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Robust Distributed Routing in Dynamical Flow

Networks – Part II: Strong Resilience,

Equilibrium Selection and Cascaded Failures
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Emilio Frazzoli

Abstract

Strong resilience properties of dynamical flow networks are analyzed for distributed routing policies.

The latter are characterized by the property that the way the inflow at a non-destination node gets split

among its outgoing links is allowed to depend only on local information about the current particle

densities on the outgoing links. The strong resilience of the network is defined as the infimum sum

of link-wise flow capacity reductions under which the network cannot maintain the asymptotic total

inflow to the destination node to be equal to the inflow at the origin. A class of distributed routing

policies that are locally responsive to local information is shown to yield the maximum possible strong

resilience under such local information constraints for an acyclic dynamical flow network with a single

origin-destination pair. The maximal strong resilience achievable is shown to be equal to the minimum

node residual capacity of the network. The latter depends on the limit flow of the unperturbed network

and is defined as the minimum, among all the non-destination nodes, of the sum, over all the links

outgoing from the node, of the differences between the maximum flow capacity and the limit flow of the

unperturbed network. We propose a simple convex optimization problem to solve for equilibrium limit

flows of the unperturbed network that minimize average delay subject to strong resilience guarantees,

and discuss the use of tolls to induce such an equilibrium limit flow in transportation networks. Finally,

we present illustrative simulations to discuss the connection between cascaded failures and the resilience

properties of the network.
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Index terms: dynamical flow networks, distributed routing policies, strong resilience, price

of anarchy, cascaded failures.

I. INTRODUCTION

Robustness of routing policies for flow networks is a central problem which is gaining

increased attention with a growing awareness to safeguard critical infrastructure networks against

natural and man-induced disruptions. Information constraints limit the efficiency and resilience of

such routing policies, and the possibility of cascaded failures through the network adds serious

challenges to this problem. The difficulty is further magnified by the presence of dynamical

effects [2].

This paper considers the framework of dynamical flow networks introduced in our companion

paper [3], where the network is modeled by a system of ordinary differential equations derived

from mass conservation laws on directed acyclic graphs with a single origin-destination pair

and a constant inflow at the origin. The rate of change of the particle density on each link of

the network equals the difference between the inflow and the outflow on that link. The latter is

modeled to depend on the current particle density on that link through a flow function. We focus

on distributed routing policies whereby the proportion of incoming flow routed to the outgoing

links of a node is allowed to depend only on local information, consisting of the current particle

densities on the outgoing links of the same node. We call the dynamical flow network fully

transferring if the outflow at the destination node asymptotically approaches the inflow at the

origin node. Our primary objective in this paper is to analyze the robustness of distributed

routing policies in terms of the network’s strong resilience, which is defined as the infimum sum

of link-wise magnitude of disturbances making the perturbed dynamical flow network not fully

transferring.

We prove that the maximum possible strong resilience is yielded by a class of locally re-

sponsive distributed routing policies, introduced in the companion paper [3]. Such policies are

characterized by the property that the portion of its inflow that a node routes towards an outgoing

link does not decrease as the particle density on any other outgoing link increases. We show that

the strong resilience of a dynamical flow network with such locally responsive distributed routing

policies equals the minimum node residual capacity. The latter is defined as the minimum, among

all the non-destination nodes, of the sum of the difference between the maximum flow capacity
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and the limit flow of the unperturbed network, on all the links outgoing from the node. Using

idea from [4], one can show that, when the information constraints on the routing policies are

relaxed, i.e., the routing policies can access information about the particle densities over the whole

network, then the strong resilience of the network is equal to the network residual capacity. The

latter is defined as the difference between the min-cut capacity of the network and rate of arrival

at the origin node. Since the minimum node residual capacity is in general less than the network

residual capacity, this shows that the information constraints on the routing policies reduce the

strong resilience of the network. Moreover, the minimum residual capacity depends on the limit

flow of the unperturbed network. This is in stark contrast to our result on weak resilience in [3],

where we showed that the weak resilience is unaffected by local information constraints on the

routing policies and is independent of the limit flow of the unperturbed network. We also propose

a simple convex optimization problem to solve for equilibrium limit flows of the unperturbed

network that minimize average delay subject to strong resilience guarantees, and discuss the use

of tolls to induce such an equilibrium limit flow in transportation networks. These results are

derived under the condition when the link-wise flow functions are strictly increasing and the

links have unbounded capacity for flow densities. We present illustrative simulations discussing

cascaded failures that arise when the links have finite capacities on flows as well as densities.

It is noteworthy that, we not only describe cascaded failures within a dynamical flow network

framework and formalize their effect by establishing the connection to our notions of network

resilience, but also highlight the role of distributed routing policies in averting such failures.

Stability analysis of network flow control policies under various routing policies is carried out

in [5], [6], [7]. A detailed comparison between the settings of these papers and our dynamical flow

network setting is included in the companion paper [3]. This paper also studies the connection

between the robustness properties of the network and its equilibrium flow. The role of equilibrium

in the efficiency of a system, especially in economic settings involving multiple agents, has

attracted a lot of attention, e.g., see [8]. One of the most celebrated notions to measure the

inefficiency of an equilibrium is the price of anarchy [9]. In a transportation setting, the price

of anarchy of a given network state quantifies the extent to which the average delay faced by

a driver at that state exceeds the least possible average delay over all network states. In this

paper, we propose a robustness-based metric for measuring inefficiency of equilibrium states

of dynamical flow networks. Finally, the study of cascaded failure for complex networks has
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attracted a great deal of attention recently, e.g., see [10], [11] where the authors propose various

models to explain this phenomenon.

The contributions of this paper are as follows: (i) we formulate the notion of strong resilience

of a dynamical flow network, and show that the class of locally responsive routing policies yield

the maximum strong resilience under local information constraint; (ii) we formulate a simple

convex optimization problem to solve for the most robust equilibrium flow, and discuss the use

of tolls in implementing such an equilibrium in transportation networks; and (iii) we present

illustrative simulations to discuss cascaded failures in dynamical flow networks and their effect

on network resilience.

The rest of the paper is organized as follows. In Section II, we briefly summarize the dynamical

flow network framework and the postulate the notion of strong resilience. In Section III, we

state the main result on the strong resilience, and provide discussions on the results. Section IV

discusses the problem of selection of the most strongly resilient equilibrium flow of the network

and the use of tolls to induce such an equilibrium in transportation networks. In Section V, we

report illustrative numerical simulation results, discussing the effect of cascading failures on the

resilience of the network. We conclude in Section VI with remarks on future research directions

and state proofs of the main results in the appendices A and B.

Before proceeding, we define some preliminary notation to be used throughout the paper. Let

R be the set of real numbers, R+ := {x ∈ R : x ≥ 0} be the set of nonnegative real numbers.

Let A and B be finite sets. Then, |A| will denote the cardinality of A, RA (respectively, RA+)

the space of real-valued (nonnegative-real-valued) vectors whose components are indexed by

elements of A, and RA×B the space of matrices whose real entries indexed by pairs of elements

in A × B. The transpose of a matrix M ∈ RA×B, will be denoted by MT ∈ RB×A, while 1

the all-one vector, whose size will be clear from the context. Let cl(X ) be the closure of a set

X ⊆ RA. A directed multigraph is the pair (V , E) of a finite set V of nodes, and of a multiset

E of links consisting of ordered pairs of nodes (i.e., we allow for parallel links). Given a a

multigraph (V , E), for every node v ∈ V , we shall denote by E+v ⊆ E , and E−v ⊆ E , the set

of its outgoing and incoming links, respectively. Moreover, we shall use the shorthand notation

Rv := RE
+
v

+ for the set of nonnegative-real-valued vectors whose entries are indexed by elements

of E+v , Sv := {p ∈ Rv :
∑

e∈E+v pe = 1} for the simplex of probability vectors over E+v , and

R := RE+ for the set of nonnegative-real-valued vectors whose entries are indexed by the links
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in E .

II. DYNAMICAL FLOW NETWORKS

The notion of dynamical flow network was introduced in the companion paper [3]. In order

to render the present paper self-contained, we introduce here the concepts and notation which

are most relevant. We start with the following definition of a flow network.

Definition 1 (Flow network): A flow network N = (T , µ) is the pair of a topology, described

by a finite directed multigraph T = (V , E), where V is the node set and E is the link multiset,

and a family of flow functions µ := {µe : R+ → R+}e∈E describing the functional dependence

fe = µe(ρe) of the flow on the density of particles on every link e ∈ E . The flow capacity of a

link e ∈ E is

fmax
e := sup

ρe≥0
µe(ρe) . (1)

We shall use the notation Fv := ×e∈E+v [0, fmax
e ) for the set of admissible flow vectors on

outgoing links from node v, and F := ×e∈E [0, fmax
e ) for the set of admissible flow vectors for

the network. We shall write f := {fe : e ∈ E} ∈ F , and ρ := {ρe : e ∈ E} ∈ R, for the

vectors of flows and of densities, respectively, on the different links. The notation f v := {fe :

e ∈ E+v } ∈ Fv, and ρv := {ρe : e ∈ E+v } ∈ Rv will stand for the vectors of flows and densities,

respectively, on the outgoing links of a node v. We shall compactly denote by f = µ(ρ) and

f v = µv(ρv) the functional relationships between density and flow vectors.

Throughout this paper, we shall restrict ourselves to flow networks satisfying the following

assumptions.

Assumption 1: The topology T contains no cycles, has a unique origin (i.e., a node v ∈ V

such that E−v is empty), and a unique destination (i.e., a node v ∈ V such that E+v is empty).

Moreover, there exists a path in T to the destination node from every other node in V .

Assumption 2: For every link e ∈ E , the map µe : R+ → R+ is continuously differentiable,

strictly increasing, such that µe(0) = 0, and fmax
e < +∞.

In particular, Assumption 1 implies that (see, e.g., [12]) one can identify (in a possibly non-

unique way) the node set V with the integer set {0, 1, . . . , n}, where n := |V| − 1, in such a

way that

E−v ⊆
⋃

0≤u<v
E+u , ∀v = 0, . . . , n . (2)
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In particular, (2) implies that 0 is the origin node, and n the destination node in the network

topology T . An origin-destination cut (see, e.g., [13]) of T is a partition of V into U and V \U

such that 0 ∈ U and n ∈ V \ U . Let E+U = {(u, v) ∈ E : u ∈ U , v ∈ V \ U} be the set of all

the links pointing from some node in U to some node in V \ U . The min-cut capacity of a flow

network N is defined as

C(N ) := min
U

∑
e∈E+U

fmax
e , (3)

where the minimization runs over all the origin-destination cuts of T . Throughout this paper,

we shall assume a constant inflow λ0 ≥ 0 at the origin node. Let us define the set of admissible

equilibrium flows associated to λ0 as

F∗(λ0) :=

{
f ∗ ∈ F :

∑
e∈E+0

f ∗e = λ0,
∑

e∈E+v
f ∗e =

∑
e∈E−v

f ∗e , ∀ 0 < v < n

}
.

Then, it follows from the max-flow min-cut theorem (see, e.g., [13]), that F∗(λ0) 6= ∅ whenever

λ0 < C(N ). That is, the min-cut capacity equals the maximum flow that can pass from the

origin to the destination while satisfying capacity constraints on the links, and conservation of

mass at the intermediate nodes.

We now recall the notion of a distributed routing policy from [3].

Definition 2 (Distributed routing policy): A distributed routing policy for a flow network N

is a family of functions G := {Gv : Rv → Sv}0≤v<n describing the ratio in which the particle

flow incoming in each non-destination node v gets split among its outgoing link set E+v , as a

function of the observed current particle density ρv on the outgoing links themselves.

The salient feature of Definition 2 is that the routing policy Gv(ρv) depends only on the local

information on the particle density ρv on the set E+v of outgoing links of the non-destination

node v.

We now state the definition of a dynamical flow networks and its transfer efficiency.

Definition 3 (Dynamical flow network and its transfer efficiency): A dynamical flow network

associated to a flow network N satisfying Assumption 1, a distributed routing policy G, and an

inflow λ0 ≥ 0, is the dynamical system

d

dt
ρe(t) = λv(t)G

v
e(ρ

v(t))− fe(t) , ∀ 0 ≤ v < n , ∀ e ∈ E+v , (4)
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where

fe(t) := µe(ρe(t)) , λv(t) :=

 λ0 if v = 0∑
e∈E−v fe(t) if 0 < v ≤ n.

(5)

Given some flow vector f ◦ ∈ F , the dynamical flow network (4) is said to be fully transferring

with respect to f ◦ if the solution of (4) with initial condition ρ(0) = µ−1(f ◦) satisfies

lim
t→+∞

λn(t) = λ0 . (6)

Definition 3 states that a dynamical flow network is fully transferring when the outflow is

asymptotically equal to the inflow, i.e., there is no throughput loss asymptotically. Observe that

a fully transferring dynamical flow network does not necessarily imply that the link-wise flows

necessarily converge to an equilibrium, for it might in principle have a persistently oscillatory or

more complex behavior. Nevertheless, it will prove useful to introduce the notions of equilibrium

and limit flow as follows.

Definition 4 (Equilibrium and limit flow of a dynamical flow network): An equilibrium flow

for the dynamical flow network (4) is a vector f ∗ ∈ F∗(λ0) such that

λ∗vG
v
e(ρ

v) = f ∗e , ∀e ∈ E+v , ∀0 ≤ v < n , (7)

where ρve := µ−1e (f ∗e ), and λ∗v = λ0 for v = 0 and λ∗v =
∑

e∈E−v f
∗
e for 0 < v < n.

A limit flow for the dynamical flow network (4) is a vector f ∗ ∈ cl(F) such that the solution of

(4) with initial condition ρ(0) = µ−1(f ◦) satisfies

lim
t→+∞

f(t) = f ∗ . (8)

The set of all initial flows f ◦ ∈ F such that (8) is satisfied will be referred to as the basin of

attraction of f ∗, and denoted by B(f ∗).

Remark 1: Observe that an equilibrium flow f ∗ ∈ F∗(λ0) is always a limit flow, since the

solution of the dynamical flow network (4) with initial flow f ◦ = f ∗ stays put for all t ≥ 0,

and hence it is trivially convergent to f ∗. On the other hand, if a limit flow f ∗ ∈ cl(F) satisfies

all the capacity constraints with strict inequality, i.e., if f ∗ ∈ F , then necessarily f ∗ ∈ F∗(λ0)

is also an equilibrium flow for (4), i.e., it satisfies mass conservation equations at all the non-

destination nodes. In particular, if a dynamical flow network admits an equilibrium flow f ∗, then
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it is necessarily fully transferring with respect to f ∗, as well as with respect to all the initial

flows f ◦ ∈ B(f ∗).

In contrast, if f ∗ ∈ cl(F) \ F , i.e., if at least one of the capacity constraints is satisfied

with equality, then f ∗ is not an equilibrium flow for (4). In fact, in this case one has that∑
e∈E+v f

∗
e ≤ λ∗v with possibly strict inequality for some non-destination node 0 ≤ v < n. Hence,

the dynamical flow network might still be non fully transferring. Finally, observe that a limit

flow f ∗ ∈ cl(F) (and, a fortiori, an equilibrium flow) may not exist for general flow networks

N , and distributed routing policies G.

Remark 2: Standard definitions in the literature are typically limited to static flow networks

describing the particle flow at equilibrium via conservation of mass. In fact, they usually consist

(see e.g., [13]) in the specification of a topology T , a vector of flow capacities fmax ∈ R, and

an admissible equilibrium flow vector f ∗ ∈ F∗(λ0) for λ0 < C(N ) (or, often, f ∗ ∈ cl(F∗(λ0))

for λ0 ≤ C(N )).

In contrast, in our model we focus on the off-equilibrium particle dynamics on a flow network

N , induced by a distributed routing policy G. Existence of an equilibrium of the dynamical flow

network (4) depends on the topology T , the structural form of the flow functions µ and of

the distributed routing policy G, as well as on the inflow λ0. A necessary condition for that is

λ0 < C(N ). In contrast, simple, locally verifiable, sufficient conditions on G for the existence of

an equilibrium flow might be hard to find for complex flow networks. However, in some cases, it

is reasonable to assume the distributed routing policy G to be the outcome of a slow time-scale

evolutionary dynamics with global feedback which can naturally lead to an equilibrium flow

f ∗ ∈ F∗(λ0). This has been shown, e.g., in our related work [4] on transportation networks,

where the emergence of Wardrop equilibria is proven using tools from singular perturbation

theory and evolutionary dynamics. Multiple time-scale dynamics leading to Wardrop equilibria

has been studied in [14] for communication networks.

While, as discussed in Remark 2, finding simple, locally verifiable, sufficient conditions on the

distributed routing policy G for the existence of an equilibrium flow of the associated dynamical

flow network (4) is typically nontrivial, a large class of distributed routing policies was proven to

yield existence and uniqueness of a globally attractive limit flow f ∗ ∈ cl(F), as revised below.

Definition 5 (Locally responsive distributed routing policy): A locally responsive distributed
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routing policy for a flow network topology T = (V , E) with node set V = {0, 1, . . . , n} is a

family of continuously differentiable distributed routing functions G = {Gv : Rv → Sv}v∈V such

that, for every non-destination node 0 ≤ v < n:

(a)
∂

∂ρe
Gv
j (ρ

v) ≥ 0 , ∀j, e ∈ E+v , j 6= e , ρv ∈ Rv ;

(b) for every nonempty proper subset J ( E+v , there exists a continuously differentiable

map GJ : RJ → SJ , where RJ := RJ+ , and SJ := {p ∈ RJ :
∑

j∈J pj = 1} is the

simplex of probability vectors over J , such that, for every ρJ ∈ RJ , if

ρve → +∞ , ∀e ∈ E+v \ J , ρj → ρJj , ∀j ∈ J ,

then

Gv
e(ρ

v)→ 0, ∀e ∈ E+v \ J , Gv
j (ρ)→ GJj (ρJ ), ∀j ∈ J .

Let us restate the result proven in [3, Theorem 1].

Theorem 1 (Existence of a globally attractive limit flow under locally responsive routing policies):

Let N be a flow network satisfying Assumptions 1 and 2, λ0 ≥ 0 a constant inflow, and G a

locally responsive distributed routing policy. Then, there exists a unique limit flow f ∗ ∈ cl(F)

such that B(f ∗) = F . Moreover, if f ∗e = fmax
e for some e ∈ E+v , and 0 ≤ v < n, then f ∗e = fmax

e ,

for every e ∈ E+v .

We shall use the above result in the form of the following corollary, which is an immediate

consequence of Theorem 1 and Remarks 1 and 2.

Corollary 1: Let N be a flow network satisfying Assumptions 1 and 2, λ0 ≥ 0 a constant

inflow, and G a locally responsive distributed routing policy. If the limit flow f ∗ belongs to F ,

then f ∗ ∈ F∗(λ0) is a globally attractive equilibrium flow for the dynamical network flow (4),

and, consequently, (4) is fully transferring with respect to f ∗.

Example 1 (Locally responsive distributed routing policy): Let N be a flow network satisfy-

ing Assumptions 1 and 2, and 0 ≤ λ0 < C(N ) a constant incoming flow. For f * = µ(ρ*) ∈

F∗(λ0), and η > 0, define the distributed routing policy G by

Gv
e(ρ) =

f *
e exp(−η(ρe − ρ*

e))∑
j∈E+v f

*
j exp(−η(ρj − ρ*

j))
, ∀e ∈ E+v , ∀0 ≤ v < n . (9)

Then, G can be easily verified to be locally responsive, and f ∗ to be the globally attractive limit

flow of the associated dynamical flow network (4).
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III. STRONG RESILIENCE OF DYNAMICAL FLOW NETWORKS

In this section, we shall introduce the notion of strong resilience of a dynamical flow network,

and show that locally responsive policies are maximally robust among the class of distributed

routing policies. We shall also provide an explicit simple characterization of the maximal strong

resilience of a dynamical flow network with respect to a given limit flow.

We shall consider persistent perturbations of the dynamical flow network (4) that reduce the

flow functions on the links, as per the following:

Definition 6 (Admissible perturbation): An admissible perturbation of a flow network N =

(T , µ), satisfying Assumptions 1 and 2, is a flow network Ñ = (T , µ̃), with the same topology

T , and a family of perturbed flow functions µ̃ := {µ̃e : R+ → R+}e∈E , such that, for every

e ∈ E , µ̃e satisfies Assumption 2, as well as

µ̃e(ρe) ≤ µe(ρe) , ∀ρe ≥ 0 .

We accordingly let f̃max
e := sup{µ̃e(ρe) : ρe ≥ 0}. The magnitude of an admissible perturbation

is defined as

δ :=
∑

e∈E
δe , δe := sup {µe(ρe)− µ̃e(ρe) : ρe ≥ 0} . (10)

Given a dynamical flow network as in Definition 3, and an admissible perturbation as in

Definition 6, we shall consider the perturbed dynamical flow network

d

dt
ρ̃e(t) = λ̃v(t)G

v
e(ρ̃

v(t))− f̃e(t) , ∀ 0 ≤ v < n , ∀ e ∈ E+v , (11)

where

f̃e(t) := µ̃e(ρ̃e(t)) , λ̃v(t) :=


∑

e∈E−v f̃e(t) if 0 < v < n

λ0 if v = 0 .
(12)

We are now ready to define the notion of strong resilience of a dynamical flow network as in

Definition 3 with respect to a limit flow f ∗.

Definition 7 (Strong resilience of a dynamical flow network): Let N be a flow network satis-

fying Assumptions 1 and 2, λ0 ≥ 0 be a constant inflow at the origin, and G a distributed routing

policy. Assume that the corresponding dynamical flow network has a limit flow f ∗ ∈ cl(F). The

strong resilience γ1(f ∗,G) is equal to the infimum magnitude of all the admissible perturbations

for which the perturbed dynamical flow network (11) is not fully transferring with respect to

some initial flow f ◦ ∈ B(f ∗).
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e1
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e4

Fig. 1. The network topology used in Example 2.

Note that the notion of strong resilience formalized in Definition 7 is with respect to the worst-

case scenario. Accordingly, one can provide an adversarial interpretation to the perturbations as

in [3]. Our first result is an upper bound on the strong resilience of a dynamical flow network

driven by an arbitrary distributed routing policy. In order to state such result, for a flow network

N , and a flow vector f * ∈ cl(F), define the minimum node residual capacity as

R(N , f *) := min
0≤v<n

{∑
e∈E+v

(
fmax

e − f *
e

)}
. (13)

Theorem 2 (Upper bound on the strong resilience): Let N be a flow network satisfying As-

sumptions 1 and 2, λ0 ≥ 0 a constant inflow, and G any distributed routing policy. Assume that

the associated dynamical flow network has a limit flow f ∗ ∈ F∗(λ0). Then,

γ1(f
*,G) ≤ R(N , f ∗) .

Proof: See Appendix A.

The proof of Theorem 2 essentially depends only on Assumption 1 on the acyclicity of the

network topology. However, in order to show that the upper bound in Theorem 2 is tight for

locally responsive policies, we have to rely highly on Properties (a) and (b) of Definition 5. The

following example illustrates the necessity of these properties.

Example 2: Consider the topology illustrated in Figure 1, with λ0 = 2, flow functions given

by

µe(ρe) = fmax
e (1− exp(−aeρe)) (14)

with a1 = a2 = a3 = a4 = 1 and fmax
e1

= fmax
e2

= 2, fmax
e3

= fmax
e4

= 0.75. First consider the case

when G0
e1

(ρ0) = 1−G0
e2

(ρ0) ≡ 0.75, and G1
e3

(ρ1) = 1−G1
e4

(ρ1) ≡ 0.5. One can verify that the
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associated dynamical flow network has a unique equilibrium flow f ∗ with f *
e1

= 1.5, f *
e2

= 0.5,

and f *
e3

= f *
e3

= 0.25. Now, consider an admissible perturbation such that µ̃e1 = 0.7µe1 and

µ̃ek = µek for k = 2, 3, 4. The magnitude of such perturbation is δ = δe1 = 0.6. It is easy to see

that in this case limt→∞ f̃e1(t) = 1.4 = f̃max
e1

which is less than 1.5, which is the flow routed to

it. Therefore, limt→∞ λ̃2(t) = 1.9 < λ0, and hence the network is not fully transferring.

Now, consider the same (unperturbed) flow network as before, but with distributed routing

policies such that

G0
e1

(ρ0) = 1−G0
e2

(ρ0) = 2e−0.031ρe1/(2e−0.031ρe1 +e0.7196ρe2 ) , G1
e3

(ρ1) = 1−G1
e4

(ρ1) ≡ 0.5 .

One can verify that the associated dynamical flow network again admits the same f ∗ as before as

an equilibrium flow. Let us consider the same admissible perturbation as before. One can verify

that, for the corresponding perturbed dynamical flow network, limt→∞ f̃e1(t) = 0.4 < f̃max
e1

= 1.4

and limt→∞ f̃e2(t) = 1.6 < f̃max
e2

= 2. However, with an asymptotic arrival rate of 1.6 at node

1, we have that limt→∞ f̃e3(t) = 0.75 = f̃max
e3

and limt→∞ f̃e4(t) = 0.75 = f̃max
e4

. Therefore,

limt→∞ λ̃2(t) = 1.9 < λ0, and hence the network is not fully transferring.

In both the cases, R(N , f ∗) = 1 and a disturbance of magnitude 0.6 is enough to ensure

that the perturbed dynamical flow network is not fully transferring. However, note that in the

second case, unlike the first case, the routing policy at node 0 responds to variations in the local

flow densities by sending more flow to link e2, but it is overly responsive in the sense that it

sends more flow downstream than the cumulative flow capacity of the links outgoing from node

1. However, by Definition 2, a distributed routing policy is not allowed any information about

any other link other than the current flow densities of its outgoing links. This illustrates one

of the challenges in designing distributed routing policies which yield R(N , f ∗) as the strong

resilience. Observe that this distributed routing policy is not locally responsive, since G0 used

in the first case, does not satisfy Property (b) of Definition 5 and, in the second case, it does

not satisfy Properties (a) and (b).

We now state the main technical result of this paper, showing that, for locally responsive

distributed routing function, the strong resilience coincides with the minimal residual node

capacity.

Theorem 3 (Strong resilience for locally responsive policies): Let N be a flow network sat-

isfying Assumptions 1 and 2, λ0 ≥ 0 a constant inflow, and G a locally responsive distributed
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E+U

U
V\U

0

*

n
0

v*
E+v *

Fig. 2. Comparison between a node-cut and a min-cut of a flow network.

routing policy. Let f ∗ ∈ cl(F) be the globally attractive limit flow of the associated dynamical

flow network (4). Then,

γ1(f
∗,G) = R(N , f *) .

Proof: See Appendix B.

For a given flow network N , a constant inflow λ0, Theorem 2 and Theorem 3 imply that,

among all distributed routing policies such that the dynamical flow network has a given limit

flow f ∗ ∈ cl(F), locally responsive policies (for which such limit flow is unique and globally

attractive by Theorem 1) have the maximum strong resilience. Moreover, such maximal strong

resilience coincides with the minimum node residual capacity R(N , f ∗), and hence it depends

both on the flow network N , and on the limit flow f ∗ of the unperturbed network.

A few remarks are in order. First, it is worth comparing the maximum strong resilience of a

dynamical flow network with its maximum weak resilience. The latter was studied in [3] and

was shown (see Definition 6, Proposition 1, and Theorem 2 therein) to be equal to the min-cut

capacity of the flow network, C(N ). Clearly, the former cannot exceed the latter, as can be also

directly verified from the definitions (13) and (3): for this, it is sufficient to consider (see Figure

2)

U∗ ∈ argmin
U origin-destination cut

{∑
e∈E+U

fmax
e

}
, v∗ := max{u ∈ U∗} ,
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Fig. 3. (a) A parallel link topology. (b) A topology to illustrate arbitrarily large C(N )−R(N , f∗).

and observe that, since E+v∗ ⊆ E+U∗ , and
∑

e∈E+U∗
f *
e = λ0 by conservation of mass, one has

R(N , f ∗) ≤
∑
e∈E+

v∗

(fmax
e − f *

e ) ≤
∑
e∈E+U∗

(fmax
e − f *

e ) =
∑
e∈E+U∗

fmax
e − λ0 = C(N )− λ0 .

We provide below two examples to illustrate the difference between the two quantities.

Example 3: For parallel link topologies, an example of which is illustrated in Figure 3 (a),

one has that

R(N , f ∗) =
∑
e∈E

fmax
e − λ0 = C(N )− λ0 .

Example 4: Consider the topology shown in Figure 3 (b) with λ0 = 1, f * = [ε, 1− ε, ε, 1− ε]

and fmax
e = [1/ε, 1, 1/ε, 1] for some ε ∈ (0, 1). In this case, we have that C(N ) = 1 + 1/ε and

R(N , f *) = ε. Therefore,

C(N )−R(N , f *) = 1 + 1/ε− ε ,

and hence C(N )−R(N , f *) grows unbounded as ε vanishes.

We conclude this section with the following observation. Using arguments along the lines

of those employed in [4], one can show that C(N ) − λ0 provides an upper bound on the

strong resilience even if the locality constraint on the information used by the routing policies is

removed, i.e., if one allows Gv to depend on the full vector of current densities ρ, rather than on

the local density vector ρv only. Indeed, one might exhibit routing policies which are functions

of the global density information ρ, for which the strong resilience is exactly C(N )− λ0 using

ideas developed in the paper [4]. Hence, one may interpret the gap C(N ) − λ0 − R(N , f *)

as the strong resilience loss due to the locality constraint on the information available to the
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distributed routing policies. One could use Example 4 to again demonstrate arbitrarily large such

loss due to the locality constraint on the information available to the routing policies. In fact, it

is possible to consider intermediate levels of information available to the routing policies, which

interpolate between the one-hop information of our current modeling of the distributed routing

policies, and the global information described above. These results on the strong resilience are in

stark contrast to our result on weak resilience in [3], where we showed that the weak resilience

is unaffected by local information constraints on the routing policies.

IV. ROBUST EQUILIBRIUM SELECTION

In this section, for a given flow network N satisfying Assumptions 1 and 2, a constant inflow

λ0 ∈ [0, C(N )), and locally responsive distributed routing policies with limit flow f ∗, we shall

address the issue of optimizing the strong resilience of the associated dynamical flow network,

R(N , f ∗) with respect to f ∗. First, in Section IV-A, we shall address the issue of maximizing

R(f ∗) := R(N , f ∗) over all admissible equilibrium flow vectors f ∗ ∈ F∗(λ0), i.e., with the only

constraints given by the link capacities and the conservation of mass. Then, in Section IV-B we

shall focus on the transportation network case, and address the problem of implementing a desired

f ∗, assuming that f ∗ satisfies the additional constraint of being an equilibrium influenced by

some static tolls. In Section IV-C, we shall evaluate the gap between the maximum of R(f ∗)

over all f ∗, and a generic equilibrium f ∗, and interpret it as the robustness price of anarchy with

respect to f ∗. We then distinguish between R(f ∗) and the commonly used metric of average

delay associated to f ∗, and then propose a convex optimization problem to solve for f ∗ that

takes into account average delay as well as strong resilience.

A. Robust equilibrium flow selection as an optimization problem

The robust equilibrium flow selection problem can be posed as an optimization problem as

follows:

R∗ := sup
f∗∈F∗(λ0)

R(f ∗) , (15)

where we recall that F∗(λ0) is the set of admissible equilibrium flow vectors corresponding

to the inflow λ0 ∈ [0, C(N )). Equation (13) implies that R(f *) is the minimum of a set of

functions linear in f *, and hence is concave in f *. Since the closure of the constraint set F∗(λ0)
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is a polytope, we get that the optimization problem stated in (15) is equivalent to a simple convex

optimization problem. However, note that the objective function, R(f *) is non-smooth and one

needs to use sub-gradient techniques, e.g., see [15], for finding the optimal solution.

B. Using tolls for equilibrium implementation in transportation networks

We now study the use of static tolls to influence the decisions of the drivers in order to get a

desired emergent equilibrium condition for (unperturbed) transportation networks. The static tolls

affect the driver decisions over a slower time scale at which the drivers update their preferences

for global paths through the network. These global decisions are complemented by the fast-

scale node-wise route choice decisions characterized by Definition 2 and 5. The details of the

analysis of transportation networks with such two time-scale driver decisions can be found in our

companion paper [4]. In particular, we show that when the time scales are sufficiently separated

apart, then the network densities are attracted to a neighborhood of Wardrop equilibrium. In this

section, in order to highlight the relationship between static tolls and the resultant equilibrium

point, we assume that the fast scale dynamics equilibrates quickly and focus only on the slow

scale dynamics.

We briefly describe the congestion game framework for transportation networks to formalize

the equilibrium corresponding to the slow scale driver decision dynamics. Let Υ ∈ R be the

link-wise vector of tolls, with Υe denoting the toll on link e. Assuming that Υ is rescaled in

such a way that one unit of toll corresponds to a unit amount of delay, the utility of a driver

associated with link e when the flow on it is fe is − (Te(fe) + Υe), where Te(fe) is the delay

on link e when the flow on it is fe. In order to formally describe the functions Te(fe), we shall

assume that each flow function µe satisfies Assumption 2, and additionally is strictly concave

and satisfies µ′e(0) < +∞. Observe that the flow function described in Example 14 satisfies

these additional assumptions. Since the flow on a link is the product of speed and density on

that link, one can define the link-wise delay functions Te(fe) by

Te(fe) :=


+∞ if fe ≥ fmax

e ,

µ−1e (fe)/fe if fe ∈ (0, fmax
e ),

1/µ′e(0) if fe = 0,

∀e ∈ E . (16)

Let P be the set of distinct paths from node 0 to node n. The utility associated with a path
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p ∈ P is −
∑

e∈p (Te (fe) + Υe). Let T (f) = {Te(fe) : e ∈ E} be the vector of link-wise delay

functions. We are now ready to define a toll-induced equilibrium.

Definition 8 (Toll-induced equilibrium): For a given Υ ∈ R, a toll-induced equilibrium is a

vector f *(Υ) ∈ F∗ that satisfies the following for all p ∈ P:

fe > 0 ∀e ∈ p =⇒
∑
e∈p

(Te (fe) + Υe) ≤
∑
e∈q

(Te (fe) + Υe) ∀q ∈ P .

Note that, f *(0) corresponds to a Wardrop equilibrium, e.g., see [16], [17], where 0 is a vector

all of whose entries are zero. For brevity in notation, we shall denote the Wardrop equilibrium by

fW. The following result guarantees the existence and uniqueness of a toll-induced equilibrium.

Proposition 1 (Existence and uniqueness of toll-induced equilibrium): Let N be a flow net-

work satisfying Assumptions 1 and 2 and λ0 ∈ [0, C(N )) a constant inflow. Assume additionally

that the flow function µe is strictly concave and satisfies µ′e(0) < +∞ for every link e ∈ E .

Then, for every toll vector Υ ∈ R, there exists a unique toll-induced equilibrium f ∗(Υ) ∈ F∗.

Proof: It follows from Assumption 2, strict concavity and the assumption µ′e(0) < +∞

on the flow functions that, for all e ∈ E , the delay function Te(fe), as defined by (16), is

continuous, strictly increasing, and is such that Te(0) > 0. The Proposition then follows by

applying Theorems 2.4 and 2.5 from [18].

In this subsection, to illustrate the proof of concept, we will focus on equilibrium flows f ∗

each of whose components is strictly positive. The results for a generic f ∗ ∈ F∗(λ0) follow

along similar lines. Let A ∈ {0, 1}P×E be the path-link incidence matrix, i.e., for all e ∈ E and

p ∈ P , Ap,e = 1 if e ∈ p and zero otherwise. Definition 8 implies that for f ∗(Υ) ∈ R, with

f ∗e (Υ) > 0 for all e ∈ E , to be the toll-induced equilibrium corresponding to the toll vector

Υ ∈ R is equivalent to A (T (f ∗(Υ)) + Υ) = ν1, for some ν > 0. We shall use this fact in the

next result, where we compute tolls to get a desired equilibrium.

Proposition 2 (Tolls for desired equilibrium): Let N be a flow network satisfying Assump-

tions 1 and 2 and λ0 ∈ [0, C(N )) a constant inflow. Assume additionally that the flow function

µe is strictly concave and satisfies µ′e(0) < +∞ for every link e ∈ E . Assume that the Wardrop

equilibrium fW is such that fW
e > 0 for all e ∈ E . Let f * ∈ F∗(λ0), with f ∗e > 0 for all e ∈ E ,

be the desired toll-induced equilibrium flow vector. Define Υ(f) ∈ R by

Υ(f) =

(
max
e∈E

Te(fe)

Te(fW
e )

)
T (fW)− T (f) . (17)
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Then f ∗ is the desired toll-induced equilibrium associated to the toll vector Υ(f ∗).

Proof: Since fW is the Wardrop equilibrium, corresponding to the toll vector Υ = 0, we

have that

AT (fW) = ν11, (18)

for some ν1 > 0. For f * to be the toll-induced equilibrium associated to the toll vector Υ ∈ R,

one needs to find ν2 > 0 such that

A
(
T (f *) + Υ

)
= ν21. (19)

Using (18) and simple algebra, one can verify that (19) is satisfied with Υ(f *) as defined in

(17) and ν2 = ν1 ·
(

maxe∈E
Te(f∗e )
Te(fW

e )

)
.

Remark 3: The toll vector yielding a desired equilibrium operating condition is not unique.

In fact, any toll of the form Υ(f *) = cT (fW)− T (f *), with c ≥ max{Te(f *
e )/Te(f

W
e ) : e ∈ E}

will induce f * as the toll-induced equilibrium. Proposition 2 gives just one such toll vector.

C. The robustness price of anarchy

Conventionally, transportation networks have been viewed as static flow networks, where a

given equilibrium traffic flow is the outcome of driver’s selfish behavior in response to the delays

associated with various paths and the incentive mechanisms in place. The price of anarchy [9]

has been suggested as a metric to measure how sub-optimal a given equilibrium is with respect

to the societal optimal equilibrium, where the societal optimality is related to the average delay

faced by a driver. In the context of robustness analysis of transportation networks, it is natural

to consider societal optimality from the robustness point of view, thereby motivating a notion

of the robustness price of anarchy. Formally, for a f * ∈ F∗(λ0), define the robustness price of

anarchy as P
(
f *
)

:= R∗ − R
(
f *
)
. It is worth noting that, for a parallel topology, we have

that R∗ = R
(
f *
)

=
∑

e∈E f
max
e − λ0 for all f *. That is, the strong resilience is independent of

the equilibrium operating condition and hence, for a parallel topology, P
(
f *
)
≡ 0. However,

for a general topology and a general equilibrium, this quantity is non-zero. This can be easily

justified, for example, for robustness price of anarchy with respect to the Wardrop equilibrium:

a Wardrop equilibrium is determined by the delay functions Te(fe) as well as the topology of

the network, whereas the maximizer of R(f ∗) depends only on the topology and the link-wise
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flow capacities of the network, as implied by the optimization problem in (15). In fact, as the

following example illustrates, for a non-parallel topology, the robustness price of anarchy with

respect to Wardrop equilibrium can be arbitrarily large.

Example 5 (Arbitrarily large robustness price of anarchy with respect to Wardrop equilibrium):

Consider the network topology shown in Figure 1. Let the link-wise flow functions be given by

Equation (14). The delay function is then given by Te(0) = (aef
max
e )−1, Te(fe) = − 1

aefe
log(1−

fe/f
max
e ) for fe ∈ (0, fmax

e ) and Te(fe) = +∞ for fe ≥ fmax
e . Fix some ε ∈ (0, 1) and let

λ0 = 1/ε. Let the parameters of the flow functions be given by fmax
e1

= fmax
e2

= 1/ε + ε,

fmax
e3

= fmax
e4

= 1/(2ε) + ε/2, a1 = 1, a2 = a3 = a4 =
(

3ε
1−ε

)
log
(
ε+ε2

1+ε2

)
/ log

(
1+ε2−ε
1+ε2

)
. For

these values of the parameters, one can verify that the unique Wardrop equilibrium is given by

fW = [1 1/ε − 1 1/(2ε) − 1/2 1/(2ε) − 1/2]T . The strong resilience of fW is then given

by R(N , fW) = min{2/ε + 2ε − 1/ε, 1/ε + ε − (1/ε − 1)} = 1 + ε. One can also verify that,

for this case, R∗ = 1/ε + 2ε which would correspond to f * = [1/ε 0 0 0]T . Therefore,

P (fW) = 1/ε+ 2ε− (1 + ε) = 1/ε+ ε− 1 which tends to +∞ as ε→ 0+.

The above example provides a strong motivation to take robustness into account while selecting

the equilibrium operating condition for the network. However, conventionally, the equilibrium

selection problem for transportation networks has been primarily motivated from the point-of-

view of minimizing average delay. The average delay associated with an equilibrium f ∗ is defined

as:

D(f ∗) :=
∑
e∈E

f ∗e Te(f
∗
e )/λ0. (20)

The following simple example illustrates that the maximizers of −D(f ∗) and R(f ∗) are not

necessarily the same.

Example 6: Consider the network topology shown in Figure 1. Let the link-wise flow functions

be given by Equation (14). Let the parameters of the flow function be given by: ae1 = 0.01,

ae2 = ae3 = ae4 = 10 and fmax
e1

= fmax
e2

= 2, fmax
e3

= fmax
e4

= 0.75. Let λ0 = 2. The

equilibrium maximizing R(f ∗) is f * = [2 0 0 0]T and the maximum strong resilience is

found to be R∗ = 1.5. The minimum value of D(f ∗) over all f ∗ ∈ F∗(λ0) is 15.17, and the

corresponding equilibrium f ∗ and the value of strong resilience are [0.5 1.5 0.75 0.75]T and

0.5 respectively. Note that the maximizers of −D(f ∗) and R(f ∗) are not necessarily the same.

Therefore, a reasonable optimization problem should take into account average delay as well as
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Fig. 4. Plots of the solution of the optimization in (21) for parameters specified in Example 6, as b is increased from 0 to

R∗ = 1.5: (a) f∗1 is the flow on link e1 corresponding to f∗ optimizing (21); note that f∗2 = λ0 − f∗1 , and f∗3 = f∗4 = f∗2 /2,

(b) D∗ is the solution of (21).

network resilience. Accordingly, we propose a modified optimization problem as follows:

minimize D(f ∗)

subj. to f ∗ ∈ F∗(λ0),

R(f ∗) ≥ b,

(21)

where b ∈ [0, R∗]. Assumption 2 and Equation (20) imply that D(f ∗) is convex. Therefore, taking

into account the expression for R(f ∗), (21) is still a convex optimization problem. Figure 4 plots

the outcome of this optimization as b is varied from 0 to R∗. In all the cases, we solved (21)

using CVX, a package for specifying and solving convex programs [19].

V. CASCADED FAILURES

In this section, through numerical experiments, we study the case when the flow functions are

set to the ones commonly accepted in the transportation literature, e.g., see [20]. In transportation

literature, the flow functions are defined over a finite interval of the form [0, ρmax
e ], where ρmax

e

is the maximum traffic density that link e can handle. Additionally, µe is assumed to be strictly

concave and achieves its maximum in (0, ρmax
e ). For example, consider the following:

µe(ρe) =
4fmax

e ρe(ρ
max
e − ρe)

(ρmax
e )2

, ρe ∈ [0, ρmax
e ]. (22)
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An important implication of the finite capacity on the traffic densities is the possibility of cascaded

spill-backs traveling upstream as follows. When the density on a link reaches its capacity, its

outflow permanently becomes zero and hence the link is effectively cut out from the network.

When all the outgoing links from a particular node are cut out, it makes the outflow on all the

incoming links to that node zero. Eventually, these upstream links might possibly reach their

capacity on the density and cutting themselves off permanently and cascading the effect further

upstream. We shall show how such cascaded effects possibly reduce the resilience.

Another important differentiating feature of the flow functions given by (22) with respect to

the flow functions satisfying Assumption 2 is that the flow functions corresponding to (22) are

not strictly increasing. As a result, one cannot readily claim that the locally responsive distributed

routing policies are maximally robust for this case. However, we illustrate via simulations that,

with additional assumptions, the locally responsive distributed routing policies considered in this

paper could possibly be maximally robust. In these simulations, we also study the effect of the

flow functions given by (22) on the weak resilience of the network, which was formally defined

in [3]. In simple words, weak resilience of the network is defined as the infimum sum of the

link-wise magnitude of all the disturbances under which the outflow from the destination node is

asymptotically zero. In [3, Proposition 1], we showed that the weak resilience of the dynamical

flow network with the flow functions satisfying Assumption 2 is upper bounded by its min-cut

capacity. It is easy to show that this upper bound on weak resilience also holds when the flow

functions are the ones given by (22).

For the simulations, we selected the following parameters:

• the graph topology T shown in Figure 5.

• λ0 = 3.

• let ρmax
e = 3 for all e ∈ E , and flow capacities given by fmax

e1
= fmax

e2
= fmax

e3
= 2.5,

fmax
e4

= 0.9, fmax
e5

= 1.75, fmax
e6

= fmax
e11

= fmax
e13

= 1, fmax
e7

= fmax
e8

= 0.7, fmax
e9

= 0.4,

fmax
e10

= fmax
e12

= 1.5, fmax
e14

= 2, and fmax
e15

= 1.6. The link-wise flow functions are as given in

(22), if e ∈ E−n or if ρ < ρmax
e′ for at least one downstream edge e′, i.e., e′ ∈ E such that

e ∈ E−v and e′ ∈ E+v for some v ∈ {1, . . . , n − 1}, and the flow functions are uniformly

zero otherwise;

• the equilibrium flow f ∗ has components f ∗e1 = f ∗e3 = f ∗e6 = 0.5, f ∗e2 = 2, f ∗e4 = f ∗e13 = 0.3,

f ∗e5 = 1.5, f ∗e7 = f ∗e8 = 0.25, f ∗e9 = 0.2, f ∗e10 = f ∗e12 = 0.9, f ∗e11 = 0.2, f ∗e13 = 0.3, f ∗e14 = 1.1,
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Fig. 5. The graph topology used in simulations.

and f ∗e15 = 0.7;

• the route choice function is as follows:

Gv
e(ρ

v) =
f *
e exp(−η(ρe − ρ∗e))1[0,ρmax

e ](ρe)∑
j∈E+v f

*
j exp(−η(ρj − ρ∗j))1[0,ρmax

j ](ρj)
,

where η will be a variable parameter for the simulations. Note that this is a modified version

of the route choice function given by (9). The modification is done to respect the finite traffic

density constraint on the links.

One can verify that, with these parameters, the minimum node residual capacity, and hence

an upper bound on the strong resilience, as defined by (13) is 0.75. One can also verify that the

maximum flow capacity of the network, and hence an upper bound on the weak resilience, is

5.2.

A. Effect of η on the strong resilience

Consider an admissible perturbation such that µ̃e10 = 8
15
µe10 and µ̃ek = µk for all k ∈

{1, . . . , 15} \ {10}. As a result, δe10 = 0.7 and δek = 0 for all k ∈ {1, . . . , 15} \ {10}. Therefore,

the magnitude of the perturbation is δ = 0.7. Note that this value is less than the minimum

node residual capacity of the network. We found that limt→∞ λe8(t) = 0 for all η < 0.25, and

limt→∞ λe8(t) = λ0 = 3 for all η ≥ 0.25. The role of η in the strong resilience is best understood

by concentrating on a parallel topology consisting of edges e10 and e12 with arrival rate λ∗e4 .

Using similar techniques as in the proof of Theorem 3, one can show the existence of a new

March 28, 2011 DRAFT



23

equilibrium for this local system. However, this equilibrium is not attractive from a configuration

where at least one of ρ̃e10 or ρ̃e12 is at ρmax
e10

or ρmax
e12

, respectively. For η < 0.25, ρ̃e10 reaches

ρmax
e10

, whereas for η ≥ 0.25, neither ρ̃e10 nor ρ̃e12 hit the maximum density capacity and the

system is attracted towards the new equilibrium.

B. Effect of cascaded shutdowns on the weak resilience

Consider an admissible disturbance such that µ̃e4 = 2
9
µe4 , µ̃e5 = 23

35
µe5 , µ̃e6 = 4

5
µ6, µ̃e7 = 2

7
µe7 ,

µ̃e8 = 2
7
µe8 , µ̃e9 = 1

2
µe9 , µ̃e10 = 3

5
µe10 , µ̃e12 = 8

15
µe12 and µ̃k = µk for k = {1, 2, 3, 11, 13, 14, 15}.

As result, δe4 = 0.7, δe5 = 0.6, δe6 = 0.2, δe7 = 0.5, δe8 = 0.5, δe9 = 0.2, δe10 = 0.6, δe12 = 0.7

and δek = 0 for k = {1, 2, 3, 11, 13, 14, 15}. Therefore, δ = 4, which is less than the min-cut

flow capacity of the network. For this case, it is observed that, limt→∞ λe8(t) = 0 independent

of the value of η. This can be explained as follows. For the given disturbance, we have that

f̃max
e10

+ f̃max
e12

= 1.7 < 1.8 = f ∗e10 +f ∗e12 . Therefore, after finite time t1, we have that ρ̃e10(t) = ρmax
e10

and ρ̃e12(t) = ρmax
e12

for all t ≥ t1. As a consequence, we have that, f̃e4(t) = 0 and f̃e5(t) = 0

for all t ≥ t1. One can repeat this argument to conclude that, for the given disturbance, after

finite time, ρ̃ek for k = 1, . . . , 9 reach and remain at their maximum density capacities. As a

consequence, after such a finite time, f̃e1(t) + f̃e2(t) + f̃e3(t) = 0 and hence, limt→∞ λe8(t) = 0,

i.e., the network is not partially transferring. This is also illustrated in Figure 6 which plots the

flow through some of the links of the network as a function of time. This example illustrates that

the cascaded effects can potentially reduce the weak resilience of a dynamical flow network.

VI. CONCLUSION

In this paper, we studied strong resilience of dynamical flow networks, with respect to

perturbations that reduce the flow functions of the links of the network. We showed that locally

responsive distributed routing policies yield the maximum strong resilience under local informa-

tion constraint. We also showed that the corresponding strong resilience is equal to the minimum

node residual capacity of the network, and hence depends on the limit flow of the unperturbed

network. Our results show that, unlike the weak resilience which was considered in [3], the

strong resilience of a dynamical flow network is sensitive to local information constraint. We

proposed simple convex optimization problems to solve for equilibria that maximize traditional

metrics of social optimality such as average delay subject to guarantees on strong resilience. We
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Fig. 6. Plot of link-wise flows for some of the links of the network that ultimately shut down. The timings of shut downs of

the links demonstrate the cascaded effect starting from link e10 and traveling up to the origin node.

also discussed the use of tolls to induce a generic equilibrium flow for the unperturbed system in

the context of transportation networks. Finally, we also discussed cascaded failures due to spill

backs when we impose finite density constraints on the links and illustrated the utility of routing

policies discussed in this paper in averting such failures. The findings of this and the companion

paper [3] stand to provide important guidelines for management of several large scale critical

infrastructures both from planning as well as real-time operation point of view.

In future, we plan to extend the research in several directions. We plan to rigorously study

the robustness properties of the network with finite link-wise capacity for the densities, and

formally establish the results on the resilience as suggested in Section V. We plan to study the

scaling of the resilience with respect to the amount of information, e.g., multi-hop as opposed

to just single-hop, available to the routing policies. We also plan to perform robustness analysis

in a probabilistic framework to complement the adversarial framework of this paper, possibly

considering other general models for disturbances. In particular, it would be interesting to study

robustness with respect to sequential disturbances than just one-shot disturbance considered in

this paper. We plan to consider a setting with buffer capacities on the nodes and study the

scaling of the resilience with such buffer capacities. We also plan to consider more general

graph topologies, e.g., graphs having cycles and multiple origin-destination pairs.
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APPENDIX A

PROOF OF THEOREM 2

In this section, we shall prove Theorem 2 by showing that, given a flow network N satisfying

Assumptions 1 and 2, a constant inflow λ0 ≥ 0, a distributed routing policy G, and a limit flow

f ∗ ∈ cl(F) for the associated dynamical flow network (4), the strong resilience satisfies

γ1(f
∗,G) = R(N , f ∗) .

Let f ◦ ∈ B(f ∗) be some initial flow attracted by f ∗. In order to prove the result it is sufficient

to exhibit a family of admissible perturbations, with magnitude δ arbitrarily close to R(N , f ∗),

under which the network is not fully transferring with respect to f ◦. Let us fix some non-

destination node 0 ≤ v < n minimizing the right-hand side of (13), and put κ :=
∑

e∈E+v f
max
e .

For any R(N , f ∗) < δ < κ, consider the admissible perturbation defined by

µ̃e(ρe) :=
κ− δ
κ

µe(ρe) , ∀e ∈ E+v , µ̃e(ρe) := µe(ρe) , ∀e ∈ E \ E+v . (23)

Clearly, the magnitude of such perturbation equals δ.

Let us consider the origin-destination cut-set U := {0, 1, . . . , v}, and put

E+U := {(u,w) ∈ E : 0 ≤ u ≤ v, v < w ≤ n} .

Observe that, thanks to Assumption 1 on the acyclicity of the network topology, since all

the edges outgoing from some node u ≤ v are unaffected by the perturbation, the associated

perturbed dynamical flow network (11) with initial flow f̃(0) = f ◦ ∈ B(f ∗) satisfies

lim
t→+∞

f̃e(t) = lim
t→+∞

fe(t) = f *
e , ∀e ∈ E+u , ∀0 ≤ u < v .

In particular, this implies that µ̃e(ρ̃e(t)) = f *
e for all t ≥ 0, and for every link e ∈ E+U \ E+v . On

the other hand, one has that

f̃e(t) < f̃max
e =

κ− δ
κ

fmax
e , ∀e ∈ E+v , ∀t ≥ 0 .

Therefore, one has that

lim sup
t→+∞

∑
e∈E+U

f̃e(t) ≤
∑

e∈E+v
f̃max

e +
∑

e∈E+U \E
+
v

f *
e

=
κ− δ
κ

∑
e∈E+v

fmax
e +

∑
e∈E+U \E

+
v

f *
e

=
∑

e∈E+v
fmax

e − δ −
∑

e∈E+v
f ∗e +

∑
e∈E+U

f ∗e

= R(N , f ∗)− δ + λ0 .

(24)
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Observe that, for every v < w < n, and t ≥ 0,

d

dt

(∑
e∈E+w

ρ̃e(t)
)

=
∑

e∈E+w

(∑
e∈E−w

f̃e(t)
)
Gv
e(ρ̃

w(t))−
∑

e∈E+w
f̃e(t)

=
∑

e∈E−w
f̃e(t)−

∑
e∈E+w

f̃e(t) .
(25)

Define the edge sets

A :=
⋃n−1

w=v+1
E+w , D :=

⋃n

w=v+1
E−w ,

and put ζ(t) :=
∑

e∈A ρe(t). Using (25), the identity A∪ E+U = D, and (24), one gets that there

exists some τ ′ ≥ 0 such that
d

dt
ζ(t) =

∑
v<w≤n

∑
e∈E−w

f̃e(t)−
∑

v<w≤n

∑
e∈E+w

f̃e(t)

=
∑

e∈D
f̃e(t)−

∑
e∈E−n

f̃e(t)−
∑

e∈A
f̃e(t)

=
∑

e∈E+U
f̃e(t)−

∑
e∈E−n

f̃e(t)

≤ R(N , f ∗)− δ + λ0 − λ̃n(t) + ε ,

(26)

for all t ≥ τ ′. Now assume, by contradiction, that

lim inf
t→+∞

λ̃n(t) > R(N , f ∗)− δ + λ0 .

Then, there would exist some ε > 0 and τ ′′ ≥ 0 such that

λ̃n(t) ≥ R(N , f ∗)− δ + λ0 + 2ε , t ≥ τ ′′ .

It would then follow from (26) and Gronwall’s inequality that

ζ(t) ≤ ζ(τ)− (t− τ)ε , ∀t ≥ τ ,

where τ := max{τ ′, τ ′′}. Then, ζ(t) would converge to −∞ as t grows large, contradicting the

fact that ζ(t) ≥ 0 for all t ≥ 0. Hence, necessarily

lim inf
t→+∞

λ̃n(t) ≤ R(N , f ∗)− δ + λ0 < λ0 ,

so that the perturbed dynamical flow network is not fully transferring. Then, from the arbitrariness

of the perturbation’s magnitude δ ∈ (R(N , f ∗), κ), it follows that the network’s strong resilience

is upper bounded by R(N , f ∗).
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APPENDIX B

PROOF OF THEOREM 3

In this section, we shall prove Theorem 3, by showing that, given a flow network N satisfying

Assumptions 1 and 2, a constant inflow λ0 ≥ 0, and a locally responsive distributed routing policy

G, then the strong resilience of the unique limit flow f ∗ ∈ cl(F) of the associated dynamical

flow network (4) satisfies

γ1(f
∗,G) = R(N , f ∗) .

Thanks to Theorem 2, it is sufficient to show that

γ1(f
∗,G) ≥ R(N , f ∗) . (27)

First, let us consider the case when f ∗ ∈ cl(F) \ F∗(λ0), i.e., when the limit flow of the

unperturbed dynamical flow network (4) is not an equilibrium. As argued in Remark 1, in this

case some of the capacity constraints are satisfied with equality, i.e., there exist 0 ≤ v < n and

e ∈ E+v such that f ∗e = fmax
e . Then, Theorem 1 implies that f ∗e = fmax

e for all e ∈ E+v , so that

R(N , f ∗) ≤
∑
e∈E+v

(fmax
e − f ∗e ) = 0 ,

and (27) is trivially satisfied, since γ1(f ∗,G) ≥ 0 by definition. Therefore, for the rest of this

section, we shall restrict ourselves on the case when f ∗ ∈ F∗(λ0), i.e., when f ∗ is a globally

attractive equilibrium flow of the unperturbed dynamical flow network (4).

Observe that, for any admissible perturbation, regardless of its magnitude, the perturbed

dynamical flow network (11) satisfies all the assumptions of Theorem 1, which can therefore

be applied to show the existence of a globally attractive perturbed limit flow f̃ ∗ ∈ cl(F). This

in particular implies that λ̃n(t) =
∑

e∈E−n f̃e(t) converges to λ̃∗n =
∑

e∈E−n f̃
∗
e as t grows large.

However, this is not sufficient in order to prove strong resilience of the perturbed dynamical

flow network (11), as it might be the case that λ̃∗n < λ0.

In fact, it turns out that, if the magnitude of the admissible perturbation is smaller than

R(N , f ∗), the perturbed limit flow f̃ ∗ is an equilibrium flow for the perturbed dynamical flow

network, so that λ̃∗n = λ0 and (11) is fully transferring. In order to show this, we need to study

the perturbed local system

d

dt
ρ̃e(t) = λ̃(t)Gv

e(ρ̃
v(t))− f̃e(t) , f̃e(t) = µ̃e(ρ̃e(t)) , ∀e ∈ E+v , (28)
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for every non-destination node 0 ≤ v < n, and nonnegative-real-valued, Lipschitz continuous

local input λ̃(t). Indeed, [3, Lemma 4] can be applied to the perturbed local system (28) estab-

lishing convergence of the perturbed local flows f̃ v(t) to a local equilibrium flow f̃ ∗(λ) ∈ Fv,

provided that the input flow λ̃(t) converges, as t grows large, to a value λ which is strictly

smaller than the sum of the perturbed flow capacities of the outgoing links. However, such local

result is not sufficient to prove strong resilience of the entire perturbed dynamical flow network.

The key property in order to prove such a global result is stated in Lemma 1, which describes

how the flow redistributes itself upon the network perturbation. In particular, such result ensures

that the increase in flow on all the links downstream from a node whose outgoing links are

affected by a given perturbation, is less than the magnitude of the disturbance itself. We shall

refer to this property as the diffusivity of the local perturbed system.

Lemma 1 (Diffusivity of the local perturbed system): Let N be a flow network satisfying As-

sumptions 1 and 2, G be a locally responsive distributed routing policy, λ0 ≥ 0 a constant inflow.

Assume that f ∗ ∈ F∗(λ0) is an equilibrium flow for the dynamical flow network (4). Let Ñ be

an admissible perturbation of N , 0 ≤ v < n be a nondestination node, λ∗v :=
∑

e∈E+v f
∗
e , and

λ ∈ [0,
∑

e∈E+v f̃
max
e ). Then, for every J ⊆ E+v , the local equilibrium flow f̃ ∗(λ) of the perturbed

local system (11) with constant local input λ̃(t) ≡ λ satisfies∑
e∈J

(
f̃ ∗e (λ)− f *

e

)
≤ [λ− λ∗v]+ +

∑
e∈E+v

δe , (29)

where δe := ||µe( · )− µ̃e( · )||∞.

Proof: Define λ∗v :=
∑

e∈E+v f
*
e , and λ̂ := max{λ, λ∗v}. Let ρ̂v(t) be the solution of the

perturbed local system (28) with constant input λ̃(t) ≡ λ̂, and initial condition ρ̂e(0) = ρ∗e :=

µ−1e (f ∗e ), for all e ∈ E+v , and let f̂e(e) := µ̃e(ρ̂e(t)). We shall first prove that

f̂e(t) ≥ µ̃e(ρ
∗
e) , ∀ t ≥ 0 ∀ e ∈ E+v . (30)

For this, consider a point ρ̂v ∈ Rv, such that ρ̂v 6= ρ*, and there exists some i ∈ E+v such that

ρ̂i = ρ*
i and ρ̂e ≥ ρ*

e for all e 6= i ∈ E+v . For such a ρ̂v and i, [3, Lemma 4] implies that

Gv
i (ρ̂

v) ≥ Gv
i (ρ

*). This, combined with the fact that λ̂ ≥ λ∗v and

µ̃i(ρ̂i) ≤ µi(ρ̂i) = µi(ρ
*
i ) ,

yields

λ̂vG
v
i (ρ̂

v)− µ̃i(ρ̂i) ≥ λ∗vG
v
i (ρ

*)− µi(ρ*
i ) = 0 . (31)
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Considering the region Ω := {ρ̂v ∈ Rv : ρ̂j ≥ ρ*
j , ∀j ∈ E+v }, and denoting by ω ∈ RE+v the unit

outward-pointing normal vector to the boundary of Ω at ρ̂v, (31) shows that

d

dt
ρ̂v · ω =

(
λ̂vG

v(ρ̂v)− µ̃v(ρ̂v)
)
· ω ≤ 0 , ∀ρ̂v ∈ ∂Ω , t ≥ 0 .

Therefore, Ω is invariant under (28). Since ρ̂v(0) = ρ* ∈ Ω, this proves (30).

Now, [3, Lemma 4] implies that there exists a unique local equilibrium flow f̂ ∗ := f̃ ∗(λ̂).

Then, for any J ⊆ E+v , (30) implies that∑
j
f̂ ∗j = λ̂∗v −

∑
k
f̂ ∗k

≤ λ̂∗v −
∑

k
µ̃k(ρ

*
k)

= λ̂∗v − λ∗v +
∑

j
f *
j +

∑
k
µk(ρ

*
k)−

∑
k
µ̃k(ρ

*
k)

≤ [λ̂∗v − λ∗v]+ +
∑

j
f *
j +

∑
k
δk

≤ [λ̂∗v − λ∗v]+ +
∑

j
f *
j +

∑
e
δe ,

(32)

where the summation indices j, k, and e run over J , E+v \ J , and E+v , respectively. Moreover,

since λ ≤ λ̂ from [3, Lemma 3], one gets that f̃ ∗e (λ) ≤ f̃ ∗e (λ̂) = f̂ ∗e for all e ∈ E+v . In particular,

this implies that ∑
j∈J

f̃ ∗j (λ) ≤
∑
j∈J

f̂ ∗j , ∀J ⊂ E+v .

This, combined with (32), proves (29).

The following lemma exploits the diffusivity property from Lemma 1 along with an induction

argument on the topological ordering of the node set to prove that R(N , f ∗) is indeed a lower

bound on the strong resilience of the network under the locally responsive distributed routing

policies.

Lemma 2 (Globally attractive equilibrium for perturbed flow network): Consider a flow net-

work N satisfying Assumptions 1 and 2, a locally responsive distributed routing policy G, and

a constant inflow λ0 ≥ 0. Assume that f ∗ ∈ F∗(λ0) is an equilibrium flow for the associated

dynamical flow network. Let Ñ be an admissible perturbation of N , of magnitude δ < R(N , f ∗).

Then, the perturbed dynamical flow network (11) has a globally attractive equilibrium flow and

hence it is fully transferring.

Proof: First recall that Theorem 1 can be applied to the perturbed dynamical network (11)
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0 v + 1 n
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Dv+1

Bv+1

J

J1

J2

Fig. 7. Illustration of the sets used in proving the induction step.

in order to prove existence of a globally attractive limit flow f̃ ∗ ∈ cl(F) for the perturbed

dynamical network flow (11). For brevity in notation, for every 1 ≤ v < n, put

λ∗v :=
∑
e∈E+v

f *
e , λ̃∗v :=

∑
e∈E−v

f̃e , λmax
v :=

∑
e∈E+v

f̃max
e .

Also, for every node v ∈ V , let

Dv :=
⋃v

u=0
E+u , Bv := {(u,w) ∈ E : 0 ≤ u ≤ v, v < w ≤ n}

be, respectively, the set of all outgoing links, and the link-boundary of the node set {0, 1, . . . , v}.

We shall prove the following through induction on u = 0, 1, . . . , n− 1:∑
e∈J

(
f̃ ∗e − f *

e

)
≤
∑
e∈Du

δe , ∀J ⊆ Bu . (33)

First, notice that B0 = D0 = E+0 . Since∑
e∈E+0

δe ≤ δ < R(N , f ∗) ≤
∑
e∈E+0

(fmax
e − f *

e ) ,

we also have that λ0 < λ̃max
v . Therefore, by using (29) of Lemma 1, one can verify that (33)

holds true for v = 0.

Now, for some v ≤ n − 2, assume that (33) holds true for every u ≤ v. Consider a subset

J ⊆ Bv+1 and let J1 := J ∩E+v+1 and J2 := J \J1 (e.g., see Figure 7). By applying Lemma 1

to the set J1, one gets that∑
e∈J1

(
f̃ ∗e − f *

e

)
≤
[
λ̃∗v+1 − λ∗v+1

]
+

+
∑

e∈E+v+1

δe, ∀ t ≥ 0. (34)
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It is easy to check that J2 ⊆ Bv and E−v+1 ⊆ Bv. Therefore, using (33) for the sets J2 and

J2 ∪ E−v+1, one gets the following inequalities respectively:∑
e∈J2

(
f̃ ∗e − f *

e

)
≤
∑

e∈Dv

δe, (35)∑
e∈J2

(
f̃ ∗e − f *

e

)
+
∑

e∈E−v+1

(
f̃ ∗e − f *

e

)
≤
∑

e∈Dv

δe. (36)

Consider the two cases: λ̃∗v+1 ≤ λ∗v+1, or λ̃∗v+1 > λ∗v+1. By adding up (34) and (35), in the first

case, or (34) and (36) in the second case, one gets that∑
e∈J

(
f̃ ∗e − f *

e

)
=
∑
e∈J1

(
f̃ ∗e − f *

e

)
+
∑
e∈J2

(
f̃ ∗e − f *

e

)
≤
∑
e∈E+v+1

δe +
∑
e∈Dv

δe ≤
∑

e∈Dv+1

δe .

This proves (33) for node v + 1 and hence the induction step.

Fix 1 ≤ v < n. Since E−v ⊆ Bv−1, (33) with u = v − 1 implies that

λ̃∗v =
∑
e∈E−v

f̃ ∗e ≤
∑
e∈E−v

f *
e +

∑
e∈Dv−1

δe =
∑
e∈E+v

f *
e +

∑
e∈E

δe −
∑

e∈E\Dv−1

δe ,

where the third step follows from the fact that
∑

e∈E−v f
*
e =

∑
e∈E+v f

*
e by conservation of mass.

Then, since E+v ⊆ E \ Dv−1, one gets that

λ̃∗v ≤
∑

e
f *
e + δ −

∑
e
δe

<
∑

e
f *
e +R(N , f ∗)−

∑
e
δe

≤
∑

e
f *
e +

∑
e

(
fmax

e − f *
e

)
−
∑

e
δe

=
∑

e
(fmax

e − δe)

=
∑

e
f̃max

e ,

where the summation index e runs over E+v . Hence, it follows from [3, Lemma 2] applied to the

perturbed local system (28) that

f̃ ∗e = f̃ ∗e (λ̃∗v) < f̃max
e , ∀e ∈ E+v , (37)

for all 1 ≤ v < n− 1. Moreover, since λ0 =
∑

e∈E+v f
∗
e <

∑
e∈E+v f

max
e , applying [3, Lemma 2]

again to the perturbed local system (28) shows that (37) holds true for v = 0 as well. Hence,

f̃ ∗e < fmax
e , ∀e ∈ E ,
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so that the limit flow f̃ ∗ belongs to F , and hence it is necessarily an equilibrium flow of the

perturbed dynamical flow network (11), as argued in Remark 1. Therefore, the dynamical flow

network (11) is fully transferring.

Theorem 3 now immediately follows from Lemma 2, and the arbitrariness of the admissible

perturbation of magnitude smaller than R(N , f ∗).
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