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Abstract

Microfluidic technologies show great promise in simplifying and speeding biological,
medical, and fluidic tasks, but transitioning these technologies from a laboratory
environment to a production environment has proven difficult. This work focuses
on hot embossing as a process suitable to produce these devices. In this work, a
precision micro-embossing machine capable of maintaining precise setpoints in force
and temperature input as well as displaying highly linear, repeatable motion and
force application is developed and characterized. Additionally, this equipment is then
outfitted with additional sensors that allow for three measurements relevant to process
physics and product quality to be captured: initial substrate geometry; substrate bulk
deformation; and glass transition temperature of the material. These measurements
can be captured in-process without modifying the production cycle. The end goal is
to incorporate this precision micro-embossing machine into a micro-factory cell and
to implement closed-loop cycle-to-cycle process control.
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Chapter 1

Introduction

1.1 Microfluidic Devices

Microfluidic technologies are a recent development that show great promise in sim-

plifying and facilitating various fluidic tasks such as biological assays, polymerase

chain reaction (PCR), cell sorting, and more. As detailed by George Whitesides [1],

“[i]t is the science and technology of systems that process or manipulate small (10−9

to 10−18 litres) amounts of fluids, using channels with dimensions of tens to hun-

dreds of micrometers.” An example of one of these devices is shown in Figure 1-1,

in which complex networks of channels used to route fluid are demonstrated. At

this scale, individual cells and even large molecules can be manipulated using droplet

mechanics and electromagnetic fields. Very small quantities of potentially expensive

reactants are required to complete procedures with volumes of this order of magni-

tude. Additionally, the size and cost of a microfluidic device is intentionally minimal,

circumventing the expense and bulk of full lab test setups. In sum, these devices

are an attractive product, in particular for the medical field, and an area of active

research development.

Typically, laboratory-scale fabrication of microfluidic device designs is done by

casting a two-part soft polymer, polydimethyl siloxane (PDMS), onto a featured sur-

face, typically patterned using conventional photolithography techniques. PDMS is

capable of conforming to even nanoscale features, making it ideal for replicating a
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Figure 1-1: Example of a Microfluidic Device: This diagnostic device performs sand-
wich immunoassays. The tiny screws act as manual valves, and the assays are done
in the complex networks of channels. [1]

Figure 1-2: Nanoscale features in PDMS: This figure shows images of molds created
by casting PDMS onto self-assembled polystyrene structures, and then again casting
PDMS into the resulting negative. Note the feature replication down to the scale of
100nm. [17]
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finely textured master; in Figure 1-2, an example of the level of fidelity of replication

is shown. The PDMS, which now forms three of the four walls of the enclosed chan-

nel, is then often plasma treated to change its surface energy and bonded to a glass

backplane, thus sealing and completing a device [2].

However, PDMS has several disadvantages as an engineering material; though

temperature resistant, it tends to become brittle with age or long-term exposure to

heat. It has poor dimensional stability and has a tendency to absorb certain solvents

such as hexanes as well as small biologically interesting molecules such as estrogen

[3]. And finally, the two-part casting process does not easily lend itself to automated

mass manufacture. To this end, investigating alternative materials and means of

fabricating these devices from them is a topic of interest.

The next logical step for high-volume production of these devices, then, is to move

to hard thermoplastics conventionally used for mass production of low-cost compo-

nents and products, such as cyclic oleifin polymers (COPs) or polymethylmethacrylate

(PMMA). However, the best method to use these materials to produce microfluidic

devices is still under investigation.

1.2 Fabrication of Microfluidic Devices

There exist several methods currently practiced in the state of the art to fabricate mi-

crofluidic devices out of hard polymers. The option to utilize serial material removal

processes such as directly micromachining or laser engraving channels into substrates

is one possibility. In micromachining, a tool tip is used to remove material by shear-

ing it away. Diamond turning is capable of producing molds with features sizes of

10µm and surface roughnesses of 1µm but is not well suited for smaller geometries.

Additionally, for repeated geometries over a large area, micromachining is a very slow

process [2].

Direct laser ablation is another choice, in which a focused laser beam causes the

polymer to selectively vaporize in the area of focus. Using photolithography tech-

niques, micro and nanopatterns with very high resolution can be obtained. However,
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melting occurs in the areas bordering the resulting cavity, and many polymers suit-

able for microfluidic device production are not suitable for laser ablation. In addition,

this process is low-throughput, as it is also a serial process [2].

Another possibility is to use injection molding to create devices. The hard thermo-

plastics used in injection molding are preferable for mass manufacturing due to their

dimensional stability, temperature resistance, and low cost. There are some difficul-

ties associated with using injection molding to replicate such small features, however;

because of their microscale size, if the mold temperature is lower than the melting

point of the polymer, the polymer can thicken or solidify and fail to fill microscale

features in the mold, especially those of high aspect ratios. By using heated molds

and careful process optimization, injection molding can result in acceptable levels of

feature replication on the microscale, which is of the greatest interest to microfluidic

device developers [4]. However, the tooling and production capital costs associated

with injection molding capability, in particular with molds containing microscale fea-

tures, is high compared to other processes. This means that for a very large quantity

of devices, injection molding is economical; however, it is an undesirable option for

the purpose of producing smaller volumes of devices, or for situations in which the

microfluidic device design may be revised (thus requiring a new mold insert, or pos-

sibly an entirely new mold, to be fabricated) [5].

Nanoimprint lithography is another technique currently proposed. In this tech-

nique, a patterned mold is first pressed into a resist on a backing substrate to impart

micro- or nano-structures; the resist is developed; and then a material removal tech-

nique such as reactive ion etching is used to remove any residual resist. Success has

been reported in utilizing this technique to pattern large areas, but it has yet to be

demonstrated as a manufacturing scale technique [2].

Ultraviolet imprinting is another available technique. In this technique, a fluid

polymer is allowed to flow into the shape of a mold, and then is exposed to ultra-

violet light to harden and cure it. UV imprinting requires a mold transparent to

ultraviolet light, such as one made of quartz or certain polymers [6]. However, the

mechanical and manufacturing demands of nanoimprint lithography can be similar
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to that of conventional lithography, making it a relatively expensive process for the

production of what are intended to be low-cost devices [7].

1.3 Hot Embossing

Hot embossing is a process that addresses the high-flexibility, low-cost, medium-

volume niche. It is a parallel process like injection molding; however, the equipment

and tooling demands are simpler and lower-cost. The cycle time required to produce

one part is generally longer due to the need to individually heat each blank substrate,

but embossing results in a similar level of fidelity in feature replication as injection

molding, with the potential to mold higher aspect ratio features [4]. Plus, because

the polymer is only superficially flowed into the mold microstructures, only small

residual stresses are produced in the part, making hot embossing both less damaging

to molding tools, capable of forming more complex or delicate structures, and suitable

for producing optical components such as waveguides [5]. Additionally, producing

stamping tools is on par with producing inserts for plastic injection molding, and

setup time to exchange tools and adjust machine parameters is shorter, as embossing

machines are simple and require few modifications [5].

Thus, the hot embossing process provides a fabrication technique addressing the

needs of devices designers who might need to rapidly iterate designs as they port

a soft-polymer device to a hard-polymer form; of researchers who might want to

produce a limited but consequential number of devices for a large-scale study; or of

producers looking for options requiring low capital investment [5]. But, hot embossing

is not limited to these environments; the process capabilities are similar or beyond

those of injection molding, and the capital equipment required for production is lower

cost and suitable for parallelization: hot embossing is a completely feasible process

to be employed on a mass production scale. However, perhaps due to a widespread

lack of understanding of the process physics and especially of commercially equipment

suitable for industrial microembossing, and the process remains a path less frequently

tread for industrial production of microfluidic devices. The work completed in this re-

25



search project seeks to demonstrate that the hot embossing process is in fact an equal

or superior industrial scale process to injection molding for certain device designs.

In the hot embossing process, a hard, amorphous polymer is heated until it passes

its glass transition temperature, becoming soft and malleable. A patterned tool is

then pressed into the polymer, creating regions of high pressure that induce flow of

the polymer. This flow is dependent on the viscoplastic properties of the polymer

(determined by the material and the temperature), the induced pressures, and the

rate at which the stamp is driven into the substrate. After sufficient formation has

occurred, the polymer may then be cooled while still engaging the tool, freezing its

molecular structure in place, as shown in Figure 1-3. Finally, the tool is withdrawn

from the imprinted polymer in a step called demolding. The physical process of hot

embossing is further detailed in Chapter 2.

1.4 Equipment Needs and State of the Art

Traditionally, hot embossing had not been applied to precision applications such as

the fabrication of microfluidic devices. There exist, then, few available off-the-shelf

solutions intended to perform precision hot embossing.

Industrial hot embossing machines do exist, but are primarily targeted at creat-

ing macroscale embossed patterns in various materials, including leather, foils, and

polymers [24]. But, these machine shop floor products are not intended for use in

creating products with microscale precision.

Laminating machines are another tool co-opted for use in hot embossing. Lami-

nating machines essentially apply heat and pressure to flat materials passed between

two rollers. In work performed by Jeon and Kamm, successful embossing was per-

formed using a laminator—but required an entire hour to be completed [8].

More specialized solutions from industry are available, such as those from EV

Group. The EVG 750 consists of a fully automated system with cassettes for unformed

substrates, temperature capabilities up to 220◦C and the ability to emboss areas of

20cm2 by applying up to 360kN of force [7]. A lower-end model, the semi-automated
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Figure 1-3: Schematic of the Hot Embossing Process: In step 1, a blank substrate is
pressed against a rigid patterned tool; in step 2, the substrate flows and conforms to
the tool; and in step 3, the substrate is removed from the tool, retaining permanent
features in the negative of the tool [20].
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EVG 520HE, features a maximum force application of some 60kN and is capable

of embossing an area 20cm on the diagonal. It does also feature an ultraviolet light

source and a vacuum chamber, as well as a loading and unloading mechanism [7]. Both

devices outperform more primitive presses, demonstrating the levels of precision and

control in forming that are required to produce high quality microfluidic devices [25].

To purchase and install such equipment at the EVG520HE is on the order of some

$200,000, a significant investment [26].

Thus, though low-cost but imprecise options and high-cost but high-quality op-

tions are available, no existing solution has yet offered a low-cost, “right size” option

with sufficient precision for microscale polymer embossing. This serves as a barrier

for the adoption of hot embossing both on the medium-volume scale by groups such

as microfluidics research labs or startup companies developing their first devices and

on the industrial scale in which parallel production could be used to create high

throughput.

1.5 Project Motivation

To this end, this research project set out to develop the application of the hot em-

bossing process to polymer microscale fabrication in the context of production-scale

manufacturing. In order to accomplish this goal, there were numerous considerations

that needed to be addressed.

First, there was the lack of existing precision fabrication equipment targeted to this

purpose, making the study of the embossing process difficult. Over the course of this

research effort, several generations of equipment had been developed by researchers

preceding the author. The first two generations were focused on developing process

knowledge in an experimental fashion rather than on implementing the process in a

manufacturing environment. Though all input parameters could be well controlled,

the cycle time to produce a single part was on the order of 30 minutes [18]. Once

process knowledge was established, the next generations of hardware could focus on

using that knowledge to design precision fabrication equipment with a focus on low
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cost, low cycle time, and an appropriate level of precision and parameter control [13].

It was determined that in order to properly study hot embossing as a manufac-

turing process, first a suitable testbed system would need to be developed [27]. The

testbed, deemed the “micro-factory,” or “µFac,” would consist of several completely

automated modules that could be scheduled to produce and measure microfluidic de-

vices. The automated modules, combined with an commercial pick-and-place robot to

perform materials handling, would remove operator-induced variation from the equa-

tion. And, if machine variation could be reduced to a minimum, the testbed would

then serve as a suitable platform to investigate natural process variation, produce sta-

tistical models of the hot embossing process, and implement closed-loop cycle-to-cycle

control of the process based on finished product function.

The contributions of this thesis are then aimed toward accomplishing this goal.

The first contribution is to develop automated precision embossing equipment that

reduces machine variation to a minimum, building on lessons learned from previous

generations of equipment. The second contribution is to utilize this equipment to

make relevant and interesting measurements of process phenomena that are indicators

of quality as well as physical confirmations of process physics models.
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Chapter 2

Process Physics of Hot Embossing

2.1 The Hot Embossing Process

The hot embossing process in one in which permanent plastic deformation is imparted

to a polymer substrate using a heated featured stamp. In the process used in this re-

search, the substrate is first heated above its glass transition, facilitating plastic flow

at low levels of applied pressure. This heating is performed while lightly pressing the

tool into the substrate in order to maintain contact and increase the efficiency of the

heating process. Once the substrate has reached its forming temperature, a higher

force is applied, creating pressures sufficient for viscoplastic flow of the substrate. The

substrate flows around and conforms to rigid features on a tool, replicating them on

the micro- and even nano-scale, down to 25nm [28]. Once sufficient feature replication

has been accomplished, the substrate is cooled to below its glass transition temper-

ature, solidifying its molecular structure and returning its mechanical properties to

glassy. Finally, the substrate is demolded from the tool, and features are permanently

formed into the surface of the substrate. This process is demonstrated in Figure 2-1

using the force and temperature profiles undergone by the substrate.

This process typically completes three walls of the four-walled channel. To finish

the device, a roof must also be added. For the purposes of this research, it was

found that biocompatible pressure adhesive tape manufactured by Tesa Tape Inc.

was sufficient to provide a fourth wall. After forming is complete, tape is applied
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Figure 2-1: Ideal Forming Cycle for Hot Embossing: This diagram indicates typical
levels of force and temperature (the selected input parameters) during a forming cycle
for PMMA substrates [18].

using a compliant roller, and trimmed using an automated device1. The microfluidic

device is then complete and ready for quality inspection, testing, and use.

The material that was the focus of this experimentation is polymethylmethacry-

late (PMMA), a brittle, glassy polymer with high optical clarity. PMMA has a

typical glass transition temperature of approximately 105◦C [10], but this can vary

from 85◦C to 165◦C depending on its the specific molecular composition [29]. At

this temperature, its mechanical properties suddenly transform, and it changes from

being a primarily elastic material to what is better described as an elastic-viscoplastic

material; and then, as it reaches its melting temperature of approximately 250◦C [9],

it becomes a viscous liquid.

The embossing process takes place in the elastic-viscoplastic regime between the

glass transition and melting temperature. Figure 2-2 shows experimental compres-

sion data in this region; a large amount of permanent deformation with low, nearly-

constant levels of stress is apparent. For amorphous, glassy polymers, as the tem-

1The work to develop the taping process, including the development of the automated tape
application and trimming device, as well as work to develop an automatic testing device, is currently
being developed by Caitlin Reyda, and is scheduled to be completed by September 2013.
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Figure 2-2: Experimental Compression Data for PMMA at Various Temperatures:
In this experimental data, the dramatic change in flow stress as the temperature is
increased from ambient to above glass transition (110◦C) is clear. The 110◦C curve
displays remarkably plastic behavior, showing very little increase in stress with large
strains. This particular test was performed at a fixed strain rate, but the behavior is
also rate dependent [12].

Figure 2-3: Mechanical Elements Model of PMMA: A mechanical elements model
representing the 3 micromechanisms that control the material properties of amorop-
hous polymers such as PMMA. Each micromechanism is numbered for referencing in
the text [12].
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perature increases, their molecules experience greater mobility and ability to twist

and rotate, cross-linking between polymer chains weakens, and the shear modulus

decreases. At the glass transition temperature, this change becomes suddenly and

drastically accentuated, as shown in by the change in the shape of the curves in Fig-

ure 2-2. At this point the material can be considered elastic-perfectly viscoplastic,

and its behavior can be modeled using the mechanical elements shown in Figure 2-3.

This model is intended to cover the behavior of a polymer throughout the tem-

perature range from below its glass transition to above it. To accomplish this, the

contribution of each component varies with the temperature regime. The first mi-

cromechanism indicated in the diagram is indicated with numeral 1. A nonlinear

spring models the elastic resistance to molecular bond stretching; the dashpot mod-

els thermally-activated plastic flow due to polymer deformation mechanisms such as

molecular chain rotation and slippage between cross-linkage locations; and the nonlin-

ear spring in parallel with the dashpot models an energy storage property generated

by any elastic instabilities caused by viscoplastic flow. The second and third mech-

anisms, denoted by numerals 2 and 3, also consist of nonlinear springs representing

energy stored in stretching molecular chains between cross-link sites. The dashpots

again model thermally-activated plastic flow and slippage between cross-link sites.

These mechanisms are duplicated to facilitate modeling complex observed behavior

[12]. Above glass transition temperature, mechanism 2 has a negligible contribution

to material behavior, and mechanisms 1 and 3 control the material properties. The

combined effects of these two micromechanisms appear as an elastic curve that trans-

forms into nearly linear creep over large strains, with a small amount of springback

during unloading, as shown in Figure 2-4 [12].

The practical application of this understanding is essentially that under the correct

conditions, large amounts of plastic flow can be induced in the polymer. During the

forming stage of the embossing process, then, a constant high-stress stress state is

induced, forcing creep that results in permanent plastic deformation and flow outward

on unconstrained surfaces, including into the tool cavities. This flow is dependent on

the strain rate (as modeled by the dashpots), the induced stress, and the temperature
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Figure 2-4: Stress-Strain Contributions of Individual PMMA Micromechanisms: The
contributions of micromechanisms 1 through 3 for temperatures above the glass tran-
sition temperature show that both mechanisms 1 and 3 have nonlinear combined
elastic and plastic behavior. The contribution of micromechanism 2 is reduced to
being essentially negligible in this regime [12].

relative to glass transition (which determines the constants of the nonlinear springs

and the dashpots—that is, the material properties). The net result is that as these

inputs are adjusted to increase the amount of flow, the initially flat substrate flows

up into the cavities on the rigid forming tool, forming a front or shoulder that more

and more closely replicates the tool as increasing amounts of plastic deformation are

induced. Experimental data showing the profile of this front is shown in Figure 2-5.

That is, in order for the embossing process to be successful, the inputs that control

the physics of the process and therefore must be controlled are the strain rate, the

induced stress (as controlled by force applied over the fixed area of the stamping tool),

and the temperature.

2.2 The Demolding Process

A note should be made here that though the demolding process, if performed at any

temperature sufficiently below the glass transition temperature, should have little

effect on part formation, it is still important, primarily because loads on the mold
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Figure 2-5: Experimental Embossing Formation Results for PMMA at Varying Force
Levels: Experimental profiles for a channel measuring 500µm by 50µm (axes not to
scale) are shown. As the force level is increased, the shoulder fills up into the corners
of the tool features, better replicating the sharp stepped profile of the tool; at all
force levels, the bottom of the channel is well-formed. [10].
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Figure 2-6: Demolding Energy as a Function of Part Temperature: Mechanical inter-
facial energy dominates at low temperatures, and decreases approximately linearly as
temperature increases; adhesion interfacial energy dominates at high temperatures,
and increases nonlinearly as temperature increases. The optimal demolding temper-
ature is taken to be at the minimum of these energies. [18].

during demolding are high and potentially damaging due to two mechanisms. The

first is the mechanism of adhesion, which can be chemical and mechanical in nature;

during forming and thermal contraction, the polymer substrate comes into intimate

contact with the tool (replicating features down to 10nm), and tends to mold onto

and snag on any surface roughness on the tool [18, 19]. The second is the mechanism

of thermally-induced mechanical stresses; simply because the polymer has a much

larger coefficient of thermal expansion than the metallic tool, as the temperature

is decreased, it contracts with greater and greater stresses on the tool, potentially

damaging itself or the tool. These two mechanisms are opposing with temperature,

and a point at which the effects are both are minimized can be found, as shown in

Figure 2-6. As computed by Dirckx, the optimal demolding temperature for PMMA

is approximately 60◦C.
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2.3 Input Parameters and Sources of Variation

In order to control the process on a practical level, the input parameters selected were

induced stress, in the form of force applied over a fixed area; and temperature. In the

context of this thesis work, strain rate is indirectly determined by the force setpoint

and the amount of time over which forming occurs, both of which are controlled

variables. A second valid set of inputs would be to control temperature and strain

rate.

With the goal of this project being to study hot embossing as a process suitable

for manufacturing, it is of primary interest to be able to minimize the variations in

the process. In general, variations in any of the input parameters will cause some

variation to the degree to which the final product is formed. That is, any change to

the force setpoint, the temperature, or the forming time will affect the process physics

in such a way as to change how far the flow front advances into the features of the

tool.

Additionally, material variations in the PMMA sheets from which blank substrates

are prepared have been found to be vast. Not only is likely some variation in glass

transition temperature, due to its dependence on the precise molecular weight of the

polymer, but there is significant variation in geometry. The thickness of these sheets

and the resulting blanks has been shown to be wildly inconsistent from the 1.5mm

nominal thickness, ranging from 1.1mm to 1.8mm. The major consequence of this

fact is that the effective temperature throughout the blank substrate may be differ-

ent, though the surface temperature to the forming depth has been experimentally

measured to be unaffected by differences in blank geometry.

There is also some inherent variation in any production machine, as well as in

any operator interactions with that machine. This is true also in this case, though

through thoughtful machine design and a shift to automated processes, equipment

and human variations have been minimized. Given an understanding of the relative

contributions of each source of variation, development of process control can proceed.
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Chapter 3

Project History and Objectives

3.1 Historical Designs

Given the goals of the project and the limitations on commercially available equipment

as detailed in Chapter 1, it became clear early in the projects history that customized

equipment would need to be constructed.

The first generation of equipment was developed by Ganesan and installed on an

Instron 5869 load frame. It consisted of a pair of copper platens, made large to ensure

temperature uniformity and heated using cartridge heaters; temperature control was

achieved using Chromalox 2110 controllers. Active cooling was accomplished using

tap water. The Instron load frame allowed for a variety of load profiles to be imparted

to the substrate, as it had a positioning resolution of 0.0625µm and a 50kN capacity

[13]. The heating and cooling rates as well as the demolding temperature, however,

were not well-controlled, and the machine required some 15 minutes to heat and 5

minutes to cool due to the large thermal mass of the copper platens [13]. A plot

showing a temperature profile from this machine is visible in Figure 3-1.

To attempt to improve on input parameter control and to further the goal of

studying the embossing process in a manufacturing environment, the second genera-

tion of equipment focused primarily on redesigning the platens. Dirckx reduced the

thermal mass of the copper platens, and switched to using a mixture of heated and

room-temperature Paratherm MR oil. This provided the capability to impart both
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Figure 3-1: Temperature Profile for Generation 1 Machine: Though the temperature
uniformity is good, some five minutes are required to get close to forming temperature
[20].
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Figure 3-2: Temperature Profile for Generation 2 Machine: The Generation 2 machine
showed an excellent ability to match temperature setpoints, but takes approximately
2 minutes to heat and cool, requiring the cycle time to be on the order of 5 minutes
[18].

arbitrary force and displacement profiles as well as temperature profiles. The cycle

time was improved to approximately 5 minutes, requiring approximately 2 minutes

for heating and 2 minutes for cooling [13]. A sample experimental temperature profile

for this system is shown in Figure 3-2.

The third generation of equipment, developed by Hale, broke away from the In-

stron load frame and attempted to develop a manufacturing-focused, fast, compact,

and capable machine based on process knowledge developed from predecessors work.

The machine featured a curved cantilever spine supporting a double-acting air cylin-

der with a 9.8kN capacity. Cooling was accomplished by bringing a large copper mass

with cooled water flowing through it in contact with the lower platen, serving as a

heat sink; by distancing the mass from the platen, the platen could be heated rapidly.

This heat sink was guided by ceramic pins, preventing any thermal leak to the ma-
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chine structure. Heating was accomplished using 1in by 3in Watlow Ultramic series

ceramic heaters, which displayed a high power output as well as exceptional temper-

ature uniformity. These heaters were installed in pockets in the aluminum forming

platens and were controlled by Watlow SD6C series PID heater controllers. A load

cell installed in the line of compression on the device was capable of measuring forces

up to the 9.8kN capacity, and thermocouples built into the heaters measured tem-

perature. Force control was established using a proportional valve controller on the

cylinder, which responded to output signals from the load cell and from a LabVIEW

software controller [13]. This equipment successfully achieved the desired cycle time

of approximately 2 minutes, needing 1 minute for heating, 30 seconds for forming,

and 45 seconds for cooling.

Though this equipment made strides in applying process physics knowledge to de-

signing right-size equipment appropriate for manufacturing environments, some addi-

tional concerns arose. First was the observation that though FEA models predicted

that the thin polymer substrates should be a uniform temperature throughout, cooling

from only one side actually imparted some thermal gradient and caused macroscale

warping throughout the finished product. The temperature asymmetry caused by

cooling from only one side is visible in Figure 3-3. Second was the observation that

there was thermal leakage into the machine structure over time, causing machine tran-

sients and increasing machine variation. Finally, the double-acting cylinder proved to

be a less than ideal force source, due to its stiction and a minimum force requirement

for motion that made controlled force application difficult. After evaluation of the

operation of the machine, it was determined that another generation of equipment

needed to be developed in order to successfully study process control in the context

of manufacturing.

3.2 Microfactory Project Objectives

Overall, the stated goal of the microfactory project is to study the hot embossing

process as applied to microfluidics devices, in a manufacturing-oriented environment.
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Figure 3-3: Asymmetric Temperature Profiles in Generation 3 Hardware: In this plot,
the top (white) and bottom (red) temperature profiles for the generation 3 equipment
can be observed; the numbers overlaid on the graph indicate the power output of each
heater at that point in time. The initial heating rate of the top and bottom heaters
are approximately the same, but when contact between the part and tool is initiated
(noted by the peak approximately in the center of the plot), the bottom temperature
diverges from the top. Due to the fact that the flow of coolant is never shut off,
the bottom heater, exposed to the cooling block, struggles to maintain the setpoint
temperature of 140◦C, even at 100% power.
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Figure 3-4: Test Micromixer Device: Fluid is input into the two rightmost ports,
and exits in the leftmost port. The channels are 50µm wide. Additional test and
metrology features are distributed throughout the design, including a grid of squares
20µm in size.

To accomplish this goal, the first step was to develop a testbed factory cell capable

of minimizing equipment- and operator-induced variation. The work presented in

this thesis contributes to this goal by developing precision hot embossing equipment

serving as a suitable basis for further project developing.

Because the goal of this project is to study the hot embossing process instead of

any one particular microfluidic design, a test micromixer design was chosen. In this

design, two streams of fluid flow together and meet, and then proceed through a long

serpentine channel; eventually these two streams become fully mixed by the process

of diffusion in this long channel. The characteristic dimensions of this test device are

channels 40µm deep and 50µm tall, giving an aspect ratio of 0.8. The finished devices

are relatively small in size, occupying an approximately 2.5cm by 2.5cm embossed

area. The mask used to create this test pattern is shown in Figure 3-4.
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To complete the device, it must be sealed on the top. Again, because the goal

of this project is to study the hot embossing process, any suitably quick and simple

sealing process was deemed appropriate to the project goals. Pressure adhesive tape

manufactured by Tesa Tape Inc. proved to be a superior choice due to its ease of

use. The thick backing gives the tape rigidity, prevent it from collapsing into the

channels. The adhesive is compatible with some biological applications, and has a

thickness small enough to avoid filling the channel.1 The fact that the tape presents

a nonuniform fourth wall (consisting of adhesive instead of PMMA) to the fluid flow

is not a major concern for the purpose of developing the hot embossing process, but

could be problematic for some applications.

Using this tape gives an interesting option for measuring part formation. Because

the shoulders of the channel profile are the last part to form, and flow upward in

a front of decreasing curvature with increasing fidelity to the tool (see Figure 2-5),

these are the chief measure of part quality—that is, how closely the tool pattern was

replicated on the finished product. When the tape is applied to the top surface, a

change in the index of refraction occurs where the adhesive bonds to the PMMA,

creating an optically visible shadow, shown in Figure 3-5. By imaging each device

and measuring the width between these lines, the width of the shoulders can be

extrapolated, and the profile inferred, based on the fact that the bottom of the channel

forms correctly even under very low applied forces. This has proven a much faster

and more holistic measurement than individually assessing each profile using confocal

microscopy, scanning electron microscopy, or other tools. In addition, by performing

a functional test and flowing fluid through the device, the point at which the two

input fluid streams are fully mixed serves as another holistic measure of quality (as

it is dependent on flow rate), and can indicate problems at the inlet or outlet ports

that are not visible in the channel width measurement. An image showing the two

streams gradually mixing is shown in Figure 3-6.

By quantifying these measurements, a numerical output of quality can be made.

1Due to the fact that the tape is under development by Tesa and is proprietary, further details
will not be published in this work, per their request.
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Figure 3-5: Well-Formed and Poorly-Formed Channels with Tape Applied: Images
of (left) a well-formed device with sharp corners, and (right) a poorly formed device
with rounded corners. The line of tape contact marking the channel width is visible
by a change in index of refraction [14].

Figure 3-6: Fluid Flowing through Test Device: The two fluids (blue and clear) enter
unmixed, and the color becomes uniform as it passes through the device [14]. The
degree of mixing depends only on how long the two streams have been adjacent, as
it is a diffusion process; so the mixing point is a measure of flow velocity, which is
controlled by the channel profile.
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Given sufficiently precise embossing equipment and materials handling, any variation

measured using these means could then be accounted for by adjusting the embossing

forming parameters. Successfully implementing this closed-loop cycle-to-cycle auto-

mated feedback control of the process is the central goal of the microfactory project.
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Chapter 4

Design of Precision Equipment

4.1 Motivation and Design Specifications

The overarching goal of this project is to develop an experimental testbed “micro-

factory” on which closed-loop control of the hot embossing process, as applied to

fabrication microfluidic devices, could be investigated. However, in order for this ef-

fort to be successful, the first step was to develop a platform with sufficient precision,

repeatability, and reliability to allow for it to be abstracted out of the process control

efforts.

To this end, several key needs were identified.

1. The equipment needed to move precisely. Only one degree of freedom is required

to complete the embossing process. However, to minimize equipment variations,

this linear motion needed to be as repeatable as possible.

2. Precise and repeatable control of the applied force was necessary.

3. The substrate needed to be repeatably and accurately registered with the tool,

to allow for existing substrate features to align with tool features.

4. The active thermal mass of the system needed to be minimized in order to allow

for diminished energy waste as well as faster heating and cooling cycles.
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5. A symmetric thermal profile between the upper and lower surfaces of the sub-

strate was required in order to prevent residual stresses and any resulting

macroscale warping of the substrate.

The previous generation of precision equipment had addressed some of these con-

cerns, but also had discovered problems that called for another design revision [13].

In the following sections, the design work involved in developing solutions to each of

these needs is detailed, as well as the final solution to each design problem.

4.2 Design

4.2.1 Precision Linear Motion

The first need was for precision and repeatability in the forming motion of the ma-

chine. In the work done by Hale, the necessity of separating imprecise force sources

from precision linear motion became clear. The double-acting air cylinder used in that

equipment, while providing a surfeit of forming force, did not have very controllable

or repeatable motion.

The guiding design principle was then to decouple any parasitic motions of the

force source from the linear motion of the platens. A precision linear guide of some

design was required to accomplish this task. The guide needed to have a range of

motion sufficiently large to allow for a gap into which blanks could be loaded into the

machine; based on manual ease of use and the existing end effector on the commercial

robot arm, this gap was quantified to need to be approximately 0.4in.

The first concept that was developed was to use a parallel flexure design to con-

strain all undesirable degrees of freedom. Since flexures exhibit nearly perfectly re-

peatable elastic behavior, they are a desirable mechanical element for applications

where precise motion is required [30]. The flexure concept was based on a stage

mounted on a set of mirrored parallel flexures; the symmetry of the setup would

reduce or eliminate planar parasitic errors. However, two major design challenges

existed for the flexure. First, the parasitic errors due to in-plane rotation (“rocking
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the cradle”) were significant. If force application were even slightly off center, the

parallelism of the flexure would be severely compromised, in particular along the di-

rection axially parallel to the blades. Limitations on in-house fabrication capabilities

restricted the flexure design to a minimum thickness of approximately 0.050in. Given

this fixed constraint, the solution was to make the blades of the flexures wider and

thus more resistant to torsion. Using sequential finite element simulations, it was

determined that the flexures were required to be 25mm wide to rein any torsional

errors in to 1µm under a 10N torsional load.

The second problem was that a 0.4in range of motion was required. Most ma-

terials suitable for flexures begin to yield at only a few percent strain; aluminum, a

preeminent choice, yields at approximately 0.2% strain [31]. To prevent stresses in

the flexure from causing it to yield with a safety factor of 2, finite element simula-

tions, as shown in Figure 4-2, indicated that the blades needed to be at least 100mm

long, giving the flexure a total footprint of 258mm by 25mm, which was large, but

still smaller than the previous generation. Diagrams detailing the completed flexural

bearing design are shown in Figure 4-1.

Unfortunately, by making the blades longer to increase the range of motion of

the flexure, their torsional stiffness was decreased, and they also needed to become

wider to compensate. This increased the bending stiffness of the blades, reducing

their range of motion, and so on. In the end, the flexural design was rejected because

of this trade-off; it was believed that other solutions likely existed that would not

require a compromise on performance and compactness.

The next design concept to be investigated was to use an air bushing as a linear

guide. In an air bushing, a permeable medium allows air to flow into a bushing; a

precision shaft rides in the bushing, with a thin gap between the surface of the shaft

and the inner walls of the bushing. A cushion of high-pressure air forms in this gap,

creating an extremely stiff and low-friction bearing. The air bushing investigated for

the design, a 2in diameter New Way Air Bearings air bushing, had a radial stiffness of

110N/µm and a pitch stiffness of 23Nm/rad [23]. This means that under an estimated

radial cross load of 100N, the air bearing would deviate less than 1µm from its radial
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Figure 4-1: Flexural Bearing Design: Shown here are the flexure design (top) and a
schematic of how this design would be incorporated into a forming machine (bottom).
In this design, the tool was intended to be mounted facing downward on the center
stage, and the facing platen mounted on the base at the bottom of the flexure. A
shaft passing through the opening at the top would apply a force to the top of the
stage during forming.
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Figure 4-2: Simulation of Stresses under 12mm Z-Displacement: To ensure a safety
factor of approximately 2, the length of each flexure blade was required to be approx-
imately 100mm.

path. Under a pitch cross load of 20N at the point of application (a worst-case

scenario that a clever coupling mechanism could minimze), the deviation of the top

surface of the lower platen (designed to be 176mm from the point of application) can

be computed as:

(Fcross−load)(r
2)

Kradial

= δ. (4.1)

Substituting in known values, the deviation is calculated to be 6.734µm along an

arc of radius 176mm. In contrast, finite element simulations indicated that the flexural

bearing deviated 5.5µm under a 10N load parallel to the blades, and 12.0µm under a

10N load perpendicular to the blades, as shown in Figure 4-3. In addition, simulations

indicated that the stiffness in the parallel direction decreases as the stage translates

down, due to a buckling effect on the blades; the simulation then shows error in the

best-case scenario. Thus, the worst case scenario for the air bushing presented at

minimum a 100% improvement over the best-case scenario of the flexural bearing.

The air bushing was also compact and simple in construction, making its imple-

mentation straightforward. Based on its clear superiority, the air bushing was selected

as the optimal design choice for a guide for the linear motion.
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Figure 4-3: Finite Element Simulations of Planar Stiffness of Flexural Bearing. Under
10N in-plane loads, the flexural bearing deformed 5.56µm parallel to the blades (left)
and 12.0µm perpendicular to the blades (right). Under combined downward and cross
loading, the planar stiffness decreases due to buckling effects, and the error becomes
worse.

The major design challenge presented by the air busing was the fact that it did not

constrain axial rotation of the shaft, which was highly undesirable. The immediate

solution was to use a clamped blade flexure to control this motion. By orienting

the widest dimension of the blade tangential to the axial rotation, the resistance to

rotary motion was increased from nearly zero to 3.3×105N/m, as estimated by the

finite element simulation shown in Figure 4-3. Spring steel with a thickness of 0.01in

was chosen for its ability to withstand large strains, making it capable of traversing the

required 0.4in gap at a blade length of 1.64in. The downside of using a flexure in this

application was that by making the flexure compact, the small angle approximation

that determines the linearity of its motion was violated, and at the extreme ends of

its orbit, it deviates from the linear stiffness curve expected for this type of element.

The solution was simply to linearize the system around the point at which the tool

contacts the substrate, and to neglect to model the nonlinear extremes.

4.2.2 Precise and Repeatable Force Actuation

Once a linear guide mechanism was chosen, a force source also needed to be chosen.

The first concept was to continue to use the pneumatic cylinders from the previous

generation of hardware. By placing a spherical contact on the end of the cylinder

shaft, the motion transmitted to the linear guide could be constrained to be perfectly

linear—all other cross-motions would just result in slip of the contact point around
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the contact surface.

However, the pneumatic cylinder presented other problems. Both double-acting

and spring return cylinders exhibit a suite of nonlinear behaviors such as stiction and

dead zones. Highly granular force control becomes difficult, and successfully applying

linear control techniques becomes a difficult battle. After review, it was decided that

these pneumatic cylinders were not appropriate for this precision application, and an

alternative was sought.

Electromagnetic actuators such as voice coils were also briefly considered. These

were soon rejected, primarily due to their low power density compared to pneumatic

devices. Without a mechanical element such as a lead screw to multiply force, an

enormous actuator would be required. Incorporating such a mechanical element,

however, reintroduces some of the nonlinear problems associated with the pneumatic

cylinders, such as backlash and stiction. Pneumatic actuators were decided to be

superior.

The final design for the pneumatic actuator was an expandable pneumatic bellows,

also known as an air spring, and sold commercially as Firestone AirStroke, and shown

in Figure 4-4. These devices are most widely recognized as being used in kneeling

buses as a means to gently lower the front entrance of the bus to allow for easier

boarding, as well as in trucks for shock absorption. It consists of a rubber annulus

capped at each end with a steel plate. The annulus was specially designed with

reinforcing ribs to make its motion as purely vertical as possible. Because the motion

was purely elastic stretching and relaxing as the bladder was inflated and deflated, the

continuum of force control was excellent, and had exhibited perfectly linear behavior,

as shown in Figure 4-5. The model selected was the Firestone AirStroke W01-M58-

6155, with a maximum force exertion of 6.5kN and a maximum stroke of 50mm [21].

Though the pneumatic actuator was designed to exhibit completely vertical mo-

tion with little parasitic error, any errors in vertical motion, combined with possible

offset errors generated by assembly, could create cross-loading forces on the linear

guide, decreasing accuracy and repeatability. To address this problem, a means of

coupling the actuator to the linearly guided shaft needed to be developed that trans-
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Figure 4-4: Firestone AirStroke Pneumatic Actuator: The actuator consists of a
specially shaped and reinforced rubber cylinder between two metal plates, which
have fixtures for mounting.

mitted only the desired vertical force and rejected any cross-loading forces. The design

solution was to use passive contact between the top surface of the actuator and the

bottom surface of the shaft riding in the air bushing, in which the shaft merely rests

on the top plate of the air bearing and maintains contact through its own weight. The

upper bound on the radial and pitch cross-loading forces is the fact that these forces

can only be transmitted by friction between the two machined surfaces of the guided

shaft and the actuator cap; once the upper bound of static friction is exceeded, the

frictional force is reduced to sliding friction, and minimal cross-forces are transmitted.

One last consideration remained. All of these components needed structural sup-

port, and this support needed to be designed such that it did not detract from the

precision motion when loaded with a maximum force of 2kN. Though the previous

generation of hardware had selected the C-frame as showing acceptably small levels

of deviation [13], the goal of this thesis work was again to improve on that perfor-

mance if possible. A symmetric design was then preferred; an O-frame structure was

the first logical choice. When loaded, it deforms symmetrically: the legs stretch in
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Figure 4-5: Linearity of Output Force with Pressure: Extracted from the curves
provided by Firestone, at a fixed height of 95mm (the approximate height of the
actuator when the platens are in contact), increasing pressure generates a highly
linear increase in force [21].
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a tensile fasion, and the top and bottom crossbeams bend symmetrically in 3-point

bending about the point of load application. By making the structure of 1in thick

aluminum plates, the structure became highly rigid. The bending of the top plate

under maximum load was shown in finite element simulations to be limited to 10µm,

and the bending occurs in such a way that objects situated in the center of the top

crossbar are essentially translated upward but not deformed (a simple obstacle to

overcome, merely by utilizing closed-loop force control).

This stiction-free actuator, combined with the extremely low friction air bushing

and elastic guide flexure, produces smooth and perfectly controllable linear motion.

The degree of repeatability of this motion is believed to be on the level of only a few

microns, as no variation was measurable using a dial gauge resolving down to 6µm.

4.2.3 Precision Substrate Registration

The other key area necessitating mechanical design innovation was in the placement

of unformed blank substrates onto the platen. In previous generations of hardware, a

3-point kinematic alignment system was demonstrated to allow repeatable placement

to 25µm when combined with an industrial pick-and-place robotic arm [15]. A pair

of small tabs separate from the pins applies a downward force on formed substrates

during demolding. This system was carried over to the new generation of hardware,

in the form of dowel pins potted into CNC machined bores in the lower platen, and

appears in Figure 4-7.

In addition, due to the fact that the blank substrates have pre-existing inlet ports,

a need to be able to accurately register the blank substrates with existing tool features

existed. To this end, a planar flexure allowing translational motion in X and Y as well

as rotational motion about the normal Z axis was designed. Due to strong coupling

between each axis, this flexure serves best as a manual as-needed calibration element,

and the six thumb screws included allow its planar position to be fixed in place

once the proper location is determined. The planar flexure backs against a precision

flat plate and transfers load to it and thus to the machine structure, allowing it to

withstand the full range of forming loads. A diagram of the flexure explaining its
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Figure 4-6: Planar Adjustment Flexure: A solid model of the planar flexure allowing
position calibration between the tool and the substrate. The holes visible on the
vertical walls are threaded for thumb screws, which are used to manually adjust its
planar position and angle. By adjusting sets of screws parallel to a direction of motion
(orange or blue), the flexure may be translated; by adjusting two diagonally opposing
screws (green), the flexure may be rotated.

operation is shown in Figure 4-6.

4.2.4 Thermal Design

In the previous generation of hardware and in industry models, the rate of heating

and cooling places a limit on the minimum cycle time. It has been determined exper-

imentally that in order to form a quality part, at proper forming temperatures and

pressures, approximately 30 to 60 seconds of forming time are required. However, to

bring a machine’s active thermal mass to the forming temperature and then cool to

the demolding temperature, anywhere from a few minutes to more than ten minutes

may be required. For example, the large copper platens utilized by Ganesan to ensure

equal temperature distribution required approximately 15 minutes to reach forming

temperature (though it closely approached it in 5 minutes), and additional 10 minutes

to cool to demolding temperature after forming [20].

The design of the precision equipment detailed in this thesis sought to address

this concern by minimizing the active thermal mass. This consisted of two key design
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Figure 4-7: Final Design for the Thermal Stack: A photograph of the completed
thermal stack (left) has key components labeled; an exploded view of the stack (right)
shows internal components not visible in the final assembled version.

features: one was that the active thermal mass needed to be separated from the large

machine structure, which would act as a large capacity heat sink. The second was

that the active thermal mass itself needed to have as little heat capacity as possible

to allow for it to be rapidly heated or cooled.

To separate the active mass from the machine structure and prevent heat loss,

Glastherm HT fiberglass-reinforced mineral insulation was used. With a compressive

strength at forming temperature of some 186MPa, it is sufficiently rigid to prevent

excessive deformation. A thermal conductivity of 0.27W/mK prevents more than

a few degrees of temperature rise in the adjacent machine structure, even after long

periods of operation [32]. During one forming cycle, the unrealistic worst-case scenario

is that one aluminum structural element of mass 0.032kg absorbs all 150W generated

by the heater, which is conducted through a 0.25in block of the insulation, with no

losses to radiative or convective heat. Given a commanded temperature step from

60◦C to 130◦C, the resulting rise in the structural element is given by:

(
hconductionL∆Tcommand

mCp

)
(theat) = ∆Tstructure (4.2)

Substituting known values, this number is found to be 0.371◦C. Additionally,

because the system is then cooled actively to return to the demolding and idling
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temperature of 60◦C, the net effect is that the steady-state operating temperature of

the machine structure oscillates by no more than this amount per production cycle,

and that there is not a cumulative increase over long periods of operation.

However, the insulation, unlike machined metal, presents an irregular surface; to

ensure parallelism in the thermal stack, a layer of epoxy was cast in-place on top of

the lower insulation block to create a planarizing layer.

To minimize the active thermal mass, the forming platens were made just large

enough to accommodate the flat-profile Ultramic 150W ceramic heaters. The heaters

are ensconced in pockets milled on the underside of each platen, in a design revision

inspired by work done by Hale [13]. The platen thickness was able to be reduced to

4mm, providing a ceiling with a thickness of only 1.5mm separating the heater from

the substrate. This ceiling does not span the entire width of the tool, meaning that

two ridges on either end support the ceiling under loading by the flat tool surface,

and that the ceiling is not required to support the full forming loads.

Another important goal was to make the thermal mass of the top and bottom

thermal stack as symmetric as possible. Through experimentation, the fact that the

formed substrates were sensitive to residual thermal stresses was discovered. Previous

generations of equipment only cooled the devices from one side, creating residual

stresses by thermal means [13]. These stresses caused macroscale warping and curving

across the area of the device. To avoid this effect, the heating and cooling mechanisms

were made identical on the top and bottom forming surfaces as much as possible.

Different structural designs were required for the top and bottom thermal stack;

for example, pockets needed to be cleared in the bottom platen to allow clearance for

the bolts holding the tool to the top platen’s face to descend, while the top platen

presents a flat face. The final design of the lower platen gives an active thermal mass

of 16,359mm3, which includes the demolding tabs, the lower platen, and the lower

cooling block (see Figure 4-7). The final design of the top platen, including the upper

platen, the cooling block, and the tool, gives an active thermal mass of 16,387mm3.

The thermal masses of these two stacks then differ by only approximately 0.1%.

Given that each aluminum thermal mass is heated using a 150W heater, at 100%
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output power, assuming no losses to radiation or convection, and with a commanded

temperature step of 60◦C, the minimum amount of time required to heat a single

platen to forming temperature can be computed using the relationship:

V ρCp

Qheater

∆T = t. (4.3)

Substituting known values, the minimum time is found to be 17 seconds. In prac-

tice, a longer time is required, as some energy is lost to radiation, some is dissipated

electronically, some is absorbed into air and leftover coolant contained in the cooling

block, and a small portion is leaked into the machine structure.

The Ultramic ceramic heaters exhibit excellent uniformity of heating which, com-

bined with the high thermal conductivity of the aluminum platen, provide a suf-

ficiently even heating surface for forming. The AlN material of the heaters has a

thermal conductivity of 150W/mK, comparable to the 180W/mK of aluminum; the

temperature range across the area of the heater’s surface varies by less than 2◦C [22].

Cooling blocks through which a U-bend channel runs were made just large enough

to provide sufficient flow for cooling, and to be large enough to facilitate ease of ma-

chining. The initial finite element analysis shown in Figure 4-8 demonstrated that

aluminum had sufficient thermal conductivity to create an even temperature distri-

bution compared to copper, so it was chosen over copper for machinability. The

analysis also confirmed that a simple external U-bend design was sufficient to create

appropriately symmetric and well-distributed temperature profiles. Water at 20◦C is

used as a coolant. To further minimize the active thermal mass, at the start of each

heating cycle, a jet of air is passed through the open-tank cooling system to push any

water out of the cooling blocks. This jet is then shut off to further facilitate heating.

An important detail to note is that temperature is not measured directly at the

forming surface, as the thermocouples are embedded in the ceramic heaters. How-

ever, experiments performed by placing thermocouples on the surface of blanks and

changing the temperature demonstrated that the high thermal conductivity of the

aluminum platens, combined with the low thermal mass, mean that the surfaces of
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Figure 4-8: Finite Element Simulation of Cooling Peformance for Aluminum: finite
element models of the cooling block showed that within 30 seconds, the block and a
heated piece of PMMA placed on top both achieve a uniform temperature distribu-
tion. The scale bar ranges from 283K to 285K.

the plastic substrate differ from the temperatures measured in the heaters by less

than 5◦C during rapid temperature changes, and take only a few seconds to achieve

thermal equilibrium.

4.3 Completed Hardware Design

Figure 4-9 shows a model indicating key components of the completed hardware;

Figure 4-10 is a photograph of the completed hardware.

Inside the O-frame structure, the actuator is mounted to the base via a pair of

aluminum spacer bars to allow clearance for an air hose to be attached. A mounting

plate with a button is fastened to the top, and a donut-shaped load cell rests centered

on this button. A precision-ground steel shaft rests on top of this load cell, and is

guided in its vertical motion by an air bushing secured to the wall of the O-frame. A

blade flexure is clamped between the top surface of the shaft and the lower thermal

stack; it is also secured to the frame through another clamp on the opposite end. The

lower thermal stack is mounted on the top of the shaft; it is actuated to raise up and

meet the tool, which is mounted at a fixed height on the ceiling of the frame. The

63



Figure 4-9: Model of Completed Hardware: This is a solid model of the finalized
hardware with key components labeled.
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Figure 4-10: Photograph of Completed Hardware: In this photograph, the actual
physical hardware, with key components labeled, is shown.
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tool rests on the bottom edge of the top thermal stack, which is bolted to the planar

adjustment flexure. The load path is then from the actuator through the shaft, active

thermal stacks, and into the O-frame structure.

Several other features have been incorporated in the equipment design. A high-

impact polystyrene shield applied to the front of the machine (not shown in Figure 4-

10) both prevents access to pinch points as well as protects operators from possible

catastrophic failure of the pneumatic actuator. On the rear face of the equipment, a

custom-designed panel provides access ports so that cables may be easily removed and

reattached to facilitate relocation and rearrangement. The full size of the equipment,

disregarding any separate subsystems required for pneumatic, hydraulic, or electronic

support, is contained within a 25cm by 25cm footprint, with a total height of some

44cm, making it compact and easily transported. This particular iteration of the

equipment was designed to be a right-size machine, specifically engineered to handle

the approximately 6cm2 area of the test devices used to study the hot embossing

process. However, in industry, there is interest in the capability to emboss larger areas

and produce larger devices, such as the size of a 3in by 1in microscope slide, a standard

credit card, or a 4 inch wafer. The design of this equipment was intentionally made

to be perfectly scalable; simply by increasing the rigidity and spatial capacity of the

structure and the force capability of the actuator, larger areas could be embossed. The

greatest design challenge in embossing larger areas is to ensure parallelism between

the upper and lower platens. Over larger areas, it becomes more and more difficult to

ensure that even a surface that has been machined flat is, in fact, precisely flat to a

level that has no ill effect on the final product. The researcher anticipates that passive

systems to promote and ensure parallelism but that are still capable of withstanding

load will be an area of research interest should this design for precision equipment be

propagated. More details on the scalability of this design are presented in Chapter 6.
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4.4 Control System Design

After establishing sufficient precision of the linear motion involved in the compression

step, development of closed-loop feedback control to allow for precise input matching

in force and temperature was the next step. The thermal control was accomplished

using Watlow SD6C model heater controllers. Using a PID control scheme, these

two controllers could be set independently to account for any physical differences in

heater output or in thermal behavior of the system. This loop runs independently

and accepts setpoints from the main control software, and is indicated in a black

dashed boxed in Figure 4-12.

The force control was accomplished using a loop consisting of a Futek LTH-300

load cell capable of measuring a maximum 500lb load; the stiction-free pneumatic

actuator; and a voltage-controlled electronic pressure regulator, a ControlAir T550X.

The voltage signal from the load cell is hardware-filtered to remove high-frequency

noise and crosstalk. The hardware filter is constructed of a 100kΩ resistor and a 0.1µF

capacitor, which give the filter a time constant of 10ms. The signal is then software-

filtered with a low pass filter with a time constant of 50ms; this was determined

experimentally to be necessary to prevent any noise disturbances from causing the

system to over-respond or track into instability. Additionally, the force reference

value is low-pass filtered with a time constant of 50msto remove any sharp steps

generated by the software. After subtracting the filtered measured force from the

filtered reference, the error is passed through a PI controller and summed with a

feedforward of the filtered reference value. All computation is done in units of force,

and is at the end converted to units of voltage and commanded to the electronic

pressure regulator. This force control loop is shown in the green dashed box in

Figure 4-12.

Originally, it was thought that an open-loop pressure regulator would be sufficient.

However, after testing this regulator, it was discovered that it exhibited strongly

nonlinear behavior, and increased pressure at a faster rate than it released pressure,

and that this effect varied with the magnitude of the commanded pressure. The
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result of this nonlinear behavior was to destabilize any linear control efforts; only

by severely detuning the controller to a level of low performance could experimental

stability be achieved. In addition, this pressure regulator was inconsistent in achieving

and maintaining setpoints, and exhibited low repeatability of pressure output for a

given voltage input, varying by up to 10%. To solve this problem, the ControlAir

T550X was replaced with a ControlAir T900X, which featured internal electronic

feedback to maintain a pressure setpoint. The replacement pressure regulator not

only exhibited symmetric pressure increase and decrease behavior, but also was able

to maintain its setpoint accurately.

To design the controller, the system was identified by measuring a step response

from a voltage commanded to the actuator to the force measured by the actuator.

The plant then consisted of the output of the data acquisition device, the voltage-

controlled pressure regulator, the pneumatic actuator, the mechanical response of the

embossing machine, and the load cell. Though some of these components were known,

the T900X regulator in particular was treated as a black box. Due to early empirical

experiments with the device, it was determined that the feedback controller plus the

physical system were such that the system had an order 2 or greater and could be

made to overshoot and oscillate on step commands.

The step response from the system, from voltage command into the pressure

controller to voltage output from the load cell, is shown in Figure 4-11. From this

response, the transfer function was estimated to be first order, and described as

Gplant(s) =
0.937

0.575s+ 1
(4.4)

Given that the system is predominantly first-order and well-behaved for the com-

mand scenarios realistic to embossing operation, the logical choice for a controller

was proportional-integral, to improve transient performance and to remove steady-

state error. Based on analysis conducted using root locus, the system was observed

to have two poles: one slow pole (the actuator response pole) and one fast pole (the

filtered measurement pole). The hardware filtering was of sufficiently small time con-
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stant to be neglected. Because oscillation was more undesirable than slow response,

to prevent it from occuring, the zero of the PI controller was placed between the

origin (where the integrator would be placed) and the fast pole, creating a slow but

controllable dominant real zero. Then, the resulting system behavior was a very fast

but small magnitude oscillation, and a slow but large magnitude real response. Esti-

mates for appropriate PI constants were recorded with the intention of tuning them

on the physical system.

Then, because the dominant real pole was relatively slow (time constant τ ≈ 2.5s),

feedfoward control was added. The filtered reference signal was passed forward with

a gain of 1 and summed with the output of the PI controller. This served to improve

the performance of the response without needing to increase the gain and induce

overshoot, in practice “speeding up” the system’s effective time constant. At this

point, the estimated constants from the initial PI design were tuned, and appropriate

gains were found to be Kp = 2.5 and Ki = 1.

Antiwindup was also implemented on the integrator, with limits of ±400N. Anti-

windup is critical in this application because of the nonlinearity of the blade flexure.

As the embosser traverses from the fully open position to make contact between the

platens, it must push against the weight of the structure, and it also encounters the

stiffness of the blade flexure. However, the “zero force” point is taken just before

compression starts—that is, the measurement of interest is not what the load cell

sees, but rather the force that is applied to form the substrate, not to overcome any

resistance forces in traversing to that point. Thus, the load cell measures a “negative”

force (that is, subtracting the offset measured at the point of contact gives a force less

than zero) when it is in the fully open position. Leaving the embosser in this fully

open position while commanding a force of 0N causes the integrator to accumulate a

great deal of error during idle periods. To limit that error, stragetic integrator resets

were employed, as well as the antiwindup cap.

Figure 4-12 shows the implementation of the hot embosser’s control loop, with

feedforward and PI control, in the context of the entire process control loop.
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Figure 4-11: Step Response for the Actuation System: The step response looks dom-
inantly first order. The horizontal axis is listed in samples; the sampling rate was
1ksample/s. The vertical axis is labeled in volts output from the load cell.

4.5 Pneumatic and Coolant System Design

A pneumatic management system was also necessary to support the hot embossing

process, as pneumatic actuation was employed. In this system, compressed air is

first filtered and regulated to 80psi. This air is then split into several branches.

One branch is further regulated to 60psi, and provides airflow for the air bushing.

Another branch is passed to the electronic pressure regulator, the ControlAir T900X.

The output of the regulator then passes to a three-way solenoid valve. This valve

either funnels air pressure into the actuator, or opens the actuator to the atmosphere

to exhaust it. This was necessary in the initial design using the T550X, as it had

a minimum output pressure of some 2psi, sufficiently closing the gap between the

platens such that substrate insertion was difficult. However, this feature was retained

for the T900X, which is a zero-range pressure controller, as a safety feature.

The coolant management system interacts with the third branch of the input air.

This branch is regulated to 10psi and is passed through a two-port solenoid valve

and a check valve into a junction with the water coolant system. This coolant is a

water-glycerol mixture, maintained at room temperature using a VWR Recirculator

chiller. The chiller is left open-tank so that when activated, air can be passed through
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Figure 4-12: Microfactory Control Loop: Shown in the context of the entire micro-
factory loop, the loop relevant to the hot embosser is shown in the broken blue box.
The structure of the force control loop is shown in the green dashed box. The two
black dashed boxes indicate subsystems that have internally applied controls.
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the embossers cooling system to force any coolant out of the cooling block to promote

heating; the open tank is required for flow to be maintained instead of pressure built

up in a closed tank. In addition, due to the low head pressure on the chiller’s pump,

air pressure is used to assist coolant flow into the hot embosser during the cooling

process. An additional 3-way solenoid valve provides a bypass for the coolant flow to

cycle it either through the hot embosser during cooling or to route it back through the

chiller during heating and forming. The flow was routed back to the chiller because

experiments determined that merely blocking the flow could cause enough pressure to

build up in the line downstream of the chiller’s magnetic drive pump that the pump

would slip and the chiller would shut down in an error mode.

A diagram of the pneumatic and coolant systems is shown in Figure 4-13.

4.6 Tooling

The current tool used on the embossing machine was produced by Hennan, by em-

bossing bulk metallic glass. First, a negative was etched into crystalline silicon. Bulk

metallic glass was then heated to its glass transition temperature, and the crystalline

negative was embossed into its surface. The metallic glass was then cooled, and

the temperature profile carefully controlled. Finally the crystalline silicon was etched

away [16]. This tool has proven to be extremely robust and durable, and has produced

an estimated 1000 parts in its lifetime without showing any signs of wear measureable

with a white light interferometer. This tool is shown in a photograph in Figure 4-14.

However, in the past, other tooling materials have been used, such as micro-

machined aluminum tools. The downside of the micromachined aluminum tools is

their lower durability, and their relatively poor surface finish due to machining marks

[33]. Hard resin tools have also been investigated, though it was found that selecting

a resin that was both tough and rigid at high temperatures was difficult. Finally,

soft tools constructed of PDMS have also been demonstrated to be effective, though

these present somewhat different problems from rigid tools, and tend to exhibit more

rounding of features during embossing.
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Figure 4-13: Schematic of the Coolant and Pneumatic System: This diagram indicates
the flow path of the pneumatic and coolant inputs into the system. Black arrows
indicate airflow only; blue arrows indicate the flow of coolant, potentially mixed with
air.
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Figure 4-14: Bulk Metallic Glass Tool: Here the machine forming area is propped
open in order to capture an image of the tool. The pattern on the tool is visible, as
well as a blank substrate loaded onto the lower platen.

4.7 Performance of Precision Equipment

The final step is to quantify the performance of the machine. This takes the form of

measuring the performance of the controlled parameters and comparing them to the

desired values.

As for the thermal performance, both platens can be brought to within 3◦C of

a commanded temperature, but not at the same rate. This is because one heater is

noticeably somewhat lower power than the other, measurable as an effective difference

in resistance in an unpowered state; since the heater output power is controlled by

switching a 120V AC power source on and off, at 100% duty cycle, the output power

of one heater is given by:

Poutput =
V 2

R
⇒ Poutput ∝

1

R
(4.5)

The bottom heater was measured at 87Ω; the top was measured at 104Ω. This

corresponds to a difference in power output of 16%, closely matching the approxi-

mately 20% slope difference in the linear temperature ramp-up shown in Figure 4-15.

This asymmetry problem could be solved by acquiring more powerful heaters; the
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Figure 4-15: Heater Temperature Profiles During Production Cycle: One heater’s
temperature lags behind the other during ramp-up because of its lower maximum
output power, but by the time forming begins at 60 seconds, the two heaters are
within 3◦C of each other.

heaters currently in use were chosen for their form factor, but were the lower-cost,

lower-power option in that particular form factor. Additionally, utilizing more pow-

erful heaters would allow for a faster temperature ramp-up, and reduce the primary

contributor to cycle time, the heating stage. Another possible solution to improve

symmetry is to constrain the power output to the bottom heater, but this has the

downside of failing to decrease the time required to heat to forming temperature.

Overall, despite design efforts to minimize asymmetries between the platens, at least

some small thermal asymmetry remains; but, given enough time, both platens can be

brought to symmetric forming temperatures.

The force command proved initially to be a difficult problem. Though the actuator

was demonstrated to be highly linear in force output, the question remained if the

actuator combined with all other electronic and mechanical system components would

continue to have a linear output.
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Figure 4-16: Measured Force Profile During Production Cycle: The force output
follows the commanded force setpoint to within a few percent. The observed overshoot
is possible due to several possible contributions, such as nonlinearities in the system,
accumulated error in the integrator (capped by antiwindup), and unmodeled system
behavior.

As shown in Figure 4-17, the output is highly linear after a certain point. Below

this point, the guiding blade flexure makes a large contribution; as a beam constrained

to be fixed at one end and to move in vertical motion at the other end, it a nonlinear

stiffness in bending over large deformation, as determined by finite element simula-

tions. As the platens close, the blade flexure moves into the neutral position and the

small-deviation regime. In this regime finite element simulations show its stiffness

contributions are small and relatively linear. Thus, to successfully utilize the actu-

ator, it has been calibrated and designed to function in this linear regime of platen

contact.

This force output has proven to be repeatable to within the minimum resolution

of the load cell, approximately 2N. In addition the output has proven repeatable

to within approximately 1% of the commanded setpoint under all environmental

conditions, a significant improvement over pneumatic predecessors. The measured

performance of the force application during a production cycle is shown in Figure 4-
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Figure 4-17: Measured Force for Voltage Command to Actuator: The actuator-sensor
loop was designed and verified to be extremely linear in the regime in which it is in
contact with the platens. However, before the platens make contact, nonlinearities in
the system, such as the blade flexure at large displacements, give a nonlinear output.

16.

In summary, the machine performs at a high level, and is capable of meeting force

setpoint commands to within 1%, and temperature setpoint commands to within

3◦C. The actuator displays highly linear output behavior, and the process has been

demonstrated to be in control even in nonideal circumstances. The equipment has

been deemed sufficiently precise and well-controlled to be used as a platform to con-

tinue the study of the hot embossing process.
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Chapter 5

In-Process Sensing

5.1 Possible In-Process Measurements and Rela-

tionship to Quality

During the course of the development of the precision hot embossing equipment in

this thesis, it was noted that given that force measurement and temperature measure-

ment were already implemented (and necessary for forming parameter control), the

only other measurement required to be able to completely understand energy input

into the process was a measure of displacement. Given force and displacement, the

mechanical energy input into the system can be computed, as Wmech =
∫
Fdx; and

given temperature, the thermal energy input into the system can be determined, since

Wtherm = mCp∆T

t
. Thus, it was a logical decision to add a linear voltage displacement

transducer (LVDT) sensor to the system in order to measure this quantity.

However, computing process input energy is not necessarily the most indicative

measurement of the process to make. To wit, three measurements relevant to the

process quality were identified and implemented.

The first is a measurement of the initial blank thickness. Since inconsistent ma-

terial geometry is a large source of variation, as detailed in Chapter 1, knowing this

measurement allows for future possibilities in optimizing the embossing process and

controlling the temperature profile. (Because the force control is closed-loop, initial
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Figure 5-1: Underformed, Well-formed, and Overformed Devices: Shown here is an
underformed device (left), in which the channels are not fully impressed into the
substrate; a well-formed device (center); and an overformed device, in which the
channels are well-formed but the macroscale appearance of the device is distorted
and uneven [14].

blank thickness has no effect on the closed-loop force applied.) It also allows for

an easy, automated means of collecting information on material variability, which is

conceivably useful in finding or switching suppliers in a manufacturing environment.

The second is a measurement of the bulk deformation. The channel formation

quality improves as pressure and temperature increase, as the degree of flow into the

tool features increases, as explained in Chapter 2. However, this also causes flow

outward on the devices unconstrained edges, creating large-scale deformation in a

phenomenon deemed “overforming”. The overformed devices have ragged, uneven

edges, are difficult to register and seal with the adhesive tape cover, and are visually

unattractive, as visible in Figure 5-1. Thus, it is important to optimize channel

quality while preventing overforming from happening.

During embossing, large plastic deformations are incurred in the substrate. How-

ever, only a small portion of this deformation, approximately equal to the height of
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the features on the tool, is the actual imprinting process of the features; the rest

serves to squeeze bulk plastic flow out the sides of the substrate, and to stimulate

flow into the fool features. The relationship between this area and the displacement

of the platens is expected to be roughly quadratic, given the relationship

∆z

z
=

∆x

x
= K
√

∆A⇒ ∆A ∝ (∆z)2 (5.1)

where z is the compressed axis, x an unconstrained lateral axis, and K a re-

sulting geometric constant. Thus, by measuring bulk deformation, an estimate of

the degree of macroscale overforming can be made, and a second measure of quality

contributing to the whole can be made. Though one could establish a continuum

measure of overforming, it seems more practical to establish a binary threshold of

“acceptable deformation” or “unacceptable deformation,” based on visual inspection

and registration testing of finished devices.

The third measurement of interest selected is the glass transition temperature.

This is arguably one of the most important material parameters that could be de-

tected: in order to ensure consistent material properties, the temperature setpoint

is best made relative to the glass transition temperature rather than being absolute.

As shown in Chapter 2, at the glass transition temperature, drastic changes in mate-

rial properties, including sharp decreases in the elastic modulus and shear modulus,

occur. Thus, if one of these properties, such as elastic modulus, is plotted versus

temperature in-process, a sharp drop should be visible when the material reaches its

glass transition.

Measurement of the elastic modulus would typically be performed by measuring

the slope of a stress-strain plot during a compression or tension test; this removes any

function of temperature and geometry from the results [29]. However, the forming

cycle here is not an exact stand-in for a compression test: force and displacement are

measured instead of stress and strain, and geometrical variations in specimens are

not accounted for.

However, the elastic modulus is related to the measured quantities of force and
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displacement, as well as the geometric quantities, in the relationship:

EA

l
= Keff =

F

δ
⇒ E ∝ K =

F

δ
(5.2)

where E is the elastic modulus, A the area of compression, l the axial length

beign compressed, and F and δ are force and displacement. Then, it is relatively

straightforward to compute the stiffness at any point in time as F/δ, and plot it

relative to the temperature at that point in time, to generate a stand-in curve for

elastic modulus as a function of temperature. By detecting a precipitous drop in this

plot of effective stiffnes versus temperature, the glass transition temperature can be

estimated.

5.2 Hardware Implementation

The sensor package consists of an Omega LD500 LVDT and a Futek LTH300 load

cell. The LVDT is attached to the moving shaft using a figure-8 shaped clamp. This

clamp separates the LVDT from the active thermal area, preventing both thermal

and electromagnetic interference from the high powered heaters, and providing spatial

clearance for the device. The LVDT measures displacement between the shaft and the

roof of the structure, as shown in Figure 5-2. Ideally the displacement measurement

would be made directly between the two platens; however, due to space constraints

and the high temperature fluctuation experienced by the platens, they serve as very

unsuitable mounting points for any sensors. Thus, any displacement measured by

the LDVT does include some machine thermal expansion and elastic deformation;

however, these contributions are linear and easily predicted and removed from any

data.

The load cell is a donut-shaped load cell with a through-hole. It rests on a button

on a mounting plate on top of the pneumatic actuator, and on top of it rests the air

bushing shaft. The load cell is not fastened to either of these surfaces, which prevents

cross-loading on the system (as detailed in Chapter 4) and the load cell. The device

is then capable only of measuring compressive forces; however, in this application, no
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Figure 5-2: LVDT Contact Points: The orange arrow indicates the two points between
which the LDVT measures displacement–i.e., the roof of the structure and the moving
shaft. The two active thermal stacks and any deformation of the roof of the structure
then are included in the total displacement measured by the LVDT. Note that because
the clearance gap required for loading is larger than the LVDT’s measured range, the
LVDT is not in contact with the structure except for the final 1mm of its travel.

tensile forces are ever applied to substrates.

A Sola SDT-4-24-100RT 24V power supply provides a DC power signal for the

sensors. The load cell is driven with 15V of power created using a voltage divider

(maximum allowable 18V) [34], and the LVDT is driven with 24V (maximum allow-

able 30V) [35]. Driving with higher voltages increases the effective sensitivity of each

measurement device, as the output gain of each device is proportional to the input

voltage, and is thus desirable:

G = (VinputV) (GnativemV/V/N)⇒ G ∝ Vinput (5.3)

The output signal from each sensor is passed into an AD620 instrumentation am-

plifier. The output of the amplifier is buffered using an LM324 operational amplifier

to control impedance, as the AD620 is highly sensitive to impedance balance on its

input and output pins, and then hardware low pass filtered using a 1kΩ resistor and a

0.1µF capacitor, to remove high-frequency electromagnetic interference absorbed by
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the cables. These processed signals are then read by a National Instruments USB-

6008 10-bit data acquisition device, and processed by the LabVIEW program that

controls the machine.

5.3 LVDT Measurement Capability

The LVDT signal is amplified by 5.117 in the AD620, and at a 24V power signal

the LVDT outputs 9.165mV/µm. The data acquisition device is capable of reliable

resolving increments of approximately 5mV, so the LVDT is capable of measuring

displacements down to approximately 0.5µm over a 1mm range. System noise mea-

surements indicate the RMS noise to be approximately 0.2102µm.

The LVDT tip is not always in contact with the roof of the structure, however; due

to the fact that a larger clearance than 1mm is required to insert blank substrates,

the LVDT has a dead zone where it must travel through air before it makes contact

with the roof and starts measuring displacement.

Figure 5-3 shows the measurement made by the LVDT during a production cycle.

During the heating cycle, thermal expansion causes the LVDT to expand from its

initial point of contact; then, as the material softens and the temperature stabilizes,

the LVDT measures the platens beginning to close. During the forming cycle the step

up in force creates a jump in displacement as well as a faster rate of deformation,

visible as a steeper slope in the displacement curve. Finally, during the cooling cycle,

the degree of thermal contraction of the machine plus the formed part is visible as

the temperature drops to the demolding temperature level.

5.4 Force Measurement Capability

The instrumentation amplifier provides a gain of 225.5 to the load cell, which has

an inherent output of 0.01497mV/N when driven with 15V, for a total output of

3.376mV/N. The detectible force range is approximately 2200N, with an output res-

olution of approximately 2N (again limited by the data acquisition device’s resolution

84



Figure 5-3: LVDT Output During Production Cycle: The LVDT provides a win-
dow into what is happening during the process. During the heating cycle, thermal
expansion occurs, and then as the polymer reaches its glass transition temperature,
imprinting begins; in the forming cycle, large deformations are imparted under high
forces; and then in the cooling cycle, thermal contraction occurs.
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of 5mV). Total system noise measurements indicate RMS noise levels to be equivalent

to 0.8412N.

The load cell experiences some constant offset due to the weight under gravity of

the components resting on it as well as due to resistive stiffness created by the blade

flexure. The zero point from this offset is computed under gravity at the point where

the flexure is at a neutral position but no force is applied to the platens; essentially,

all non-forming forces are calibrated out. An example measurement made by the load

cell during a production cycle is shown earlier in Figure 4-16.

5.5 Relevant Measurements and Data

By combining the measurements made from the LVDT, the load cell, and the thermo-

couples, the measurements listed in section 5.1 can be accomplished in-process with

no additional steps required. This allows the cycle time to remain at its minimum,

and for process physics to be measured without any disturbances being imparted to

production.

5.5.1 Initial Blank Geometry

To measure the initial blank thickness, a simple algorithm is applied. As soon as a

nonzero contact force between the platens is detected, the displacement measurement

is made, i.e.:

δ(tF>0)− δoffset = δblank (5.4)

A known fixed offset between the tip of the LVDT and the machine structure (the

dead zone) is subtracted, and the remainder is the blank thickness when the tool first

makes light contact.

In practice, this measurement is limited by the sampling rate of the process. The

initial electronic system design was not created with measurement in mind, so some

components and processes, such as the heater controllers, impose rate limitations on
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Figure 5-4: Accuracy of Initial Thickness Measurement: Here, automated measure-
ments are compared to manual micrometer measurements (the dark green and purple
bars and the left axis), while the percentage error is also displayed for each measure-
ment (light green bars and the right axis).

how fast the measurement can be made. This means that the moment of initial contact

tends to be missed, and a subsequent post-contact, light-compression displacement,

smaller than expected, is detected instead. Even under these conditions, however,

the measurement has been shown to be able to automatically detect the initial part

thickness to within 4% error, as shown in the data in Figure 5-4. The fact that error

is almost always positive (i.e. the initial thickness measured is smaller than expected)

also supports the theory that the measurement is capturing a compressed thickness

instead of an initial thickness. It is expected that with a faster sampling rate this

error would decrease.
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5.5.2 Bulk Deformation

The algorithm to measure bulk deformation is also relatively straightforward. Ideally,

deformation from the first moment the tool contacts the substrate until demolding

would be measured, to track both the initial imprinting deformation as well as excess

deformation. However, first contact occurs during the heating stage, when the tem-

perature is being ramped up, and the blank substrate as well as the thermal stack is

experiencing significant thermal expansion (as visible in Figure 5-3 above). Since the

LVDT measures the displacement outside the thermal stack, this expansion appears

in its measurement along with any elastic deformation experienced by the machine

structure. These effects mask the deformation of the part, and though they could be

estimated and calibrated out of the measurement, the quality of this estimation is

unlikely to be high.

Thus, the bulk deformation measurement is best conducted in a constant tem-

perature environment; the force profile may however be arbitrary, as the resulting

displacement is taken to be directly related to the overforming, without any depen-

dence on the force profile. Fortunately, during the forming cycle, the temperature is

held constant while a high forming force is applied. Thus, to gain some measure of

overforming, the displacement over the forming cycle is monitored.

To experimentally validate the expected correlation, substrates were imaged be-

fore and after forming, and an image processes code implemented in LabVIEW was

used to measure the area of the irregular shape. However, this measurement was

somewhat noisy and highly dependent on the ambient lighting conditions, as is visi-

ble in Figure 5-5. Even so, the correlation is strong, exhibiting an R2 value of 0.78,

and validating the expected quadratic relationship.

It is thought that this correlation can be used to establish a binary threshold for

acceptable or unacceptable levels of deformation by visually inspecting each formed

device and essentially drawing a vertical line on the plot in Figure 5-6 to bound it

into two regions. During forming, this limit could either serve as a stop—the forming

cycle could be aborted at that point and transitioned into the cooling cycle—or it
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Figure 5-5: Images Taken for Optical Area Measurement: From left to right: an image
of a blank substrate before forming; an image of the same substrate post-forming,
with some overforming visible on the edges; an image of the substrate, thresholded;
and a filled image of the substrate so area may be computed. The resulting area of
the substrates is highly sensitive to the threshold level, down to even 2% changes in
the level; any variations in light level make changing this threshold level necessary
and induce noise.

could be a signal to switch to displacement control and hold displacement constant.

5.5.3 Glass Transition Temperature

Measuring glass transition temperature has proved the most complex of the three

selected measurements. This is in part because the computation of effective stiffness

does overlook some relevant quantities, i.e. that the geometry of the part is changing

and that the force applied is not applied over a blank area but rather is an aggregate

measure of force applied over a tool with raised features on its surface. Thus the

effective stiffness computation is at best an estimate, made because it is quick, simple,

89



Figure 5-6: Correlation of Bulk Displacement Measurement with Area Measurement:
The bulk deformation measurement matched the expected quadratic relationship
fairly well.

and because its ingredients are available at hand.

Another issue with measuring the glass transition temperature is that it requires

a ramping temperature profile. Again, fortunately, the conditions in the heat stage

exactly match the necessary conditions: force is held constant, while temperature is

ramped up from below to above the glass transition. However, the stiffness also relies

on the displacement measurement, which is polluted by the measurement of thermal

expansion and some small elastic deformation of the structure during the heating

stage.

Even so, it was found that even with the uncertainty in the computation of effective

stiffness, a visible sharp decrease was clearly visible at temperatures corresponding to

the expected glass transition temperature in multiple experimental repetitions; one

set of data is demonstrated in Figure 5-7. A positive slope before the inflection point

provides a point of some debate, as for bulk material one would expect a downward

slope at all points (the stiffness is always decreasing as temperature increases, as per
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Figure 2-2). There are several possible contributors; one is that though the data were

calibrated to remove thermal expansion offset, the estimate was not entirely accurate,

and some remained. Another possibility is that during this process the polymer was

softening, and the raised features were sinking into its surface; as more of the bulk

of the surface contacted the flat plane of the tool beyond the raised features, the

apparent stiffness of the material would rise, even as its material properties were

changing to decrease that stiffness. Further investigation into this phenomenon is

needed to better understand what processes are at work. In addition, determining

an algorithm to automatically and accurately detect this inflection point is still in

progress and has not been fully implemented.
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Figure 5-7: Experimental Data Measuring Effective Stiffness: The inflection point is
clear in both the experimental data; the glass transition temperature is estimated at
115◦C as indicated by the dashed vertical line.
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Chapter 6

Conclusion

6.1 Thesis Contributions

The microfactory project set out to study the process of hot embossing as applied to

microscale polymer fabrication in a manufacturing environment. To this end, preci-

sion equipment had to be developed that could support these efforts. This equipment

needed to provide a high degree of repeatability, low machine variability, precise con-

trol of forming parameters, and a low cycle time for product formation. Building

on the process knowledge developed by previous generations of hardware, one major

contribution of this thesis was the design and construction of a new generation of

precision embossing equipment. This equipment demonstrates superior parameter

control and repeatability, and is the starting point for ensuing process control efforts.

An additional contribution of this thesis is the outfitting of the precision equipment

with additional sensors. This allows for measurements of quantities and phenomena

relevant to the process to be made in-process with no modifications to the cycle. These

quantities can help define finished part quality, and provide further opportunities to

explore process control and refine the embossing process.
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6.2 Utility of Work

In conversations with industry representatives and microfluidics device designers, a

frequent question is whether the design of this machine is scalable. The testbed design

of only a 2.5cm by 2.5cm square area enforces space constraints on designs, and many

designers seek to use emboss larger areas, either to make larger designs, or to make

many devices in parallel.

One additional benefit of this design, as mentioned briefly in Chapter 4, is that

it is completely scalable. The current design applies up to 2000N force over an

area of some 6.25cm2, for an averaged pressure of 3.2×106Pa. Though force is the

controlled parameter, since it is applied over a fixed area, pressure is essentially

directly controlled, and is more fundamental to the forming process (which depends

on stresses). Thus, to achieve the same pressure capability (and thus the same forming

quality) over the area of a microscope slide (approximately 19cm2), one would need

to be able to exert approximately 6.2kN of force. Similarly, for a credit-card sized

area (approximately 46cm2), one would need to exert approximately 14.8kN.

The work detailed in this thesis was designed for a 2kN maximum load. To be

able to form these larger areas which are desirable for industrial production, the

machine would need to be scaled. Fortunately, all aspects of the mechanical design

are scalable:

1. The current selected actuator, the Firestone Airstroke 131, has a maximum

force output of 6kN; however, it is one of the smallest available models. For

example, the Firestone Airstroke 115 has a maximum force output under the

same conditions of 15.8kN. Other Airstroke models have force capabilities of

up to 3.5MN, far exceeding any foreseen actuation demands [36].

2. The force sensor was selected to match the required force output range; load

cells with capabilities up to 90kN and beyond are commercially available to

match the upgrade in actuator capabilities [37].

3. The air bushing and shaft diameters were chosen for their stiffness and for the
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large mounting area on the top of the shaft. Given that the design is intended to

prevent transmission of cross-loading to the shaft, there should be no reason even

at higher actuator forces to need to upgrade the stiffness of the shaft; however,

larger air bushings are also commercially available, with corresponding increases

in stiffness [38], if larger cross-loads were to be anticipated. The addition of a

simple adapter on the top could make the forming area as large as necessary.

4. The machine structure, an O-frame, is also scalable. Because the deformation of

the O-frame, which consists of tensile stretching of the legs and 3-point bending

of the crossbar, is completely symmetric around the forming region, the magni-

tude of the deformation is not important provided it is small enough to avoid

excessive stresses in the structure and to avoid confounding any displacement

data measured. By making the members thicker, or by constructing them out

of a stiffer metal such as steel, the stiffness could be increased against the larger

force load and kept in this regime of “small enough,” and the maximum defor-

mation of approximately 10µm could be maintained as the device was scaled.

5. For an increase in platen size and thus heater power needs, larger and higher-

power heating units are available on the market, such as the 2kW Watlow

CER-1-01-0006 model [22]. These slim-profile heaters could also be tiled to

cover an even larger area if necessary.

6. If a larger platen were required to be cooled, the incoming coolant could be

branched and passed through multiple U-bends, keeping the local cooling profile

identical to that demonstrated in finite element simulations in Chapter 4.

7. No changes to the LVDT sensor should be necessary unless a larger displacement

range must be measured; in that case, commercial solutions with larger sensor

ranges are available, such at the Omega Engineering LD640-150, which features

a 150mm range [39].

The greatest difficulty in scalability is parallelism of the platens. In this design,

parallelism was achieved by using CNC-machined flat surfaces, and a planarizing
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layer of epoxy. Over the small forming area in this design, the flatness achieved by

CNC-machined surfaces was sufficient to minimize the force disparity between any

two imperfectly parallel formed edges. However, as the area increases, any small

tilt or deviation in machined surfaces propagates, and magnifies the force disparity

between two edges. The author speculates that should this design be scaled even

up to credit-card size, innovations in achieving and maintaining parallelism either

passively or actively would be necessary.

6.3 Future Work

Possible transfer or expansion of this design to industry is one avenue of future work

to be addressed. Interest has been demonstrated by some industry groups for the

niche in their product lines that this machine fills.

The main task of the future work involving this system is to integrate it into the

microfactory and fully automate the embossing process. In the final version of the

factory, each step in the production of a part will involve a separate autonomous

module: a dispenser for blank substrates; the embossing machine; a machine that

applies and trims tape; and finally a machine that images and functionally tests

finished devices. An Epson commercial robot will perform materials handling, and

transfer the parts between each step. A central controller computer will receive signals

from each module and trigger events in the cycle as needed. This module will also read

in quality measurements from the testing device, and pass along adjustments to the

forming parameters to the embossing machine. In this way closed-loop cycle-to-cycle

control will be established.

Additional work to accomplish this objective will necessitate analysis of variance

for each system component. Additionally, the relationship between forming parame-

ters and quality measurement parameters will need to be established and quantified,

in order to implement a mathematical or logical control algorithm to maintain qual-

ity. Once these steps are complete, tests demonstrating disturbance rejection and

maintenance of part quality under varying conditions can be performed, and the goal
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of achieving and demonstrating closed-loop cycle-to-cycle control can be completed.
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Appendix A

System Circuit Diagrams

Below in Figure A, the circuit conditioning the sensor signals is diagrammed. This

circuit was enclosed separately from other subsystems. Two AD620 instrumentation

amplifiers are used to amplify the signal, and LM324 operational amplifiers are used

to control impedance on the bias adjustment and output pins of the instrumentation

amplifiers. An additional buffer controls impedance for the LVDT power supply.

Conditioned signals are then routed into the National Instruments USB-6008 data

acquisition device.

In Figure A, the circuit providing power to all system components and the instru-

mentation circuit is diagrammed. This circuit was also enclosed separately from other

subsystems. 120V AC power is converted to a 24V DC signal. This signal is used as

a power source for LM324 operational amplifiers which invert and offset the switched

DC signal created by the heater controllers. Additionally, a noninverting operational

amplifier configured to have a gain of 2 converts the 0-5V output signal from the data

acquisition device to the range of 0-10V required by the E/P transducer. Power for

the solid state relay board is provided by the power output on the data acquisition

device.
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Figure A-1: Instrumentation Circuit Diagram: This diagram shows the implemen-
tation of the circuit linking the sensors to the data acquisition device. The circuit
signals are amplified, filtered, and then passed to a data acquisition device.
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Figure A-2: Power Electronics Circuit Diagram: This diagram shows the imple-
mentation of the circuit providing power to all system components as well as the
instrumentation circuit. 120V AC and 24V DC signals are used as main power lines.
Signals from the data acqusition device and the heater controllers are conditioned
and passed to solid-state relays to control hardware components.

101



102



Appendix B

System Diagram

Figure B-1: Schematic of Complete System: Here the entire system is diagrammed,
showing connections between the pneumatic, coolant, electronic, and mechanical com-
ponents.
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Appendix C

Engineering Drawings

Following are included engineering drawings for all components fabricated by the

author. Components that were not fabricated by the author are:

1. The insulation blocks; as they required diamond tooling, Jaco Products was

contracted to fabricate them.

2. The 2in diameter shaft was only post machined.

3. The air bushing and mounting block were not fabricated.

4. All sensors and actuators were purchased components.
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Figure C-1: Planar adjustment flexure.

Figure C-2: Structural spacer plate mounted on the ceiling of the O-frame.
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Figure C-3: Bottom cooling block.

Figure C-4: Top cooling block.
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Figure C-5: Bottom platen.
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Figure C-6: Top platen.
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Figure C-7: One of the two demolding tabs.
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Figure C-8: The second of the two demolding tabs.

Figure C-9: Figure 8 shaped LVDT clamp.
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Figure C-10: Guiding blade flexure that prevents axial rotation of the shaft.

Figure C-11: The bottom piece clamping the blade flexure to the O-frame.
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Figure C-12: The top piece clamping the blade flexure to the O-frame.

Figure C-13: The structural piece clamping the flexure between the bottom thermal
stack and the shaft.
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Figure C-14: The O-frame legs. Note that on one the two smallest holes are not
featured.

Figure C-15: The top crossbeam of the O-frame.
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Figure C-16: Cap for Firestone Airstroke actuator.
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Figure C-17: Block on which Firestone Airstroke is mounted.
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Figure C-18: Blaseplate of O frame structure.
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Figure C-19: Structural elements used to mount and position the air bushing pillow
block.
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Figure C-20: The template for the HIPS safety shield mold, before bending and
thermoforming.
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