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Abstract

Rateless spinal codes [47] promise performance gains for future wireless systems.
These gains can be realized in the form of higher data rates, longer operational
ranges, reduced power consumption, and greater reliability. This is due in part to
the manner in which rateless codes exploit the instantaneous characteristics of the
wireless medium, including unpredictable fluctuations. By contrast, traditional rated
codes can accommodate variability only by making overly conservative assumptions.

Before spinal codes reach practical deployment, they must be integrated into
the networking stacks of real devices, and they must be instantiated in compact,
efficient silicon. This thesis addresses fundamental challenges in each of these two
areas, covering a body of work reported in previous publications by this author and
others [27, 26]. On the networking side, this thesis explores a rateless analogue of link-
layer retransmission schemes, capturing the idea of rate adaptation and generalizing
the approach of hybrid ARQ/incremental redundancy systems such as LTE [29]. On
the silicon side, this thesis presents the development of a VLSI architecture that
exploits the inherent parallelism of the spinal decoder.

Thesis Supervisor: Hari Balakrishnan
Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

It hardly bears repetition that wireless devices grow in pervasiveness and criticality.

Rateless codes promise faster transfers, longer range, lower power, and better reliability

for wireless systems under fading conditions. The purpose of this thesis is to defeat

two practical barriers to the widespread deployment of rateless codes in general and

spinal codes [47] in particular.

1.1 Ratelessness in the Wireless Network Stack

For network applications to perform well on wireless devices, network protocols must

cope with substantial variability in the radio frequency (RF) channel. Realized

channel conditions depend on a large number of unpredictable spatial factors, as well

as interference from sources internal or external to the wireless network. Variation

may occur over both human and sub-packet time scales. In addition to channel effects,

non-idealities in the receiver introduce further discrepancies between the transmitted

signal and the signal that the receiver demodulates. Because such distortions and

discrepancies are inevitable, the choice of an appropriate data rate for a wireless system

is fundamental to obtaining good performance: at a higher rate, the system is more

susceptible to decoding failures due to noise and interference, and at a lower rate, it

can be made more robust. Designers prefer the highest rate that meets their reliability

goals.
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A natural question to ask is whether one can completely hide this unreliability in

the network – that is, whether a system can be made arbitrarily reliable. In theory,

perfectly reliable communication is possible over an additive Gaussian channel in the

limit of infinite block length. However, real wireless channels exhibit complicated

fading behaviors, and real packets are of finite length, e.g. 1500 bytes. Traditional

rated block codes suffer a nonzero outage probability in these settings, because a deep

fade may prevent decoding and such a system cannot adapt to correct the mistake.

For this reason, virtually every wireless network uses an automatic repeat request

(ARQ) protocol in addition to a rate adaptation strategy. When decoding succeeds,

the receiver sends an acknowledgement (ACK) message back to the sender to indicate

this condition, and the sender repeats the coded block if no ACK arrives within a

timeout period, or if a negative ACK (NAK) arrives. Relying on coding alone without

feedback is called forward error correction (FEC).

Some networks use a refinement called hybrid ARQ (HARQ), in which a large

but not unlimited amount of redundancy is encoded at the sender and portions of

it are sent incrementally when a NAK arrives. Rateless codes, including LT and

Raptor [50, 44], Strider [13, 20], and spinal codes [47], extend HARQ by providing a

limitless amount of redundancy at the sender. By contrast, a HARQ system built on a

traditional rated code (LDPC [17], turbo [6], convolutional [52], etc.) must eventually

resort to reusing some redundancy when the effective rate of the system drops below

the rate of the underlying rated mother code1, degrading performance at sufficiently

low signal-to-noise ratios (SNRs).

Certain rateless codes have two additional properties, which we term “adaptation-

freedom” and “computation-variability”. An adaptation-free rateless code bypasses

the need to choose an appropriate signalling constellation (i.e. a map from bits to

volts and back to bits) for the current channel conditions. These codes use one

signalling constellation all the time, producing each output symbol in the same way,

1Mother code: a fixed-rate forward error correction scheme yielding a large supply of redundancy.
In a HARQ system, we might initially send only a fraction of this redundancy, yielding a short
transmission with an effectively higher-rate encoding. We would only send all of the redundancy if
conditions were poor enough to warrant it.
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whereas traditional wireless communication systems use a dense constellation at high

SNR and a sparse constellation at low SNR. At low SNR, dense constellations are

computationally complex to demap; at high SNR, sparse constellations make inefficient

use of available bandwidth. Adaptation-free rateless codes have a particularly nice

structure: regardless of signal conditions, the signal produced by the sender will be

exactly the same, with bandwidth used efficiently and demapping costs kept low.

Adaptation-free codes are also regret-free: the receiver never wishes that the sender

had chosen a different modulation or code rate.

The computation-variable property captures the effect of the receiver’s compu-

tational capabilities on the throughput of the system. Spinal codes, which use a

heuristic decoder parameterized by a search-breadth parameter B, achieve a level of

performance dependent on how hard the receiver tries to decode: that is, how large

B is [47]. Strider uses an iterative turbo decoder whose performance depends on the

number of iterations used. The sender does not know or need to know how capable

the receiver may be for the system to work.

Regardless of the underlying code, a half-duplex sender must determine the ap-

propriate amount of redundancy to send between acknowledgement events, since

it cannot receive acknowledgements while transmitting. If it sends too little, then

waiting for an acknowledgement will be wasteful because the result will most likely be

a NAK. If it sends too much, then time is wasted sending unnecessary redundancy

when an acknowledgement event would most likely yield an ACK. This trade-off is

modulated by the cost of feedback: if delays are long or synchronization overhead

is large, then acknowledgement events should be scheduled sparingly; conversely, if

acknowledgements take little time or their cost can be mitigated, then frequent pauses

for acknowledgement can be exploited to increase throughput.

For an adaptation-free, computation-variable rateless code, the probability of

successful decoding for any given reception is determined by (1) the number of symbols

received; (2) the instantaneous channel distortions of each symbol; and (3) the low-

level details of the implementation of the decoder and how much computation it uses.

Chapter 2 presents a code-agnostic link-layer protocol which adaptively determines how

17



much incremental redundancy to send between pauses so that throughput is maximized.

It strategically controls (1) by observing how the rateless code accommodates (2) and

(3). These observations summarize the distortions and decoder specifics in a way that

frees the protocol from a need to anticipate every possible scenario and parameter.

While ARQ-based and rateless systems can recover after deep fades without

dropping any packets – a feature not shared by FEC systems – they do so at the

cost of two unpleasant properties: feedback delays during which the channel is idle,

and unpredictable timing jitter. Chapter 3 presents an evaluation showing that the

link-layer protocol of chapter 2 achieves high throughput and low delay.

1.2 Spinal Codes in Hardware

The second practical barrier to widespread deployment of rateless codes is the avail-

ability of suitable hardware encode and decode logic. In general, the challenges include

parallelizing the required computation, and reducing the storage requirement to a

manageable level.

At the transmitter, an encoder takes a sequence of message bits (e.g., belonging to

a single packet or link-layer frame) and produces a sequence of coded bits or coded

symbols for transmission. At the receiver, a decoder takes the (noisy or corrupted)

sequence of received symbols or bits and inverts the encoding operation to produce its

best estimate of the original message bits. If the recovered message bits are identical

to the original, then the reception is error-free; otherwise, the communication is not

reliable and additional actions have to be taken to achieve reliability (these actions

may be taken at the physical, link, or transport layers of the stack).

Chapter 4 shows that spinal codes are remarkably amenable to efficient implemen-

tation in hardware. The encoder is straightforward, but the decoder is tricky. Unlike

convolutional decoders, which operate on a finite trellis structure, spinal decoders de-

veloped thus far operate on an exponentially growing tree. The amount of exploration

at the decoder has an effect on throughput: if a decoder computes sparingly, it will

require more symbols to decode and thus achieve lower throughput. This effect is

18



shown in Figure 4-1. A näıve decoder targeted to achieve the greatest possible coding

gain would require hardware resources to store and sort upwards of a thousand tree

paths per bit of data, which is beyond the realm of practicality. Chapter 4 shows

that this level of computation is not necessary, and that some architectural finesse

leads to a spinal decoder that is competitive in area and throughput with LTE turbo

codes. Finally, chapter 5 validates the design with an FPGA implementation and

on-air testing.
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Chapter 2

No Symbol Left Behind1

Rateless codes offer a natural way to adapt to channel variations via the prefix property:

in a rateless code, an encoding with a higher rate is a prefix of any lower-rate encoding.

Rather than discarding symbols which fail to decode, the receiver uses them again to

form part of a lower-rate encoding once additional symbols arrive. No symbol is left

unused in decoding a rateless message. The greater the number of symbols received,

the higher the probability of a successful decoding.

Ratelessness and adaptation-freedom do not excuse the sender and receiver from

adapting to channel conditions. Instead, they unify the processes of sensing conditions

and reacting to them. For a good rateless code, the number of symbols required for

decoding closely tracks changes in the prevalent channel conditions. This means that

a rateless sender and receiver can skip the customary estimation of channel quality

and focus on the central problem of estimating, based on feedback, the number of

symbols to be transmitted.

A comprehensive rateless link protocol would include a mechanism for reliable

feedback and a mechanism for dealing with channel contention. It would allow

application-level end-to-end latency constraints to impose limits on packet aggregation,

and it would provide theoretical guarantees that a suitable performance metric is

optimized. It would circumscribe what the sender needs to know about the channel

1 © ACM, 2012. This is the author’s version of the work. It is posted here by permission of ACM
for your personal use. Not for redistribution. The definitive version was published in MobiCom ’12,
August 22-26, 2012. [27] <http://doi.acm.org/10.1145/2348543.2348549>
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in order to optimize performance, and it would include the cost of conveying this

information to the sender in the optimization.

This chapter identifies efficiency as the right performance metric and shows how

the sender can maximize it given the feedback delay and a cumulative probability

distribution function called the decoding CDF. Efficiency, given by the fraction of

channel occupation time which is strictly necessary for reliable delivery, provides a code-

neutral measure of protocol overhead. This chapter and the following one also develop

an efficiency-maximizing protocol, RateMore, and presents its implementation and

evaluation over spinal codes [47], Strider [20], and Raptor codes [50, 44] on stationary

and fading channels. RateMore accommodates soft single-hop latency constraints and

provides reliable delivery. Multi-hop latency constraints and unreliable service classes

are interesting unexplored directions.

RateMore assumes common half-duplex radios with 802.11-style framing and

acknowledgments, and considers operation above a minimum signal-to-noise ratio

(SNR) such that ACKs sent at the lowest 802.11 convolutional code rate are reliable.

RateMore also assumes that once a sender has contended for the medium, it uses

802.11’s short inter-frame space (SIFS) mechanism to bypass contention during feed-

back hand-offs until the transaction is complete. Under these conditions, the feedback

delay is known to the transmitter a priori via a calculation reviewed below. The

resulting analysis shows that the decoding CDF and the feedback delay are sufficient

knowledge for the sender to maximize the average throughput of the link over all

possible strategies of transmitting data and pausing for feedback.

The decoding CDF is not only sufficient, but it is practical to obtain. Chapter 3

demonstrates that the sender can obtain approximate yet satisfactory knowledge of the

decoding CDF (e.g. performing within 1.57% of full knowledge) from just a handful

of acknowledgments.

The evaluation of chapter 3 compares RateMore with two alternatives borrowed

from fixed-rate coding. The first is an analogue of automated repeat requests (ARQ)

fashioned after 802.11, and the second is incremental redundancy after the pattern of

the 3GPP cellular standard, sending a fixed number of additional coded symbols be-
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tween pauses for feedback. RateMore proceeds from a sound mathematical framework

and outperforms both of these ad hoc approaches.

These results show that RateMore achieves an efficiency of over 90% across all the

experiments. The experiments also show that RateMore reduces overhead by 2.6×
to 3.9× compared to 802.11-style classical ARQ and by 2.8× to 5.4× compared to

3GPP-style “Try-after-n” hybrid ARQ. These translate to throughput improvements

of up to 26% even under “static” channel conditions. Over fluctuating Rayleigh-fading

channels, RateMore performs within 1.57% of the ideal adaptation.

2.1 Related Work

2.1.1 Type-I HARQ

Hybrid ARQ (HARQ) systems [37] marry forward error correction with ARQ to

raise the probability of successful reception. Type-I HARQ systems transmit coded

messages and retransmit on failures, and are widely used in wireless standards such as

Wi-Fi [28]. A common design technique is to specify several modes, or “bit rates”,

each suitable for a small range of channel conditions. Bit rate adaptation algorithms

then choose what mode to use by picking a combination of modulation (signalling

constellation) and code.

2.1.2 Type-II HARQ

Type-II HARQ allows the exchange of coded data over several round-trip interactions

between the transmitter and receiver. Using more interactions has been shown

to allow improvement over ARQ’s performance under poor conditions, while not

sacrificing performance under favorable conditions. Two approaches exist for combining

transmissions. In HARQ with Chase Combining [10], the retransmission repeats

parts of the original packet, which are then combined at the receiver. HARQ with

Incremental Redundancy (IR) sends different coded bits in every transmission. This

approach has been used successfully in the 3GPP LTE protocol [29], and a protocol
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has been built to achieve IR-HARQ over 802.11 networks in ZipTx [36].

Soljanin et al. discuss the design of HARQ with incremental redundancy [51]. The

develop such a protocol for an ensemble of LDPC codes as well as Raptor codes. The

basic idea is to transmit only as many coded symbols as required for the receiver to

decode the message with high probability using the best possible maximum-likelihood

(ML) decoding rule, presupposing a very high SNR. If the receiver is successful, the

transmitter moves to the next message. If not, the transmitter sends the next sets of

coded symbols in such a way that given what receiver has received (the transmitter

knows the past channel condition at the receiver), there is a high probability of

successful ML decoding if the SNR is only moderately high. This is repeated until

successful decoding is achieved.

Another related work is by Anastasopoulos [2]. The primary difference arises in

the fact that their work does not take feedback delays into account. They model the

decoding CDF in terms of an error exponent, and assume that the underlying code

cannot decode with more than some maximum number of symbols. They model the

channel as a Markov chain and try to infer its state. The approach taken by RateMore

is different both in the learning strategy (learning the decoding CDF) and in applying

a dynamic programming strategy to compute the transmission schedule.

Most proposed HARQ schemes have a small number of effective rates to choose

from. This is achieved using rate-compatible puncturing [22, 33, 21], where the mother

code is partitioned into a series of punctured words, such that the decoder has good

probability of successfully processing any prefix of the series. In comparison, rateless

codes do not require such gentle constructions, and natively offer a free choice of rates.

Systems with either Type-I or Type-II HARQ schemes use bit rate adaptation

algorithms. These algorithms take a reactive approach to combating temporal channel

variations: systems passively monitor channel conditions in the form of the signal-to-

noise ratio [9, 25], frame loss rate [54, 7], or bit-error rate [53, 49].
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2.1.3 Partial Packet Recovery

Partial packet recovery schemes are protocols designed to recover packets that were

received with errors. Data is divided into small fragments, and some method is used to

detect which fragments were received correctly. The transmitter then only retransmits

erroneous fragments. Seda [18] adds an overhead of a CRC-8 and an identifier to each

block, and sends correction blocks alongside fresh blocks. PPR [31] uses confidence

information from the PHY layer instead of a CRC to determine which bits need

retransmission, and incorporates a dynamic algorithm to determine what feedback

should be sent by the receiver. Maranello [24] again uses CRC to protect each block,

but reduces overhead by only transmitting CRCs when the packet contains errors.

Partial packet recovery can be viewed as a finer-grained Type-I HARQ: the PPR

system sends smaller blocks, retransmitting a block on error. The difference to non-

PPR HARQ is the aggregation of several blocks onto a single transmission, eliminating

the fate-sharing of bits in the non-PPR case.

2.1.4 Rateless Codes

The following experiments use three recently developed rateless codes—Raptor codes,

Strider [20], and spinal codes [45]—so we start by summarizing the key ideas in these

codes and the salient features of the implementations of these codes used in our

experiments.

Raptor code. Raptor codes [50, 14], which are built on LT codes [38], achieve capacity

for the Binary Erasure Channel where packets are lost with some probability. Not

much is known about how close Raptor codes come to capacity for additive Gaussian

noise (AWGN) channels and binary symmetric channels (BSC). However, there have

been several attempts made to extend Raptor codes for the AWGN channel [44, 51, 5].

We adopt a similar construction to [44] in this evaluation, with an inner LT code

generated using the degree distribution in the Raptor RFC [39], and an outer LDPC

code as suggested by Shokrollahi [50].

Strider. Strider realizes the layered approach to rateless codes of Erez et al [13]. This
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approach combines existing fixed-rate base codes to produce symbols in a rateless

manner. By carefully selecting linear combinations of symbols generated by the base

codes, they show that the resulting rateless code can achieve capacity as the number

of layers increases, provided the fixed-rate base code achieves capacity at some fixed

SNR. The Strider implementation in our experiments was built using reference code

from Gudipati [20], with recommended parameters.

Spinal codes. Spinal codes [45] use a hash function to generate transmitted symbols.

The rich structure obtained using the hash function can be exploited to achieve rates

very close to the channel capacity, with a practical encoder and decoder. In addition

to their ability to approach capacity, spinal codes also work well on short messages

(256-1024 bits), making them appealing from a latency perspective.

2.2 Optimal Transmission Schedule

We have yet to define the decoding CDF or to show how to coordinate the sender and

receiver via a transmission schedule derived from this CDF. This section introduces

the decoding CDF and applies it to the schedule optimization problem, treating the

CDF as a known quantity. We also show how to compute the feedback delay. The

solution of the optimization problem proceeds from these two inputs via a dynamic

programming algorithm, which we demonstrate with an example. The next section

will show how to learn the CDF using feedback from the receiver.

2.2.1 Decoding CDF

We abstract a rateless code as an encoder that produces an infinite sequence of encoded

symbols (bits or constellation points/channel usages) from a finite message, and a

decoder that takes any prefix of this infinite sequence and returns either nothing or

the correct message. Supposing that all input messages are protected equally, and

that the channel parameters drawn from some unknown distribution, the behavior of

the code on this channel is characterized by a single function giving the probability
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with which a message can be decoded correctly after a certain number of symbols

have been received by the decoder.

We assume that this probability increases monotonically with the number of

symbols received; otherwise, a better (and admittedly more expensive) decoder could

attempt to decode with only the first symbol, then with the first two, and so on,

guaranteeing monotonicity. If every message is eventually decoded, then the function

can be viewed as the cumulative distribution for a random variable that we denote n.

Changes to the code parameters, channel conditions, or code block length will affect

this distribution.

The decoding CDF has three desirable features from the perspective of the protocol:

1. It succinctly captures all of the uncertainties in the system, including those due to

fluctuating outcomes on a stationary channel, time-varying channel parameters,

and uncertainty about these parameters. Moreover, a schedule determination

algorithm that relies only on the decoding CDF is insulated from the details of

the code.

2. It enables the protocol to explicitly compute, and thus maximize, the expected

throughput of a transmission schedule.

3. It can be learned from receiver feedback. §2.3 shows how beliefs about the

decoding CDF can be updated from the number of symbols needed to decode

each packet. Alternatively, the CDF can be estimated using offline simulations

of the behavior of the code. Either way, the sender and receiver have common

knowledge of the decoding CDF.

2.2.2 Optimization Problem

Given a decoding CDF, we would like to obtain a rule for the sender that determines

when it should transmit and when it should pause for feedback. This rule takes the

form of a sequence of positive integers ni, i ∈ {1, 2, . . .}. Each ni indicates cumulatively

how many symbols should be transmitted before the sender begins its ith pause.
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If feedback were free (i.e., took 0 time), then a throughput-maximizing sender

would pause after each symbol transmission. In reality, it takes many microseconds to

turn the radios from transmit to receive mode, re-synchronize, complete any ongoing

decoding operations to determine whether a positive ACK should be sent, encode the

ACK, and turn the radios around again to return control to the sender. The feedback

delay is the time between the sender’s last symbol prior to a pause for feedback and

the same sender’s first useful symbol following the pause for feedback. With 802.11a/n

timings and the most reliable ACK coding rate,

Tfeedback = SIFS + preamble + ACK payload + SIFS + preamble

= 64 µs + 4 µs ·
⌈

ACK bits + 6

24

⌉

On a 20 MHz channel with the standard guard interval, 802.11 sends 12 million

symbols per second. Thus, if the sender and receiver have only one coded transmission

in play at a time, the cost of a single bit of feedback could equal the cost of 816

symbols. This number can be reduced by aggregating many packets to divide the

large constant cost of feedback across more useful bits. We explore the details of such

aggregation in §2.4. Even for Strider, the code with the largest packet size of those

we considered, transmitted frames are only on the order of 3750 symbols each, so that

a pause for feedback after each frame would occupy 18% of the total time spent on

transmission plus feedback.

Let

nf =
Tfeedback

# aggregated packets
· 12 million

symbols

sec

This is the amortized cost of feedback in units of foregone symbols. Note that higher

layers cannot tolerate an arbitrary increase in latency caused by excessive aggregation,

so one can never drive the cost of feedback to zero. Suppose that nf already takes into

account as much amortization as is possible subject to higher-layer latency constraints.
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We wish to send a packet whose length before any coding is b bits, after coding it

using a rateless code. The decoding CDF for the rateless code specifies P(n > ·), the

probability that decoding will be successful after receiving n symbols.

Consider a general transmission schedule for reliable delivery. The sender first

transmits n1 symbols, then pauses for feedback. If decoding fails, the sender transmits

n2−n1 symbols before pausing a second time. In sum, before the ith pause, the sender

transmits ni symbols. We seek an assignment of values to n1, n2, . . . that minimizes

the average time spent delivering each b-bit packet.

Let

pi = P(first success after i feedback rounds)

qi = P(stop after i feedback rounds).

These two quantities differ if the sender gives up on this packet without success and

moves on to the next one. The sender will spend an average of
∑

i qi(ni + i · nf)
symbol-times on each message, including time spent transmitting and time spent

waiting for feedback.

The efficiency of a transmission strategy is the fraction of this time strictly necessary

for reliable delivery. Its formal definition is motivated by two observations.

1. For any feedback-based link-layer protocol, it is essential that the sender solicit

feedback at least once for each network-layer packet to ensure that it has been

received, so the sender can then proceed to the next packet.

2. It is necessary for the transmitter to transmit, on average, at least E[n] symbols.

If the transmitter sends less than this number of symbols, then it follows that

some fraction of packets are not decoded correctly.

Combining these two observations, we define efficiency as

η =
E[n] + nf∑
i qi(ni + inf )

(2.1)
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Note that if nf is nonzero, the only way to achieve perfect efficiency will be for

the sender to guess n correctly every time. If n has positive entropy arising from

unpredictable channel variations, as in practice, we will be unable to achieve 100%

efficiency, but our goal is to come as close as possible to the ideal efficiency.

Minimizing the time spent delivering a message is equivalent to maximizing η. In

principle, this problem seems like a difficult multi-dimensional search, but it turns out

that the optimal ni assignments can be obtained by dynamic programming using only

the decoding CDF as input. The optimal substructure in this problem is revealed by

interpreting the transmitter’s decisions in the framework of a dynamic game, as we

explain next.

2.2.3 Dynamic Game Formulation

Suppose that we are playing a game against nature, and that nature chooses n from

the known decoding CDF distribution but does not tell us the value. Our first move

is to transmit n1 symbols; nature’s behavior is to use its hidden knowledge of n to

determine whether the game ends or continues. We then transmit n2 − n1 symbols,

and nature once more determines whether the game ends, and so on.

Our score at the end of the game is the negative of the total time we spent

transmitting symbols or waiting for feedback (we measure the time in units of “symbol-

time”). The negative is because we want the game to end as soon as possible. Because

nature only acts to end the game, the optimal strategy depends only on nf and the

distribution of n (the decoding CDF), but not on any information arising during

gameplay.

To develop an optimal strategy for the game, we apply backward induction.

Supposing we find ourselves at some node of the decision tree where i symbols have

already been transmitted, we must decide how many additional symbols j∗i we will

transmit before pausing to minimize our expected time-to-completion. For some choice
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of j, the corresponding expected time is

tij = j + nf + P(n > i+ j |n > i)t(i+j)j∗i+j

That is, we pay an immediate cost of j + nf , and with some probability given by the

decoding CDF and expressed in the third summand above, the game will continue

and we will incur additional costs according to our optimal strategy. The third term

is somewhat counter-intuitive: it says that with probability P(n > i+ j |n > i), the

additional time required is t(i+j)j∗i+j
; the tricky part is that the expression of tij now

depends on t`j′ , where the index ` = i+ j is greater than i.

We address this issue below, but for now observe that choosing

j∗i = arg min
j>0

tij

t∗i = tij∗i so that we can write

t∗i = j∗i + nf + P(n > i+ j∗i |n > i)t∗i+j∗i (2.2)

produces the optimal strategy2.

The reason is that if we know the optimal strategy and the corresponding expected

time for all i′ > i, then we can compute the strategy and expected time for i. So, if n

were bounded above by some finite value, one can use dynamic programming to find

the optimal strategy to minimize the expected completion time for all i. We would

then choose n1 = j∗0 , ni+1 = ni + j∗ni
.

2.2.4 Finite Termination by Tail Fitting

Some finesse is required to terminate the infinite recursion onto larger and larger i.

The problem is that one may easily encounter a point where there is no information

available from the decoding CDF for some number of symbols, n∗, required to make

progress; i.e., we have no information about P(n > n∗ = i + j∗). What RateMore

does in this situation is to revert to the best possible periodic-rate schedule given all

2The strategy is a subgame perfect equilibrium.
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the information known. It produces a schedule where the sender pauses after sending

j∗ symbols, obtaining the feedback, and then continuing, until either the packet is

decoded or the sender gives up. If the packet gets decoded, the sender will have

obtained information about the decoding CDF for this point in the state space, which

will improve the subsequent operation of the protocol.

To determine j∗, we replace the tail of our distribution for n with an analytic form,

which produces a stationary optimal strategy. Rearranging the terms in Equation

(2.2) and replacing the t’s with a fixed (stationary) value on both sides, we find

t∗ = j∗ + nf + P(n > i+ j∗ |n > i)t∗

1− j∗ + nf
t∗

= P(n > i+ j∗ |n > i)

=
P(n > i+ j∗)

P(n > i)

The memoryless (geometric) distribution satisfies this property. We fit a geometric

tail onto our distribution and compute j∗ and t∗ for it to bootstrap the recursion onto

finite i.

We could instead have set the complementary CDF to be zero above some finite

n, but this introduces undesirable oscillations into the computed expected time and

strategy variables, and does not offer any insight into what the transmitter should

do if it does eventually find itself in the position of choosing a j for some i larger

than this limit. With the geometric tail, the transmitter simply falls back to sending

the stationary number j∗ of symbols before each pause. This distinction is especially

important during the process of learning the empirical CCDF, because the sender will

have no data for the probability of n > nmax, where nmax is the largest n we have

observed so far.

For the memoryless distribution with geometric parameter 0 < β < 1, we solve to
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obtain

β−j + j log β = 1− nf log β

⇒ k = ln(k + γ), where

k , −j log β

γ , 1− nf log β

Solving iteratively,

k1 = γ ki+1 = ln(ki + γ)

j∗tail = − k∞
log β

t∗tail =
j∗ + nf
1− βj∗

In practice, the iteration converges rapidly.

Another useful special case of the dynamic programming algorithm is for n = c+ g

where c is a constant and g is geometrically distributed with parameter β. In this case,

we reuse the above calculation for j∗tail, but take ni = c+ i · j∗tail. That is, the first

step is to send c+ j∗tail symbols, and each subsequent step is to send j∗tail symbols. This

form for the distribution of n turns out to be a reasonable practical approximation to

the empirical behaviors of the spinal code and Strider.

2.2.5 An Example

This section will use Figure 2-1 to illustrate the behavior of the dynamic programming

strategy using a synthetic decoding CDF for purposes of illustration. We proceed

top-to-bottom, then left-to-right. The top-left plot shows a CDF and when we would

pause for feedback with various delays, nf . The mapping of colors3 to feedback costs

is shown on the right axis. The middle-left and bottom-left plots show the estimated

remaining time and optimal forward strategy for the same CDF after some number

3Unfortunately, this chart is best viewed in color; we recognize that it is a problem when not
viewed online or on a color print-out; note, however, that the different “levels” correspond to different
feedback costs.
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Figure 2-1: An illustration of the output of the dynamic programming algorithm,
explained in §2.2.5.

of symbols have been transmitted. The circles show the best division into feedback

intervals, starting at zero and stepping forward according to the bottom-left plot.

The top-right plot shows how the optimal strategy chooses a variable level of

pre-feedback confidence of decoding. For the constant-plus-geometric distribution, for

example, the lines would be flat. The other two plots on the right column show how

tail-fitting gives us reasonable behavior even after dozens of round-trips (which might

be reasonable if the cost of feedback is low enough).
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2.3 Learning the Decoding CDF

The decoding CDF is the primary input to the dynamic programming algorithm,

specifying the probability that a given number of symbols will be required by the

receiver for successful decoding. These probabilities depend on current channel

conditions. When the channel can be characterized by a single parameter, we can

obtain CDFs for different values of that parameter using off-line simulations or

experiments. For example, in the case of the additive white Gaussian noise channel

(AWGN) we could obtain CDFs for a range of signal-to-noise ratio (SNR) values. In

practice, however, wireless radios operate in complex environments, and we expect

the channel to have too many parameters for such an approach to be practical; we

expect these parameters to vary unpredictably over time; and we expect that off-line

simulations will differ significantly from the actual implemented system.

A robust alternative to this approach is to learn the CDF on the fly: that is,

to estimate the CDF based on the recent history of number of symbols required

for successful decoding at the receiver. The sender always consults the strategy

derived from the most recent CDF estimate. This form of online learning directly

accommodates variations in channel conditions due to fading and mobility.

The most general empirical distribution for the probability of successful decoding

after any number number of symbols is the multinomial distribution. Thus, a very

general Bayesian approach would be to learn this multinomial distribution beginning

from a Dirichlet prior. This entails maintaining a histogram over the number of

symbols required for decoding so far. While straightforward, a model with such a large

state-space leads to slow learning and slow adaptation to variations in the channel.

Ideally, we would like to maintain a parametric distribution with a minimal

number of parameters as our surrogate for the actual CDF. With this in mind,

we propose two approaches: (a) Gaussian approximation, and (b) Constant-plus-

Geometric approximation. From these, we pick the Gaussian approximation, for the

reasons explained below.

Gaussian approximation. Our inspection of the decoding CDFs indicates that the
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Gaussian distribution should be a reasonable approximation at low SNR. Maximum-

likelihood (ML) estimation for the Gaussian distribution requires nothing more than

computing the empirical mean and variance of the number of symbols needed for

successful decoding, which can be accomplished with a few accumulators. In the face

of time-varying conditions, the empirical mean and variance can be filtered using a

moving average or a similar scheme.

We chose to use Algorithm 1 for learning a Gaussian CDF. The algorithm keeps

exponentially-weighted accumulators to estimate the mean, µ, and variance, σ2. The

parameter α ranges from 0 (no memory) to 1 (unlimited memory). The averages track

the input with a time constant of 1/ ln(1/α). This scheme has two advantages over

a traditional exponentially-weighted moving average of the form y ← (1− α)x+ αy.

First, the start-up transient dies out more quickly because we weight our initial

conditions less heavily. Second, the estimator’s behavior is well-defined for α = 1:

inputs are retained forever, and we recover the ML estimator.

Algorithm 1 Gaussian learning with exponentially weighted moving average. Long-
term performance is not sensitive to initial values.

function init():
samples← 1
sum← 100 (for instance)
sumsq← sum2 + 102 (for instance)

function learn(sample, α):
samples← samples · α + 1
sum← sum · α + sample

sumsq← sumsq · α + sample2

function get ccdf(x):
µ = sum/samples
σ2 = sumsq/samples− µ2

return normal ccdf(µ, σ2, x)

We present results in §3 showing that under the Gaussian approximation, per-

formance of RateMore when the true decoding CDF is not available differs by only

a few percent from performance when the true CDF is available. At low SNR, the

Gaussian approximation with a memory parameter of α = 0.99 performs within 1% of

the known-CDF case. We also show that very aggressive learning rates of α = 0.80
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perform very well on simulated fading channels.

Constant-plus-Geometric approximation. The Constant-plus-Geometric approx-

imation treats the random variable n as n = c + g, where c is a constant and g is

a geometric random variable with parameter β. Like the Gaussian, this family of

distributions has two parameters, c and β. We considered this approximation because

of the analogy with the presence of error exponents in most good codes. When a code

has an error exponent, the probability of a decoding error after transmitting n symbols

scales as exp(−γn) for some constant γ as long as n is large enough to push the rate

below the channel capacity. This minimal n corresponds to the constant summand c,

and the exponential drop in error probability with increasing n corresponds to the

geometric drop in probability of unsuccessful decoding with increasing g.

Additionally, if this approximation is good, the the resulting dynamic programming

strategy has a simple form: for the first transmission, send a number of symbols

c + j∗tail, then pause for feedback. If the receiver has not decoded the transmission,

send j∗tail more symbols before each subsequent request for feedback.

Unfortunately, despite this elegance, this distribution does not have a convenient

maximum-likelihood estimator. The most likely value of the constant c is upper

bounded by the min of n observed over all decoding attempts. In practice, this will

lead the dynamic programming algorithm to under-estimate the number of symbols

necessary for decoding. For this reason, we performed our experiments using the

Gaussian approximation.

2.4 Packing Packets and Block ACKs

Rateless codes, particularly in high bandwidth situations, benefit from a method

to pack symbols belonging to multiple distinct network-layer packets into the same

link-layer frame, and using a “block ACK” scheme (as in 802.11e/n) to amortize the

cost of sending feedback about the decoding state of each packet. Packing packets

into a single frame is a useful amortization not only when the packets are small in size,

but also when only a few more symbols are required to be transmitted to successfully
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decode the packet. As link rates increase, it is likely that any code (whether rateless

or using incremental redundancy) that decodes using symbols from previous frame

transmissions will benefit from packing multiple distinct packets into the same frame

and using block ACKs.

If per-packet latency were not a concern, we could pack as many packets as we wish

into one frame, making nf as small as we wish. In practice, however, we care about

this metric: for example, if we consider a high-definition video/audio teleconference,

the maximum wireless per-packet latency might be set to 50 ms, which at a bit rate of

1.5 Mbits/s works out to nf =. RateMore’s dynamic programming method assumes

that nf is exogenously given by such latency requirements, and that it has already

been amortized over multiple in-flight packets packed into one frame.

To efficiently pack and unpack symbols from multiple packets into a single trans-

mitted frame, we observe that because the sender’s decoding CDF is learned from

the receiver’s feedback, both the sender and receiver can agree on the exact CDF and

hence the exact feedback schedule currently in use. The sender encodes the length of

the packet (in symbols) in the Signal field as in 802.11, which is transmitted inside a

4 µs OFDM symbol. From this field, the receiver of a packet knows immediately how

many symbols it will receive in all. The problem is to allocate a certain number of

symbols for packet 1, then the symbols for packet 2, and so on, as shown in Figure 2-2.

The solution to this problem is as follows. When the sender transmits the first

frame, the receiver consults its copy of the feedback schedule to see how many symbols

should have been included for a packet for which no symbols have previously been

sent (obviously, this number would be the same for every packet). For example, the

schedule may recommend sending 100 symbols before pausing for feedback. If a frame

is received with length 500 symbols, the receiver infers that the sender wants to deliver

5 packets (as in Figure 2-2).

After the frame ends and the receiver finishes attempting to decode each packet, it

sends an acknowledgment (ACK) frame to the sender including a short field (e.g., 6

bits) for each such packet. If the field for packet i is all ones (NAK), the packet has

not been decoded successfully, so the sender should consult its feedback schedule (also
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preamble & header

Sender:

Receiver:

SIFS SIFS

31 49NAK NAK NAK

1 2 3 4 5 1 3 4

ACK ACK

Figure 2-2: Symbols from many packets are aggregated into a frame in order to
amortize the cost of the short inter-frame spaces (SIFS, 16µs) and preambles/headers.

known to the receiver) and include more symbols for that packet in the next frame.

Otherwise, decoding was successful; in this case, the ACK field encodes the fraction of

this last frame’s symbols for packet i that was needed to achieve a successful decoding.

Using this feedback, the sender can calculate the number of symbols that were needed

to decode any given packet to estimate the decoding CDF using the learning algorithm

(§2.3).

In general, because the sender and the receiver both agree on the updated CDF,

the receiver will now know how many symbols for each unfinished packet will be in

the next frame. For example, in Figure 2-2, three packets out of five were not decoded

successfully. Each of those packets will have the same number of additional symbols

sent in the next frame (for example, 20 symbols, according to the feedback schedule).

In addition, the frame would include symbols from new packets; each of those new

packets would send the same number of symbols given by the feedback schedule for

new packets.

The key insight in this scheme is that we do not need to explicitly communicate

the number of symbols per packet being transmitted because both parties know the

schedule. This scheme works correctly if frames and ACKs are not lost, which can be

engineered by ensuring that the preamble and headers are sent at low rates (one can

extend this protocol to handle frame and ACK loss with some effort).

2.5 Software Implementation

Our implementation comprises several interconnected simulations written in C++ and

Python.

Codes and Channel Models. To obtain raw decoding CDFs, we performed thou-
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Code Parameter Value

Spinal
Message size 256 bits

k 4 bits/half symbol
B 256 candidates/beam

Constellation QAM-220

Strider

K 33 layers
M 1500 bits/layer

Message size 50490 bits
Outer code 1/5-rate turbo

Raptor

Message size 9500 bits
LT degree dist. As per RFC [39]
LDPC design As per Shokrollahi [50]
LDPC rate 0.95

Constellation QAM-64

Table 2.1: Parameters for the underlying rateless codes.

sands of experiments with the Spinal, Strider, and Raptor codes using the parameters

shown in Table 2.1. The experiments produced decoding CDFs for SNRs from −5

to 35 dB on both stationary additive white Gaussian noise (AWGN) and fast-fading

Rayleigh channels. The decoders had access to channel information. The slow-fading

experiments used the decoding CDFs from the stationary channel, because in this

regime the channel coefficients fluctuate over a time scale much longer than a packet

(e.g., 45 ms for a receiver moving at 10 km/hr).

To simulate slow Rayleigh fading, we directly synthesized a Gaussian process with

the appropriate Doppler spectrum and used the result as a time series of channel

coefficients. Noise power was maintained at a constant fraction of the average signal

power. Given the Rayleigh channel coefficient and the ratio of average signal power

to noise power, we computed an appropriate instantaneous SNR. For the “ideal

adaptation” results in the next section, we then selected the corresponding raw

decoding CDF from our empirical data by interpolating between CDFs at the nearest

SNRs. RateMore itself learns the CDFs online using the Gaussian approximation.

Interestingly, despite the approximation, the system’s performance is as good as using

the raw CDFs.

Timing. To obtain accurate values for nf as well as throughput and latency, we
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built a timing model for transmission and feedback on a 20 MHz half-duplex OFDM

channel designed to mimic 802.11a/n. We included the overhead associated with

preamble synchronization, and assumed that all feedback was transmitted at the

lowest 802.11a/n rate of 6 Mbps for reliable delivery. We did not include a simulation

of contention, but we used the SIFS interval (16 µs) to determine how long the parties

would have to wait for the ACK stage.

Because the nature of our transmission schedule is to periodically incur negative

acknowledgements, we wanted to ensure that in such cases the communication proceeds

to successful completion before the channel is relinquished. This avoids receivers

having to maintain large buffers for several ongoing conversations. Therefore, in our

simulation the transmitter resumes transmitting after SIFS elapses from the receipt of

an ACK frame.

Dynamic programming algorithm. Our implementation allows for the possibility

of “sparse” CDFs whose values are known only for some isolated values of the number

of symbols n. For the Spinal code, we found that choosing the values of n corresponding

to 1/8th-passes sacrificed virtually no performance while reducing the search space for

the algorithm by a factor of roughly 8. For Strider, n should be a multiple of 3840

symbols.

The sender runs Algorithm 2 to determine how many symbols should be sent

before each feedback. The points at which the CDF is known are given by xi. The

steady-state values j∗tail and t∗tail are computed as described in §2.2.4, and itail denotes

the index into the xi where recursion is terminated and the steady-state behavior

takes over.

A value ji returned from Algorithm 2 specifies that after a failed decode attempt

with xi symbols, the next decode attempt should occur with xi+ji symbols. A sender

that gets a NAK after xi symbols should transmit xi+ji − xi more symbols before the

next feedback.

Given a feedback schedule, we use Equation (2.1) to compute the fraction η of

transmission time that is well-spent, and the overhead 1− η that is wasted.
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Algorithm 2 Given decoding CDF (sampled at xi) and nf , compute the transmission
schedule by minimizing Expected Time To Completion (ETTC).

ji, ti ← j∗tail, t
∗
tail for all i ≥ i0

for i = itail − 1 to 0 do
# compute strategy after xi transmitted symbols:
for j = 1 to itail − i do

# when transmitting xi+j − xi more symbols:
ETTCj ← (xi+j − xi) + nf + ti+j · P(n > xi+j |n > xi)

end for
# choose strategy that minimizes expected time:
ji, ti ← arg min{ETTCj},min{ETTCj}

end for
return j0, j1, · · ·

ARQ and Try-after-n HARQ. We implemented two alternative feedback schedules

for comparison, which we refer to as ARQ and Try-after-n HARQ. With ARQ, the

sender picks some number of symbols to transmit, then waits for feedback in the form

of an ACK. If it receives no ACK, it drops the packet and starts over. This scheme

effectively chooses a rated version of the rateless code, and does not incorporate

incremental redundancy. In principle, ARQ could choose a different rate for each

SNR value. However, existing ARQ systems with rate adaptation, like 802.11, do not

have such a large number of rates. 802.11n with one spatial stream has only eight.

We therefore require ARQ to pick eight rates to cover the SNR range from −5 to

35 dB. These eight rates are selected to maximize efficiency over all SNRs. For the

Spinal code, this maximization led us to select rates of 3.4, 6.2, 11, 19, 30, 43, 56, and

72 Mbits/s.

For Try-after-n HARQ, we picked a family of eight parameter values, as before,

and sent n additional symbols of incremental redundancy before each solicitation of

feedback.
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Chapter 3

Evaluating RateMore

We evaluate RateMore in simulation on stationary, slow-, and fast-fading AWGN

channels. Our principal results are summarized in Table 3.1.

3.1 Baseline comparison to ARQ, Try-after-n HARQ

Figure 3-1 shows the overhead of RateMore compared to ARQ and “Try-after-n”

HARQ running atop spinal codes with a feedback value nf = 20. These experiments

are using a stationary channel simulator that introduces Gaussian noise of different

variances. We run 20 trials of 100 packets at each SNR.

Across a range of SNRs, the reduction in overhead is between 2.6× and 3.8×
relative to ARQ, and between 2.8× and 5.4× relative to HARQ. These reductions are

significant; they translate to link-layer throughput improvements up to 26%.

3.2 Slow-fading Rayleigh channel

Using our simulated Rayleigh fading coefficients for a Doppler velocity of 10 meters

per second, we compared the throughput of RateMore running with known CDFs and

SNR against the throughput of RateMore with Gaussian CDF learning. Figure 3-2

shows a typical trace of 100 milliseconds of adaptation on a fading channel. The

average SNR is 15 dB. We found that long integration times (e.g. learning parameter
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Fig., § Experiment Result
3-1, §3.1 RateMore vs. ARQ, Overhead reduced by up to 5.4×; throughput

Try-after-n HARQ increased by up to 26.6%.
3-2, 3-3, Learning under slow Throughput only 1.57% below case of known
§3.2 Rayleigh fading CDFs and SNR.
3-4, §3.3 RateMore efficiency Better than 88% efficiency even when

for various nf nf = 100: time is well spent.
3-5, §3.4 Impact of learning RateMore’s learning has an impact of only

on throughput 0.25%-6%.
3-6, §3.5 Streaming with a Block ACK scheduling and code agnosticism

latency requirement enables efficient streaming.
3-7, §3.6 Streaming on a fast- Less than 15% channel occupancy even at low

fading channel bandwidth.

Table 3.1: Summary of principal results.

α close to 1) were not necessary to obtain good performance. In fact, with α = 0.8,

corresponding to an exponential time constant of only 4.5 packets, we found aggregate

throughput with learning to be within 1.57% of throughput under known CDFs and

SNR. Figure 3-3 is a detail of Figure 3-2.

3.3 Efficiency

Figure 3-4 shows the efficiency of RateMore (we defined this metric in Equation (2.1))

across a range of SNRs for different values of the feedback cost, nf . These graphs are

for spinal codes (the other codes show similar results). We have grouped the data

according to “low”, “medium”, and “high” SNRs for illustration. In general, efficiency

is extremely high, always over 95% at medium and high SNRs, and over 88% for

low SNR values, even when nf is as high as 100. The conclusion is that RateMore

produces a good transmission schedule across different channel conditions.

3.4 How well does learning work?

Figure 3-5 shows the results of experiments that evaluate how much we lose in our

learning the decoding CDF compared to knowing the true CDF. We include the
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Figure 3-1: Performance with spinal codes and nf = 20. At low, medium, and high
SNR, respectively, RateMore reduces overhead by 3.8×, 2.9×, and 2.6× relative to
ARQ and 2.8×, 3.6×, and 5.4× relative to Try-after-n HARQ.

comparison for spinal codes, but the results are similar for other codes. At low and

medium SNRs, the cost of learning, i.e., how much we lose, is a negligible 2%. At

higher SNR values, the cost is always less than 6%, which is still tolerable.

The conclusion is that our Gaussian approximation of the decoding CDF, which

is a simple two-parameter fit (mean and variance) works extremely well, as does the

simple filtering method to estimate the mean and variance.

3.5 Streaming with a low-latency requirement

For spinal codes, Strider, and Raptor, we compared overhead and channel occupation

fraction using RateMore for streaming multimedia designed to emulate a Skype voice

and HD video call (Figure 3-6). The main constraint here is latency: we require that

the number of packets in flight, times the size of a packet, should represent no more

than 100 ms of audio or audio and video. The Strider and Raptor codes we used

have single-packet sizes larger than this limit for the low-rate voice call. In order to
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Figure 3-2: Learning performance of RateMore with spinal codes on a Rayleigh fading
AWGN channel. Noise power is 15 dB below average faded signal power, giving an
equivalent (in terms of capacity) stationary SNR of 12.8 dB. Doppler velocity is 10
m/s. The learning parameter α can be set to a very aggressive value of .8 for an
aggregate throughput within 1.57% of the known-SNR “ideal adaptation” throughput.
With nf = 10.
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Figure 3-3: Detail of Figure 3-2.

meet the latency requirements, these codes would be forced to transmit partly-empty

packets. Because RateMore is agnostic to the details of a specific rateless code, it

enables a direct comparison of different rateless coding schemes with different packet

sizes, including for instance the effects of relatively smaller packet sizes in spinal codes.

3.6 Streaming on a fast-fading channel

When run on CDFs generated for a fast-fading Rayleigh channel, RateMore still

maintains low overhead and channel occupation (Figure 3-7).
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Figure 3-4: Even though n is random, RateMore makes good guesses and thus wastes
very little time sending unnecessary symbols or waiting for unnecessary feedback.
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Figure 3-5: Gaussian learning performance on a stationary channel with spinal codes.
Mean and variance are smoothed by an exponentially-weighted moving average with
parameter α = .99. Steady-state performance is comparable to performance when
CDFs are fully known.
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low overhead in latency-critical environments. nf has been normalized according to
the largest number of parallel streams compatible with a given bandwidth-latency
product. Cases are shown for a minimum-quality Skype voice call and for an HD video
call. For an ideal user experience, latency should be less than 100 ms. Strider and
Raptor require relatively large packets, which prevents the use of aggregation on the
voice call – in fact, a single packet contains more than 100 ms of audio, as shown in
red. In order to meet the latency target at the expense of channel occupation, packets
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Figure 3-7: RateMore overhead and channel occupation on fast-fading Rayleigh
channels. nf has been normalized as in Figure 3-6
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Chapter 4

Hardware Spinal Decoder1

The search for good, practical codes has a long history, starting from Shannon’s

fundamental results that developed the notion of channel capacity and established the

existence of capacity-achieving codes. Shannon’s work did not, however, show how

to construct and decode practical codes, but it set the basis for decades of work on

methods such as convolutional codes, low-density parity check (LDPC) codes, turbo

codes, Raptor codes, and so on. Modern wireless communication networks use one or

more of these codes.

In recent work, we proposed and evaluated in simulation the performance of spinal

codes, a new family of rateless codes for wireless networks. Theoretically, spinal codes

are the first rateless code with an efficient (i.e., polynomial-time) encoder and decoder

that essentially achieve Shannon capacity over both the additive white Gaussian noise

(AWGN) channel and the binary symmetric channel (BSC).

In practice, however, polynomial-time encoding and decoding complexity is a

necessary, but hardly sufficient, condition for high throughput wireless networks. The

efficacy of a high-speed channel code is highly dependent on an efficient hardware im-

plementation. In general, the challenges include parallelizing the required computation,

and reducing the storage required to manageable amounts.

This chapter and the following one present the design, implementation, and

1 © ACM, 2012. This is the author’s version of the work. It is posted here by permission of ACM
for your personal use. Not for redistribution. The definitive version was published in ANCS ’12,
October 29-30, 2012. [26] <http://doi.acm.org/10.1145/2396556.2396593>
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evaluation of a hardware architecture for spinal codes. The encoder is straightforward,

but the decoder is tricky. Unlike convolutional decoders, which operate on a finite

trellis structure, spinal codes operate on an exponentially growing tree. The amount of

exploration the decoder can afford has an effect on throughput: if a decoder computes

sparingly, it will require more symbols to decode and thus achieve lower throughput.

This effect is shown in Figure 4-1. A näıve decoder targeted to achieve the greatest

possible coding gain would require hardware resources to store and sort upwards of a

thousand tree paths per bit of data, which is beyond the realm of practicality.

Our principal contribution is a set of techniques that enable the construction

of a high-fidelity hardware spinal decoder with area and throughput characteristics

competitive with widely-deployed cellular error correction algorithms. These techniques

include:

1. a method to select the best B states to maintain in the tree exploration at each

stage, called “α-β” incremental approximate selection, and

2. a method for obtaining hints to anticipate successful or failed decoding, which

permits early termination and/or feedback-driven adaptation of the decoding

parameters.

We have validated our hardware design with an FPGA implementation and on-air

testing. A provisional hardware synthesis suggests that a near-capacity implementation

of spinal codes can achieve a throughput of 12.5 Megabits/s in a 65 nm technology

while using substantially less area than competitive 3GPP turbo code implementations.

4.1 Background & Related Work

Wireless devices taking advantage of ratelessness can transmit at more aggressive rates

and achieve higher throughput than devices using fixed-rate codes, which suffer a more

substantial penalty in the event of a retransmission. Hybrid automatic repeat request

(HARQ) protocols reduce the penalty of retransmission by puncturing a fixed-rate

“mother code”. These protocols typically also require the use of ad hoc channel quality
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Figure 4-1: Coding efficiency achieved by the spinal decoder increases with the width
of the explored portion of the tree. Hardware designs that can admit wide exploration
are desirable.

indications to choose an appropriate signaling constellation, and involve a demapping

step to convert I and Q values to “soft bits”, which occupy a comparatively large

amount of storage.

Spinal codes do not require constellation adaptation, and do not require demapping,

instead operating directly on I and Q values. Spinal codes also impose no minimum rate,

with encoding and decoding complexity linear in the number of symbols transmitted.

They also retain the sequentiality, and hence potential for low latency, of convolutional

codes while offering performance comparable to iteratively-decoded turbo and LDPC

codes.

4.1.1 Spinal Codes

By way of background and for context, we review the salient details of spinal codes

here [46, 45].

The principle of the spinal encoder is to produce pseudo-random bits from the

message in a sequential way, then map these bits to output constellation points. As
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Figure 4-2: Computation of pseudo-random words si,j in the encoder, with hash
function application depicted by a diamond. Each m̄i is k message bits.

with convolutional codes, each encoder output depends only on a prefix of the message.

This enables the decoder to recover a few bits of the message at a time rather than

searching the huge space of all messages.

Most of the complexity of the encoder lies in defining a suitable sequential pseudo-

random generator. Most of the complexity of the decoder lies in determining the

heuristically best (fastest, most reliable) way to search for the right message.

Encoder The encoder breaks the input message into k-bit pieces m̄i, where typically

k = 4. These pieces are hashed together to obtain a pool of pseudo-random 32-bit

words si,j as shown in Figure 4-2. The initial value s0,0 = 0. Note that each hash

depends on k message bits, the previous hash, and the value of j. The hash function

need not be cryptographic.

Once a certain hash si,j is computed, the encoder breaks it into c-bit pieces

and passes each one through a constellation map f(·) to get b32/cc real, fixed-point

numbers. The numbers generated from hashes si,0, si,1 . . . are indexed by ` to form

the sequence xi,`.

The xi,` are reordered for transmitting so that resilience to noise will increase

smoothly with the number of received constellation points. Symbols are transmitted

in passes indexed by `. Within a pass, indices i are ordered by a fixed, known

permutation [46].
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Decoder The algorithm for decoding spinal codes is to perform a pruned breadth-first

search through the tree of possible messages. Each edge in this tree corresponds to k

bits of the message, so the out-degree of each node is 2k, and a complete path from

the root to a leaf has N edges. To keep the computation small, only a fixed number

B of nodes will be kept alive at a given depth in the tree. B is named after the

analogy with beam search, and the list of B nodes is called the beam. At each step,

we explore all of the B · 2k children of these nodes and score each one according to the

amount of received signal variance that remains after subtracting the corresponding

encoded message. Lower scores (path metrics) are better. We then prune all but the

B lowest-scoring nodes, and move on to the next k bits. With high probability, if

enough passes have been received to decode the message, one of the B leaves recovered

at the end will be the correct message. Just as convolutional codes can be terminated

to ensure equal protection of the tail bits, spinal codes can transmit extra symbols

from the end of the message to ensure that the correct message is not merely one of

the B leaves, but the best one.

The decoder operates over received samples yi,` and candidate messages encoded

as x̂i,`. Scores are sums of (yi,` − x̂i,`)2. Formally, this sum is proportional to the log

likelihood of the candidate message. The intuition is that the correct message will

have a lower path metric in expectation than any incorrect message, and the difference

will be large enough to distinguish if SNR is high or there are enough passes. “Large

enough” means that fluctuations do not cause the correct message to score worse than

B other messages.

To make this more concrete, consider the AWGN channel with y = x+ n, where

the noise n is independent of x. We see that Var(y) = Var(x) + Var(n) = P · (1 + 1
SNR

),

where P is the power of the received signal. If x̂ = x, then Var(y − x̂) = P
SNR

.

Otherwise, Var(y− x̂) = P · (2 + 1
SNR

). The sum of squared differences is an estimator

of this variance and discriminates between the two cases.
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4.1.2 Existing M-Algorithm Implementations

The decoder described above is essentially the M-algorithm (MA) [3]. A block diagram

of MA is shown in Figure 4-3. In our notation, the expansion phase grows each of B

paths by one edge to obtain B · 2k new paths, and calculates the path metric for each

one. The selection stage chooses the best B of these, and the last stage performs a

Viterbi-style [42] traceback over a window of survivor paths to obtain the output bits.

There have been few recent VLSI implementations of MA, in part because modern

commercial wireless error correction codes operate on a small trellis [1]. It is practical

to instantiate a full Viterbi [16] or BCJR [4] decoder for such a trellis in silicon. MA

is an approximation designed to reduce the cost of searching through a large trellis or

a tree, and consequently it is unlikely to compete with the optimal Viterbi or BCJR

decoders in performance or area for such codes. As a result, the M-algorithm is not

generally commercially deployed. Existing academic implementations [19] [48] focus

on implementing decoders for rate 1/2 convolutional codes.

These works recognize that the sorting network is the chief bottleneck of the system,

and generally focus on various different algorithms for achieving implementations.

However, these implementations deal with very small values of B and k, for instance

B = 16 and k = 2, for which a complete sorting network is implementable in hardware.

Spinal codes on the other hand require B and k to be much larger in order to achieve

maximum performance. Much of the work in this chapter will focus on achieving

high-quality decoding while minimizing the size of the sort network that must be

constructed.

The M algorithm implementation in [48] leverages a degree of partial sorting among

the generated B · 2k nodes at the expansion stage. Although our implementation
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does not use their technique, their work, to the best of our knowledge, is the first

to recognize that a full sort is not necessary to achieve good performance in the

M-algorithm.

The M-algorithm is also known as beam search in the AI literature. Beam search

implementations do appear as part of hardware-centric systems, particularly in the

speech recognition literature [35] where it is used to solve Hidden-Markov Models

describing human speech. However, in AI applications, computation is typically

dominated by direct sensor analysis, while beam search which appears at a high level

of the system stack where throughput demands are much lower. As a result, there

seems to have no attempt to create a full hardware beam search implementation in

the AI community.

4.2 System Architecture

Our decoder is designed to be layered with an inner OFDM or CDMA receiver, so we

are not concerned with synchronization or equalization. The decoder’s inputs are the

real and imaginary parts (I and Q) of the received (sub)carrier samples, in the same

order that the encoder produced its outputs xn. The first decoding step is to invert

the encoder’s permutation arithmetic and recover the matrix yi,` corresponding to xi,`.

Because of the sequential structure of the encoder, yi,` depends on m̄1...i, the first ik

bits of the message. Each depth in the decoding tree corresponds to an index i and

some number of samples yi,`.

The precise number of samples available for some i depends on the permutation

and the total number of samples that have been received. In normal operation there

may be anywhere from 0 to, say, 24 passes’ worth of samples stored in the sample

memory. The upper limit determines the size of the memory.

To compute a score for some node in the decoding tree, the decoder produces the

encoded symbols x̂i,` for the current i (via the hash function and constellation map)

and subtracts them from yi,`. The new score is the sum of these squared differences

plus the score of the parent node at depth i− 1. In order to reach the highest level of
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performance shown in Figure 4-1, we need to defer pruning for as long as possible.

Intuitively, this gives the central limit theorem time to operate – the more squared

differences we accumulate, the more distinguishable the correct and incorrect scores

will be. This requires us to keep a lot of candidates alive (ideally B = 64 to 256) and

to explore a large number of children as quickly as possible.

There are three main implementation challenges, corresponding to the three blocks

shown in Figure 4-3. The first is to calculate B · 2k scores at each stage of decoding.

Fortunately, these calculations have identical data dependencies, so arbitrarily many

can be run in parallel. The calculation at each node depends on the hash si−1,0 from

its parent node, a proposal m̂i for the next k bits of data, and the samples yi,`. We

discuss optimizations of the path expansion unit in §4.4.

The second problem is to select the best B of B · 2k scores to keep for the next

stage of path expansion. This step is apparently an all-to-all shuffle. Worse yet, it is

in the critical path, since computation at the next depth in the decoding tree cannot

begin until the surviving candidates are known. In §4.3 we describe a surprisingly

good approximation that relaxes the data dependencies in this step and allows us to

pipeline the selection process aggressively.

The third problem is to trace back through the tree of unpruned candidates to

recover the correct decoded bits. When operating close to the Shannon limit (low SNR

or few passes), it is not sufficient, for instance, to put out the k bits corresponding to

the best of the B candidates. Viterbi solves this problem for convolutional codes using

a register-exchange approach reliant on the fixed trellis structure. Since the spinal

decoding tree is irregular, we need a memory to hold data and back-track pointers. In

§4.5, we show how we keep this memory small and minimize the time spent tracing

back through the memory, while obtaining valuable decoding hints.

While we could imagine building B · 2k path metric blocks and a selection network

from B · 2k inputs to B outputs, such a design is too large, occupying up to 1.2 cm2

(for B = 256) in a 65 nm process. Worse, the vast majority of the device would be

dark at any given time: data would be either moving through the metric units, or it

would be at some stage in the selection network. Keeping all of the hardware busy

56



W

Sample
RAM

Subcarriers
from OFDM stack

Selection Network

Traceback
Unit

Bits
to MAC

B

Figure 4-4: The initial decoder design with W workers and no pipelining.

would require pipelining dozens of simultaneous decodes, with a commensurate storage

requirement.

4.2.1 Initial Design

The first step towards a workable design is to back away from computing all of the

path metrics simultaneously. This reduces the area required for metric units and frees

us from the burden of sorting B ·2k items at once. Suppose that we have some number

W of path metric units (informally, workers), and we merge their W outputs into a

register holding the best B outputs so far. If we let W = 64, the selection network

can be reduced in area by a factor of 78 and in latency by a factor of three relative to

the all-at-once design, and workers also occupy 1/64 as much area. The cost is that

64 times as many cycles are needed to complete a decode. This design is depicted in

Figure 4-4. The procedure for merging into the register is detailed in §4.3.1.

4.3 Path Selection

To address the problem of performing selection efficiently, we describe a series of

improvements to the sort-everything-at-once baseline. We require the algorithm to be

streaming, so that candidates are computed only once and storage requirements are

minimal.
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4.3.1 Incremental Selection

This network design accepts W fresh items and B old items, and produces the B best

of these, allowing candidates to be generated over multiple cycles (Figure 4-5). While

the W fresh items are in arbitrary order, it is possible to take advantage of the fact

that the B old items are previous outputs of the selection network, and hence can be

sorted or partially sorted if we wish. In particular, if we can get independently sorted

lists of the best B old candidates and the best B new candidates, we can merge the

lists in a single step by reversing one list and taking the pairwise min. The result will

be in bitonic order (increasing then decreasing). Sorting a bitonic list is easier than

sorting a general list, allowing us to save some comparators. We register the bitonic

list from the merger, and restore it to sorted order in parallel with the sorting of the

W fresh items. If W 6= B, a few more comparators can be optimized away. We use

the bitonic sort because it is regular and parametric. Irregular or non-parametric sorts

are known which use fewer comparators, and can be used as drop-in replacements.

4.3.2 Pipelined Selection

The original formulation of the decoder has a long critical path, most of which is spent

in the selection network. This limits the throughput of the system at high data rates,

since the output of the selection network is recirculated and merged with the next set

of W outputs from the metric units. This dependency means that even if we pipeline

the selection, we will not improve performance unless we find another way to keep the
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pipeline full.

Fortunately, candidate expansion is perfectly parallel and sorting is commutative.

To achieve pipelining, we divide the B · 2k candidates into α independent threads of

processing. Now we can fill the selection pipeline by recirculating merged outputs for

each thread independently, relaxing the data dependency. Each stage of the pipeline

operates on an independent thread.

This increases the frequency of the entire system without introducing a dependency

bottleneck. Registers are inserted into the pipeline at fixed intervals, for instance after

every one or two comparators.

At the end of the candidate expansion, we need to eliminate B(α− 1) candidates.

This can be done as a merge step after sorting the α threads at the cost of around

α logα cycles of added latency. This may be acceptable if α is small or if many cycles

are spent expanding candidates (B · 2k � W ).

4.3.3 α-β Approximate Selection

We now have pipeline parallelism, which helps us scale throughput by increasing clock

frequency. However, we have yet to consider a means of scaling the B and k parameters

of the original design. An increase in k improves the maximum throughput of the

design linearly while increasing the amount of computation exponentially, making this

direction unattractive. For fixed k, scaling B improves decoding strength.

In order to scale B, we need to combat the scaling of sort logic, which is Θ(B logB)+

Θ(W log2W ) in area and Θ(max(logB, log2W )) in latency. Selection network area

can quickly become significant, as shown in Table 4.1. Fortunately, we can dodge this

cost without a significant reduction in decoding strength by relaxing the selection

problem.

First, we observe that if candidates are randomly assorted among threads, then on

average β , B
α

of the best B will be in each thread. Just as it is unlikely for one poker

player to be dealt all the aces in a deck, it is unlikely (under random assortment) for

any thread to receive significantly more than β of the B best candidates.

Thus, rather than globally selecting the B best of B · 2k candidates, we can
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Beam Width 8 Workers 16 Workers 32 Workers

8 14601
16 22224 44898
32 39772 61389 122575

Table 4.1: Area usage for various bitonic sorters in µm2 using a 65 nm process. An
802.11g Viterbi implementation requires 120000 µm2 in this process.

W

Sample
RAM

Subcarriers
from OFDM stack

Selection Network

Traceback
Unit

Bits
to MAC

Figure 4-6: A parametric α-β spinal decoder with W workers. A shift register of
depth α replaces the ordinary register in Figure 4-4. Individual stages of the selection
pipeline are not shown, but the width of the network is reduced from B to β = B/α.

approximate by locally selecting β = B
α

from each thread. There are a number of

compelling reasons to make this trade-off. Besides eliminating the extra merge step,

it reduces the width of the selection network from B to β, since we no longer need to

keep alive the B best items in each thread. This decreases area by more than a factor

of α and may also improve operating frequency. We call the technique α-β selection.

The question remains whether α-β selection performs as well as B-best selection.

The intuition about being dealt many aces turns out to be correct for the spinal

decoder. The candidates which are improperly pruned (compared with the unmodified

M-algorithm) are certainly not in the top β, and they are overwhelmingly unlikely

to be in the top B/2. In the unlikely event that the correct candidate is pruned, the

packet will fail to decode until more passes arrive. A detailed analysis is given in

§4.3.6.

Figure 4-6 is a block diagram of a decoder using α-β selection. Since each candidate

expands to 2k children, the storage in the pipeline is not sufficient to hold the B

60



surviving candidates while their children are being generated. A shift register buffer

of depth α placed at the front of the pipeline stores candidates while they await path

expansion. We remark in passing that letting α = 1, β = B recovers the basic decoder

described in §4.3.1.

4.3.4 Deterministic α-β Selection

One caveat up to this point has been the random assortment of the candidates among

threads. Our hardware is expressly designed to keep only a handful of candidates

alive at any given time, and consequently such a direct randomization is not feasible.

We would prefer to use local operations to achieve the same guarantees, if possible.

Two observations lead to an online sorting mechanism that performs as well as

random assortment. The first is that descendants of a common parent have highly

correlated scores. Intuitively, the goal is not to spread the candidates randomly, but

to spread them uniformly. Consequently, we place sibling candidates in different

threads. In hardware this amounts to a simple reordering of operations, and entails

no additional cost.

The second observation is that we can randomize the order in which child candidates

are generated from their parents by scrambling the transmitted packet. The hash

function structure of the code guarantees that all symbols are identically distributed,

so the scores of incorrect children are i.i.d. conditioned on the score of their parents.

This guarantees that a round-robin assignment of these candidates among the threads

is a uniform assignment. The children of the correct parent are not i.i.d., since one

differs by being the correct child. By scrambling the packet, we ensure that the correct

child is assigned to a thread uniformly. The scrambler can be a small linear feedback

shift register in the MAC, as in 802.11a/g.

The performance tradeoffs for these techniques are shown in Figure 4-9. Combining

the two proposed optimizations achieves performance that is slightly better than a

random shuffle.
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Figure 4-7: Decoder performance across α and β parameters. Even β=1 decodes with
good performance.
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Figure 4-8: Concatenated selection network, emulating a β, W network with γ smaller
selection networks.

4.3.5 Further Optimization

A further reduction of the α-β selection network is possible by concatenating multiple

smaller selection networks as shown in Figure 4-8. This design has linear scaling

with W . One disadvantage is that child candidates are less effectively spread among

threads if a given worker only feeds into a single selection network. At the beginning

of decoding, for instance, this would prevent the children of the root node from ever

finding their way into the workers serving the other selection networks, since no wires

cross between the selection networks or the shift registers feeding the workers. A

cheap solution is to interleave the candidates between the workers and the selection

networks by wiring in a rotation by W
2γ

. This divides each node’s children across

two selection networks at the next stage of decoding. A more robust solution is to

multiplex between rotated and non-rotated wires with an alternating schedule.

4.3.6 Analysis of α-β Selection

We consider pipelining the process of selecting the B best items out of N (i.e. B · 2k).
Our building block is a network which takes as input W unsorted items plus β

bitonically presorted items, and produces β bitonically sorted items.

Suppose that registers are inserted into the selection network to form a pipeline of
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depth α. Since the output of the selection network will not be available for α clock

cycles after the corresponding input, we will form the input for the selection network

at each cycle as W new items plus the β outputs from α cycles ago. Cycle n only

depends on cycles n′ ≡ n (mod α), forming α separate threads of execution.

After N/W uses of the pipeline, all of the threads terminate, and we are left with

α lists of β items. We’d like to know whether this is a good approximation to the

algorithm which selects the αβ best of the original N items. To show that it is, we

state the following theorem.

Theorem 1. Consider a selection algorithm that divides its N inputs among N/n

threads, each of which individually returns the best β of its n inputs, for a total of

Nβ/n results. We compare its output to the result of an ideal selection algorithm

which returns precisely the Nβ/n best of its N inputs. On randomly ordered inputs,

the approximate output will contain all of the best m inputs with probability at least

P ≥ 1−
m∑
i=1

n∑
j=β

(
n−1
j

)(
N−n
i−j−1

)(
N−1
i−1

) (4.1)

For e.g. N = 4096, n = 512, β = 32, this gives a probability of at least 1−3.1 ·10−4

for all of the best 128 outputs to be correct, and a probability of at least 1/2 for all

of the best 188 outputs to be correct. Empirically, the probability for the best 128

outputs to be correct is 1− 2.4 · 10−4, so the bound is tight. The empirical result also

shows that the best 204 outputs are correct at least half of the time.

Proof. Suppose that the outputs are sorted from best to worst. Suppose also that

the input consists of a random permutation of (1, . . . , N). For general input, we can

imagine that each input has been replaced by the position at which it would appear

in a list sorted from best to worst. Under this mapping, the exact selection algorithm

would return precisely the list (1, . . . , Nβ/n). We can see that the best m inputs

appear in the output list if and only if m is the mth integer in the list. Otherwise,
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some item i ≤ m must have been discarded by the algorithm. By the union bound,

P(mth output 6= m) ≤
m∑
i=1

P(i discarded)

An item i is discarded only when the thread it is assigned also finds at least β

better items. So

P(i discarded) = P(∃β items < i in same thread)

=
n∑
j=β

P(exactly j items < i in same thread)

What do we know about this thread? It was assigned a total of n items, of which

one is item i. Conditional on i being assigned to the thread, the assignment of the

other n− 1 (from a pool of N − 1 items) is still completely random. There are i− 1

items less than i, and we want to know the probability that a certain number j are

selected. That is, we want the probability of drawing exactly j colored balls in n− 1

draws from a bucket containing N − 1 balls, of which i− 1 are colored. The drawing

is without replacement. The result follows the hypergeometric distribution, so the

number of colored balls is at least β with probability

P(i discarded) =
n∑
j=β

(
n−1
j

)(
N−n
i−j−1

)(
N−1
i−1

)
Thus, we have

P(best m outputs correct) =

1− P(mth output 6= m) ≥ 1−
m∑
i=1

n∑
j=β

(
n−1
j

)(
N−n
i−j−1

)(
N−1
i−1

)
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Similarly, the expected number of the best m inputs which survive selection is

E

[
m∑
i=1

1{i in output}

]
=

m∑
i=1

P(i in output)

= m−
m∑
i=1

n∑
j=β

(
n−1
j

)(
N−n
i−j−1

)(
N−1
i−1

)
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Figure 4-9: Frequency of errors in α-β selection with B · 2k = 4096 and β = 32, α = 8. The lower order statistics (on the left
of each graph) are nearly perfect. Performance degrades towards the right as the higher order statistics of the approximate
output suffer increasing numbers of discarded items. The graph on the left measures the probability mass missing from the main
diagonal of the color matrix on the right. The derandomized strategy makes fewer mistakes than the fully random assortment.
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4.4 Path Expansion

Thanks to the optimizations of §4.3, path metric units occupy a large part of the area

of the final design. The basic worker is shown in Figure 4-10. This block encodes

the symbols corresponding to k bits of data by hashing and mapping them, then

computes the squared residual after subtracting them from the received samples. In

the instantiation shown, the worker can handle four passes per cycle. If there are

more than four passes available in memory, it will spend multiple cycles accumulating

the result. By adding more hash blocks, we can handle any number of passes per

cycle; however, we observe that in the case where many passes have been received and

stored in memory, we are operating at low SNR and consequently low throughput.

Thus, rather than accelerate decoding in the case where the channel and not the

decoder is the bottleneck, we focus on accelerating decoding at high SNR, and we

only instantiate one hash function per worker in favor of laying down more workers.

We can get pipeline parallelism in the workers provided that we take care to pipeline

the iteration control logic as well.

parent score

parent hash

data h
32

c

j

f

Split Map Subtract Square

Samples

Sum Accumulate

child
scoref

f
f

Hash

-
-

-
-

Figure 4-10: Schematic of the path metric unit. Over one or more cycles indexed by
j, the unit accumulates squared differences between the received samples in memory
and the symbols which would have been transmitted if this candidate were correct.
Not shown is the path for returning the child hash, which is the hash for j = 0.

Samples in our decoder are only 8 bits, so subtraction is cheap. There are three

major costs in the worker. The first is the hash function. We used the Jenkins

one-at-a-time hash [32]. Using a smaller hash function is attractive from an area

perspective, but hash and constellation map collisions are more likely with a weaker
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hash function, degrading performance. We leave a satisfactory exploration of this

space to future work.

The second major cost is squaring. The samples are 8 bits wide, giving 9 bit

differences and nominally an 18 bit product. This can be reduced a little by taking

the absolute value first to give 8 × 8 → 16 bits, and a little further by noting that

squaring has much more structure than general multiplication. Designing e.g. a Dadda

tree multiplier for squaring 8 bits gives a fairly small circuit with 6 half-adders, 12

full-adders, and a 10 bit summation. By comparison, an 8×8 general Dadda multiplier

would use 7 half-adders, 35 full-adders, and a 14 bit summation.

The third cost is in summing the squares. In Viterbi, the scores of all the live

candidates differ by no more than the constraint length K times twice the largest

possible log likelihood ratio. This is because the structure of the trellis is such that

tracing back a short distance from two nodes always leads to a common ancestor.

Thanks to two’s complement arithmetic, it is sufficient to keep score registers that are

just wide enough to hold the largest difference between two scores.

In our case, however, there is no guarantee of common ancestry, save for the

argument that the lack of a recent common ancestor is a strong indication that

decoding will fail (as we show in §4.5). As a consequence, scores can easily grow into

the millions. We used 24 bit arithmetic for scores. We have not evaluated designs

which reduce this number, but we nevertheless highlight a few known techniques from

Viterbi as interesting directions for future work. First, we could take advantage of

the fact that in low-SNR regimes where there are many passes and scores are large,

the variance of the scores is also large. In this case, the low bits of the score may be

swamped with noise and rendered essentially worthless, and we should right-shift the

squares so that we accumulate only the “good” bits.

A second technique for reducing the size of the scores is to use an approximation

for the x2 function, like |x| or min(|x|, 1). The resulting scores will no longer be

proportional to log likelihoods, so the challenge will be to show that the decoder still

performs adequately.
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4.5 Online Traceback

The final stage of the decoder pipeline is traceback. Ideally, at the end of decoding,

traceback starts from the most likely child, outputting the set of k bits represented

by that child and recursing up the tree to that child’s parents. The problem with

this ideal approach is that it requires the retention of all levels of the beam search

until the end of decoding. As a result, traceback is typically implemented in an online

fashion wherein for each new beam, a traceback from the best candidate of c steps is

performed, and k bits are output. The variable c represents the constraint length of

the code, the maximum number of steps until all surviving paths converge on a single,

likely ancestor. Prior to this ancestor, all paths are the same. Because only c steps of

traceback need to be performed in-order to achieve this ancestor, only c beams worth

of data need to be maintained. For many codes, c is actually quite short. For example,

convolutional code traceback lengths are limited to 2s, where s is the number of states

in the code. In spinal codes, particularly with our selection approximations, bad paths

with long convergence distances may be kept alive. However in practice, convergence

occurs quite quickly in spinal codes, usually after one or two traceback steps.

Online traceback implementation are well-studied and appear in most implementa-

tions of the Viterbi algorithm. Viterbi implementations typically implement traceback

using the register-exchange microarchitecture [12, 43]. However, spinal codes can

have a much wider window of B live candidates at each backtrack step. Moreover,

unlike convolutional codes wherein each parent may have only two children, in spinal

codes, a parent may have 2k children, which makes the wiring the register-exchange

expensive. Therefore, we use the RAM-based backtrace approach [12]. Even hybrid

backtrace/register-exchange architectures [8] are likely to be prohibitive in complexity.

In this architecture, pointers and data values are stored in RAM and iterated over

during the traceback phase. For practical choices of parameters the number of bits

required is on the order of 10’s of kilobits. Figure 5-1 shows empirically obtained

throughput curves for various traceback lengths. Even an extremely short traceback

length of four is sufficient to achieve a significant portion of channel capacity. Eight
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steps represents a good tradeoff between decoding efficiency and area.

The traditional difficulty with traceback approaches is the long latency of the

traceback operation itself, which must chase c pointers to generate an output. We

note however, that c is a pessimistic bound on convergence. During most tracebacks,

“good” paths will converge long before c. Leveraging this observation, we memoize the

backtrack of the preceding generation, as suggested by Lin et al. [34]. If the packet

being processed will be decoded correctly, parent and child backtracks should be

similar. Figure 4-11 shows a distribution of convergence distances at varying channel

conditions, confirming this intuition.
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Figure 4-11: Average convergence distance between adjacent tracebacks, collected
across SNR and length. Near capacity, tracebacks begin to take longer to converge.

If, during the traceback pointer chase, we encounter convergence with the memoized

trace, we terminate the traceback immediately and return the memoized value. This

simple optimization drastically decreases the expected traceback length, improving
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throughput while simultaneously decreasing power consumption.

Backtrace
RAM

Trace Cache

Bits
to MAC

candidates

Figure 4-12: Traceback Microarchitecture. Some control paths have been eliminate to
simplify the diagram.

Figure 4-12 shows the microarchitecture of our backtrace unit. The unit is divided

in half around the traceback RAM. The front half handles finding starting points for

traceback from among the incoming beam, while the back half conducts the traceback

and outputs values. The relatively simple logic in the two halves permits them to be

clocked at higher frequencies than other portions of the pipeline. Our implementation

is fully parameterized, including both the parameters of the spinal code and the

traceback length.
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Chapter 5

Evaluating the Hardware Spinal

Decoder

5.1 Hardware Platforms

We use two platforms in evaluating our hardware implementation. Wireless algorithms

operate on the air, and the best way to achieve a high-fidelity evaluation is of wireless

hardware is to measure its on-air performance. The first platform we use to evaluate

the spinal decoder is a combination of an XUPV5 [55] and USRP2 [15]. We use the

USRP2 to feed IQ samples to an Airblue [41]-based OFDM baseband implemented on

the larger XUPV5 FPGA.

However, on-air operation is insufficient for characterizing and testing new wireless

algorithms because over-air operation is difficult to control. Experiments are certainly

not reproducible, and some experiments may not even be achievable over the air. For

example, it is interesting to evaluate the behavior of spinal codes at low SNR, however

the Airblue pipeline does not operate reliably at SNRs below 3 dB. Additionally, some

hardware standpoint, some interesting hardware configurations may operate too slowly

to make on-air operation feasible.

Therefore, we use a second platform for high-speed simulation and testing: the

ACP [40]. The ACP consists of two Virtex-LX330T FPGAs socketed in to a Front-

Side Bus. This platform not only offers large FPGAs, but also a low-latency, high-
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3G Turbo 3G Turbo Spinal Spinal
(1 dB) (1 dB) [11] (1 dB) (-5 dB)

Parity RAM 118 Kb 86kB
Systemic RAM 92 Kb 25kB
Interleaver RAM 16 Kb
Pipeline Buffer RAM 27 Kb 12kB
Symbol RAM 41Kb 135Kb
Backtrace RAM 8Kb 8Kb

Total RAM 253 Kb 123 kB 49Kb 143Kb

Table 5.1: Memory Usage for turbo and spinal decoders supporting 5120 bit packets.
Memory area accounts for more than 50% of turbo decoder area.

bandwidth connection to general purpose software. This makes it easy to interface a

wireless channel model, which is difficult to implement in hardware, to a hardware

implementation while retaining relatively high simulation performance. Most of our

evaluations of the spinal hardware are carried out using this high-speed platform.

5.2 Comparison with Turbo Codes

Although spinal codes offer excellent coding performance and an attractive hardware

implementation, it is important to get a feel for the properties of the spinal decoder as it

compares to existing error correcting codes. Turbo codes [6] are a capacity-approaching

code currently deployed in most modern cellular standards.

There are several metrics against which one might compare hardware implementa-

tions of spinal and turbo codes: implementation area, throughput, latency, and power

consumption.

A fundamental different between turbo codes, and spinal codes is that the former

is iterative, while spinal codes are streaming. This means that turbo implementation

must fundamentally use more memory than a spinal implementation since turbo

decoders must keep at least one pass worth of soft, extrinsic information alive at

any point in time. Because packet lengths are large and soft information is wide,

this extra memory can dominate implementation area. On the other hand, spinal
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codes store much narrower symbol information. We therefore conjecture that turbo

decoders must use at least twice the memory area of a spinal decoder with a similar

noise floor. This conjecture is empirically supported by Table 5.1, which compares

3G-compliant implementations of turbo codes with spinal code decoders configured to

similar parameters.

It is important to note that spinal decoder memory usage scales with the noise

floor of the decoder since more passes must be buffered, while turbo codes use a

constant memory area for any noise floor supported. If we reduce the supported noise

floor to 1 dB from -5 dB, then the area required by the spinal implementation drops

by around a factor of 4. This is attractive for short-range deployments which do not

require the heavy error correction of cellular networks.

5.3 Performance of Hardware Decoder

Figure 5-1 shows the performance of the hardware decoder across a range of operational

SNRs. Throughputs were calculated by running the full Airblue OFDM stack on

FPGA and collecting packet error rates across thousands of packets, a conservative

measure of throughput Generally the decoder performs well, achieving as much as

80% of capacity at relevant SNRs. The low SNR portion of the range is limited by

Airblue’s synchronization mechanisms which do not operate reliably below 3 dB.
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Figure 5-1: Throughput of hardware decoder with various traceback lengths.
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Table 5.2 shows the implementation areas of various modules of our reference

hardware decoder in a 65 nm technology. Memory area dominates the design, while

logic area is attractively small. The majority of the area of the design is taken up by

the score calculation logic. Individually, these elements are small. However there are

β of them in our parameterized design. The α-β selection network requires one-fourth

the design. In contrast, a full selection network for B = 64 requires around 360000

µm2, much more than our entire decoder.

As a basis for comparison, state of the art turbo decoders [11] at the 65 nm node

require approximately .3 mm2 for the active portion of the decoder. The remaining

area (also around .3 mm2) is used for memory. Our design is significantly smaller

in terms of area, using half the memory and around 80% the logic area. However,

our design at 200 MHz, processes at a maximum throughput of 12.5 Mbps, which is

somewhat lower than the Cheng et al., who approached 100 Mbps.

In our choice of implementation, we have attempted to achieve maximum decoding

efficiency and minimum gap-to-capacity. However, maximum efficiency may not yield

the highest throughput design. Should throughput be a priority, we note that there

are several ways in which we could improve the throughput of our design. The most

obvious direction is reducing B to 32 or 16. These decoders suffer slightly degraded

performance, but operate 2 and 4 times faster. Figure 5-2 shows an extreme case of

this optimization with B = 4. This design has low decoder efficiency, but much higher

throughput. We note that a dynamic reduction in B can be achieved with relatively

simple modifications to our hardware. A second means of improvement is optimizing

the score calculators. There are three ways to achieve this goal. First, we can increase

the number of score calculators. This is slightly unattractive because it also requires

scaling in the sorting network. Second, the critical path of our design runs through the

worker units and is largely unpipelined. Cutting this path should increase achievable

clock period by at least a few nano-seconds. Related to the critical path is the fact

that we calculate error metrics using Euclidean distance, which requires multiplication.

Strength reduction to absolute difference has worked well in Viterbi and should apply

to spinal as well. By combining these techniques it should be possible to build spinal
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Module Total Combinational Sequential RAM
(µm2) (µm2) (µm2) (Kbits)

Selection Network 60700 25095 35907
Backtrack 8575 3844 4720 8
Score Calculator 10640 8759 1881
SampleRAM 5206 2592 2613 41

Total 245526 181890 63703 49

Table 5.2: Area usage for modules with B = 64, W = β = 16, α = 4. Area estimates
were produced using Cadence Encounter with a 65 nm process, targeting 200 MHz
operating frequency. Area estimates do not include memory area.

decoders with throughputs greater than 100 Mbps.

5.4 On-Air Validation

The majority of the performance results presented in this chapter were generated via

simulation, either using an idealized, floating-point C++ model of the hardware or

using an emulated version of the decoder RTL on an FPGA with a software channel

model. Although we have taken care to accurate model both hardware and wireless

channel, it is important to validate the simulation results with on-air testing.

Figure 5-2 show a preliminary on-air throughput curve obtained by using the

previously described USRP set-up plotted against an identically parameterized C++

model. The performance differential between hardware and software across a wide

range of operating conditions is minimal, suggesting that our simulation-based results

have high fidelity.
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Figure 5-2: Performance of B = 4, β = 4, α = 1 decoder over the air versus identically parameterized C++ model. Low code
efficiency is due to the narrow width of the decoder, which yields a high throughput implementation when the number of workers
is limited. A decoder with a larger beamwidth would achieve higher throughput on any given decode attempt, but it would also
require more time between packets to complete decoding.
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5.5 Integrating with Higher Layers

Error correction codes do not exist in isolation, but as part of a complete protocol.

Good protocols require feedback from the physical layer, including the error correction

block, to make good operational choices. Additionally, the spinal decoder itself requires

a degree of control to decide when to attempt a decode when operating ratelessly.

Decoding too early results in increased latency due to failed decoding, while decoding

too late wastes channel bandwidth. It is therefore important to have mechanisms in

the decoder, like SoftPHY [30], which can provide fine-grained information about the

success of decoding.

Traceback convergence in spinal codes, which bears a strong resemblance to

confidence calculation in SOVA [23], is an excellent candidate for this role. As

Figure 4-11 shows, a sharp increase in convergence length suggests being near or over

capacity. By monitoring the traceback cache for long convergences using a simple

filter, the hardware can terminate decodes that are likely to be incorrect early in

processing, preventing significant time waste. Moreover, propagating information

about when convergences begin to narrow gives upper layers an excellent measure of

channel capacity which can be used to improve overall system performance.
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Chapter 6

Conclusion and Future Work

6.1 Link-layer Protocols

Practical rateless codes for wireless networks possessing the adaptation-free and

computation-variable properties are an exciting recent development. They promise a

better way to deal with the fundamental problem of time-varying channel conditions

caused by mobility and interference. Chapters 2 and 3 presented the case for a

new approach to link-layer protocols motivated by the lack of an obvious point to

pause a half-duplex rateless sender to ask for feedback. We showed how the decoding

CDF provides a code-independent way to encapsulate the essential information of the

underlying code, and developed RateMore, which combines a dynamic programming

strategy to compute the transmission schedule, a simple learning method to estimate

the decoding CDF, and a block ACK protocol to amortize the cost of feedback.

Our results show that RateMore reduces overhead by between 2.6× and 3.9×
compared to 802.11-style ARQ and between 2.8× and 5.4× compared to 3GPP-

style “Try-after-n” HARQ, which are to our knowledge the best existing deployed

approaches. We demonstrated the reduced overhead of RateMore in experiments using

three different rateless codes (Raptor, Strider, and Spinal codes). These significant

reductions in overhead translate to substantial throughput improvements. For example,

for spinal codes, the throughput improvement is as high as 26% compared to both

ARQ and “Try-after-n” HARQ.
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We believe that RateMore provides a practically useful link-layer protocol to

coordinate between sender and receiver in wireless networks using rateless codes,

improving performance when channel conditions are variable. The most significant

limitation of this protocol, and the most substantial avenue for future work in our view,

concerns its reliance on reliable delivery of acknowledgement frames to synchronize

explicit state updates. We would like to see an evolution of this protocol that

coordinates the sender and receiver inferentially under the assumption that any frame

may fail to decode. How can we build the ultimate robust signalling, synchronization,

and medium access control scheme while still maximizing throughput? How does this

scheme generalize to the multi-user setting, and can it be made to maximize fairness

as well?

Another interesting direction is to adapt RateMore for use with adaptation-unfree

codes: those requiring the choice of a signalling constellation for each transmission.

With a fixed set of modulations and within a predetermined range of signal-to-noise

ratios, it is quite possible for a rated code + HARQ system to exhibit characteristics

of ratelessness: the amount of redundancy adjusts to accommodate channel variation,

and decoding stops as soon as there is enough redundancy for it to succeed. LTE is

a prime example of this, though its adaptation scheme is encumbered by a tangle

of vendor-specific channel quality estimation schemes. An extension of this work to

adaptation-unfree codes like LTE turbo codes would need to expand the protocol’s

state space to account for differences in the usefulness of each constellation to the

demapper under various channel conditions.

6.2 Spinal Codes in Hardware

Spinal codes are, in theory and simulation, a promising new capacity-achieving code.

In chapters 4 and 5, we developed an efficient microarchitecture for the implementation

of spinal codes by relaxing data dependencies in the ideal code to obtain smaller, fully

pipelined hardware. The enabling architectural features are an “α-β” incremental

approximate selection algorithm, and a method for obtaining hints to anticipate
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successful or failed decoding, which permits early termination and/or feedback-driven

adaptation of the decoding parameters.

We have implemented our design on an FPGA and have conducted over-the-air

tests. A provisional hardware synthesis suggests that a near-capacity implementation

of spinal codes can achieve a throughput of 12.5 Megabits/s in a 65 nm technology,

using substantially less area than competitive 3GPP turbo code implementations.

We conclude by noting that further reductions in hardware complexity of spinal

decoding are possible. We have focused primarily on reducing the number of candidate

values alive in the system at any point in time. Another important avenue of exploration

is reducing the complexity and width of various operations within the pipeline. Both

Viterbi and Turbo codes operate on extremely narrow values using approximate

arithmetic. It should be possible to reduce spinal decoders in a similar manner,

resulting in more area-efficient and higher throughput decoders.
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