack the data.

HostData=readxpcfile (TargetData);

Short = HostData. data (: 1);

DP = HostData.data(: ,2);

JRTD = HostData. data(: ,3)

SRTD = HostData. data (: ,4)

JVolt = HostData. data (: , 5);

SVolt = HostData. data (: ,6);

RedTwistVolt = HostData. data(: ,7)

GreenTwistVolt = HostData. data (: ,8)
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SetTemp = HostData. data (: ,9);

Time = HostData.data(: 10);

%% save data

Location - '\\Microcal2\r&d\Scott\PhD\Data\'

SaveData = [Short DP JRTD SRTD JVolt SVolt RedTwistVolt

GreenTwistVolt SetTemp Time];

% create indetifying time stamp

Date = clock;

DateStr = [num2str(Date(1)) '-' num2str(Date(2)) '-'

num2str (Date (3) ) ] ;

Filename = [DateStr '_' num2str(Date(4)) '-' num2str(Date

(5)) '_PhDDSC' ] ;

% save data, be careful this will overwrite the same

filename

% data = [tg. TimeLog tg. OutputLog];

save ([ Location Filename '.mat'] , 'SaveData' , '-mat');

% save all data into large matrix

ShortAll(:,i) = HostData.data(:,1);

DPAll (: , i) = HostData. data (: ,2) ;

JRTDAll (:,i) = HostData. data (:,3);

SRTDAll(: i ) = HostData. data (:,4);

JVoltAll (: , i) = HostData. data(: ,5)

SVoltAll (: ,i)= HostData. data(: ,6)

RedTwistVoltAll (: , i) = HostData. data (: ,7);

GreenTwistVoltAll (: , i) = HostData. data (: ,8);
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SetTempAll (: , i) = HostData. data (: , 9)

TimeAll(:,i) HostData. data(:, 10);

end

%% land of plots

figure ;

plot(ShortAll(2:end,:)

title ( 'Short');

figure;

plot (DPAll (2:end,:)

title ( 'DP')

figure;

plot (JRTDAll(2:end,:) )

title ( 'JRTD')

figure;

plot (SRTDAll(2:end,:) );

title ( 'SRTD')

figure ;

plot (JVoltAll (2:end,:) )
title ( 'JVolt ')

figure;

plot (SVoltAll (2:end,:) )
title ( 'SVolt ') ;
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figure ;

plot (RedTwistVoltAll (2: end,:))

title ( 'RedTwistVolt ')

figure ;

plot (GreenTwistVolt All (2: end,: ) )

title ( 'GreenTwistVolt ')

figure;

plot (SetTempAll (2:end,:) -JRTDAll (2:end,:)

title ( 'SetTemp')

figure;

plot (TimeAll (2:end,:)

title ('Time') ;

Figures A-1, A-2, and A-3 show pictures of the Simulink model that controlled

my PhD calorimeter using a real-time computer.
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Figure A-1: Simulink model that controlled calorimeter through real-time target
computer.
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Listing B.1: Thermal model: non-linear least squares fitting

%% Symbolic Heat Transfer Model

% Scott McEuen, 2013-03-05

close

clear

cle;

all;

all;

%% Experimental System

%% PhD, Next Generation Analysis

% Scott McEuen, 2012-10-24

close all;

clear all;

cc;

% initialize variables

Fs = 5; % sampling frequency [Hz]

CorLen 4096;

n = 64;

A1OGain 10000;

SB = 200e-6;

%% Calculate impulse response

% load('\\ Microcal2\r&d\Scott\PhD\Data\2012-12-28-14-57

_PhDDSC. mat');

load( 'D: \MATLAB\PhD\Data\2012-12-28_14 -57_PhDDSC. mat');
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% load('\\ Miccrocal2\r&d\Scott\PhD\Data\2013-1-30_21-50_PhDDSC

.mat ') ;

Truncate = 2500;

Input SaveData (Truncate: end-Truncate ,5)

Output SaveData (Truncate :end-Truncate ,2) /(n*SB*A1OGain);

Output = -1*(Output - mean(Output));

Output2 = SaveData(Truncate:end-Truncate ,3)

Output2 = -1*(Output2 - mean(Output2)) ;

Time = SaveData(Truncate :end-Truncate ,8)

% Time = SaveData (Truncate: end- Truncate, 10);

Time = Time-Time (1);

% Calculate impusle response using system ID

[ImpulseTime,Impulse ,Freq,Mag, Phase] = SysIDFunction (Time,

Input ,Output , CorLen) ;

[ImpulseTime2 , Impulse2 , Freq2 , Mag2, Phase2] = SysIDFunction (

Time , Output2 , Output , CorLen);

FunImpulse = Impulse2 (4:1500) ;

FunTime = ImpulseTime2 (4:1500)

%% Fit system to experimental data

% condition data to remove first data point (i. e. , one second

time delay)

ImpulseTime = ImpulseTime (1: end-1);

Impulse = Impulse (2:end) ;
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S = fitoptions ( 'Method' , 'NonlinearLeastSquares ' , 'MaxIter ' ,1e6

'TolFun ' ,1 e -12, 'ToIX ' ,1 e -12) ;

% fit Voltage input to DP output (back-calculated to be

temperature not voltage)

fDP = fittype( 'a*(-b*exp(-b*x)/((b-c)*(b-d))+c*exp(-c*x)/((b-

c)*(c-d)))+d*exp(-d*x)/((b-d)*(d-c))) ','options ' ,S); % note

that x must be used as the independent variable

[cDP,gofDP] = fit (ImpulseTime , Impulse ,fDP, 'StartPoint

,[1/10000 1/50 1/500 1/2000])

DPFit = feval (cDP, ImpulseTime);

% fit RTD input to DP output (back-calculated to be

temperature not voltage)

fFun = fittype('a*(-b*exp(-b*x)/((b-c)*(b-d))+c*exp(-c*x)/((b

-c)* (c-d) )+d*exp(-d*x) /((b-d) *(d-c) ) ) ','options ', S) ; %1

note that x must be used as the independent variable

[cFun,gofFun] = fit (FunTime,FunImpulse,fFun, 'StartPoint'

,[0.25 0.05 0.001 0.5])

FunFit = feval(cFun,FunTime);

% f = fittyp e ('Heat TransferFit (x,C1, C2, R2, R3) ','options ',S);

f = fittype ( 'HeatTransferFit (x,C1,C2,R1,R2,R3) ','options ' ,S)

% f = fittype ('HeatTransferFit(x,C2,R1,R2,R3) ','options ',S);

% [c,gof] = fit(FunTime,FunImpulse,f, 'StartPoint ',[100e-3 90e

-3 800 1001)

[c,gof] = fit (FunTime,FunImpulse,f , 'StartPoint' ,[100e-3 90e-3

800 500 500] , 'Lower' ,[le-3 le-3 10 10 10] , 'Upper' ,[1 1

2500 2500 2500])
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% [c, gof] = f it (FunTime, FunImpulse, f, 'StartPoint ', [50e-3 1000

200 150])

DidItWork = feval(c,FunTime);

% calculate the variance accounted for in the model

DPVAF = VAF(Impulse , DPFit)

%% Create Plant Model (based on fit above)

s = tf('s');

% continuous domian model

Plant = cDP.a*s/((s+cDP.b)*(s+cDP.c)*(s+cDP.d));

PlantFun = cFun .a*s /((s+cFun. b) *(s+cFun. c) *(s+cFun. d));

%% Numeric System Number 2

Cap1 = c. C1;

Cap2 = c. C2;

Res1 = c.R1;

Res2 = c.R2;

Res3 = c.R3;

A = [-1/Cap1*(1/Res1+1/Res2) 0 1/(Res2*Capl)

0 -1/Cap1*(1/Res1+1/Res3) 1/(Res3*Capl) ;

1/(Res2*Cap2) 1/(Res3*Cap2) -1/Cap2*(1/Res2+1/Res3) ];

B = [1/(Resl*Capl)

1/(Resl*Capl)

0];

C= [1 -1 0];

93



D = [0];

Sys ss(A,BC,D);

[y,t] = impulse (Sys) ;

%% Variables

% calculate C1, cells + water

RhoWater = 1000;

RhoCell 1150; % from DSM Somos 12120 data sheet , www.

dsmsomos. com

VolWater = 10e-9;

VolCell 6e-3*5e -3*1.2e-3-VolWater;

CpWater = 4180; % J/kg-K

CpCell 2100; % 1200-2100 J/kg-K, 10% glass filled

polycarbonate at www. matweb.com

C1Cal = RhoWater*VolWater*CpWater+RhoCell*VolCell*CpCell;

% calculate C2, sensor

RhoBiTe 7700; % google search

RhoAlO 3950; % google search

VolBiTe = 65*2*1.3e-3*500e-6^2;

VolAlO = 2*5e-3*6e-3*500e-6;

CpBiTe = 154; % 154-544 http ://www. customthermoelectric . com/

MaterialProperties. htm

CpAlO = 837; % 837 - 880, matweb http ://www.

customthermoelectric . com/MaterialProperties . htm

C2Cal = RhoBiTe*VolBiTe*CpBiTe+RhoAlO*VolAlO*CpAlO;
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% calculate RI

LStem = 4e-3;

AStem = 1.2e-3^2;

kCell = 0.6; %0.1-0.6 W/m-Kwww.matweb.com for 10% glass

filled polycarbonate

hCell = 5; %5-25 W/m^2-K convective heat transfer coefficient

, natural convection

SACell = (2*pi*10e-3^2+pi*20e-3*25.4e-3)/2; % surface area

for heat transfer coefficeint half of surface area for one

side

% ACell = 5e-3*6c-3; % surface area for heat transfer

coefficeint half of surface area for one side

RICalCond = LStem/(kCell*AStem) /2;

RlCalConv = 1/(hCell*SACell);

% calculate R2, R3 - assume that kCell is kWater -

basically true

RSensor = 100;

kTape = 0.60; % 3M 8805 thermally conductive tape

LTape = 125e-6; % thickness

ATape = 5e-3*6e-3; % tape area

LCell = 0.6e-3; % 0.6-1.2e-3 m

ACell = ATape;

R2Cal = RSensor/2+LTape/ (kTape*ATape)+LCell /(kCell*ACell);

%% Land of plots

figure;

plot (Time,Input);

title ( 'Hardlimited Stochastic Input ')
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xlabel( 'Time [ see ] ') ;

ylabel( 'Peltier Voltage [V]');

figure ;

plot (Time, Output);

title ( 'Temperature Gradient Across Thermopile ')

xlabel( 'Time [ see ] ') ;

ylabel ('Temperature [deg C] ')

figure;

plot (Time, Output2);

title ('Absolute Temperature of Silver Base');

xlabel( 'Time [ see ] ') ;

ylabel 'Temperature [deg C] ')

figure ;

plot (ImpulseTime , Impulse);

t it le ( 'Impulse Response');

figure;

plot (ImpulseTime2 , Impulse2)

title ( 'Impulse Response 2');

figure;

plot (ImpulseTime, Impulse

xlabel( 'Time [ see ] ') ;

ylabel( 'Temperature [deg

title('Linear Stochastic

= 98.9% ') ;

,ImpulseTime ,DPFit);

C] ') ;

SysID: Fitted Impulse Response, VAF
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legend( 'Experimental' , 'Fitted: zero at origin , three real

poles ' , 'Location ' , 'NorthEast ')

figure ;

plot (FunTime , FunImpulse , FunTime, FunFit);

title ( 'Fun');

FunVAF = VAF(FunImpulse , DidItWork)

figure;

plot (FunTime, DidItWork, '-or ' ,FunTime , FunImpulse , 'b' ,t , y, '-g*'

)
title ('Analytic Fit of Experimental Stochastic System

Identification ')

xlabel( 'Time [ sec ')

ylabel 'Temperature [deg C] ')

legend( 'Analytic Heat Transfer Fitted Model' , 'Calculated

Impulse Response ' , 'State -Space Model') ;

Listing B.2: Fitting function called from main thermal model script

function [y] = HeatTransferFit (x ,C1, C2,R1,R2,R3)

% finds solutions to cubic polynomial for heat transfer

fitting model

a3 = 1;

a2 = (1/(C2*R3) +1/(C2*R2)+1/(C1*R3) +1/(C1*R2) +2/(C1*R1))

al = (2/(C1*C2*R2*R3)+1/(C1^2*R2*R3)+2/(C1*C2*R1*R3)+2/(C1*C2

*R1*R2)+1/(C1^2*R1*R3)+1/(C1^2*R1*R2)+1/(C1^2*R1^ 2));

aO = (2/(C1^2*C2*R1*R2*R3)+1/(C1^2*C2*R1^2*R3)+1/(C1^2*C2*R1

^2*R2));
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Q = sqrt((2*a2^3-9*a3*a2*a+27*a3^2*aO)^2-4*(a2^2-3*a3*al)^3)

C = (0. 5* (Q+2*a2^3-9*a3*a2*al+27*a3^2*aO) ^(1/3);

% calculate real roots of cubic equation

r1 = -a2/(3*a3)-C/(3*a3)-(a2^2-3*a3*al)/(3*a3*C);

r2 = -a2/(3*a3)+C*(1+i*sqrt(3))/(6*a3)+(1-i*sqrt(3))*(a2^2-3*

a3*al ) /(6*a3*C) ;

r3 = -a2/(3*a3)+C*(1-i*sqrt(3))/(6*a3)+(1+i*sqrt(3))*(a2^2-3*

a3*al ) /(6*a3*C)

r1 = real(rl);

r2 = real(r2);

r3 = real(r3);

a (1/(C1^2*R1*R3) -1/(C1^2*R1*R2))

b = -r1;

c -r2;

d = -r3;

% fitted impluse response function

y = a*(-b*exp(-b*x)/((b-c)*(b-d))+c*exp(-c*x)/((b-c)*(c-d))+d

*exp(-d*x) /((b-d) *(d-c)));

end

Listing B.3: Calculation of impulse response using linear system ID techniques

function [ ImpulseTime , Impulse , Freq , Mag, Phase] = SysIDFunction

(Time, Input , Output , CorLen)

% Purpose of Function:
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% 1. Experimentally determine the impulse reponse of

component, system,

% etc.

% Author: Scott McEuen

% Date: 2011-08-27, converted to function on 2012-03-19

% Technical Reference: Prof. Hunter's Electro-Mechanical

System: Stochastic

% Binary Input 2.131 notes

% comments

% 1. NO MORE- Use Agilent

% 2. NO MORE - Channel 102

(34972A) for system ID

% 3. NO MORE - Channel 305

(34972A) for system ID

% 4. This will now be done

34 972A

is deditcated as analog input

is dedicated as analog output

with the new Speedgoat hardware

% inputs

% 1. Time [sec] - time vector from Simulink

% 2. Input [V] - hard-limited random signal from Simulink

% 3. Output [n/a] - measured output from Simulink

% 4. CorLen [n/a] - number of points in non-parameterized

impulse

% outputs
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% 1.

% 2.

% 3.

% 4.

% 5.

ImpulseTime [sec] - time vector for impulse response

Impulse [n/a] - impusle response vector

Freq [Hz] - frequency domain frequency vector

Mag [n/a] - magnitude response

Phase [deg] - phase reponse

%% preliminary data preparation

Fs = 1/mean(diff(Time));

% Fs = 1;

% Output = Output - mean(Output);

%% System ID: Time Domain (2.131 notes)

% perform correlations

[cxx,lagsxx] = xcorr(Input);

cxx = cxx (find (lagsxx==O): find (lagsxx==)+CorLen-1);

[cxy,lagsxy) = xcorr(Output,Input);

exy = Cxy (find (lagsxy==O): find (lagsxy==0)+CorLen-1);

% form Toeplitz matrix

Cxx = toeplitz (cxx) ;

% estimate impulse response

% Impulse = 1/Fs*(Cxx\cxy(1: length (cxx)));

Impulse = Fs.*(Cxx\cxy(1:length(cxx))); % this is the correct

formula! Fs.* not 1/Fs.*

ImpulseTime = (0:1 /Fs: length (Impulse) /Fs-1/Fs) ';
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%% System ID: Frequency Domain (MATLAB's tfestimate)

% [H,FreqRad] = tfestimate (Input, Output,[],[],[] ,Fs);

[H,FreqRad] = tfestimate(Input ,Output);

Freq = FreqRad*Fs/(2*pi);

% Freq = FreqRad/(2* pi);

Mag = abs (H) ;

Phase = 180/pi*unwrap(angle(H));

end
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During the development work of this thesis, four main prototype systems were

built (see Figures C-1-C-4). In addition, two iterations were made on the first pro-

totype, Figure C-1, and the third prototype, Figure C-3. The data presented in this

thesis was produced entirely by the second iteration of the third prototype. A brief

description of each prototype will be provided below.

Virtually all of the thermopile based calorimeters listed in Table 1.1 are setup in a

twinned or matched reference and sample cell design. However, other than qualitative

symmetry arguments the literature does not model or predict the performance of

such a design. As a result, the main goal of the first prototype, Figure C-1, was to

understand the performance ramifications of a single cell design. A single cell design

is significantly easier to manufacture than a twinned cell design. Furthermore, the

cell was made from three separate 316 stainless pieces. The pieces were cut on a micro

water-jet and then joined with adhesive. The cell was designed such that conductive

heat transfer would dominate. However, the performance of this prototype was not

sufficient to proceed further.

The main goal of the second prototype, Figure C-2 was to minimize the influence

of ambient temperature disturbances on the calorimetric measurement. In the picture

there are two main center square features that hold two separate thermopile senors

between the sample and reference cell. The idea was to use the middle square as

an active heat transfer shunt to maintain the temperature gradient across the top

square as close to zero as possible. Unfortunately, similar to the first prototype, the

performance of this system did not justify additional refinement.

As mentioned previously, the third prototype, Figure C-3, created all of the ex-

perimental data in this thesis. A simple twinned design built with disposable stere-

olithography microfluidic cells was used to perform the RNase A protein experiments

documented in Figures 5-1-5-2. Note that the geometry characteristics of the cell

are similar to the first prototype. The intention of the design was to ensure that

conduction was the dominant heat transfer pathway. However, the author failed to

recalculate the appropriate geometric sizes considering the thermal properties of the

polymer instead of 316 stainless. Notice the similarity in the geometric design fea-
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Figure C-1: First generation prototype calorimeter.

tures of prototypes one and three. As a result, while validating the model discussed

in Section 3.3, initially the fitted thermal resistances appeared too low for the cal-

culated values. This was due to an incorrect assumption that conduction was the

dominant heat transfer mode. However, after convective resistances were calculated,

they matched the fitted experimental results.

The fourth prototype, Figure C-4 is still being built. In has a similar design to the

third prototype except geometry has been changed to try and ensure that conduction

is the dominant heat transfer pathway. The purpose of designing for only conductive

heat transfer is to minimize the impact of ambient disturbances through a leakage

path that is not controlled through temperature feedback control.
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Figure C-2: Second generation prototype calorimeter.
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Figure C-3: Third generation prototype calorimeter.
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Figure C-4: Fourth generation prototype calorimeter.
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