Iron(II)-Catalyzed Trifluoromethylation of Potassium Vinyltrifluoroborates

As Published: http://dx.doi.org/10.1002/anie.201108267

Publisher: Wiley Blackwell

Persistent URL: http://hdl.handle.net/1721.1/81943

Version: Author’s final manuscript: final author’s manuscript post peer review, without publisher’s formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0
Iron(II)-Catalyzed Trifluoromethylation of Potassium Vinyltrifluoroborates

Andrew T. Parsons, Todd D. Senecal, and Stephen L. Buchwald

Department of Chemistry, Room 18-490, Massachusetts Institute of Technology Cambridge, MA 02139 (USA)

Abstract

An iron(II)-catalyzed trifluoromethylation of potassium vinyltrifluoroborates has been developed. The reactions proceed under mild conditions and provide E/Z selectivities of > 95:5 for 2-aryl and -heteroarylvinyl substrates. Experimental observations suggest that the reaction does not proceed through a transmetallation of the RBF₃K to the iron catalyst.

Keywords

trifluoromethylation; fluorine; iron; catalysis

The incorporation of fluorinated functional groups in pharmaceutical and agrochemical molecules has had a significant impact on the discovery and development of biologically active compounds.¹,² Due to its metabolic stability, lipophilicity, and electron-withdrawing character,³ use of the trifluoromethyl (CF₃) substituent has gained considerable attention in recent years. New methods for direct C–CF₃ bond-formation have had a prominent presence in current literature, highlighting the importance of this transformation.⁴,⁵ Efforts in our lab have focused on the development of new fluorination⁶ and trifluoromethylation⁷ reactions through the use of transition metal catalysis and promotion. Herein, we report a facile method to access vinyl–CF₃ functional groups through an iron(II)-catalyzed trifluoromethylation of potassium vinyltrifluoroborates (1) using Togni’s reagent 2⁸ (eq 1).

Recently, we reported an oxidative trifluoromethylation of terminal olefins, providing rapid access to allyl–CF₃ containing products of type 4.⁹,¹⁰ During the course of our studies, we observed 5, a side product resulting from chloride counterion transfer from CuCl to the olefin substrate subsequent to C–CF₃ bond formation (Figure 1, A). We hypothesized several possible intermediates (summarized as 6) leading to the formation of both 4 and 5.

¹Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.
After consideration of these possibilities, we surmised that regioisomeric products (i.e. vinyl–CF$_3$ containing molecules) might be accessed through a similar type of reactive intermediate. Toward this end, we sought to bias the presumed product-forming step through the use of a functionalized vinyl substrate such as a vinylboron reagent (Figure 1, B). Thus, trifluoromethylation of 7 would lead to formation of intermediate 6d. Loss of the boron-based functional group would result in the generation of the desired vinyl–CF$_3$ containing product.

We commenced our studies by examining the trifluoromethylation of styryl–BX$_n$ reagents with 2 using various metal catalysts. During our preliminary studies, we discovered that both copper(I)\cite{11} and iron(II) chloride provided a satisfactory yield of product 3a (Table 1, entries 1-4). Due to the low cost and cleaner reaction profile, we continued our studies using catalytic FeCl$_2$ by examining various vinylboron reagents (Table 1, entries 2-4). Interestingly, the E/Z product ratio varied significantly depending on the identity of styryl–BX$_n$ reagent employed. We felt that these variations suggest that our proposed intermediate 6d is formed en route to the vinyl–CF$_3$ products since isomerization would be difficult to explain if the olefin remained intact throughout the course of the reaction. The ratios of E/Z isomers may be dependent on the rate of elimination of the boron-based leaving group, where the BPin and B(OH)$_2$ appear to eliminate rapidly to provide a nearly equimolar ratio of isomers. The BF$_3$-based leaving group might be slow to eliminate, resulting in the high E/Z product ratio observed.

Since the potassium trifluoroborate salt provided an excellent E/Z ratio of $> 95:5$, optimization was continued using styryl–BF$_3$K as a model substrate. Additional increases in yield were achieved through a lowering of catalyst loading and the use of acetonitrile as the solvent. Furthermore, employing 2 as the limiting reagent prevented side product formation. Use of ultra pure (99.998% metals basis) FeCl$_2$ resulted in an equally efficient trifluoromethylation of 1, suggesting that the catalyst system is iron-based (entry 8). No detectable amounts of β-trifluoromethylstyrene product 3a were formed in the absence of a metal catalyst (entry 10).

With an optimized protocol in hand, we examined the range of potassium vinyltrifluoroborates capable of undergoing iron(II)-catalyzed trifluoromethylation using 2 (Table 2). 2-Aryl and heteroarylviny1–BF$_3$K salts were excellent substrates for this method, providing good yields and high E/Z product ratios. Linear aliphatic substrates furnish high yields of the vinyl–CF$_3$ products, but with poor E/Z selectivity. Isomeric ratios were improved when branched aliphatic substrates were used, but remained modest at 83:17 E/Z for a cyclohexyl-substituted substrate (product 3k). The mild reaction conditions allow for the trifluoromethylation of substrates not suitable for many Cu or Pd-based systems. Notably, all reactions could be set up on the bench top (run under an inert atmosphere) and carried out at room temperature.

During the course of this study, we found that this reaction has some limitations. For example, electron-deficient substrates give a poor yield of trifluoromethylated product. Trisubstituted vinyl–BF$_3$K salts were also poor substrates, furnishing only trace amounts of trifluoromethylated product.\cite{12} We are currently working to address these issues in order to expand the generality of this transformation.

We originally felt that the vinyl trifluoromethylation of 1 might proceed through the cleavage of the π-bond of the olefin in a homo- or heterolytic manner. After our synthetic studies, however, the mechanistic details of this transformation were unclear. We could not rule out the possibility that a transmetallation/reductive elimination-type mechanism is
occurring. We sought to gain insight into the details of this transformation through the examination of selected substrates as mechanistic probes.

Since potassium (E)-2-arylvinyltrifluoroborates, such as 1b, provide high selectivity for the E isomer, we sought to determine whether this was a stereospecific trifluoromethylation. Thus, we prepared potassium 4-methylphenylvinyltrifluoroborate 1b in > 95:5 Z isomeric purity. Subjecting (Z)-1b to the standard reaction conditions furnished β-trifluoromethylstyrene derivative 3b exclusively as the E isomer (eq 2). We conducted an analogous experiment using (Z)-1j and obtained identical results when compared to (E)-1j (eq 3). The stereocovergence of the E and Z substrate isomers causes us to disfavor a mechanism that proceeds through a transmetallation/reductive elimination sequence. We believe these experiments suggest a mechanism involving generation of a radical or carbocationic intermediate, similar to 6a or 6b (Figure 1).

The results obtained in eqs 2-3 led us to investigate whether product formation may be achieved using Lewis acid catalysis (via direct formation of a cationic intermediate, c.f. Figure 1). Thus, we conducted the trifluoromethylation of (E)-1b in the presence of various Lewis acids. We found that a range of other catalysts provided an appreciable amount of vinyl–CF₃ product. Sn(OTf)₂ was the most efficient Lewis acid of those examined, affording (E)-3b in 80% yield and high E/Z ratio. To further examine the transformation catalyzed by Sn(OTf)₂, we also conducted trifluoromethylations of (Z)-1b and (E/Z)-1j (Scheme 1). Trifluoromethylation of these substrates provided identical E/Z ratios and yield regardless of the geometry of the potassium vinyltrifluoroborate starting material. These results further suggest that the trifluoromethylation is not proceeding through a transmetallation/reductive elimination pathway. It should be noted that while the ¹⁹F NMR yields of 3b and 3j are satisfactory when Sn(OTf)₂ is used, the formation of numerous trifluoromethylated side products causes us to prefer FeCl₂ as the catalyst for this transformation.

In summary, we have developed an iron(II)-catalyzed trifluoromethylation of potassium vinyltrifluoroborates. 2-Arylvinyl substrates in particular provide good yields and excellent E/Z ratios. The reactions are amenable to a bench top set up and proceed under exceedingly mild reaction conditions. Preliminary mechanistic analyses suggest the reaction proceeds through a carbocationic intermediate via Lewis acid catalysis, but we are currently unable to rule out a radical-type mechanism. Future efforts in our lab will aim to further elucidate the mechanistic details and expand the scope of this transformation.
Experimental Section

General Procedure for the FeCl$_2$-catalyzed trifluoromethylation of vinyl–BF$_3$K reagents

An oven-dried reaction tube was charged with the potassium vinyltrifluoroborate (1.1 equiv), Togni reagent 2 (1.0 equiv), and iron(II) chloride (0.10 equiv). The tube was sealed with a PTFE-lined screw cap and evacuated and backfilled with argon (repeated for a total of three times). The vial was then charged with acetonitrile (2.5 mL/mmol) and the reaction mixture was stirred at room temperature for 24 h. The contents of the vial were then transferred to a separatory funnel containing saturated NaHCO$_3$ (approx. 10 mL) using CH$_2$Cl$_2$. The aqueous layer was extracted with CH$_2$Cl$_2$ (3 × 15 mL). The combined organic extracts were washed with brine (20 mL), dried over Na$_2$SO$_4$, and concentrated onto silica gel. The products were purified by flash chromatography using the indicated solvent system.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank the National Institutes of Health (GM46059) for financial support of this project and for a postdoctoral fellowship to A.T.P. (F32GM093532). The Varian 300 MHz and Bruker 400 MHz NMR spectrometers used in this work were supported by grants from the National Science Foundation (CHE-9808061 and DBI-9729592) and National Institutes of Health (1S10RR13886-01), respectively.

References

[12]. For example potassium (E)-(4-(trifluoromethyl)styryl)trifluoroborate and potassium (1-(tert-butoxycarbonyl)-1,2,3,6-tetrahydropyridin-4-yl)trifluoroborate provided < 5% yield of the desired vinyl–CF3 product when subjected to the reaction conditions described in Table 2.
Figure 1.
A) Observed chlorotrifluoromethylation of terminal olefins using CuCl and 2 and B) the proposed vinyl trifluoromethylation of vinylboron reagents.
Scheme 1.
Evidence that Lewis acid activation resulting in direct formation of a cationic intermediate is a viable pathway leading to vinyl–CF₃ product formation.
Optimization studies for the trifluoromethylation of styryl-based vinylboron reagents.\[^{[a,b]}\]

![Chemical structure diagram](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>cat (mol %)</th>
<th>BX\textsubscript{n}</th>
<th>equiv 2</th>
<th>solvent</th>
<th>E/Z</th>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CuCl (25)</td>
<td>BF\textsubscript{3}K</td>
<td>1.2</td>
<td>MeOH</td>
<td>96:4</td>
<td>75%</td>
</tr>
<tr>
<td>2</td>
<td>FeCl\textsubscript{2} (25)</td>
<td>BF\textsubscript{3}K</td>
<td>1.2</td>
<td>MeOH</td>
<td>94:6</td>
<td>80%</td>
</tr>
<tr>
<td>3</td>
<td>FeCl\textsubscript{2} (25)</td>
<td>B(OH)\textsubscript{2}</td>
<td>1.2</td>
<td>MeOH</td>
<td>50:50</td>
<td>74%</td>
</tr>
<tr>
<td>4</td>
<td>FeCl\textsubscript{2} (25)</td>
<td>BPin</td>
<td>1.2</td>
<td>MeOH</td>
<td>55:45</td>
<td>73%</td>
</tr>
<tr>
<td>5</td>
<td>FeCl\textsubscript{2} (10)</td>
<td>BF\textsubscript{3}K</td>
<td>1.2</td>
<td>MeOH</td>
<td>>95:5</td>
<td>77%</td>
</tr>
<tr>
<td>6</td>
<td>FeCl\textsubscript{2} (10)</td>
<td>BF\textsubscript{3}K</td>
<td>1.2</td>
<td>CH\textsubscript{3}CN</td>
<td>98:2</td>
<td>88%</td>
</tr>
<tr>
<td>7</td>
<td>FeCl\textsubscript{2} (10)</td>
<td>BF\textsubscript{3}K</td>
<td>0.9</td>
<td>CH\textsubscript{3}CN</td>
<td>99:1</td>
<td>86%</td>
</tr>
<tr>
<td>8/9</td>
<td>FeCl\textsubscript{2} (10)</td>
<td>BF\textsubscript{3}K</td>
<td>0.9</td>
<td>CH\textsubscript{3}CN</td>
<td>nd[^{[d]}]</td>
<td>9%</td>
</tr>
<tr>
<td>10</td>
<td>none</td>
<td>BF\textsubscript{3}K</td>
<td>0.9</td>
<td>CH\textsubscript{3}CN</td>
<td>–</td>
<td>0%</td>
</tr>
</tbody>
</table>

\[^{[a]}\] Reaction conditions: 1 (0.20 mmol), 2 (0.24 or 0.18 mmol), and catalyst in 0.50 mL solvent at room temperature for 24 h.

\[^{[b]}\] Yield and E/Z ratio were determined by \(^{19}\)F NMR spectroscopy.

\[^{[c]}\] FeCl\textsubscript{2} (99.998% pure, Aldrich) was used.

\[^{[d]}\] nd = not determined.
Table 2

Scope of the FeII-catalyzed trifluoromethylation of potassium vinyltrifluoroborates using 2.[a],[b],[c]

<table>
<thead>
<tr>
<th>R</th>
<th>Product Structure</th>
<th>Yield (%)</th>
<th>E/Z Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbullet C\text{CF}_3</td>
<td>3a: 70% > 95.5 E/Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textbullet C\text{CF}_3</td>
<td>3b: 78% > 95.5 E/Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textbullet C\text{CF}_3</td>
<td>3c: 75% > 95.5 E/Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textbullet C\text{CF}_3</td>
<td>3d: 68% > 95.5 E/Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textbullet C\text{CF}_3</td>
<td>3e: 73% > 95.5 E/Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textbullet C\text{CF}_3</td>
<td>3f: 65% > 95.5 E/Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textbullet C\text{CF}_3</td>
<td>3g: 74% (83%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textbullet C\text{CF}_3</td>
<td>3h: 49% 80.20 E/Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textbullet C\text{CF}_3</td>
<td>3i: 74% 67.33 E/Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textbullet C\text{CF}_3</td>
<td>3j: 34% (80%) 83.17 E/Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textbullet C\text{CF}_3</td>
<td>3k: 66% 67.33 E/Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textbullet C\text{CF}_3</td>
<td>3l: 79% 67.33 E/Z</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[a] Reaction conditions: 1 (1.1–0.55 mmol, 1.1 equiv), 2 (1.0–0.50 mmol, 1.0 equiv), FeCl\textsubscript{2} (10 mol %), [2]\textsubscript{tot} = 0.40 M. Reaction time was not optimized.

[b] Isolated yield, average of two independent trials.

[c] Determined by 19F and 1H NMR spectroscopy.

[d] Contains 10–15 mol % of a protodeboronated side product.

[e] Yields in parentheses were determined by 19F NMR spectroscopy.

[f] 15 mol % FeCl\textsubscript{2} was used.