
MIT Open Access Articles

Load Balancing for Mobility-on-Demand Systems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Durrant-Whyte, H., N. Roy, and P. Abbeel. "Load Balancing for Mobility-on-Demand 
Systems ." In Robotics: Science and Systems VII , Cambridge, MA: MIT Press, 2012. pp. 249 - 256.

As Published: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6301044&

Publisher: MIT Press

Persistent URL: http://hdl.handle.net/1721.1/81869

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/81869
http://creativecommons.org/licenses/by-nc-sa/3.0/


Load Balancing for Mobility-on-Demand Systems
Author Names Omitted for Anonymous Review. Paper-ID #184

Abstract—In this paper we develop methods for maximizing
the throughput of a mobility-on-demand urban transportation
system. We consider a finite group of shared vehicles, located at
a set of stations. Users arrive at the stations, pickup vehicles,
and drive (or are driven) to their destination station where they
drop-off the vehicle. When some origins and destinations are
more popular than others, the system will inevitably become
out of balance: Vehicles will build up at some stations, and
become depleted at others. We propose a robotic solution to
this rebalancing problem that involves empty robotic vehicles
autonomously driving between stations.

We develop a rebalancing policy that minimizes the number
of vehicles performing rebalancing trips. To do this, we utilize
a fluid model for the customers and vehicles in the system. The
model takes the form of a set of nonlinear time-delay differential
equations. We then show that the optimal rebalancing policy
can be found as the solution to a linear program. By analyzing
the dynamical system model, we show that every station reaches
an equilibrium in which there are excess vehicles and no waiting
customers. We use this solution to develop a real-time rebalancing
policy which can operate in highly variable environments. We
verify policy performance in a simulated mobility-on-demand
environment with stochastic features found in real-world urban
transportation networks.

I. INTRODUCTION

In the past century, private automobiles have dramatically
changed the concept of personal urban mobility, by enabling
fast and anytime point-to-point travel within large cities. In
2001, personal urban mobility in the US resulted in more than
3.5 trillion urban miles traveled by private cars, representing
75% of total car travel in the US [16]. This figure, coupled
with the fact that by 2030 the total population living in urban
areas will jump from the current 40% to more than 60%
[15], implies that the “demand for personal urban mobility”
will increase to formidable levels. The demand for roads and
parking space will dramatically increase, while the available
urban land will continue to decrease. The result is that private
automobiles are an unsustainable solution for the future of per-
sonal mobility in dense urban environments. To cope with this
problem, a paradigm shift is emerging whereby the outdated
policy of infrastructure augmentation may be replaced by
radically new concepts of personal urban mobility leveraging
robotics and automation. The challenge is to ensure the same
benefits of privately-owned cars without requiring additional
road and parking space.

One of the leading emerging paradigm for future urban
mobility systems is one-way vehicle sharing, which effectively
merges private and public mobility, and directly targets the
problems of parking spaces and current low vehicle utiliza-
tion rates. Arguably, the most promising approach within
this paradigm is represented by Mobility-on-Demand (MOD)
systems [14], which provide stacks and racks of light electric
vehicles at closely spaced intervals throughout a city: when

a person wants to go somewhere, he/she simply walks to the
nearest rack, swipes a card to pick up a vehicle, drives it to
the rack nearest to his/her destination, and drops it off (see
Figure 1 for an illustration of mobility-on-demand). Large-
scale systems employing traditional, non-electric bicycles have
already demonstrated the feasibility of mobility-on-demand in
several cities throughout Europe, e.g., Paris, Lyon, Milano,
Trento, Zurich [13].

However, sharing has its drawbacks. The major problem
in vehicle sharing is that when some origins and some
destinations are more popular than others, the system will
inevitably become out of balance: Vehicles will build up at
some stations, and become depleted at others. In this paper
we propose a robotic solution for vehicle rebalancing in MOD
systems, whereby the shared vehicles autonomously drive from
a delivery location to the next pick-up location. Rebalancing
through autonomously driving vehicles has the clear potential
of eliminating imbalances within the transportation network,
and effectively adds an additional dimension to MOD systems
by introducing autonomy in the design space. In the recent
past, considerable efforts have been devoted to the problem of
autonomous driving, and substantial progress has been made
(see, for example, [4, 3]). However, there are virtually no tools
to address the system-level problems arising at the interface
between robotics and transportation science: How should one
pre-position vehicles in order to anticipate future demand?
Is it possible to characterize optimal, real-time rebalancing
policies? How many vehicles are needed to achieve a certain
quality of service (e.g., a desired average waiting time for
the customers)? The purpose of this paper is to develop an
approach that provides rigorous answers to such questions.

Even though rebalancing in MOD systems is an entirely
new problem within the realm of transportation networks,
it has many characteristics in common with the well-known
Dynamic Traffic Assignment (DTA) problem [12, 8, 20, 19].
In this problem, one seeks to “optimize” the time varying
flows on each arc of a transportation network, taking into
account congestion effects along arcs and at nodes [8]. DTA
models mainly differ in the methods used to capture the time-
varying nature of supply and demand processes, and can be
broadly divided into four categories [19]: (i) mathematical
programming (e.g., [12, 20]), (ii) optimal control (e.g., [8]),
(iii) variational inequality (e.g., [9]), and (iv) simulation-
based (e.g., [1]). The key difference between MOD systems
and the DTA problem is that we are optimizing over the
empty vehicle trips (i.e., the rebalancing trips) rather than
the passenger carrying trips. Rebalancing in MOD systems
is also related to Dynamic one-to-one Pick-up and Delivery
problems (DPDPs), where dynamically-generated passengers
must be transported from a pick-up site to a delivery site by



a fleet of vehicles. DPDPs can be divided into three main
categories [2]: (i) Dynamic Stacker Crane Problem, where
the vehicles have unit capacity, (ii) Dynamic Vehicle Routing
Problem with Pickups and Deliveries, where the vehicles can
transport more than one request, and (iii) Dynamic Dial-a-Ride
Problem, where additional constraints such as time windows
are considered. Excellent surveys on heuristics, metaheuristics
and online algorithms for DPDPs can be found in [2] and [17],
while analysis specifically tailored to the structural properties
of transportation-on-demand systems can be found in [18].
The key difference from DPDP problems is that in the MOD
system there are a finite number of pick-up and delivery
sites, but the vehicles are not aware of the destination of
newly arrived customers. Finally, our problem is also related
to dynamic load balancing in distributed computing systems
[6, 5]. However, these problems are less constrained since the
demands (i.e., jobs) do not need to wait for a “vehicle” to
move across multiple processors.
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Definition
ci # of customers
vi # of vehicles
λi customer arrival rate
µi departure rate
Tij travel time to j
pij fraction of customers

destined for j
αij rebalancing rate to j
γi

∑
j αij

H(·) Heaviside function

Fig. 1. At each station there is a queue of customers (yellow dots) and a
queue of vehicles (represented by small car icons). The customer at the head
of queue enters the vehicle at the head of the queue. This is shown in the
circles at stations 3 and 4. Notice that at station 1 there are no vehicles, and
at station 2 there are no customers. In rebalancing, we send empty vehicles
from station 2 to station 1.

This paper is structured as follows. In Section II we
present a fluid model for MOD systems, and we formally
state the rebalancing problem. In Section III we (i) study
well-posedness and equilibria of the fluid model, and we
show that without rebalancing vehicles the system is unstable
(i.e., at some stations the number of waiting customers will
grow without bound); (ii) determine the minimum number of
vehicles needed to meet the customer demand; and, (iii) show
how to optimally route the rebalancing vehicles across the
transportation network. In Section IV we tackle the problem
of robust rebalancing, and we study policies to handle, for
example, a sudden “burst” of customers arriving at the stations.
The results in Sections III and IV lead to a robust, real-time
policy for vehicle rebalancing, which is presented in Section
V and which is thoroughly evaluated through simulation
experiments in Section VI. Finally, in Section VII, we draw
our conclusions, and we present directions for future research.

II. MODELING THE MOBILITY-ON-DEMAND SYSTEM

In this paper, we use a fluidic approach to model Mobility-
on-Demand systems.1 Consider n stations defined over an
extended geographical area (see Figure 1). We denote the set
of stations withN . In this model, the number of customers and
vehicles are represented by real numbers. Customers arrive at
station i at a constant rate λi ∈ R>0. The number of customers
at station i at time t is ci(t) ∈ R≥0, and the number of vehicles
waiting idle at station i at time t is vi(t) ∈ R≥0. The total
number of vehicles in the system is V ∈ R>0. The fraction
of customers at station i whose destination is station j is pij
(where pij ∈ R≥0, pii = 0, and

∑
j pij = 1). The travel

time from station i to station j as Tij ∈ R≥0. When there
are both customers and vehicles at station i (i.e., ci(t) > 0
and vi(t) > 0), then the rate at which customers (and hence
vehicles) leave station i is µi; when, instead, ci(t) = 0 but
vi(t) > 0 the departure rate is λi. A necessary condition for
the total number of customers at station i to remain bounded
is that µi ≥ λi; we will assume µi ≥ λi throughout the paper.

In order to rebalance the number of vehicles at each station,
empty vehicles will be sent between stations. The rate at
which station i sends empty vehicles to station j is denoted by
αij ∈ R≥0 and the total rate at which station i sends empty
vehicles is γi :=

∑
j αij , where αii = 0. We let α denote the

matrix with entries given by αij . The notation is summarized
in Figure 1.

We are now in a position to write the differential equations
governing the evolution of the number of vehicles and cus-
tomers at each station. In order to write the expressions more
compactly, we introduce the following shorthand notation:

vi := vi(t) ci := ci(t) vij := vj(t−Tji) cij := cj(t−Tji).

Then, we can write the customer dynamics at station i as

ċi =


λi if vi = 0,

0 if vi > 0 and ci = 0,

λi − µi if vi > 0 and ci > 0.

Defining the Heaviside function as

H(x) :=

{
1, if x > 0,
0, otherwise,

the customer dynamics can be written as

ċi = λi
(
1−H(vi)

)
+ (λi − µi)H(ci)H(vi).

The rate of change of vehicles at station i can be written as
the sum of four components:

1Our fluid model is intended to serve as an approximation of a correspond-
ing stochastic queueing model, where customers enter the system according
to a Poisson process. This can be formalized by showing that the fluid model
arises as the limit of a sequence of appropriately scaled queueing models.
Such analysis will be presented in a forthcoming paper. In this paper, the
relation between the fluidic approximation and the queueing model will be
discussed through simulation in Section VI.



(i) the rate at which customer-carrying vehicles depart
station i: 

0 if vi = 0

−λi if vi > 0 and ci = 0,

−µi if vi > 0 and ci > 0,

which can be written more compactly as −λiH(vi) +
(λi − µi)H(ci)H(vi).

(ii) the rate at which customer-carrying vehicles arrive at
station i:∑

j 6=i

pji

(
λjH(vij) + (λj − µj)H(cij)H(vij)

)
(iii) the rate at which empty (re-balancing) vehicles depart

station i, given by γiH(vi).
(iv) the rate at which empty (re-balancing) vehicles arrive at

station i, given by
∑
j 6=i αjiH(vij).

Putting everything together, we can write a set of nonlinear,
time-delay, differential equations describing the evolution of
customers and vehicles in the system as

ċi =λi
(
1−H(vi)

)
+ (λi − µi)H(ci)H(vi),

v̇i =− λiH(vi) + (λi − µi)H(ci)H(vi) +
∑
j 6=i

pji

(
λjH(vij)

−(λj − µj)H(cij)H(vij)
)
− γiH(vi) +

∑
j 6=i

αjiH(vij).

(1)

The problem we wish to solve is as follows: find a rebalanc-
ing assignment α that minimizes the number of empty vehicles
traveling in the network and ensures the existence of stable
equilibria for model (1).

III. WELL-POSEDNESS, EQUILIBRIA,
AND OPTIMAL REBALANCING

In this section we first discuss the well-posedness of model
(1) by showing two important properties, namely existence
of solutions, and invariance of the number of vehicles along
system trajectories. Then, we characterize the equilibria, we
determine the minimum number of vehicles required for
stabilizability (i.e., to ensure existence of equilibria), we show
that without rebalancing vehicles the system is unstable (i.e.,
at some stations the number of waiting customers will grow
without bounds), and, finally, we show how to optimally route
the rebalancing vehicles across the transportation network (i.e.,
we discuss the optimal selection of each αij , i, j ∈ N ).

A. Well-posedness of Model

The fluid model (1) is nonlinear, time-delayed, and the
right-hand side is discontinuous. Due to the discontinuity, we
need to analyze the model within the framework of Filippov
solutions (see, e.g., [7]). The following proposition verifies the
fluid model is well-posed.

Proposition 3.1 (Well-posedness of fluid model): For the
fluid model (1), the following hold:

(i) For every initial condition, there exist continuous func-
tions ci(t) : R → R≥0 and vi(t) : R → R≥0, i ∈ N ,
satisfying the differential equations (1) in the Filippov
sense.

(ii) The total number of vehicles is invariant over time.
Proof: To prove (i), it can be checked that all assumptions

of Theorem II-1 in [10] for the existence of Filippov solutions
to time-delayed differential equations with discontinuous right-
hand side are satisfied, and the claim follows.

To prove (ii), let vij(t), where t ≥ −maxi,j Tij , be the
number of vehicles in transit from station i to station j (i.e.,
the vehicles for which the last station visited is i and the
next station they will visit is j). Clearly, vij(t) = 0 in the
time interval [−maxi,j Tij , 0], and vii(t) = 0. Now, the total
number V (t) of vehicles in the system at time t is given by
V (t) =

∑n
i=1 vi(t)+

∑
i,j vij(t). By definition, vij(t) can be

expressed as

vij(t)=

∫ t

t−Tij

pij

(
λiH(vi(τ))−(λi−µi)H(ci(τ))H(vi(τ))

)
+ αijH(vi(τ)) dτ. (2)

By applying the Leibniz integral rule, one can easily verify that
V̇ (t) =

∑n
i=1 v̇i(t) +

∑n
i=1

∑n
j=1 v̇ij(t) = 0, which proves

the statement of the theorem.

B. Equilibria of Model

In order to determine the equilibria of our model we set
ċi = 0 and v̇i = 0 for all i ∈ N . From the ċi = 0 equations
we obtain

λi = λiH(vi)− (λi − µi)H(vi)h(ci). (3)

Since λi < µi, the above equations have a solution only if

ci = 0 and vi > 0 ∀ i ∈ N .

Then, setting v̇i = 0, combined with (3), we obtain

0 = −λi +
∑
j 6=i

λjpji − γiH(vi) +
∑
j 6=i

αjiH(vj),

where we have used the fact that in a stationary equilibrium
vi(t) and ci(t) are constants, independent of i.

For every equilibrium we require vi > 0, and thus H(vi) =
1. Therefore, if α can be chosen such that∑

j 6=i

αij −
∑
j 6=i

αji = −λi +
∑
j 6=i

λjpji, (4)

for each i ∈ N , then an equilibrium exists with ci = 0 and
vi > 0 for each station i. Equation (4) shows that without
rebalancing vehicles (i.e., when each αij is identically equal
to zero), the system, in general, does not have equilibria.
Furthermore, it can be shown that in absence of equilibria the
system is, in general, unstable (the proof of this statement is
rather straightforward—it can be obtained with a two station
example—and is omitted in the interest of brevity). Hence,
in general, rebalancing vehicles are necessary to ensure equi-
libria and stability. The next lemma shows that, fortunately,
there always exists a feasible rebalancing assignment.



Lemma 3.2 (Existence of feasible rebalancing assignment):
There always exists an assignment of α such that equation
(4) is satisfied.

Proof: Consider the assignment in which α1k := λk −∑
j 6=k λjpjk, for i ∈ {2, . . . , n}, and all other entries in α

are zero. Setting k = i ∈ {2, . . . , n}, and substituting the
assignment into the LHS of (4), we see that the constraints
are satisfied for i ∈ {2, . . . , n}. Thus, we just need to verify
the assignment satisfies (4) with i = 1. Setting i = 1
in (4), and bringing all terms to the LHS, the constraint
becomes

∑
k 6=1 α1k + (λ1 −

∑
j 6=1 λjpj1) = 0. Substituting

the assignment into the above equation, the LHS becomes∑
k

(
λk−

∑
j λjpjk

)
=
∑
k λk−

∑
k

∑
j λjpjk =

∑
k λk−∑

j λj
∑
k pjk = 0, since

∑
k pjk = 1. Thus, the linear system

of equations given by (4) is consistent and has at least one
solution.
Let A be the set of assignments α such that equation (4) is
satisfied. The next theorem gives a necessary and sufficient
condition for the existence of equilibria.

Theorem 3.3 (Existence of equilibria): Model (1) admits
equilibria if and only if the total number of vehicles V is
larger than V := minα∈A

∑
ij Tij (pijλi + αij).

Proof: Let us first consider sufficiency, and thus as-
sume V > V . Consider the feasible assignment α :=
argminα∈A

∑
ij Tij (pijλi + αij) (which exists by Lemma

3.2). When ci = 0 and vi > 0 for all i ∈ N , the equilibrium
number of transit vehicles is given by (recall equation (2)):∑
ij Tij (pijλi+αij). Hence, in order to satisfy the condition

vi > 0 for all i ∈ N , one needs a number of vehicles
larger than V :=

∑
ij Tij (pijλi + αij), which is verified by

assumption. Necessity can be proven by similar arguments.
Theorem 3.3 can be generalized as follows.

Corollary 3.4 (Existence for general assignments):
Consider an assignment α ∈ A. If V >

∑
ij Tij (pijλi+αij),

then the set of admissible equilibria is ci = 0, vi > 0,
∀ i ∈ N , where

∑
i vi ≤ V −

∑
ij Tij (pijλi + αij). If

V ≤
∑
ij Tij (pijλi + αij), then no equilibrium exists.

C. Optimal Rebalancing
Our objective is to minimize the average number of empty

(rebalancing) vehicles traveling in the network, while ensuring
stability. The time-average number of rebalancing vehicles is
simply given by

∑
i,j Tijαij . Note that in minimizing this

quantity, we are also minimizing the lower bound on the neces-
sary number of vehicles V from Theorem 3.3. Combining this
objective with the existence of equilibria (i.e., the constraints
in (4), we see that α should be chosen as the solution to the
following minimum cost flow problem:

minimize
∑
i,j

Tijαij

subject to
∑
j 6=i

(αij − αji) = −λi +
∑
j 6=i

λjpji ∀ i ∈ N

αij ≥ 0 ∀ i, j ∈ N ,
where N := {1, . . . , n}. From Lemma 3.2, this linear program
is feasible, and thus an optimal solution α∗ exists. The

rebalancing policy is then given by sending empty vehicles
from station i to station j at a rate of α∗ij .

When the travel times Tij satisfy the triangle inequality,
the above optimization can be simplified as follows. Let S
be the set of stations with a surplus of vehicles, and D be
the set of stations with a deficit vehicles; more formally, let
S :=

{
i ∈ N | λi <

∑
j λjpji

}
, and D := N \ S. By using

triangle inequality, one can easily show that in an optimal re-
balancing solution, empty vehicles are sent from station i to
station j (i.e., α∗ij > 0) only if i ∈ S and j ∈ D. This allows
us to rephrase the above optimization as follows:

minimize
∑

i∈S,j∈D
Tijαij

subject to
∑
j∈D

αij = −λi +
∑
j 6=i

λjpji ∀ i ∈ S∑
i∈S

αij = λj −
∑
i 6=j

λipij ∀ j ∈ D

αij ≥ 0 ∀ i ∈ S, j ∈ D,

This optimization is more computationally efficient than the
first as it has fewer variables and fewer constraints.

IV. ROBUST REBALANCING

In this section we consider the following questions: assume
that the system is in equilibrium, what happens if there is a
“burst” of customers arriving at the stations? Or, what happens
if there is a sudden change in the number of available vehicles
(e.g., because of a disruption)? In other words, we investigate
the (local) stability of the equilibria of our model.

A. Stability of Equilibrium Sets

We consider the following notion of local stability. Let
α ∈ A be a feasible assignment, let Vα :=

∑
ij Tij (pijλi +

αij), and assume V > Vα (this is a necessary condition
to have equilibria, see Corollary 3.4). The set of equilib-
ria Eα := {(c,v) ∈ R2n | ci = 0, vi > 0, for all i ∈
N , and

∑
i vi < V − Vα} is locally asymptotically stable

if for any equilibrium (c,v) ∈ Eα there exists a neighborhood
Bδα(c,v) := {(c,v) ∈ R2n | ci ≥ 0, vi ≥ 0 for all i ∈
N , ‖c− c,v−v‖ < δ, and

∑
vi < V −Vα} such that every

evolution of model (1) starting at

ci(τ) = 0 for τ ∈ [−max
i,j

Tij , 0)

vi(τ) = vi for τ ∈ [−max
i,j

Tij , 0)

(c(0),v(0)) ∈ Bδα(c,v)

(5)

has a limit which belongs to the equilibrium set. In other
words,

(
limt→+∞ c(t), limt→+∞ v(t)

)
∈ Eα.

The next theorem characterizes stability.
Theorem 4.1 (Stability of equilibria): Let α ∈ A be a fea-

sible assignment, and assume V > Vα; then, the set of
equilibria Eα is locally asymptotically stable.

Proof: Consider an equilibrium (c,v) ∈ Eα (note that
c = 0). We now prove that every evolution of model (1)



starting at

ci(τ) = 0 for τ ∈ [−max
i,j

Tij , 0)

vi(τ) = vi for τ ∈ [−max
i,j

Tij , 0)

(c(0),v(0)) such that 0 ≤ ci(0) < vi(0) for all i ∈ N , and∑
vi(0) < V − Vα,

(6)

has a limit which belongs to the equilibrium set. The claim
of the theorem will then be an easy consequence of this
statement.

We start by observing the following fact. Assume that
vi(τ) > 0 for all τ ∈ [−maxi,j Tij , t], then at time t the
differential equations read ċi(t) = (λi − µi)H(ci(t)), for all
i ∈ N ; recalling that −λi+

∑
j 6=i λjpji−γi+

∑
j 6=i αji = 0,

v̇i(t) = −λi + (λi − µi)H(ci)

+
∑
j 6=i

pji

(
λj − (λj − µj)H(cij)

)
− γi +

∑
j 6=i

αji

= (λi − µi)H(ci)−
∑
j 6=i

pji(λj − µj)H(cij)

≥ (λi − µi)H(ci), for all i ∈ N .
Since vi(τ) > 0 for all τ ∈ [−maxi,j Tij , 0], and since
vi(0) > ci(0) for all i ∈ N , we conclude that no vi(t)
can reach the value 0 before the corresponding number of
customers ci(t) has reached the value 0. However, once ci(t)
reaches the value 0 (after a time interval ci(0)/(µi − λi)),
the time derivative v̇i(t) is larger than or equal to zero.
This implies that when the initial conditions satisfy (6), then
vi(t) > 0 for all t ≥ 0.

Since vi(t) > 0 for all t ≥ 0, and since this implies that
ċi(t) = (λi − µi)H(ci(t)) for all i ∈ N and t ≥ 0, we
conclude that all ci(t) will be equal to zero for all t ≥ T ′ :=
maxi ci(0)/(µi − λi). Then, for t ≥ T ′ + maxij Tij =: T ′′

the differential equations become: ċi(t) = 0, v̇i(t) = 0.
Collecting the results obtained so far, we have that

limt→+∞ ci(t) = 0 for all i ∈ N . Moreover, since v̇i(t) = 0
for all t ≥ T ′′, the limit limt→+∞ vi(t) exists. Finally, one
has vi(t) = vi(0) +

∫ t
0
v̇i(τ) dτ ≥ vi(0) +

∫ t
0
ċi(τ) dτ =

vi(0) + ci(t) − ci(0). Since vi(0) > ci(0), we conclude
that limt→+∞ vi(t) > 0. Thus any solution with initial
conditions (6) has a limit which belongs to Eα (the property
limt→+∞

∑
vi(t) < V − Vα is guaranteed by the invariance

property in Proposition 3.1 and the assumption
∑
vi(0) <

V − Vα).
Let ψi := vi sin

π
4 (see Figure 2), and let ψmin := mini ψi.

Then, from the definitions of ψi and ψmin, it follows that if
one chooses δ = ψmin, then any solution of model (1) with
initial conditions satisfying (5) has a limit which belongs to
the equilibrium set. This concludes the proof.

B. Stability of Single Equilibrium Points
So far, we have discussed the stability of the set of equilibria

Eα, in the sense of equation (5). Here, we discuss stability of
single equilibrium points.

ci

vi

(ci, vi) ψi

Fig. 2. The relation 0 ≤ ci < vi, and the definition of the radius ψi.

Note that if we allow perturbations in the number of
vehicles, in general we can not recover the original equilibrium
point, since the total number of vehicles is invariant along
system trajectories. Hence, to discuss stability of equilibrium
points, we need to restrict perturbations to the number of
customers only.

Specifically, consider an assignment α ∈ A, let Vα :=∑
ij Tij (pijλi+αij), and assume, as usual, V > Vα. We say

that an equilibrium point (c,v) ∈ Eα is locally asymptotically
stable if there exists a neighborhood

Bδα(c,v) := {(c,v) ∈ R2n | ci ≥ 0, vi = vi for all i ∈ I,
and ‖c− c,0‖ < δ}

such that every evolution of model (1) starting at

ci(τ) = 0 for τ ∈ [−max
i,j

Tij , 0)

vi(τ) = vi for τ ∈ [−max
i,j

Tij , 0)

(c(0),v(0)) ∈ Bδα(c,v)

(7)

satisfies limt→+∞ c(t) = 0 and limt→+∞ v(t) = v.
One can show that, in general, single equilibrium points

in Eα are not locally asymptotically stable; this implies that,
to make individual equilibrium points locally asymptotically
stable, an additional feedback term is needed. Specifically,
assume that (0, vd) ∈ Eα is a desired equilibrium point (e.g.,
vdi = (V −Vα)/n−ε, where ε is an arbitrarily small constant).
Then, one can make (0, vd) locally asymptotically stable by
adding to the vehicle’s dynamics the feedback term

−H(vi(t)− vdi ) +
∑
j 6=i

1

n− 1
H(vj(t− Tji)− vdi ). (8)

The normalizing constant 1/(n−1) has the interpretation that
the extra rebalancing vehicles are equally likely sent to the
other stations. The next theorem shows that under model (1)
with the additional feedback term (8) on vehicle’s dynamics
the equilibrium point (0, vd) is locally asymptotically stable.

Theorem 4.2 (Stability of single equilibrium points): Let
α ∈ A be a feasible assignment, assume V > Vα, and
let (0, vd) ∈ Eα be a desired equilibrium point. Under
model (1), with the additional feedback term (8) on the
vehicle’s dynamics, the equilibrium point (0, vd) is locally
asymptotically stable in the sense of equation (7).

Proof: The proof is similar to the proof of Theorem 4.1.
Assume perturbations in the number of customers c such that
0 ≤ ci(0) < vdi = vi(0) for all i ∈ N .



We start by observing the following fact. Assume that
vi(τ) > 0 for all τ ∈ [−maxi,j Tij , t], then at time t the
differential equations read ċi(t) = (λi − µi)H(ci(t)), for all
i ∈ N ; recalling that −λi+

∑
j 6=i λjpji−γi+

∑
j 6=i αji = 0,

one obtains

v̇i = −λi + (λi − µi)H(ci)

+
∑
j 6=i

pji

(
λj − (λj − µj)H(cij)

)
− γi +

∑
j 6=i

αji

−H(vi − vdi ) +
∑
j 6=i

1

n− 1
H(vij − vdi )

= (λi − µi)H(ci)−
∑
j 6=i

pji(λj − µj)H(cij)

−H(vi − vdi ) +
∑
j 6=i

1

n− 1
H(vij − vdi )

≥ (λi − µi)H(ci) +

{
−1 if vi > vdi ,

0 if vi ≤ vdi ,

for all i ∈ N . Since vi(τ) > 0 for all τ ∈ [−maxi,j Tij , 0],
and since vi(0) = vdi > ci(0) for all i ∈ N , we conclude
that no vi(t) can reach the value 0 before the corresponding
number of customers ci(t) has reached the value 0. However,
once ci(t) reaches the value 0 (after a time interval ci(0)/(µi−
λi)), the time derivative v̇i(t) is larger than or equal to zero
whenever vi(t) < vdi . This implies that under the assumptions
on the initial conditions, then vi(t) > 0 for all t ≥ 0.

Since vi(t) > 0 for all t ≥ 0, and since this implies that
ċi(t) = (λi − µi)H(ci(t)) for all i ∈ N and t ≥ 0, we
conclude that all ci(t) will be equal to zero for all t ≥ T ′ :=
maxi ci(0)/(µi − λi). Then, for t ≥ T ′ + maxij Tij =: T ′′

the differential equations become:

ċi(t) = 0,

v̇i(t) = −H(vi(t)− vdi ) +
∑
j 6=i

1

n− 1
H(vj(t− Tji)− vdi ).

Note that v̇i(t) ≤ 0 if vi(t) > vdi and v̇i(t) ≥ 0 if vi(t) < vdi .
Hence, if at some instant t ≥ T ′′ the number of vehicles
satisfies vi(t) = vdi , then vi(τ) = vdi for all τ ≥ t, in other
words vi will “slide” along the mode vdi for ever. Let U(t) be
the set of indexes of stations such that vi(t) > vdi , and D(t)
be the set of indexes of stations such that vi(t) < vdi .

One can show that U(t) 6= ∅ if and only if D(t) 6= ∅, for
all t ≥ T ′′. Indeed, assume by the sake of contradiction, that
U(t) 6= ∅ ; D 6= ∅. Then, since D(t) = ∅, and since ci = 0
and vi > 0 for all i ∈ N and for all t ≥ T ′, one can write
for all t ≥ T ′′: V (t) =

∑n
i vi(t) +

∑
i,j vij(t) >

∑
i v

d
i +∑

ij Tij(pijλi + αij) = V (0), which is in contradiction with
the fact the the total number of vehicles is invariant. The proof
for the converse implication is identical.

Now, if U(t) = ∅, then one immediately obtains the claim
of the theorem. Assume, instead, that U(t) 6= 0; from the
previous discussion, one concludes that for each i ∈ U(t),
v̇i(t) ≤ −1/(n − 1), since D(t) 6= ∅. This implies that for
t ≥ T ′′ + (n − 1) maxi∈U(T ′′) vi(T

′′) the set U(t) will be

empty, and thus also set D(t) will be empty, implying that
vi = vdi from then on. This concludes the proof.

V. ADAPTIVE REAL-TIME REBALANCING POLICY

Until now, the policies have required knowledge of the
arrival rates λij , and the destination distribution pij . In this
section we introduce a policy that does not require any a priori
information. The idea is to repeatedly solve the optimization
introduced in Section III-C, but using the current distribution
of customers and vehicles. Let us define the number of vehicles
owned by a station i to be the number of vehicles at that
station, given by vi(t), plus the number of vehicles in transit to
the station, given by

∑
j vji(t): v

own
i (t) := vi(t)+

∑
j vji(t).

Note that by definition,
∑
i v

own
i (t) = V at all times t ≥ 0.

Now, suppose that our objective is to have an equal number
of vehicles at each station. If station i has ci(t) customers and
vi(t) vehicles, then min{ci(t), vi(t)} vehicles will leave the
station to serve the waiting customers. The excess vehicles at
station i is then

vexcessi (t) := vown
i (t)− ci(t).

These are the vehicles that station i currently has available to
send to other stations in need. Thus, the total number of excess
vehicles in the system is

∑
i v

excess
i (t) = V −

∑
i ci(t). Note

that this number may be negative. We would like to split these
excess vehicles evenly among the n stations. So, the desired
number of excess vehicles at station i is

vd(t) =

⌊
V −

∑
i ci(t)

n

⌋
,

where we take the floor to obtain an integer. Our goal is to
have vexcessi (t) ≥ vd(t) for all t.

Let us define an optimization horizon thor > 0. At time
instants kthor, where k is a non-negative integer, we rebalance
the excess vehicles by solving the following optimization:

minimize
∑
i,j

Tijnumij

subject to vexcessi (t) +
∑
j 6=i

(numji − numij) ≥ vd(t) ∀ i ∈ N ,

numij ∈ N ∀ i, j ∈ N , i 6= j,

Note that this is an integer linear program, where numij is
the number of vehicles that station i will send to station j.
It can be written in the form {min cx | Ax ≥ b, x ∈ N}.
However, it can easily be verified that the constraint matrix A
is totally unimodular [11]. In addition, the vector b, contains
integer entries vexcessi (t)− vd(t). Therefore, we can relax the
integer constraints to numij ≥ 0, and solve the problem as
a linear program {min cx | Ax ≥ b, x ≥ 0}. The resulting
solution will necessarily have integer values, and thus will also
be the optimal solution to the integer linear program.

Therefore, we can efficiently rebalance the system every
thor time units without knowledge of λi or pij . Each time
the optimization is solved, we simply send numij rebalancing
vehicles from station i to station j. In the next section we will
characterize the performance of this policy in simulation. For



Fig. 3. The simulation environment for load balancing in mobility-on-demand
systems. At each station, the grey bar shows the number of vehicles, and the
blue bar shows the number of waiting customers. Blue vehicles are carrying
customers, while grey vehicles are performing rebalancing trips. The first
frame shows the initial condition, with 24 vehicles and 3 customers. The
second and third frames show the system as it evolves.

future work, we are looking at modelling customer arrivals
as a stochastic process and then analyzing the theoretical
performance of this policy.

VI. SIMULATIONS

We have developed a simulation environment in MATLAB R©

for testing rebalancing policies. An example of the environ-
ment is shown in Figure 3. In this environment we model
customer arrivals stochastically. Customers arrive at station
i according to a Poisson process with parameter λi. When
a customer arrives at station i, its destination is sampled
from the distribution pij . Since the evolution of the system is
now stochastic, we perform several trials, and then compute
statistics in order to characterize a policies performance. For
each policy, we solve the necessary linear programs using the
freely available SeDuMi (Self-Dual-Minimization) toolbox.
We were easily able to run all policies in real-time on a
standard laptop computer with a 2.66 GHz dual core processor
and 4 GB of RAM.

In this section we present simulation results for the environ-
ment in Figure 3. The environment contains 12 stations. The
travel time Tij between stations is given by the Euclidean
distance. The dimensions of the environment are 10 by 20
(dimensionless) units, and each vehicle moves 0.2 units per

time step. The arrival rates at each station were randomly se-
lected, as was the destination density pij . Using the necessary
condition on the number of vehicles in (see Theorem 3.3), we
obtain that V ≥ 13.4 for any stabilizing policy.

A. Real-time Rebalancing Policy

Figure 4 summarizes the performance of the real-time rebal-
ancing policy of Section V. The left figure shows the number
of waiting customers, and the number of in-transit vehicles as
a function of the optimization horizon thor. The total number
of vehicles is V = 36. Each data point is the mean of
20 independent trials, where each trial starts from an initial
condition of equally distributed vehicles, and no customers,
and runs for 5000 time steps. Error bars show the standard
deviation over the 20 trials. We can see that as the optimization
horizon increases, the number of in-transit vehicles decreases,
but the number of waiting customers substantially increases.
Thus, the optimal choice of thor is a trade-off between the
cost of performing rebalancing trips, and the wait-time of
customers.
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Fig. 4. Analysis of the real-time rebalancing policy. Left figure: The number
of customers or vehicles as a function of the optimization horizon thor. Right
figure: Stability as a function of the number of vehicles V . Positive numbers
indicate instability, while negative numbers indicate stability.

The right figure shows the stability of the real-time rebal-
ancing policy. Each data point shows the mean of 20 trials. In
each trials, we start the system with 480 customers, and run the
system for 15, 000 time steps. We then look at the difference
between the initial number of customers, and the time-average
present over the last 1000 time steps of the trial. From the
simulation, we can see that 15 vehicles is the threshold for
stability in this example. With V ≥ 15 we have stability. This
compares quite well with the necessary condition of V > 13.4.

B. Policy Comparison

Finally, we compare the performance of three policies: 1)
the basic policy from the fluid model, where we send a
constant rate of αij vehicles between stations, 2) the fluid
model policy with feedback, where the desired number of
vehicles is set to vd = dV/ne and 3) the real-time rebalancing
policy with thor = 100. For each policy, Figure 5 (left) shows
the number of waiting customers as a function of the total
number of vehicles V , on a log scale. Figure 5 (right) shows
the number of in-transit vehicles as a function of V . Each
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Fig. 5. Comparing the performance of the three different policies. Left figure:
The time-average number of customers waiting in the system. Right figure:
The time-average number of vehicles performing rebalancing trips per unit of
time.

data point is the mean of 20 independent trials, and each
trial consists of 5000 time steps. In each trial we compute
mean number of waiting customers, and the mean number of
in-transit vehicles over the last 2000 time steps of the trial.
Thus, a finite number of waiting vehicles does not necessarily
indicate stability. We can see from Figure 4 that at least 15
vehicles are needed for stability.

From the left figure we see that the real-time rebalancing
policy has the best performance in terms of number of waiting
customers. The basic fluid policy performs quite poorly. This
is due to the stochastic fluctuations in the customer arrival
rates, and their chosen destinations. The fluid policy with
feedback performs adequately, but consistently has over 50%
more waiting customers than the real-time rebalancing policy.

From the right figure we see that the fluid model policy
sends the fewest rebalancing vehicles. Thus, to minimize
rebalance cost without regard to customer satisfaction (i.e.,
wait times), the fluid model policy performs best. The real-
time rebalancing policy sends fewer vehicles than the fluid
policy with feedback. Thus, the real-time policy outperforms
the feedback policy in terms of waiting customers, and in-
transit vehicles. Finally, the number of in-transit vehicles for
the fluid policy with feedback increases in a sawtooth pattern.
The peaks occur at 24, 36, and 48 vehicles. This occurs
because the desired number of vehicles at a station was chosen
as vd = dV/ne. Since there are n = 12 stations, when the
number of vehicles is increased from 24 to 25, the value vd

changes from 2 to 3. This shift dramatically affects the number
of in-transit vehicles. However, we can see that it does not have
as large of an effect on the number of waiting customers. Thus,
one may be able to improve the performance of the fluid policy
with feedback by setting vd to a value larger than dV/ne. We
plan to explore this further in our future work.

VII. CONCLUSION

In this paper we studied the problem of rebalancing a
mobility-on-demand system to efficiently transport customers
in an urban environment. We proposed a robotic solution to
rebalancing that involves empty robotic vehicles autonomously
driving between stations. For a fluid model of the system, we

showed that the optimal rebalancing policy can be found as the
solution to a linear program. Under this policy, every station
reaches an equilibrium in which there are excess vehicles and
no waiting customers. We used this solution to develop a
real-time rebalancing policy that can operate under stochastic
customer demand. For future work we plan to analyze the
stochastic queueing model and characterize the performance
of the real-time rebalancing policy. We are also interested in
using dynamic pricing to provide incentives for customers to
perform rebalancing trips themselves.
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