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Robust Distributed Routing in Dynamical Networks with Cascading Failures

Giacomo Como Ketan Savla Daron Acemoglu Munther A. Dahleh Emilio Frazzoli

Abstract— We consider a dynamical formulation of network
flows, whereby the network is modeled as a switched system of
ordinary differential equations derived from mass conservation
laws on directed graphs with a single origin-destination pair and
a constant inflow at the origin. The rate of change of the density
on each link of the network equals the difference between the
inflow and the outflow on that link. The inflow to a link is
determined by the total flow arriving to the tail node of that
link and the routing policy at that tail node. The outflow from
a link is modeled to depend on the current density on that link
through a flow function. Every link is assumed to have finite
capacity for density and the flow function is modeled to be
strictly increasing up to the maximum density. A link becomes
inactive when the density on it reaches the capacity. A node fails
if all its outgoing links become inactive, and such node failures
can propagate through the network due to rerouting of flow.
We prove some properties of these dynamical networks and
study the resilience of such networks under distributed routing
policies with respect to perturbations that reduce link-wise flow
functions. In particular, we propose an algorithm to compute
upper bounds on the maximum resilience over all distributed
routing policies, and discuss examples that highlight the role of
cascading failures on the resilience of the network.

I. I NTRODUCTION

Network flows provide a fruitful modeling framework for
transport phenomena, with many applications of interest, e.g.,
road traffic, data, and production networks. They entail a
fluid-like description of the macroscopic motion of particles,
which are routed from their origins to their destinations via
intermediate nodes: we refer to standard textbooks, such as
[1], for a thorough treatment.

In this paper, we consider a dynamical framework for
studying network flows, as proposed in our earlier work [2],
[3]. In particular, we studydynamical networks, modeled as
systems of ordinary differential equations derived from mass
conservation laws on directed graphs with a single origin-
destination pair and a constant total inflow at the origin. The
rate of change of the density on each link of the network
equals the difference between theinflow and theoutflowof
that link. The latter is modeled to depend on the current
density on that link through aflow function. On the other
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hand, the way the total outflow at a non-destination node
gets split among its outgoing links depends on therouting
policy at that node. We focus ondistributed routing policy,
characterized by the property that the proportion of total
outflow routed to the outgoing links of a node is allowed to
depend only onlocal information, consisting of the current
densities on the outgoing links of the same node.

The novel modeling element in the present contribution is
that every link is assumed to have finite capacity for density.
The flow function is modeled to be strictly increasing as
density increases from zero up to the maximum density. A
link becomes inactive when the density on it reaches the
capacity. This, in particular, is a discontinuous version of
the fundamental traffic diagram from traffic engineering [4],
where the flow functions are modeled to be continuously
increasing up to a critical density and then continuously
decreasing to zero up to the maximum density. Such a feature
allows for the possibility of spill-backs and cascaded failures
in our model, which was absent from the model considered
in [2], [3].

Our main objective is studying the resilience of such
dynamical networks with respect to perturbations that reduce
the flow capacity of their links. We measure the magni-
tude of a perturbation as the sum of the link-wise flow
capacity reductions and define the margin of resilience as
the minimum magnitude of a perturbation which makes a
dynamical network previously in equilibrium converge to a
state in which no flow reaches the destination node. In fact,
once the density reaches its maximum capacity on a link,
the corresponding outflow is zero, and the link becomes
irreversibly inactive. If all the outgoing links of a node
become inactive, the node fails irreversibly, and in turn all
its incoming links become inactive. As a consequence some
other links may experience an overload, possibly reaching
their density capacity, thus becoming inactive ever since.
Through this mechanism, link and node failures propagate
through the network.

Models for cascades in general complex networks are
given in [5], [6], [7], while domain-specific models are pro-
vided in [8] (power networks), [9] (financial networks),and
[10] (supply networks). There has also been work on un-
derstanding the role of human decisions on such cascading
phenomena, especially in the context of financial networks,
e.g., see [11], [12]. However, most of these models rely on a
stochastic model for initiation of failure and its propagation.
In this paper, however, we propose a deterministic dynamical
framework for cascading failures that are particularly relevant
for transportation networks.

The main contribution of this paper are as follows:
we introduce a novel dynamical model of network flow
that allows for spill-backs and cascaded failures; we study



some properties of such dynamical networks, including a
dichotomy stating that either the asymptotic outflow equals
the inflow, or it is null; we provide an upper bound on the
margin of resilience for a tree-like dynamical network in
terms of an easily computable static function of the link
flow capacities and the initial equilibrium flow; we discuss an
insightful example showing how the spill back effect can be
useful in improving the resilience of the dynamical network.

Before proceeding, let us gather here some preliminary
notation to be used throughout the paper. LetR be the set
of real numbers,R+ := {x ∈ R : x ≥ 0} be the set of
nonnegative reals. WhenA and B are finite sets,|A| will
denote the cardinality ofA, R

A (respectively,RA
+) will stay

for the space of real-valued (nonnegative-real-valued) vectors
whose components are indexed by elements ofA, andR

A×B

for the space of matrices whose real entries are indexed by
pairs of elements inA×B. 1 will stand for the all-one vector,
whose size will be clear from the context. Letcl(X ) be the
closure of a setX ⊆ R

A. Forx ∈ R, let [x]+ := max{0, x}.
A directed multigraph is the pair(V , E) of a finite setV of
nodes, and of a multisetE of links consisting of ordered pairs
of nodes (i.e., we allow for parallel links). Ife = (v, w) ∈ E
is a link, we shall writeσ(e) = v and τ(e) = w for its
tail and head node, respectively. The sets of outgoing and
incoming links of a nodev ∈ V will be denoted byE+

v :=
{e ∈ E : σ(e) = v} and E−

v := {e ∈ E : τ(e) = v},
respectively.

II. PROBLEM STATEMENT

We briefly summarize the dynamical flow framework
introduced in [2], [3], highlighting the key differences.

A. Dynamical networks with cascading failures

Definition 1 (Flow network):A flow networkN = (T , µ)
is the pair of a topology, described by a finite directed
multigraphT = (V , E), whereV = {0, 1, . . . , n} is the node
set andE is the link multiset, and a family offlow functions
µ := {µe : [0, ρmax

e ] → R+}e∈E describing the functional
dependencefe = µe(ρe) of the flow on the density on every
link e ∈ E . The quantityρmax

e is referred to as thedensity
capacityof a link e ∈ E , while its flow capacityis defined
asfmax

e := sup{µe(ρe) : ρe ∈ [0, ρmax
e ]}.

Throughout, we shall assume that the topologyT contains
a unique origin (i.e., a nodev ∈ V such thatE−

v is empty),
and a unique destination (i.e., a nodev ∈ V such thatE+

v

is empty). In addition, we shall assume that there exists a
path in T to the destination node from every other node
in V . With no loss of generality, we shall assume the
origin and the destination nodes to be labeled by0, andn,
respectively. Note that, unlike the model in [2], [3], we do
not impose acyclicity assumption at this stage. However, we
shall formulate more stringent assumptions on the network
topology in Section III. Moreover, we shall focus on flow
functions satisfying the following:

Assumption 1 (Flow function):For every linke ∈ E , the
density capacityρmax

e is finite. Moreover, the flow function
µe : [0, ρmax

e ] → R+ is continuously differentiable and
increasing on[0, ρmax

e ), and such thatµe(0) = µe(ρ
max
e ) = 0.

Example 1 (Flow function):For fmax
e , ρmax

e , α > 0, let

µe(ρe) =

{

fmax
e (ρe/ρmax

e )
α if ρe ∈ [0, ρmax

e )
0 if ρe = ρmax

e .

Let R := ×e∈E [0, ρmax
e ] andF := ×e∈E [0, fmax

e ) the sets
of admissible density vectors, and flow vectors, respectively.
Write f := {fe : e ∈ E} ∈ F , andρ := {ρe : e ∈ E} ∈ R,
for the vectors of flows and of densities, respectively, on
the different links. We shall compactly denote byf = µ(ρ)
the functional relationship between density and flow vectors,
interpretingµ as a (surjective) map fromR to F . For an
inflow λ0 ≥ 0, we shall consider the set of equilibrium flows

F∗(λ0) :=

{

f∗ ∈ F :
∑

e∈E
+

0

f∗
e = λ0 ,

∑

e∈E
+
v

f∗
e =

∑

e∈E
−
v

f∗
e , ∀ 0 < v < n

}

.

An origin-destination cut is someU ⊆ V such that0 ∈ U and
n /∈ U . ForU ⊆ V , let E+

U := {e ∈ E : σ(e) ∈ U , τ(e) /∈ U}
be the set of links with tail node inU and head node in
V \ U , and put

C(N ,U) :=
∑

e∈E
+

U

fmax
e .

The min-cut capacityof the flow networkN is

C(N ) := min
U

C(N ,U) ,

where the minimization runs over all the origin-destination
cuts. The min-cut max-flow theorem implies thatF∗(λ0) 6=
∅ if and only if C(N ) ≥ λ0, a condition that we shall assume
to hold throughout the paper, in order to avoid trivialities.

For every non-destination node0 ≤ v < n, the simplex of
probability vectors overE+

v will be denoted bySv := {p ∈

R
E+

v

+ :
∑

e∈E
+
v

pe = 1}, while Rv := ×e∈E
+
v

[0, ρmax
e ] and

Fv := ×e∈E
+
v
[0, fmax

e ] will stand for the sets of all admissible
local density vectors, and flow vectors, respectively.R∗

v :=
Rv \ {ρ∗v}, whereρ∗v := {ρmax

e : e ∈ E+
v }, will denote the

set of all but the fully congested local density vectors. The
notationfv := {fe : e ∈ E+

v } ∈ Fv, andρv := {ρe : e ∈
E+

v } ∈ Rv will stand for the vectors of flows and densities,
respectively, on the outgoing links of a nodev.

We now introduce the notion of distributed routing policy.
Definition 2 (Distributed routing policy):A distributed

routing policy for a networkN is a family of functions
G := {Gv : R∗

v → Sv}0≤v<n describing the ratio in which
the outflow from each non-destination nodev gets split
among its outgoing link setE+

v , as a function of the observed
current densityρv on the outgoing links themselves. For all
0 ≤ v < n, the functionGv is assumed to be continuously
differentiable and such that

(i) if for some e ∈ E+
v , ρe = ρmax

e , thenGv
e(ρv) = 0;

(ii)
∂

∂ρe

Gv
j (ρv) ≥ 0 for all ρv ∈ R∗

v, e 6= j ∈ E+
v .

The two salient features of Definition 2 are thelocal in-
formation constraintwhich allows the routing policyGv(ρv)
to depend only on the densityρv on the setE+

v of outgoing
links of the non-destination nodev, and the constraint (i),
which models the fact that no flow can be routed to a



fully congested link. Observe that everyρv ∈ R∗
v has at

least one non-zero component, so that the aforementioned
constraint does not prevent one from meeting the constraint
∑

e Gv
e(ρv) = 1. The additional condition (ii) is a rather

natural in that it states that the fraction of flow routed towards
any link does not decrease when the density in some other
link is increased. It is reminiscent of the notion of cooperative
dynamical system [13], and in fact implies certain useful
monotonicity properties of the solution of the dynamical
network. In fact, routing policies with this property were
proven to be optimal in terms of robustness in the our earlier
work [2], [3] on dynamical networks with infinite density
capacity on the links.

We are now ready to introduce the dynamical network.
Let N be a flow network satisfying Assumption 1,G a
distributed routing policy as per Definition 2, andλ0 ≥ 0 a
constant inflow at the origin. Consider the dynamical system
whose state is the density vectorρ(t) ∈ R evolving in time
according to

d

dt
ρe(t) = χσ(e)(t)λσ(e)(t)G

σ(e)
e

(

ρσ(e)(t)
)

−χτ(e)(t)fe(t) ,

(1)
for all e ∈ E , wheref(t) = µ(ρ(t)) and

λv(t) :=

{

λ0 if v = 0
∑

e∈E
−
v

fe(t) if v > 0 ,
(2)

is the incoming flow at nodev ∈ V , while

χv(t) :=

{

1 −
∏

e∈E+
v
(1 − ξe(t)) if v < n

if v = n ,
(3)

ξe(t) := 1[0,ρmax
e

)(ρe(t)) , (4)

are the activation status indicators of a nodev ∈ V , and of a
link e ∈ E . We shell refer to the dynamics (1)-(4) as to the
dynamical network associated to the triple(N ,G, λ0).

Equation (1) states that the rate of change of the density
on a link e outgoing from some non-destination nodev is
given by the difference betweenλv(t)Gv

e(ρv(t)), i.e., the
portion of the total outflow at nodev which is routed to link
e, andfe(t), i.e., the flow on linke. These equations model
conservation of mass both at every non-destination node and
on the links of the flow network. In particular, whenχv(t) =
0, no flow can be absorbed by any of the outgoing links of
nodev, and (1) implies that no flow comes out of any of the
incoming links of nodev. Observe that the distributed routing
policy Gv(ρv) induces a local feedback which couples the
dynamics of the flow on the different links. In fact, the
dynamical network (1)-(3) should be interpreted as an|E|-
dimensional switched system. Existence and uniqueness of a
solution for every initial densityρ(0) ∈ R then follow from
the differentiability assumptions on the flow functionµ and
the routing policyG by standard arguments.

The most novel feature of the dynamics (1)-(4) resides in
the role of the link and node activation status indicatorsξe(t),
and χv(t). Indeed, observe that, ifξe(t

∗) = 0 for somet∗,
then ξe(t) = 0 for all t ≥ t∗. This is a direct consequence
of the fact thatλσ(e)(t)G

v
e(ρv)−µe(ρe) = 0 wheneverρe =

ρmax
e . Once the density reaches its maximum capacity on a

link, the corresponding outflow is zero, and the link becomes

irreversibly inactive. On the other hand, (3) implies that a
node becomes inactive, or fails, when all the outgoing links
do so, and thus it remains inactive ever since. In turn, this
drops the outflow of all its incoming links to zero so that they
are bound to become inactive. As a consequence some other
links may experience an overload, possibly reaching their
density capacity, thus becoming inactive ever since. Through
this mechanism, link and node failures can propagate through
the network.

The monotonicity property of the status indicators are
stated in the following Proposition together with another
fundamental property of the dynamical network.

Proposition 1: Let N be a flow network satisfying As-
sumption 1,G be a distributed routing policy as per Def-
inition 2, and λ0 ≥ 0 a constant inflow at the origin
node. Consider the dynamical network (1)-(4) associated to
(N ,G, λ0). Then, for any initial density vectorρ(0) ∈ R,
the activation status indicatorsξe(e) and χv(t), of every
link e ∈ E and every nodev ∈ V are non-increasing in
t. Moreover, either of the alternatives

lim
t→∞

λn(t) = λ0 , (5)

lim
t→∞

λn(t) = 0 (6)

holds.
Proof The first part of the claim was already proven. In
order to prove the second part, fix someτ > 0, and define

ζ(t) := ||ρ(t+τ)−ρ(t)||1 , β(t) :=
∑

e∈E
−
n

|fe(t+τ)−fe(t)| .

Let t∗ > 0 be the time of the last link failure. Arguing in
the a way analogous to [2, Lemmas 1 and 2] one finds that

ζ(t) ≤ ζ(t∗) +

∫ t

t∗
β(s)ds , ∀t ≥ t∗ ,

so thatβ(t) is integrable. Then a standard argument (ex-
ploiting the boundedness of its time-derivative, see againthe
proof of [3, Lemma 2] shows that the vector{fe(t) : e ∈
E−

n } is converging. Hence,a fortiori, λn(t) =
∑

e∈E
+
v

fe(t)
is convergent. Finally, it is not hard to check that, if
χ0(t) = 1 for all t ≥ 0, then limt→∞ λn(t) = λ0, while
limt→∞ λn(t) = 0 if χ0(t) = 0 for t ≥ t∗.

The second part of Proposition 1 states a fundamental
dichotomy in the behavior of the dynamical network we
are considering: either all the asymptotic outflow equals the
constant inflow, or it is zero. Such dichotomy is a direct
consequence of the boundedness of the density capacities
and can in fact be contrasted with the behavior of dynamical
networks with infinite density capacity studied in [2], [3],
were the notion ofα transferring network is meaningful for
all α ∈ (0, 1]. This motivates the following:

Definition 3: LetN be a flow network satisfying Assump-
tion 1, G be a distributed routing policy as per Definition
2, and λ0 ≥ 0 a constant inflow at the origin node. The
dynamical network (1)-(3) associated to(N ,G, λ0) is said
to betransferringwith respect to some initial density vector
ρ(0) ∈ R if (5) holds.



B. Perturbations and resilience

We shall consider persistent perturbations of the dynamical
transport network (1) that reduce the flow functions on the
links, as per the following:

Definition 4 (Admissible perturbation):An admissible
perturbation of a network N = (T , µ), satisfying
Assumption 1, is a networkÑ = (T , µ̃), with the
same topology T , and a family of perturbed flow
functions µ̃ := {µ̃e : [0, ρmax

e ] → R+}e∈E , such that,
for every e ∈ E , µ̃e satisfies Assumption 1, as well as
µ̃e(ρe) ≤ µe(ρe), for all ρe ∈ [0, ρmax

e ]. We accordingly let
f̃max

e := sup{µ̃e(ρe) : ρe ∈ [0, ρmax
e ]}. The magnitudeof an

admissible perturbation is defined as

||δ||1 =
∑

e

δe ,

where

δ ∈ R
E
+ , δe := sup

ρe∈[0,ρmax
e

]

{µe(ρe) − µ̃e(ρe)} , e ∈ E .

(7)

Remark 1:Note that under the above definition of an
admissible perturbation, we letρmax

e of the perturbed flow
function to be the same as that of the original flow function.

Given a dynamical transport network associated to a flow
N , a distributed routing policyG, a constant inflowλ0, and
an admissible perturbatioñN , we shall refer to the dynamical
network associated to the triple(Ñ ,G, λ0) as theperturbed
dynamical network.

We can now define the notion ofmargin of resilience.
Definition 5: (Margin of resilience) Let N be a flow

network satisfying Assumption 1,G be a distributed routing
policy as per Definition 2, andλ0 ≥ 0 a constant inflow
at the origin node. Consider the dynamical network (1)-(4)
associated to(N ,G, λ0). For anyρ◦ ∈ R, the margin of
resilienceγ(N , ρ◦) is defined as the infimum magnitude of
all the admissible perturbations̃N for which the perturbed
dynamical network(Ñ ,G, λ0) is not transferring with re-
spect to the initial density vector̃ρ(0) = ρ◦.

In the rest of this paper we shall focus on estimating the
margin of resilience of dynamical networks. A first such
estimate is provided in terms of the min-cut capacity of the
network. In fact, it is not hard to show thatC(N ) − λ0 is
an upper bound on the margin of resilience of the dynamical
network associated to(N ,G, λ0). Observe that in [2] the
network capacity,C(N ), was found to be the maximal
margin of weak resilience of a dynamical network without
either finite density capacity, or local information constraints
on the routing policy. In the following section, we shall
derive a tighter bound on the margin of resilience in the
presence of finite density capacity and local information
constraints.

III. U PPER BOUND ON THE RESILIENCE

In this section, we present the main result providing an
upper bound on the margin of resilience of a dynamical net-
work. Throughout, we shall assume thatρ◦ is an equilibrium
for the unperturbed dynamical flow network(N ,G, λ0), with

corresponding flowf◦ = µ(ρ◦). We shall also assume that
the topologyT is tree-like, i.e., the only node reachable from
the origin by two distinct paths is the destination one. This
in particular implies that the nodesv ∈ V = {0, . . . , n} have
been labeled in such a way thatσ(e) < τ(e) for everye ∈ E .

Before proceeding we introduce some preliminary nota-
tion. For a flow network satisfying Assumption 1, and an
equilibrium flow f◦ ∈ F∗(λ0), let

Rv(N , f◦) :=
∑

e∈E
+
v

fmax
e − f◦

e ,

be the residual capacity of a non-destination node0 ≤ v < n,
and let

R(N , f◦) := min{Rv(N , f◦) : 0 ≤ v < n}

be the minimal node residual capacity of the network.
For every non-destination node0 ≤ v < n, andλ ≥ 0,

define

Xv(λ) :=
{

x ∈ ×e[0, fmax
e ] :

∑

e
(fmax

e − xe) ≤ λ
}

. (8)

where the product/sum indexe is intended to run overE+
v .

Further, letdn = +∞. For v = n − 1, . . . , 1, 0, iteratively
define

dv := min {cv(x) : x ∈ Xv(λ◦
v)} , λ◦

v :=
∑

e∈E
+
v

f◦
e ,

(9)
where

cv(x) :=
∑

e∈E
+
v

min{xe, dτ(e)} . (10)

The intuition behind this definition is the following:cv(x) is
the cost that an hypothetical malicious adversary has to face
in order to reduce the sum of the maximal flow capacities
of the outgoing links of a nodev below the inflowλ◦

v, thus
causing the eventual link’s failure. In order to compute such
cost, for every outgoing linke, the minimum between the
flow capacity reductionxe and the previously computed cost
to induce a failure of the head nodeτ(e) is considered.

Observe thatXv = Xv(λ◦
v) is a non-empty convex poly-

tope, and the cost functionc is concave overXv. Hence, the
minimization (9) can be restricted to the finite set of extremal
points of Xv, i.e., points which cannot be written as the
convex combination of other points inXv. Let X ∗

v be the set
of those extremal pointsx∗ of Xv in which cv(x) achieves its
minimum. For allx∗ ∈ X ∗

v , define∆v(x
∗) ⊆ R

E
+ as follows.

Let J := {e ∈ E+
v : x∗

e < dτ(e)}, and defineδ∗ ∈ R
E by

δ∗j = x∗
j for all j ∈ J , andδ∗e = 0 for any e ∈ E \ J . Then,

let K := {τ(e) : e ∈ E+
v \ J }, and define

∆v(x
∗) :=

{

δ∗ +
∑

k∈K

δτ(k) : δk ∈ ∆k , ∀k ∈ K

}

.

Finally, put
∆v :=

⋃

x∗∈X ∗
v

∆v(x∗) .

In order to get some intuition on the above definition, it is
convenient to think of∆v as the set of extremal minimum
cost perturbation magnitudes that cause the eventual failure
of nodev. This motivates the following



Definition 6: Let N be an tree-like flow network satis-
fying Assumption 1,λ0 ≥ 0 a constant inflow, andf◦ ∈
F∗(λ0) an equilibrium flow. Let

Γ(N , f◦) := d0 , ∆(N , f◦) := ∆0 ,

whered0 and∆0 are the outcomes of the foregoing iterative
definition.

Observe that the computation ofΓ(N , f◦) := d0 can be
considered computationally feasible as it involves iteratively
solving n minimizations of concave functions (in fact, it is
possible to cast it as a linear program) on polytopes inRv

defined by|E+
v | + 1 inequalities.

Two simple properties of the above definition are gathered
in the following proposition, whose proof is omitted because
of space limitations.

Proposition 2: Let N be a flow network satisfying As-
sumption 1,λ0 > 0 a constant inflow, andf◦ ∈ F∗(λ0) an
equilibrium flow. Then,

R(N , f◦) ≤ Γ(N , f◦) ≤ C(N ) − λ0 .

The main result of this section is stated below.
Theorem 1 (Upper bound on the margin of resilience):

Let N be a tree-like flow network satisfying Assumption
1, λ0 > 0 a constant inflow, andG a distributed routing
policy. Assume that the dynamical network associated to
(N ,G, λ0) admits an equilibrium density vectorρ◦ ∈ R.
Then, the margin of the resilience is upper bounded as:

γ(ρ◦,N ) ≤ Γ(f◦,N ) , (11)

wheref◦ := µ(ρ◦).
Proof We provide a brief sketch of the proof, in order
to convey the main ideas, and refer the reader to a forth-
coming longer version of the manuscript for the details. For
simplicity, we shall assume thatλ◦

v > 0 for all 0 ≤ v < n.
Let us start by choosing a perturbation magnitude vector

δ ∈ ∆(N , f◦). To each such vector, one can associate a
subset of nodesU ⊆ V which includes0, as well as all
those nodesv such thatδe > 0 for somee ∈ E+

v . For the
ease of the rest of the proof it is convenient to explicit the
natural ordering ofU , by writing U = {uk : 0 ≤ k ≤ l},
where 0 = u0 < v1 < . . . < vl. The proof proceeds by
defining an admissible perturbatioñN = (T , µ̃) such that
||µ(ρe) − µ̃e(ρe)||∞ is arbitrarily close toδe on every link
e ∈ E , and the perturbed dynamical network associated to
(N ,G, λ0) is not transferring. This is performed inductively
on k = l, . . . , 1, 0. First, let us consider nodev = ul,
and observe that, because of the wayδ has been defined,
necessarilyδe = x∗

e for all e ∈ E+
v , where x∗ ∈ X ∗

v is
an extremal minimizer ofcv over Xv(λ◦

v). Sinceλ◦
v > 0,

we can approximatex∗ arbitrarily well by some x̃∗ ∈
×e∈E

+
v
(0, fmax

e ) such that
∑

e∈E
+
v

fmax
e − x̃∗

e < λo
v. Then,

we can define an admissible perturbationÑ l = (T , µ̃l) such
that µ̃l

e ≡ (1 − x̃∗
e/fmax

e )µe for all e ∈ E+
v , andµ̃l

e ≡ µe for
everye ∈ E \ E+

v . The first key property of this perturbation
is that, since none of the linkse /∈ E+

v is perturbed, the tree-
likeness of the network topology implies that the dynamics
of the edgese ∈ E with σ(e) < v are unaffected by the

perturbation, until the first node failure. This implies that, in
the perturbed dynamic network(Ñ k,G, λ0), one has

λv(t) = λ◦
v >

∑

e∈E
+
v

fmax
e − x̃∗

e =
∑

e∈E
+
v

f̃max
e ,

until the first node failure, which in turn implies that in finite
time ρe(t) converges toρmax

e , and henceξe(t) = 0, for all
e ∈ E+

v , so that nodev necessarily fails in finite time.
Now, one can proceed by considering a perturbationÑ l−1

which analogously reduces the flow capacity on bothE+
ul

,
and E+

ul−1
. By exploiting property (ii) on Definition 2 it is

possible to prove that the dynamical network is monotone
in the sense of [13], i.e., preserving the natural partial order
of R (ρ ≥ ρ′ if ρe ≥ ρ′e for all e), both with respect to
the initial condition, and the flow functionµ. This implies
that, with the same initial conditionρ(0), the solution of the
perturbed dynamical network(Ñ l−1,G, λ0) is dominated by
the one of(Ñ l,G, λ0). Hence, since nodeul fails in finite
time in (Ñ l,G, λ0), it does so also in(Ñ l−1,G, λ0), and
arguing in a similar way as before, one is able to show that
also nodeul−1 fails in finite time in (Ñ l−1,G, λ0). Then,
the argument can be iterated until proving that nodeu0 = 0
fails in finite time in (Ñ 0,G, λ0), which implies the claim.

Let us conclude this section with the following remark.
Theorem 1 states thatΓ(f◦,N ) is an upper bound on
the margin of resilienceγ(ρ◦,N ) of a tree-like dynamical
network with respect to some initial equilibrium. The reason
why this upper bound may fail to be tight can be intuitively
grasped by observing thatΓ(f◦,N ) takes into account
just backward propagations of node failures. However, it
could occur that, e.g., in a tree-like network, perturbations
supported far from the root node cause the eventual failure
first of one of the branches stemming from the root node.
However, because of the lack of information about the non-
disruptive but still potentially resilience-reducing effect of
the perturbation on the surviving branches, the inflow at
the root node gets split among the surviving branches in a
potentially suboptimal way, leading to the eventual failure of
such branches as well, and therefore making the dynamical
network non transferring. Such kind of patterns are not taken
into account by the analysis presented in this section.

IV. EXAMPLES

In this section, we present an example to illustrate the
effect of cascades on the margin of resilience, and compare it
with corresponding results from our prior work [2], [3] where
we computed margins of resilience for dynamical networks
with no cascading failures.

In [2], we computed margin ofweak resilience of a
dynamical network when there is no bound on the maximum
density on the links, and the flow functions are monotonically
increasing. The margin of weak resilience is defined to
be the infimum magnitude of all admissible perturbations
for which the outflow from the destination node of the
perturbed dynamical network is not asymptotically positive.
In particular, we showed that the margin of weak resilience
in that setting is equal to the maximum flow capacity of the
network. It is easy to construct examples to demonstrate that
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Fig. 1. A sample network topology.

the margin of (weak) resilience can decrease due to presence
of cascading failures.

In [3], we computed margin ofstrong resilience of a
dynamical network when there is no bound on the maximum
density on the links, and the flow functions are monotonically
increasing. The margin of strong resilience is defined to
be the infimum magnitude of all admissible perturbations
for which (analogous to definition 5) the outflow from the
destination node of the perturbed dynamical network is not
asymptotically equal toλ0. In particular, we showed that
the margin of strong resilience in that setting is equal to the
minimum node residual capacity of the network. We demon-
strate that, when the links have finite capacity for densities
as in this paper, the margin of strong resilience could be
possiblygreater than the minimum node residual capacity.
We illustrate this point through the following example.

Consider the topology shown in Figure 1. Let the flow
functionsµ be such that:fmax

e1
= 3, fmax

e2
= 1.5, fmax

e3
=

fmax
e4

= 0.75. Let the equilibrium flows be:f◦
e1

= f◦
e2

= 1
and f◦

e3
= f◦

e4
= 0.5. The min node residual capacity

with these parameters is0.5. We now show that, if nodes
0 and 1 are implementing distributed routing policy as in
Definition 2, then even with a disturbance of magnitude
0.6 > 0.5, then network is still fully transferring. First,
consider a specific disturbance of magnitude 0.6 under which
the perturbed flow functions are:̃µe1

= µe1
, µ̃e2

= µe2
,

µ̃e3
= 3µe3

/5 andµ̃e4
= 3µe4

/5. For the perturbed network,
f̃max

e3
+ f̃max

e4
= 0.9 < 1 = f◦

e3
+ f◦

e4
. Therefore, after a finite

time, both ρ̃e3
(t) and ρ̃e4

(t) hit the respective maximum
capacity on densities. at which pointχ1 becomes zero. As a
consequence the outflow term for linke2 becomes zero after
this time. If the routing policyG at node0 has property
that G0

e2
(ρ̃v) = 0 if ρ̃e2

= ρ̂e2
, the inflow of 2 at node0 is

routed to linke1 and hence the network maintains its fully
transferring property. In general, for any other disturbance of
magnitude0.6, in the worst-case, the inflow to node1 would
be such that it could exceed the sum of perturbed capacities
of links e3 and e4 and hence makingχ1 = 1, after which
one can repeat the argument to show that all the inflow of 2
at node0 is transferred to linke1 and the network maintains
its transferring property.

This example shows that spill-backs act as backward
propagators of information to upstream routing policies (in
this example, routing policy at node0 gets information about
links e3 and e4 through spill-backs). Such additional infor-
mation about downstream links by routing policies increases
resilience.

V. CONCLUSION

In this paper, we studied dynamical network modeled as
switched systems of ordinary differential equations derived
from mass conservation laws on directed graphs with single
origin-destination pair and constant inflow at the origin. The
main features of this framework are finiteness of the maxi-
mum density capacity on the links, and the local information
constraint on the routing policies which govern the way
the outflow of a node gets split among its outgoing links
as a function of the current density on those links only.
Because of the finiteness assumption on the link density
capacities, the model allows for cascaded link and node
failures. Our analysis has focused on resilience properties
of such networks against persistent perturbations that reduce
the flow capacities of their links. Beyond the introduction
of the model and the derivation of some of its fundamental
properties, our main contribution is an upper bound on the
margin of resilience, defined as the minimum magnitude of a
perturbation causing the eventual failure of the origin node,
thus preventing any flow to reach destination. Such upper
bound may fail to be tight because it only takes into account
indirect backward propagation patterns of failures.

In future, we plan to complement the analysis presented
here with lower bounds for specific routing policies and
extend the analysis to networks with cycles.
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