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Operator Choice Modeling for Collaborative UAV
Visual Search Tasks

Luca F. Bertuccelli Member, IEEE, and Mary L. Cummings Senior Member, IEEE

Abstract—Unmanned Aerial Vehicles (UAVs) provide unprece-
dented access to imagery of possible ground targets of interest in
real-time. The availability of this imagery is expected to increase
with envisaged future missions of one operator controlling mul-
tiple UAVs. This research investigates decision models that can
be used to develop assistive decision support for UAV operators
involved in these complex search missions. Previous human-
in-the-loop experiments have shown that operator detection
probabilities may decay with increased search time. Providing
the operators with the ability to requeue difficult images with
the option of relooking at targets later was hypothesized to help
operators improve their search accuracy. However, it was not
well understood how mission performance could be impacted by
operators performing requeues with multiple UAVs. This work
extends a queueing model of the human operator by developing
a retrial queue model (ReQM) that mathematically describes
the use of relooks. We use ReQM to generate performance
predictions through discrete event simulation. We validate these
predictions through a human-in-the-loop experiment that eval-
uates the impact of requeueing on a simulated mutiple UAV
mission. Our results suggest that while requeueing can improve
detection accuracy and decrease mean search times, operators
may need additional decision support to use relooks effectively.

I. INTRODUCTION

An important aspect of ongoing and envisaged Unmanned
Aerial Vehicle (UAV) missions is the visual search task, in
which operators are responsible for finding a target in an image
or a video feed. Due in part to advances in networked sensors,
military analysts are becoming increasingly overwhelmed with
the volume of incoming UAV imagery (both full motion video
and static images) [1]. Given the future DoD vision of one
operator supervising multiple UAVs, the amount of incoming
imagery to analyze in real-time will grow [2]. Moreover, with
recently announced wide area airborne sensors such as Gorgon
Stare and Argus which can generate up to 64 images per single
UAV camera concurrently, there is an urgent need to develop
efficient approaches for human analysis of UAV-generated
imagery [1, 3].

Given the complex interactions between the human and
the automated sensors in these UAV missions, models of
the human operator are necessary in order to develop more
appropriate decision support systems that account for operator
decision making inefficiencies, such as increased wait times
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for vehicle selection and loss of situation awareness [4]. Math-
ematical models for human operators interacting with multiple
UAVs have been developed using a queueing framework [5,
6], where external tasks are generated from an underlying
stochastic process, and the human supervisor, modeled as a
server, services the stream of tasks. While analysis of realistic
multi-UAV missions is analytically intractable, Discrete Event
Simulation (DES) of operator queueing models has been used
to generate accurate performance prediction of experimental
results [6]. Operator models have also been developed for
human information aggregation using 2-alternative choice (2-
AC) models [7–11] and visual search formulations [12–19].

In difficult search environments, operators searching im-
agery in multi-UAV environments may desire more choice than
determining if a target is present or absent in an image. More
specifically, operators may seek additional information in order
to find the target, possibly through another visit later on in the
mission, or they may choose to ignore a task because there
is not sufficient information to make a confident assessment.
We hypothesized that instead of a two-choice model, operators
would be better served by having a third option of reevaluating
a search task at a later time by requeueing the image and taking
another glance via a relook. Throughout this article, we make
a distinction between the choice of requeueing, which is the
abandonment of the current search task, and a relook, which
is an additional glance at a previously searched image.

While it is straightforward to implement a requeue option
in a multi-UAV simulator, the effect of providing requeue and
relook capabilities must be investigated experimentally since
there is a potential for undesirable effects such as increased
operator workload. Nonetheless, these capabilities could be
operationally important in minimizing collateral damage and
reducing errors, and have been studied in the context of opti-
mal stopping [20] and inspection problems [21]. While these
works showed promising results in assessing the informational
value of an additional look, these studies are limited in two
main ways. First, previous work related to the speed-accuracy
tradeoff shows that operator error rates may not be stationary,
meaning that an operator’s accuracy can change as a function
of time spent searching [22]. This is supported by work in
the vigilance literature as well, in which the operator’s ability
to discern a target of interest is dependent on the search time
and difficulty [23]. In addition, multi-video visual search tasks
with the possibility of a relook can increase operator workload.

This effort makes three novel contributions in presenting
a choice model for a search task with requeues. First, we
develop a Requeueing Model (ReQM) for visual search tasks
that includes the possibility of requeuing difficult images, and



Fig. 1. A queueing model for the human operator in which new targets arrive
at a known rate λ and they are processed at a rate λe.

pose ReQM as a variation of a retrial queue with feedback [24–
27]. We next develop a DES with ReQM (DES-ReQM) that
embeds operator models derived from previous experimental
data of a simulated multi-UAV mission. We then present re-
sults in the predicted performance of multi-UAV visual search
tasks using DES-ReQM. We build on previous work [28]
by discussing the results of a human-in-the-loop experiment
that confirm the predictions made by DES-ReQM, as well as
presenting experimental observations of operator behavior in
requeueing and relooking tasks. We conclude with a discussion
on the implications for requeues and relooks with an actual
operator in the loop.

II. OPERATOR MODELING

Queueing models for human operators have been previously
proposed in the context of air traffic control, where the human
operator is treated as a serial controller, capable of handling
one complex task at a time [5]. These queueing models of
operators have been recently extended to account for operator
workload and attention inefficiencies in the context of human
supervisory control of multiple UAVs [6]. Figure 1 shows a
general queueing model for a multi-UAV supervisory control
problem for the visual search task. Search tasks are generated
by a Poisson process at an average rate λ , and the human
operator (with possible help from a decision support system,
DSS) services the tasks at a rate λe. In complex tasks,
operators may dedicate themselves only to a single task at
time, allowing the incoming tasks to accumulate in the queue.
The visual search task initiates when the operator begins
examining the image feed once the UAV reaches the target,
and concludes with a decision on the target location.

A. Decision models

An important feature of an operator queueing model is that
a sub-model is needed to understand how humans accumulate
information and ultimately make detection decisions in search
tasks (the “Operator” block in Fig. 1). One common formula-
tion uses a 2-alternative choice framework (2-AC) [7–11, 29].
2-AC models originate from hypothesis testing models [7] and
characterize information accumulation as a stochastic diffusion
process. It can be shown [30] that sufficient statistics of the
diffusion model can be summarized by two random variables
that can be measured empirically: the probability of choosing
one of the alternatives, P, and mean response time T̄ . For
the visual search task in this article, P is the probability of
detection.

Previous work in the visual search literature has also at-
tempted to provide some insight in human response times and
accuracy in a speed-accuracy tradeoff setting. For example,
Signal Detection Theory (SDT) has been used to mathemati-
cally characterize human performance in visual search tasks.
In most experiments, subjects are shown a sequence of images
and both detection time and accuracy are measured. Earlier
work has proposed generating a Receiver Operating Character-
istic (ROC) for humans to understand the relationship between
correct detection and false alarms [17], while other work
extends the SDT framework to include attention [31]. King et
al. [32] use realistic imagery and assumed an SDT model to
describe the performance of the subjects. Waldman et al. [33]
developed an empirical model for visual detection with search,
based on identifying parameters of a probabilistic model,
such as search time and accuracy. Sperling [34] investigated
visual search with attention more specifically looking at reac-
tion times, and investigating a so-called Attention Operating
Characteristic (AOC). More recently, Huang [35] considered
attention in visual search.

Extensive work in visual search has also emphasized the
use of probabilistic models that relate mean decision time
to the mean time to search [12–17]. Recent work has also
moved beyond the mean decision times, and analyzed the role
of parameter identification for parameterization of the search
time distributions [36, 37]. While the characterization of the
search is also important from a cognitive science perspective,
the work in this article does not address the low-level details of
how the search is accomplished but rather seeks to understand
and quantify the effect of sequential searches within the
context of supervisory control.

B. Motivation for requeues

We used experimental data obtained from a multi-UAV
simulator including visual search tasks to determine the re-
lationship between detection probability and search time in
search tasks performed by single operators in multi-UAV
simulated missions [6]. The search tasks contained imagery
obtained from Google Maps and the participants were in-
structed to maximize the number of targets correctly found
over the course of the mission. In multiple target searches,
operator detection accuracy degraded with time [38] since
difficult searches required additional cognitive effort from the
operators. We used this data to determine that the empirical
mission probabilities of detection decreased with increased
search time and hypothesized that the increased likelihood of
mistakes arises because people are forced to make a choice
on a search task in order to move on to waiting search tasks.

Figure 2 shows the probability of detection modeled using a
logistic regression for a visual search task obtained from pre-
vious experimental data in multi-UAV simulated missions [6]
and is consistent with previous vigilance literature [23, 38].
The logistic model will be explained further in Section III, but
given the decrease in operator accuracy with time, it appears
that there could be a benefit to requeueing the current search
task (and possibly abandoning it in the absence of new sources
of information). While one of the key benefits of a requeue is



Fig. 2. Detection probability decreases as a function of time: best estimate is
solid line, 2-σ regions shown in diamond-etched lines, Maximum Likelihood
estimate in triangles. Vertical lines show illustrative examples of search times
for detection probabilities of Pd = 0.85 and Pd = 0.80

that it frees the operator to pursue other searches, especially
since the queueing model assumes that tasks are continually
arriving. An additional benefit of a requeue is that a search
task could be investigated at some later time in the mission
via a “relook”. Note when search tasks are requeued, they
are simply reinserted in the queue, and there is no explicit
provision for how a requeued task is searched again (e.g., First-
come, First-served). For example, an operator may choose to
take another look at a requeued task after having explored
other tasks, or never search the task again for the remainder
of the mission.

III. RETRIAL QUEUEING MODEL REQM

In order to account for requeueing in a queueing framework,
this section first describes the formulation for requeueing a
task using retrial queues [24, 25], and describes the ReQM
developed for this effort. Figure 3 shows a visualization of
ReQM. Just like in conventional queues for human operator
models, ReQM treats the human as a server [6] and if the
operator is free to initiate an available visual search task, the
task is shown to the operator and can be serviced immediately.
If the operator does not wish to complete the initiated task,
and wishes to delay it to some other time (which could lead to
never seeing it again), the task is inserted in a so-called orbit
pool. ReQM is a slight variation of retrial queues in [26, 27]
but differs fundamentally in attempting to model how requeues
and target detections are made by the operator (which are
not addressed in [26, 27]). Additional details of ReQM are
provided in the following main components: 1) Task arrival
and service rates, and 2) operator choice model.

A. Arrivals and service rates

ReQM assumes that new tasks follow a Poisson arrival with
rate λ and that new tasks are serviced by the operator at
a rate λe. Note that for queueing models of visual search
tasks performed with UAVs, the UAVs are allocated in the
environment to maximize the total number of targets found
correctly. Therefore, λe has a strong dependence on numerous

Fig. 3. In contrast to the queueing model of Fig. 1, retrial queueing allows
for operator requeues in difficult tasks, which are then placed in an orbit
queue. Targets are then reinserted in the available task list at some later time,
and the operator can choose to search or abandon them.

mission-specific factors, but the principal drivers are operator
search time and, in the case of a multi-UAV setting, vehicle
routing policy that likely requires operator intervention [39].
Under certain arrival and service rates, queue instability can
occur, in which the number of outstanding targets will grow
unbounded over time. Vehicle routing policies have been
developed to provide guarantees under which queue instability
can be prevented [39], but it is unclear whether these guaran-
tees will hold with actual operators in the loop, especially if
these operators have the capability of requeueing targets.

B. Choice model

The choice model is the underlying mechanism under which
the operator can make a detection decision (e.g., whether there
is a target in the image or not), or decide that a task needs to
be requeued.

1) Detection decision: We abstract the operator choice
model into a detection probability and search time distri-
butions. For the detection probability, we derived a logistic
regression model from previous experimental data [6]. The
operator is assumed to make correct detections with probabil-
ity

Pd(ts) =
1

1+ exp(β̂ T t)
(1)

where t= [1, ts], ts denotes the search time, and β is a vector of
parameters obtained from experimental data. In distinction to
the work in [40], the detection probability is a non-stationary
quantity, and is negatively dependent on the search time.

Search time distributions can likewise be estimated from
previous experimental data regarding the visual search task in
a simulated multi-UAV experiment [6]. We found that the log-
normal distribution of Eq. (2) is a good approximation for the
search time distribution, where T̄ and σ2 are the mean and
variance of the search times

f (ts; T̄ ,σ2) ∝ exp
(
−(log(ts)− log(T̄ ))2

2σ2

)
, ts > 0 (2)

2) Requeueing decision: If the operator is not willing to
make a detection decision, then the operator can choose to
requeue the task. However, the requeueing policy describing
how the operator decides to requeue tasks may depend on



a number of factors, including the total amount of time spent
searching for a target, the total number of remaining tasks, and
target arrival rates. As a first approximation, ReQM assumes
that an operator will requeue the target with some probability
p, which is the probability that the search time exceeds some
critical search time Trl (additional details on how Trl is chosen
are provided in Section IV).

In summary, the operator choice model in ReQM assumes
that the operators are going to either make a correct detection,
an incorrect detection, or ask to requeue the task. Search times
are distributed according to f (ts; T̄ ,σ2), and in the event of
a detection decision given a realization ts from this search
time distribution, the operator makes a correct detection with
probability Pd(ts).

C. ReQM analysis and the need for simulation

ReQM is an initial attempt to represent how a repeated
visual search task with a task requeueing option can be
properly formalized using retrial queues. However, analysis of
this model is difficult without human-in-the-loop experimental
data, as it is unclear how frequently subjects decide to requeue
tasks, and previous work in retrial queueing theory does not
provide insight into these choices for human operators.

In addition, even if we understood how operators requeue
targets, it would be difficult to analyze ReQM in closed form
since real models for retrial queues may deviate from some of
the common assumptions necessary for analytical tractability.
In ReQM, for example, requeueing invalidates the assumption
of independent arrivals. In addition, [26] assumes that a task
in the orbit queue can only be serviced if the nominal queue
is empty. This is not a suitable representation for the multiple
UAV relook problem, since a target can be requeued regardless
of the remaining outstanding visual search tasks. Queueing
theory also is concerned with queue stability, in the sense
that the number of tasks does not grow unbounded over
time, which may not be a valid assumption when human
performance is considered. While it will be the topic of future
work to investigate whether the analytical methods from retrial
queueing theory may be applicable, a method for admitting
less restrictive assumptions can be addressed by using Discrete
Event Simulation (DES).

IV. DISCRETE EVENT SIMULATION OF REQM:
DES-REQM

DES provides a number of advantages. First, where ana-
lytical methods are not available for analyzing a queue in
closed form, DES can help provide insight of the queue
transient properties. Secondly, DES can be used for tuning the
appropriate set of parameters to be used for human-in-the-loop
experiments, such as determining appropriate task arrival rates.
The ultimate goal of the DES environment in this effort is to
provide a high-fidelity simulation of the experiment and this
section discusses a DES model of ReQM, DES-ReQM , which
is composed of three main parts: an environmental module, a
routing policy module, and a requeue policy module.

A. Environmental module in DES-ReQM

The environment is assumed to be a bounded region,
populated with stationary targets that are generated according
to a Poisson process with arrival rate λ . Without loss of
generality for the kinds of single operator, multi-UAV missions
envisioned for this work, we assume that the low level vehicle
control loops are closed by an onboard autopilot, and that
low-level planning problems (such as satisfying turn rate
constraints on UAVs) are not the responsibility of the operator,
but of appropriate low-level control algorithms.

B. Operator planning module in DES-ReQM

In modeling the operator planning policy, we make the
assumption in DES-ReQM that operators allocate UAVs to
targets according to a policy that routes UAVs to the targets
that are nearest geographically. While current research is
investigating the role of different routing strategies [39], we
will assume this greedy approach.

We are interested in a mission objective that maximizes the
total number of targets correctly found (NF ) out of the total
number of possible targets in the environment (NT )

JF = NF/NT (3)

NF is a function of numerous operator-specific parameters
(such as target difficulty, search time, and requeue policy),
but in the multi-UAV setting it also has a strong dependency
on the routing policy for the vehicles. For example, operators
could increase vehicle travel time by assigning a vehicle to
visit a distant target, rather than allocating vehicles to service
nearer tasks.

Upon reaching the targets, the UAVs are assumed to loiter
around the target, and initiate a visual search task only when
the operator has chosen an available UAV. For the ReQM,
UAVs initiate a visual search task according to a First-Come,
First-Served (FCFS) policy (in which the first UAV to reach
the target initiates the search task first), which is a common
assumption made in vehicle routing problems [39]. The search
times were modeled by using the search time distributions
from previous experiments performed in the RESCHU multi-
UAV simulation environment [6]. Realizations of the search
times for the ith task, t i

s, are generated by sampling a new
random number from the log-normal distribution in Eq. (2)
with mean T̄ and variance σ2,

t i
s ∼ f (ts; T̄ ,σ2) (4)

In turn, the search outcome is generated by the realization
of the random variable Pd(t i

s) from the logistic regression of
Eq. (1). For the human-in-the-loop experiment discussed in
the next section we determined, from previous experimental
data [6], that the logistic regression parameters are given by
β̂ = [−2.300,−0.037]. For the search time distributions, we
found that log(T̄ ) = 3.1 and σ2 = 0.6.

C. Requeue module in DES-ReQM

The requeueing model in DES-ReQM assumes that a task
is requeued by the operator if the search times t i

s exceed a



Fig. 4. Trend of empirical relook probabilities (4,∗,�) agrees with theoretical
relook probability (solid line) for 3 different arrival rates chosen for testing
in DES-ReQM: λ = {20, 30, 40} [sec/target].

critical time Trl . For example, if the critical time is chosen as
Trl = 25 seconds, the task is automatically requeued by the
system when 25 seconds have elapsed. When a requeue takes
place, the task is inserted in the orbit pool, and a new route is
calculated for any available UAV in the simulation. The critical
time was varied as a simulation parameter and discretized in
the interval Trl ∈ {20,25,30, . . . ,60}. This interval was chosen
since it described over 95% of the support of the search time
data from previous experiments.

Note that the theoretical requeue probability p̄ for each of
the critical times Trl can be found with the following integral
(which is the red line labeled “Empirical” in Fig. 4)

p̄(Trl) = Pr(t ≥ Trl) = 1−
∫ Trl

0
f (ts | µ,σ2)dts (5)

Unfortunately, the integral is not available in closed form, but
numerical routines can evaluate the cumulative distribution
function of the log-normal distribution.

D. Simulation results

This section presents simulation results of the performance
using the previously developed operator choice models ana-
lyzing 100, 10-minute long simulated UAV missions. In this
setting we analyzed the detection probability (Pd) and fraction
found correctly (JF , given by Eq. (3)).

Targets were modeled given with 3 distinct average target
arrival rates λ ∈ {20,30,40} [sec/targ] that, given previous
human-in-the-loop experimental data, were arrival rates rep-
resenting different taskloads. Figure 4 shows the agreement
between the theoretical prediction relating the requeue proba-
bility with the search time Trl . For example, choosing a relook
search time of Trl = 25 seconds implies that the probability
of requeue will be on the order of p = 0.3. Recall from
Eq. (5) that as the search time Trl threshold increases, we
intuitively expect the probability of requeueing to decrease
since operators will have more time to make decisions on the
presence or absence of the target.

By varying the time Trl , it is possible to, in turn, investigate
the effect of requeueing on mission performance. Figure 5

Fig. 5. Detection probability and fraction found JF vs. requeue probability
for 3 different arrival rates. Lower arrival rate decreases JF from 0.62 to 0.42
as relook probability increases to 0.8, but detection probability increases from
0.82 to 0.86.

shows the impact of varying the probability of requeueing
on the detection probability and fraction correctly found JF ,
averaged over the 50 Monte Carlo simulations. Figure 5 shows
that the DES-ReQM predicts that tasks that were requeued
with probability p= 0.3 for arrival rates of λ = 30 [sec/targets]
resulted in a fraction found of JF = 0.5, while requeueing with
probability p = 0.78 resulted in a fraction found of JF = 0.4
Predictably, the increase in requeue probability decreases the
fraction found JF since operators do not have enough time
to find new targets. On the other hand, the probability of
detection under all three arrival rates increases from 0.81 to
0.86, thereby demonstrating the potential for an improvement
in overall probability of detection by virtue of moving on to
less challenging tasks.

In summary, the DES-ReQM shows that there is an impor-
tant tradeoff between maximizing the fraction of targets found
and ensuring a high overall accuracy in target detection. There-
fore, requeues may be beneficial in the context of improving
probability of detection, but a human-in-the-loop experiment
is needed to investigate operator requeueing strategies and the
effect on mission performance.

V. RELOOK EXPERIMENT

Using the results from the DES-ReQM simulations, an
experiment was conducted with the objective of investigat-
ing the performance of a retrial queue when users had an
available requeue option. The experiment was performed in
RESCHU (Research Environment for Supervisory Control of
Heterogeneous Unmanned vehicles) [6], a simulation specifi-
cally tailored to investigate human-in-the-loop interaction with
multiple UAVs. A typical RESCHU interface is shown in
Fig. 6(a). A single operator is tasked with handling N UAVs in
an environment where targets are non-moving, but appear at
random intervals. When a UAV (shown in a blue bell shape)
reaches a location of interest (shown as a red diamond), a
visual search task is initiated by the operator in the top left
panel of the interface, with a magnified version of the search



(a) RESCHU interface: UAVs (shown in a blue bell shape) are directed to
fly to locations with targets (red diamond) while avoiding risky areas (yellow
circles)

(b) RESCHU search panel during search task showing the timer counting down
(top right), and the relook button

Fig. 6. RESCHU interface (a) and search panel (b)

panel shown in Fig. 6(b). Note that in the visual search task
panel, the operator can zoom in and out of the display, while
panning the image. In addition, the operator can query the
system with the “Query” button, to find out how many residual
search tasks still need to be processed in the mission.

A. Experimental objective
In this experiment, a single operator was responsible for

the coordinated search of an area using six homogeneous
Unmanned Aerial Vehicles (UAVs). The object of this ex-
periment was to maximize the fraction found, which was
explained to the participants as the total number of targets
correctly found out of the total number of possible targets in
the environment (Eq. 3). This experiment had two treatments:
1) a relook mode (a “within” subjects treatment); and 2) a
timer condition to induce artificial time pressure (a “between”
subjects treatment).

In the first treatment, the operators were tested under three
different relook modes:

(a) Simple search task (b) Complex search task

Fig. 7. Examples of imagery used in the HOSS interface. A simpler search
task (a) requires that the participant find the fighter in the image. A more
complex search task (b) requires a search for the helicopter pad.

• No relook (NR): Operators did not have the ability to
relook. Operators were required to commit to the location
of a target before returning to the UAV planning task;

• Relook with Consent (RWC): Operators had the option of
requeueing at any time, but after Trl seconds, a flashing
message was displayed on the search screen to suggest
to the operator to requeue;

• Relook without Consent (RWOC): Operators had the
option of initiating a requeue at any time, but after Trl
seconds, the target was automatically requeued.

The second treatment involved the use of the timer, and was
inserted to provide operator feedback on how much time had
been spent searching. Previous work has shown that time
pressure can cause different operator strategies, so the two
experimental conditions were with and without a timer [4].

B. Search task and visualization of requeued targets

The search images were obtained from Google maps, and
aerial views of different scenes were presented to the operator.
Each scene contained a target that needed to be found by the
operator, and hence errors were only in the class of missed
detections. Different images of varied difficulty levels were
presented to the operator. Figure 7 shows two examples of
search tasks, where Fig. 7(a) shows a simpler search task
with a clear objective of finding the fighter jet (located in
the lower right corner of the image). Figure 7(b) shows an
example of a more complex search task, where the task is
more difficult since it requires finding a helicopter landing
pad in a cluttered environment. In contrast to the simpler
search task, the more complex search task places additional
requirements on memory and attention, and were randomly
placed in the mission. The more complex search tasks were
generated intentionally to provide sources of error for the
operators, and force them to make choices between continuing
a very difficult search or moving on to simpler tasks. Pilot tests
were used to populate the image database to ensure sufficient
diversity.

In the RWC and RWOC conditions, a target became avail-
able for assignment Tr seconds after it was requeued. Tasks
that were requeued changed color for Tr = 15 seconds to show
that they were not available for search. When they became
available again, the tasks were changed to their initial color,
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Fig. 8. Probability of detection increases most with timer using RWC and
most with RWOC

but were enclosed by an orange circle, to inform the operator
that they had been previously visited. The relook counter was
incremented by one if the targets with an encircling orange
circle were searched again.

C. Experimental participants and procedures

A total of 36 participants took part in the experiment (8
female, 28 male): 30 participants were 18-25 years old, 4
participants were 25-35 years old, and 2 participants were
older than 35 years. After a 10-minute training session, the par-
ticipants were randomly assigned a relook mode (NR, RWC,
RWOC) and timer setting (Timer, No Timer), and participated
in 3 sessions with a fixed timer setting, and a counterbalanced
order of relook modalities. The participants performed the
first 20-minute test session, took a rest break, repeated a
second 20-minute session (with another relook setting), took
another rest break, and concluded with a third 20-minute
experiment session. The order of the trials was randomized
and counterbalanced on the timer conditions between subjects.
Experimental parameters were chosen as follows: N = 6 UAVs;
λ = 30 [sec/target]; Trl = 25 seconds; Tr = 15 seconds.

VI. EXPERIMENTAL RESULTS

A 2 (Timer, No Timer) × 3 (NR, RWC, RWOC) repeated
measures analysis of variance was used for statistical analysis.
Three participants had to be excluded since they were outside
the 3-σ interval for the fraction found given by Eq. (3).

A. Performance with relook modalities

The results in this section present the probability of de-
tection, mean search time, and fraction found for the timer
condition and decision support modalities. Recall that since
there is a target present in every image, then the probability of
a missed detection is the only error for these search missions.

Figure 8 shows that probability of detection improved, on
average, from 0.72 (with NR) to 0.80 (with RWC), for the case
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Fig. 9. Mean search time decreases for both RWC and RWOC

when a timer was used (left). Further, when no timer was used
(right), probability of detection increased, on average, from
0.74 (with NR) to 0.78 (with RWOC). For overall probability
of detection, mode was significant at the α = 0.05 level,
with RWOC and RWC showing better detection than none,
F(2,62) = 6.674, p = 0.002. Posthoc comparisons using a
Tukey HSD (Honest Significant Difference) test indicated that
RWC and RWOC did not differ from each other, and there
was neither a significant main effect of timer, nor a signif-
icant interaction between timer and modality. In particular,
the change in the mean of the detection probability in the
NR mode (Mean: 0.73, SD: 0.09) was significantly different
(p = 0.001) from the RWC mode (Mean: 0.80, SD: 0.10). The
change in the mean of the detection probability in the NR
mode (Mean: 0.73, SD: 0.09) was also significantly different
(p = 0.03) from the RWOC mode (Mean: 0.78, SD: 0.11).
These results demonstrate that providing the operator with
requeueing choices improved their accuracy in a statistically
significant manner. Practically, an improvement of accuracy
from 0.72 to 0.80 is significant for UAV operations, since it
decreases the likelihood of collateral errors.

Next, we investigated the effect of operator search times
for the tasks. Operator search times for repeated looks in the
RWC and RWOC modes were aggregated together to ensure
a fair comparison to the NR mode and are shown in Fig. 9,
and hence are representative of the total time spent searching
the images. It can be seen that mean search time decreased
from 21.0 seconds (with NR) to 19.1 seconds (with RWC),
for the case when a timer was used (left). Further, when
no timer was used (right), mean search time decreased from
22.5 seconds (with NR) to 19.4 seconds (with RWOC). For
overall mean search time (α = 0.05), mode is significant:
F(2,62) = 7.032, p = 0.002. The timer effect and interaction
between mode and timer were not significant.

Posthoc comparisons using a Tukey HSD test indicated that
the change in the mean search time in the NR mode (Mean:
21.82, SD: 4.38) was significantly different (p = 0.02) from
the RWC mode (Mean: 19.79, SD: 3.49). The change in the
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Fig. 10. Downward trend in fraction found is not statistically significant

mean search time in the NR mode (Mean: 21.82, SD: 4.38)
was also significantly different (p < 0.001) from the RWOC
mode (Mean: 18.91, SD: 2.87). These results also may have
practical multi-UAV significance, where improvements in the
speed of detection of the location of an adversary can have
dramatic consequence for mission success.

Lastly, the objective of this experiment was to maximize
the fraction correct, that is the quotient of the total number of
targets correctly found and the total number of targets possible.
The results for the fraction correct for each requeue mode
and timer condition are shown in Fig. 10. As anticipated by
the DES of Section III, there appeared to be a decrease in
fraction found as relooks are employed: the mean fraction
found decreased from 0.55 (with NR) to 0.51 (with RWOC).
This change in fraction correct was not statistically significant
with respect to the mode (F(2,62) = 1.254, p = 0.29) or timer
(F(2,62) = 0.03, p = 0.974). However, a Pearson correlation
revealed that as the probability of a relook increased, the
fractions of targets found decreased (r=-.71; p<0.001). This
highlights the cost of such an action in that the more frequently
operators elected to reinsert tasks in the queue, the less time
they had to prosecute other targets.

B. Behavioral analysis of use of relooks and requeues

The next step in the analysis was quantifying the number
of times that requeueing was actually implemented by par-
ticipants (Fig. 11). A total of 697 requeues were made by
the subjects. The 12 subjects that had the highest number of
requeues accounted for 47.9% of the total requeues made by
all subjects. Interestingly, the subject that requeued the most
targets had previous actual UAV experience, and may have
been more inclined to relook at the targets for operational
considerations.

In the RWC mode, a total of 269 requeues were made, with
149 requeues occurring after the time limit Trl = 25 seconds
had expired. This means that 55.3% of the participants ignored

Fig. 11. Total number of requeues made by the 36 participants in the RWOC
and RWC modes. Note the outlier with a total of 44 requeues.

the recommendation made by the decision support algorithm,
and chose to continue searching the image. In turn, 44.7% of
the participants anticipated the automation’s prompt.

In the RWOC mode, a total of 428 requeues were made,
with 274 requeues being implemented by the decision support
algorithm because the participants searched longer than Trl =
25 seconds. Out of all the participants in the RWOC mode,
10 out of 36 people never requeued voluntarily (the algorithm
requeued the tasks for them all the time). Of the people that
did requeue voluntarily at least once, they did so, on average,
41.6% of the time.

Target relooks occurred less frequently than requeues, and
interestingly, there was a statistically significant difference
between the probability of requesting a relook between the
RWC and RWOC modes, F(1,35) = 13.46, p < 0.001. Out
of all visual search tasks, a total of N = 3499 were analyzed
in the first look, N = 311 were analyzed in the second look,
N = 72 in the third look, N = 17 in the fourth look, and only
N = 2 in the fifth look. Note that the first look takes into
account tasks that were searched successfully, but also tasks
that were skipped (either with or without consent). In the first
searches, a total of N = 2978 target detections were made
(either correct or incorrect), with a total of N = 524 requeues
made after having investigated the targets. Out of the total
looks that were made, only 17.8% of the tasks were looked
at more than once. The discrepancy between the number of
requeues and the number of looks is attributed to the fact
that some targets were effectively skipped and never relooked
again. This implies that operator were using the requeueing
function predominantly to move on from difficult images.

To investigate further the existence of a benefit to relooking
at targets later in the mission, we show the mean search times
for correct detections and probability of errors associated with
the different number of looks in Fig. 12. Note that the mean
search time for correct detection slightly decreased from 17
seconds to 15 seconds with an increased number of relooks.
This trend was also visible for targets that were incorrectly
detected. However, the overall probability of error increased
as a function of number of looks: from 22.7% in the first look,



Fig. 12. Mean search time for targets that were correctly detected decreases
with additional relooks. However, the probability of error increases, suggesting
the subjects were not receiving additional information with each relook.

to 41.5% in the second look, 63.2% in the third look, and only
85.7% in the last look.

A logistic regression model was generated by using the
number of relooks as a categorical variable, and the overall
effect of the number of relooks was statistically significant
with a χ2 test (χ2 = 64.5,d f = 4, p< 0.001). The difference in
the coefficients of the logistic regression model from one look
to two looks was statistically significant (χ2 = 5.7,d f = 1, p=
0.02), but the difference from 2 to 3 looks and 3 to 4 looks was
not significant. Nonetheless, this apparent increase in error,
coupled with the fact that only 17.8% of targets were looked
again two or more times, hints further at the possibility that
the operators that were being presented with the same imagery
later in the mission were pressured to make an assessment,
and frequently made this assessment erroneously. Additional
discussion on this observed effect is presented in Section VII.

Increased error with relooks of the same image has pro-
found ramifications for supervisory control of UAV missions,
because it suggests that operators may be willing to make
a mistake to avoid repeating the same searches, and it is
therefore necessary to create decision support systems that
can avoid this disastrous consequence. Further, it also suggests
that the perceived benefit of the requeuing methodology is the
freedom to keep exploring other tasks, rather than being forced
to make a choice on a difficult image. (Recall that targets that
were requeued by the operators were enclosed by an orange
circle, and were clearly identified to the operator.)

C. Subjective assessment of confidence and workload

Subjective assessment of the different requeue models is
important, since the operator must ultimately accept or reject
the recommendations set forth by such automated decision
support systems. In developing decision support systems for
complex mission planning involving the visual search task,
two key subjective assessments are confidence and workload.

The subjective confidence assessment was a reflection of
how accurately people felt that their performance was in
detecting the targets in the image. Upon completion of a
search task, participants were asked about their subjective
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Fig. 13. Interval utilization increases with RWC and RWOC

confidence on the accuracy of their detection. A 5-pt Likert
scale was used, where 1 indicated “Not very confident” and
a 5 indicated “Very confident”. The probability of detection
was averaged for each condition the participant performed,
and a correlation between confidence and average probability
detection yielded a Pearson correlation coefficient of r = 0.42
(p <0.001), demonstrating that participant confidence was
significantly correlated with their performance.

The three different modalities showed a statistically signifi-
cant difference in confidence, at the α = 0.05 level (F(2,62) =
4.39, p = 0.02). However, neither the interaction between
mode and timer were significant. Posthoc comparisons using a
Tukey HSD test indicated that the change in the mean of the
self-assessed confidence in the NR mode (Mean: 3.79, SD:
0.59) was significantly different (p = 0.01) from the RWC
mode (Mean: 3.95, SD: 0.48), indicating that operators felt
that they performed better in the RWC mode.

Workload was measured in two distinct ways: in the first
subjective method, participants were asked to rate their own
level of workload. For the self-assessed workload and at the
end of each search task, participants could enter a 1 (Not very
loaded) to 5 (very loaded) on a 5-pt Likert scale. Changes
in self-assessed workload across mode were not statistically
significant at α = 0.05 level F(2,62) = 1.92, p = 0.15. In
addition, interaction between mode and timer was not sig-
nificant (F(2,62) = 1.10, p = 0.34), and neither was timer
treatment significant, F(1,31) = 2.10, p = 0.16. In the second
method, interval utilization (or percent busy time) was used
to gauge the objective workload in the experiment [41, 42].
Interval utilization has been shown in previous work to be a
reliable assessment for workload [6]. For the mean interval
utilization (Fig. 13), participant interaction time with the user
interface was normalized by the time between detection tasks,
and averaged for each participant. Increase in mean utilization
across mode was statistically significant at α = 0.05 level
(F(2,62) = 6.49, p = 0.003). Interaction between mode and



TABLE I
FRACTION FOUND DES-REQM COMPARISON TO EXPERIMENT

DES-ReQM Exp p-value
µ σ µ σ

NR 0.58 0.14 0.54 0.14 p=0.16
RWC 0.53 0.16 0.53 0.12 p=0.61

RWOC 0.55 0.15 0.51 0.13 p=0.23

timer was not significant: F(2,62) = 0.57, p = 0.57) and timer
treatment was also not significant, F(1,31) = 0.55, p = 0.47.
While the differences in participant interaction time were
statistically significant, the small practical difference in percent
utilization (from 43% in the NR mode to 46% in the RWC
mode) may have made this difference imperceptible to the
subjects, and hence may be a possible reason for the lack of
statistical significance in the subjective assessment.

Posthoc comparisons using a Tukey HSD test indicated
that the change in the mean of the interval utilization in the
NR mode (Mean: 0.43, SD: 0.07) was significantly different
(p = 0.02) from the RWC mode (Mean: 0.46, SD: 0.07). Also,
change in the mean interval utilization in the NR mode (Mean:
0.43, SD: 0.07) and RWOC mode (Mean: 0.46, SD: 0.07)
were also significant (p = 0.002). While interval utilization
increase is expected in the RWC and RWOC modes since the
operators had an additional tool to use, utilizations on the order
of 40-70% are still within the acceptable range for human
supervisory control [43].

D. Comparison to DES model

Finally, we validate the predictions made by DES-ReQM
by comparing the results obtained in the DES simulation and
the experiment. Table I presents results comparing the use of
requeues in terms of fraction found metric as predicted by
DES-ReQM and obtained experimentally. The first principal
column shows the mode condition (NR, RWC, and RWOC),
the second principal column shows the mean and standard
deviation of the fraction found predicted by DES-ReQM, while
the third principal column shows the experimental results.
Note that in order to compare the RWC experimental and sim-
ulated condition, we had to first determine empirical average
probability of requeueing which we found to be p= 0.38. Non-
parametric Mann-Whitney U-tests showed good agreement
between the predictions made by the DES-ReQM model and
the experiment for all the three conditions: z =,1.41, p = 0.16
for NR, z =−0.51, p = 0.11 for RWC, and z = 1.21, p = 0.23
for RWOC.

VII. DISCUSSION ON THE USE OF REQUEUES

In this experiment, the probability of detection and mean
search time improved with the presence of the requeue option,
whether mandated or not. The cost of such requeues meant
somewhat increased objective workload (but no increase in
subjective workload), and the more participants accessed the
relook feature, they were likely to find fewer targets. Such
results highlight the cost-benefit issues surrounding any new
decision support tool in that it can often provide benefit, but

there are also possible negative consequences if such a tool is
invoked too often.

One of the interesting results from this experiment was
that detection probability increases as subjects are provided
with the capability to requeue. However, relooks actually
increases the probability of making an error. This seemingly
counterintuitive result arises from the total number of targets
that were searched in the NR mode compared to the RWC
and RWOC conditions. In fact, subjects in the NR mode
made an average of 32.6 total searches, while 31.2 and 30.8
were made in the RWC and RWOC modes. However, in the
RWC mode, only 25.8 and 22.0 total decisions were made,
and of these decisions, the respective error probabilities were
19.2% and 19.1% for for RWC and RWOC. In contrast,
the NR mode had an error rate of 27.8%, suggesting that
the benefit of the relook was to effectively allow people to
skip difficult targets. Nonetheless, it appears that people felt
implicit pressure to make a decision for repeated targets. Thus
this research suggests that allowing operators to requeue (i.e.,
skip) a target, but not relook at it, may be a more effective
strategy. This results also has broader implications for teaming
of operators as it may be advantageous to requeue skipped
targets for other teammates to avoid the increased likelihood
of a mistake.

VIII. CONCLUSION AND FUTURE WORK

This article has developed a choice model for an opera-
tor performing visual search tasks generated from multiple
unmanned vehicles. Using previous experimental data that
demonstrated that human search accuracy could decay with
time, we have developed a novel retrial queueing model of an
operator that provides the operator with an additional choice
by allowing the operator to requeue challenging targets.

A human-in-the-loop experiment was performed under dif-
ferent requeue conditions, and showed that the use of requeues
increases overall probability of detection and operator confi-
dence, ultimately improving operator accuracy. However, the
additional use of requeues increased operator interval utiliza-
tion (percent busy time) with a slightly (but not significantly)
decreasing effect on the total number of targets found.

These observations open up an interesting area of work
that should seek to understand the value of information of an
image, and under what circumstances an operator may require
additional imagery to reach a conclusion. Another important
conclusion of this paper is that it has shown that supplying
the operators with one additional choice of requeueing, rather
than constraining them to a forced choice context, improves
accuracy and confidence. This has important ramifications, not
just for the external validity of the 2-AC models, but also
for practical considerations in actual missions, in designing
decision support systems that can provide additional flexibility
to stressed operators.

Future work will include developing “optimal” relook poli-
cies, understanding that, in practicality, generating satisficing
parameters is more realistic since optimality may be difficult
to quantify in dynamic, uncertain command and control set-
tings [44]. Moreover, additional work is needed to more fully



understand the information processing ramifications of relooks
as it is not clear whether the success of the relook mechanism
is due to scene complexity, a possible attention filtering bias,
or that operators had more confidence knowing they had such
a tool available. Such understanding could possibly lead to
identification of images in advance that could cause operators
difficulty, possibly allowing them to be inserted in the queue
at a more opportune time.

An additional consideration would be to quantify what
kind of additional imagery information would be desired by
an operator to increase the likelihood of detection in the event
of a relook. Finally, a tighter coupling between the role of
requeueing and the mission parameters needs to be made. For
example, it will be beneficial to understand precisely what
the role of vehicle routing is for the purposes of aiding the
relook tasks (e.g., with different path planners), as well as
the number and heterogeneity of UAVs.
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