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Abstract

This thesis demonstrates a generalized method for extracting shear layers as features
in viscous computational fluid dynamics flowfields. A source term indicative of shear
in the flow combines with convective terms to constitute a conservation equation
for a scalar shear layer detector variable. The source terms explored in this inves-
tigation come from the viscous terms of the Navier-Stokes momentum equations as
well as from a simple shear measure obtained from the velocity gradient tensor. A
threshold value of the scalar detector variable indicates the boundary layer or wake
edge, while the magnitude of the detector indicates the intensity of shear influence
upon any particular point in the flow. Test cases validate the convective technique
and demonstrate its rejection of false sources. Among the applications of shear layer
feature extraction are solution improvement techniques like grid adaptation and tools
for analysis and design such as visualization.
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Chapter 1

Introduction

An ideal put forth in the computational fluid dynamics (CFD) community is that of

the "virtual wind tunnel."' If computation gains the ability to fully reproduce the

fluid flow in a physical wind tunnel, namely real-time unsteady three-dimensional flow

modeling that allows the investigator to measure and visualize the flow's character,

the result will be even better than a physical wind tunnel. In that idealized case a CFD

suite could model a test object in full scale, distortion-producing struts and measuring

instruments and even the wind tunnel itself deleted, geometry readily modified, and

the influence of such effects as jet engine intake and exhaust incorporated. The

perfect CFD package would simulate, in the example of an aircraft, all flight regimes

realistically and present the results in both numerical and physically intuitive visual

terms. Such a package could enable the design optimization of an aircraft across the

entire flight envelope.

Although computational capacity is the most obvious obstacle to progress in

achieving the flow modeling fidelity necessary for a virtual wind tunnel, sophisti-

cated and clever algorithms and techniques can reduce the level of capacity required.

Methods that both encompass very generalized applicability as well as produce tar-

geted, meaningful results make CFD more efficient and broaden its reach, even if a

complete virtual wind tunnel suite is not attainable in the near future. It is hoped

'In fact, a NASA Ames project carries this name.
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that the material presented in this thesis will constitute a small element in the family

of computational tools that eventually make practical a virtual wind tunnel.

1.1 Feature Extraction

One essential element of the virtual wind tunnel ideal is feature extraction, which

within a given flow involves the identification of regions that exhibit a particular

behavior. Flow features within a volume of fluid include shock surfaces, vortex cores,

recirculation zones, and shear layers. Fluid flow features on solid surfaces include

attachment and separation lines, stagnation points being a subset of these. The state

of the art in feature extraction addresses all of these features with success varying from

rudimentary or situation-specific to widely applicable [13] [17]. The one exception is

shear layers, which remain to be adequately isolated. Such is the task attempted in

this thesis.

In this investigation, for which a physics-based perspective is emphasized over a

raw mathematical one, it is instructive to take a step back and examine what con-

stitutes feature extraction in real physical flows. The frequent emphasis on imagery

often places physical feature identification techniques into the category of visualiza-

tion rather than feature extraction, i.e. the investigator infers features from visual

information. Feature identification in an environment such as a wind tunnel or a

water channel is a process requiring much care and skill, to such a degree that some

consider it as much art as science. The span of physical feature identification tech-

niques encompasses flow markers such as smoke and dye, lighting configurations such

as sheets of light that illuminate planes within the flow, photographic methods such

as stroboscopy and Schlieren photography, direct sampling of flow properties with

probes, and a host of other schemes.

Beyond taking care not to excessively distort the flow feature of interest, the

investigator must either possess accurate foreknowledge of the feature's location and

extent or else conduct a thorough search of the entire flowfield, lest any feature go

unfound. The whole process is often expensive in terms of the experience, time,

14



and resources required, and the physical apparatus is usually difficult to modify.

Often, time and physical constraints limit the number of measurements taken. Once

characterized, however, flow features can reveal physical mechanisms that influence

the flowfield locally and sometimes globally. High-definition images of flow features

often appear so intriguing and even beautiful that books are devoted to them [251.

For example, the F/A-18 aircraft directly benefitted from feature identification

work. It was discovered that, when the aircraft flies at high angles of attack, the

vortex trailing from each wing leading edge extension breaks down, or "bursts," in

the vicinity of the vertical tail. The vortices, if left to themselves, cause fatigue in the

tails and reduce their service life. Figure 1-1 shows a dye-in-water visualization on a

model that indicated the proper smoke release points for the flight test in Figure 1-2.

Notice also the tufts on the wing of the flight test aircraft that give hints about the

flowfield surrounding the vortices. In Figure 1-3, Doppler laser velocimetry quantifies

the entire vortex flowfield. These tests illustrate the problem successfully, albeit at

much expense.

Feature extraction techniques for CFD traditionally follow the lead of physical

methods both in terms of configuration and the requirement for human manipulation.

Manual or interactive techniques for simulated flows include locating iso-surfaces of

flow properties, taking cutting planes through the solution to produce planar contour

plots, using streamlines to probe the velocity vector field, and examining the velocity

field directly.

In CFD, assuming the presence of a valid flow solution, the complete state of the

flow is available at every node in the domain. Interpolation makes the nodal state

constitute a continuum state across the domain. A complete replication of a physical

flow can involve a huge quantity of data if the simulation represents complicated ge-

ometries in three dimensions with unsteady effects. Until the past decade or two only

simple models, such as two-dimensional steady simulations on relatively small grids,

were practical for general engineering use. The small amount of data present allowed

human investigators to draw conclusions about the behavior of the flow via manual

observation of the modeled flow solution. Manual methods worked reasonably well,

15



Figure 1-1: Experimental feature identification: F/A-18 model leading edge extension
vortex visualization using dye in a water channel [9]

Figure 1-2: Experimental feature iden-
tification: F/A-18 leading edge exten-
sion vortex visualization using smoke in
flight [9]

Figure 1-3: Experimental feature iden-
tification: F/A-18 model leading edge
extension vortex measurement using
Doppler laser velocimetry [18]
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although they have many of the same drawbacks of physical feature identification,

namely they require time investment on the part of the investigator, some practice,

and usually partial foreknowledge of the flow topology.

In a 3-D simulation or even a 2-D simulation with substantial flow complexity,

these methods grow to be rather cumbersome in their demands upon the investigator.

In many time-varying simulations, manual techniques as a practical matter break

down completely due to the need for attention to every time step. They have further

disadvantages comparable their physical counterparts: a thorough search the flowfield

dataset is often impractical; frequently the flow around and through the feature is

illustrated but not the feature itself; and after only a few "visualization objects" like

iso-surfaces or streamline ribbons are put in place, the overabundance of images on

the display obscures the features that the investigator was trying to find in the first

place [11].

Automated data reduction is crucial to the thorough analysis of realistically mod-

eled complex fluid flows. Beyond avoiding the aforementioned disadvantages of in-

teractive methods, automatic feature extraction opens up a range of computational

benefits to CFD simulations. As pointed out by Haimes [11], automation allows a

CFD suite to run a separate feature extraction batch computation and to apply the

results toward solution improvement in the course of a simulation. Note that beyond

post-processing a pre-converged solution, batch computation raises the possibility of

feature extraction's use in a co-processing sense as the solution progresses. Vehicles

for solution improvement include refining feature resolution through grid adaptation,

which is one of the most practical of all applications of feature extraction, as well as

boundary condition modification where fluid features intersect the edge of the domain.

When the extraction technique is local in space and time, it lends itself readily to

parallelization. When the feature extraction results constitute the output data in the

place of the flow complete solution, the reduction in dataset size is typically several

orders of magnitude. Data reduction relaxes the demanding storage space require-

ment for large simulations and facilitates visualization, particularly for animations

of unsteady solutions. Feature extraction can also make available quantitative infor-
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Figure 1-4: Feature extraction of the vortex cores on an F/A-18 using FX [15]

mation such as the exact location and in some cases the strength of the features in

question. Feature extraction can drive a targeted calculation to find, for example, the

severity of a shock or an integrated characteristic of a boundary layer cross-section.

Pre-convergence feature information, when visualized by the investigator, can in-

dicate how well the computational run is progressing. The investigator could then

decide whether to scrap the run or to adjust the numerical conditions or geometry as

iterations progress, a process known as solution steering. Visualization in general is

a feature extraction application in its own right. Beyond its use for solution steering,

visualization converts the solution from a field of numbers to a physical representation

that humans can more readily digest. Feature extraction-driven visualization directly

illuminates the structure of the most critical and relevant portions of a flowfield,

bypassing the aforementioned difficulties that hinder manual techniques. Figure 1-4

demonstrates how, so long as the flow solution is accurate, feature extraction effec-

tively elucidates the flow structure. The vortex core above the leading edge extension

is the same as the cores visualized in Figures 1-1 through 1-3. Note the fence added

at the wing root leading edge that causes the leading edge extension vortex to burst

over the wing, preventing tail fatigue.

The information provided by feature extraction can be applied toward visual-
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ization, improvement of the solution, and quantitative analysis of the features in

question. Feature extraction neither passes on the entire state of the flow nor reduces

the state to a single performance parameter. It instead takes the intermediate path of

elucidating the structure of the flow by isolating the most significant flow regions and

categorizing them. Feature extraction bridges the gap between computational fluid

flow modeling and presentation or visualization of the model in a way that humans

can easily absorb. From a design perspective, the seamless integration of this line of

computational analysis will allow capabilities beyond raw performance analysis of an

aircraft, such as finding the lift-to-drag ratio at several design points. Feature extrac-

tion engenders the ability to qualitatively and quantitatively consider the topology of

the flow when optimizing aircraft performance, either at a particular flight condition

or across a range of conditions. Once knowledge of a flow's structure is obtained au-

tomatically, through an analysis suite the investigator can explore where losses occur

and how strong they are in a flow and then alter the geometry to improve relevant

performance characteristics. This investigation aims to contribute a small bit of the

computational chain that makes the ideal of a virtual wind tunnel a practicality.

1.2 Shear Layers

1.2.1 Scope and Significance

For the purposes of this investigation, the scope of flow features covered by the term

"shear layers" includes laminar and turbulent boundary layers, wakes, and regions

of free shearing flow such as the mixing layer between a jet of fluid and the ambient

fluid surrounding it. Shear layers are highly significant for fluid mechanical engineer-

ing applications because they are the manifestation of viscous effects, notably loss

mechanisms like surface friction, flow blockage, and separation. They also influence

the flow downstream in the form of a wake and constitute the interaction between

zones of differing flow velocity in the case of a free shear layer.

Shear layers are regions where large gradients of velocity and other flow properties
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are present, where vorticity generation takes place, and where turbulence can occur.

For shear layers to be distinguishable within a flowfield, inertial forces must dominate

over viscous forces for the bulk of the flow; i.e. the Reynolds number must be much

greater than unity [27]. Note that a vortex core originates in a boundary layer and

is encompassed in the resulting wake, so it falls under the shear layer umbrella.

Separated flow too is a subset of shear layers, as are recirculation regions. In fully

developed internal flows, shear layers have merged to cover the entire flowfield, so

special consideration may be necessary for such flows.

1.2.2 Definition

Defining the extent of a shear layer is difficult and in a sense arbitrary. The definition

is clearest in the case of fully attached, incompressible, laminar boundary layer flow

along a stationary flat plate. If while moving out normal from the wall one measures

the flow velocity parallel to the wall, one finds that it varies smoothly from zero

right at the wall out to a "freestream" velocity characteristic of the bulk of the

flow. The freestream is uniform in the Blasius definition [10] or governed by inviscid

forces (though influenced by the presence of shear layers) in general. Although,

strictly speaking, the boundary layer's edge should be located where the flow velocity

reaches the freestream value, in theory the velocity profile approaches that value

asymptotically. 6 denotes the distance from the solid surface to the boundary layer

edge. The edge of the boundary layer or of a shear layer in general is most broadly

the point at which the effects of viscous shear become insignificant.

How significant is insignificant? Let us return to the flat plate example. There

is no critical surface or distinct property that marks the boundary layer edge. Any

edge definition contains some degree of arbitrariness due to the asymptotic variation

of the velocity profile, but some absolute definition must be set, lest we entirely

give up on locating shear layers! We take the edge of the boundary layer to be the

point in the profile at which the velocity reaches a set percentage of the freestream

value. Any cutoff value, such as 95% of the freestream velocity relative to the wall,

could be valid. Here we choose the boundary layer edge to be located where the flow
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reaches 99% of the freestream velocity, or a distance from the wall of o99, such that

the definition includes as much of the boundary layer as possible while ignoring any

minor fluctuations in the velocity field. 699 sees frequent use in engineering practice.

Implicit in the above discussion is the knowledge of the edge velocity Uedge, which

for any case other than the Blasius flat plate example is not necessarily a uniform

freestream value. Given a flowfield, finding the edge velocity assumes that one knows

where the boundary layer edge is, which brings us back to the goal of the shear layer

feature extraction technique that this thesis attempts to address.

Although in simple viscous flows one thinks of the edge of the boundary layer

as located where the flow velocity parallel to the surface attains or almost attains

freestream velocity, the most general shear layer definition would ignore such geometry

considerations. In some cases, such as attached flow over a flat plate, over a two-

dimensional airfoil, or in a two-dimensional duct, the numerical value of the boundary

layer thickness can be found (see the following discussion on interacting boundary

layer theory). In other cases including massively separated flow, the association of

a quantitative value with the distance from a solid surface to the shear layer edge

begins to lose relevance since the flow velocity at the edge may not be at all parallel

to the surface in question. In the case of a wake, there is no surface to reference at all,

and for asymmetric or irregular wake velocity profiles, any definition of a reference

centerline will be arbitrary. In the case of three-dimensional boundary layers, flow

can change direction through the velocity profile such that the velocity component

perpendicular to the freestream flow direction is nonzero. One could establish different

boundary layer thicknesses for a single surface point based upon velocity profiles in

two orthogonal directions.

In order to ensure complete generality, a single all-encompassing 3-D shear layer

thickness definition is desired. Although this discussion describes 699 for simple flow

geometries and gives a sense of what a fully general definition of 6 might entail, no

such definition statement is currently available or perhaps even possible. This thesis

hypothesizes that a shear layer feature extraction technique that matches a given 6

for all available test cases will be applicable to any viscous flow.
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Interacting Boundary Layer Theory

Flow solvers that use interacting boundary layer theory (IBLT) directly solve for

boundary layer properties, such as the edge location and velocity. These solvers,

one example of which is MSES [7], model the boundary layer and the surrounding

inviscid flow as distinct zones. They match flow conditions between the two via the

boundary layer displacement thickness (see Section 1.2.3) and the state of the flow

where the zones meet. Because IBLT models require no shear layer feature extraction

thanks to the boundary layer representation already contained within the solver,

such models provide useful reference cases for feature extraction tools that operate

on more general Navier-Stokes models. Unlike IBLT models, which at present apply

primarily to two-dimensional or axially symmetric geometries with predominantly

attached flow, models employing the Navier-Stokes equations represent flows under

any conditions. 2

1.2.3 Alternative Definitions: Integrated Thicknesses

An alternative means of characterizing boundary layers and wakes is to perform in-

tegrals to quantify the physical effects of their presence. Key examples include the

displacement thickness 6*, which represents how much an equivalent inviscid flow

would be displaced from the surface to match the actual flow, and the momentum

thickness 0, which accounts for how much flow would have to be removed from the

equivalent inviscid flow to account for the momentum lost in the boundary layer.

6* provides an indication of how the boundary layer shapes the outer flow and of

how much flow blockage is present. 0 is less relevant for illustrating the extent of

the boundary layer but more significant when evaluating forces in the flow, namely

surface friction drag.

Integrated thicknesses have precise definitions that allow exact quantitative char-

acterization of boundary layers nominally without subjectivity, with the caveat that

2 0f course, in the case of the Reynolds-averaged Navier-Stokes equations, we assume here that
they completely represent continuum flow physics and that the turbulence model is accurate.
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it must be possible to define the integration. The integration is carried out along a

line normal to a solid surface, starting at the surface and ending in the potential flow

just outside of the boundary layer. For simplicity, the incompressible form is stated

here.

(* = 1 - dy(1)/ Uedge

e=d e- dy (1.2)0 Uedge Uedge

The integrals require knowledge of location and velocity at the edge of the bound-

ary layer, information that as mentioned is unknown without having a feature extrac-

tion tool to find it. Another complicating issue is the need to construct an integration

path normal to the solid surface everywhere that the thickness is calculated. In re-

gions of high curvature the "normals" might not even be straight lines, particularly

in concave geometries where straight normal lines would intersect each other and

possibly even run into other surfaces. Wakes introduce a host of difficulties due to

the lack of a reference surface. Some kind of wake centerline, which as noted before

may have arbitrary placement, might be required to construct integration paths and

place in space the surfaces the integrals produce.

In three dimensions the difficulties of choosing a flow direction mentioned be-

fore are compounded because the whole velocity profile must be considered, not just

the edge velocity. High surface geometry curvature crosswise to the prevailing flow

robs the above one-dimensional definition of its accuracy. A stopgap correction is to

employ local radial coordinates [19]. Two-dimensional integration in a plane perpen-

dicular to the flow would restore accuracy in the form of an integrated area instead

of thickness, i.e. a displacement areaA* or momentum area e. Area boundary layer

characterizations add yet another degree of integration complexity, however, and they

absorb boundary layer data from the integral surfaces into a de-localized parameter

that may only be truly meaningful in a wake.

23



1.3 Synthesis: Shear Layer Feature Extraction

1.3.1 Goals and Challenges

Given the significance of feature extraction and specifically extraction of shear layers,

let us now detail the attributes of an ideal shear layer feature extraction tool. For

any particular simulation, a shear layer feature extraction tool needs to identify the

volume of fluid representative of all shear layers present in the flow, as bounded

between the shear layer edge surfaces (where shearing flow meets the surrounding

flow) and any solid surfaces.

A versatile shear detector functions for laminar and turbulent flows at all Mach

and Reynolds numbers of engineering interest. Note that turbulent flow simulations

employing a Reynolds-averaged Navier-Stokes model will exhibit smooth shear layer

edges, like laminar flows, while transient large-eddy simulation (LES) and direct

numerical simulation (DNS) flow representations will have irregular shear layer edges

that fluctuate with time. Any finite Mach number should be acceptable, while the

range of relevant Reynolds numbers is that much greater than unity [27].

The importance of computational efficiency means that the ideal detector operates

on flow properties that are as local as possible. The detector should be numerically

resilient, self-contained, automatic, and general to any geometry. No foreknowledge

of Uedge should be required.

After overcoming the indistinct nature of boundary layers and wakes, the second

most challenging hurdle for a shear detector is the ability to ignore regions of the

flow that may exhibit properties similar to shear layers but are not in fact shear

layers. Most prominent among such regions are shocks and vortices, the other most

significant objects of feature extraction. Shocks can be problematic due to the strong

variation in flow properties across them. Curved shocks may cause more difficulties

than normal shocks because, within the former, shear can take place. As mentioned

with respect to vortices, incorporating the vortex core into the volume of shear layers

is actually desirable because it is part of the wake, although the surrounding swirling

flow should not be included.
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1.3.2 Applications and Utilities

Investigators involved in many applications of CFD would find a shear layer extraction

tool highly useful. We have already discussed solution improvement through grid

refinement and boundary condition modification. A universal shear layer extractor

could also form the nucleus of a new turbulence model or of a laminar/turbulent

transition prediction method.

Visualization brings the extracted information to the engineer in a manner useful

for design. For instance, given a three-dimensional interaction of boundary layers

at a jet engine nacelle/pylon junction, a visualization of the shear layer edge as a

single surface indicates how the boundary layers on intersecting surfaces interact.

Visualization of the wakes trailing from a blade row in a turbine engine can lead to

better understanding of rotor/wake interaction. In this case the investigator could

visualize the wakes of each blade row separately to see their influence even through

a succession of stages. Additional pertinent applications include the assessment of

helicopter rotor wake effects, the characterization of turbine engine endwall leakage

flows, and many others. Knowledge of where shear layers lie allows the investigator to

know rather than guess how surface geometry effects shear flows and their influence

upon the complete flowfield.
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Chapter 2

Theory and Approach

As we have seen, the primary challenge in distinguishing shear layers from the rest of

a flow is that there is no definite flow property demarcation or numerical criticality

that marks the shear layer edge. The next section lays out some possible means of

attacking the shear layer feature extraction problem, and after that the discussion

delves into the approaches adopted for full development.

2.1 Shear Detection Methods

The advantages of choosing the extreme edge of shear layers as the bound for our

feature extraction tool are multifold. First of all, within the outer edge all shear

effects in the flow are covered, so the remainder of the flow behaves in an effectively

inviscid manner. If the edge can be found without making reference to say normals

from a solid surface, then the shear detector will be able to accommodate arbitrary

geometries. Alternative shear layer volume characterization techniques exist, namely

integrated boundary layer thicknesses that have to do with the physical effects of

shear layers upon the overall flow (see Section 1.2.3), but these are not pursued in

this investigation for reasons detailed in the following discussion.
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2.1.1 Line Integration

Several drawbacks of using integrated thicknesses for feature extraction are apparent.

The integrals require knowledge of location and velocity at the edge of the boundary

layer, information that as mentioned is unknown without having a feature extraction

tool to find it or some other way of divining it. Integration thicknesses also demand the

construction of integration paths, which depend upon surface geometry and perhaps

flow topology. If the latter is included, the path construction contributes substantially

to computational expense, particularly in unsteady simulations.

When superimposed upon the flow solution, the surfaces defined by integrated

thicknesses do not contain the full range of shear influence upon the flow, although

one important advantage is that they do provide useful information on the physical

impact of that shear influence. In three dimensions the aforementioned difficulties

of choosing a flow direction are compounded because the whole velocity profile must

be considered. To perform wake calculations the software must know that a wake is

present in the first place, for which a generalized shear layer extractor again might

be necessary.

For simple geometries with predominantly attached flow, however, an integrated

boundary layer thickness approach can be made to work as a feature extractor that

demonstrates good accuracy against baseline data, as presented by Lovely [19] and

summarized in the Section 2.1.3. This investigation instead attacks the more general

problem of finding the outer edge of the shear layer.

2.1.2 Scalar Iso-Surface

Scalar iso-surfacing is a volume-based approach to shear layer extraction. It aims to

use some scalar property that is zero or some other known constant outside of shear

layers but active for the flow inside them. An iso-surface at a threshold value slightly

above the freestream constant marks the divide between the two portions of the flow

corresponding to the shear layer edge. The variation of the scalar property within

shear layers can also serve as an indicator of the local degree of shear influence upon
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the flow.

Local State Property

Were some state property within the flow to indicate the presence of a shear layer, it

would provide a computationally cheap detector. The calculation of a local property

from the flow solution would require nothing more than the solution state information

at each particular node and perhaps also at the neighboring nodes. Of the physical

state properties, entropy and stagnation enthalpy appear most promising. Topological

characteristics of the velocity vector field may also provide a measurement of flow

structure characteristics indicative of shear layers. As tantalizingly promising as are

the results of attempted local property-based shear layer identification, ambiguities in

their application introduced by sources other than shear layers render this technique

impractical.

Entropy is a physical measure of the degree of viscous influence upon a fluid. It

is a relative quantity, so an arbitrary reference value, typically the freestream value,

must be established such that the rest of the flow is compared to it. The appeal of

entropy as a shear detector stems from entropy generation in regions of high shear

gradients and the subsequent convection of entropy that marks the entire shear layer.

That said, shocks, vortex cores, shear layers, and regions of heat transfer all generate

entropy. Even considering the relative strength of shear layer sources, at least in

nearly adiabatic flows where shocks and vortices are negligible, the generation of

entropy in other regions regions means that it is noisy and imprecise as an extraction

tool. Stagnation enthalpy at first glance appears more appropriate because stationary

shocks do not effect it, but its use as a shear layer indicator requires a Prandtl number

close to unity, and it suffers some of the same difficulties as entropy [19]. Both

stagnation enthalpy and entropy pick up numerical noise during the CFD solution

process because they are not directly conserved [8]. One way around this particular

difficulty is to set up a separate conservation equation that depends upon the solver's

state vector, although such a fix would increase the computational expense of the

extraction tool without removing physically fundamental inaccuracies.
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Another approach recognizes that shear layers have a unique topological structure

in the form of, for example, an attached laminar boundary layer profile. The velocity

gradient tensor (2.2) provides terms that can be decomposed in various ways and as-

sembled into measures of local flow topology. One particularly relevant decomposition

splits the velocity gradient tensor into three matrices: average normal, or bulk, strain

rate; deviatoric strain rate; and vorticity. They are given respectively in equation 2.3

with the physical deformation corresponding to each diagram in Figure 2-1.

q =(2.1)

Ou au

q = Ox a (2.2)
av av

1 aU + av av (u +v i On avol9F + ~ 0Ou a OV5= _ YYx a+ Y x av Tv ax + ay ax

2 0 au av 2 a9u + av av aU 2 av au
9X y _ _y axx ay

(2.3)

+00+
Figure 2-1: Elemental deformation decomposition

The entries of each component matrix provide a scalar magnitude of that com-

ponent's physical presence. The values of the entries in the bulk normal strain and

vorticity matrices are invariant with coordinate rotation. In the case of the devia-

toric strain rate matrix, normal strain components are in the diagonal entries and

pure shear components lie in the off-diagonal entries. Deviatoric normal strain and

pure shear strain are themselves mechanically identical and interchangeable via co-

ordinate rotation. Fundamentally, the interchangeability is due to the fact that the
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strain matrix is a tensor and therefore invariant with coordinate transformation [24].

The invariant quantity of relevance for the deviatoric matrix is in equation 2.7, as

developed in the following discussion.

Figure 2-2: Elemental simple shear decomposition

Figure 2-2 demonstrates that approximately equal portions of deviatoric strain

and vorticity comprise a simple shear element typical of a boundary layer. The bulk

strain rate is irrelevant to shear flows, so it should be ignored. Deviatoric strain

can take place in inviscid as well as viscous portions of the flow, such as inviscid

flow in a converging channel, so the deviatoric cannot be used alone for shear layer

identification.

The vorticity vector is in the out-of-plane direction with a magnitude w (2.5) given

by its off-diagonal entry. In a similar manner, and keeping in mind that deviatoric

normal strain and pure shear strain are mechanically identical, Equation 2.7 shows

how the diagonal and off-diagonal entries of the deviatoric matrix produce s, which

we choose to call the deviatoric. 2 is the scalar measure of deviatoric strain.

0 au Dv 1[ = By J (2.4)av BU 0(24
L x ay .

o = - (2.5)
&x &y

Du Dv Du Dv
__ 8x - y 5y axe Dy + (2.6)
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The vorticity scalar is an enticing measure of "boundary layerness." It turns

out that vorticity shares many of entropy's drawbacks of manifestation in other flow

regions besides shear layers, not the least of which is freestream vorticity in three-

dimensional flows. A quantity that represents simple shear should be greatest wher-

ever w - e and smallest wherever one or both components are small. The simple

shear quantity (2.8) includes viscosity to reflect the physical mechanism behind shear

layers. When addressing a simple shear element like that in Figure 2-2, with the

x-axis horizontal and the y-axis vertical, the quantity reduces to pLu, which is the

force per unit area due to viscous shear.

simple shear rate ~ pf5 (2.8)

Although the simple shear measure is tuned to the elemental structure of shear

layers, it still contains some ambiguity. For instance, given two flat plates separated by

a film of fluid, with one plate moving steadily over the other, the entire velocity profile

through the film looks like a simple shear element, and yet there is no distinguishable

edge. The fundamental flaw in all local topological measures is that shear layers

are regionally distributed flow features. When an observer qualitatively identifies a

shear layer from a velocity vector field, the intuitive indicator is a velocity profile.

The shear layer edge is located where the layer's velocity profile blends into the

freestream. Locally all kinds of variabilities can appear in the velocity gradient tensor,

particularly in unsteady flows (including DNS and LES flows). It appears to be

impossible, in general, to observe the state of the flow at a particular point and make

a positive determination as to whether the point is inside of a shear layer or not. A

universally applicable shear detector must incorporate regional information about the

flow topology.

Distinct Convected Detector Solution

The core principle of the work presented in this thesis is found in the synthesis of

a flowfield measure, targeted specifically at shear layers, with the implementation of
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that measure as the source term in a convection equation. The physical picture is

that strong shear layer flows participate the most in the generation of the detector

term, which then convects downstream to color all weaker portions of boundary layer

and wake flow. The detector term effectively becomes a new fluid property, something

along the lines of the degree of shear influence upon the flow. Such an arrangement

bears considerable similarity to physical properties like entropy with the caveat that

the source term is more selective. Molecular diffusion, such as would occur with

smoke in a wind tunnel, is not a part of our model due to the already diffuse nature

of shear layers. The conservation equation takes the following form, where E is the

source term, dependent on the local state of the flow, and X is the detector variable.

The source term units determine those of the detector variable.

DX= 
(2.9)

Dt

Multiplying by p and expanding,

pX + - =(2.10)

Using the fact that all of the terms in the mass conservation equation 2.11 add to

zero, we arrive at the numerically conservative form of the detector equation 2.13.

op + V - (pq -')= 0 (2.11)at

x p (2.12)
p +pg-VX+X +V-(pq pEat at

(py) + V- (pxq) = pE (2.13)
at

The primary difficulty remaining is the choice of source term, an issue left to the

subsequent section on detector formulations (Section 2.2). The detector variable has

a zero or near-zero value in the freestream with an iso-surface threshold marking say

699. An additional benefit of such a detector is the characterization of the amount of
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shear influence within shear layers, information that finds application in visualization

and grid adaptation. The computational cost of solving for a new differential equation

is accepted as necessary for a generalized shear layer detector.

The convection equation is hyperbolic. With respect to boundary conditions, the

inflow value of the detector scalar is set to a uniform zero value, corresponding to

"clean" inflow. On a wall the normal velocity component is zero, so although no

boundary condition is explicitly set, the flux through the wall is zero. No condition

is applied at outflow.

Steady recirculation regions may present some difficulties for the convection equa-

tion in that their closed streamlines isolate them from the remainder of the flow. That

said, given that the shear layer extraction technique locates the edge of the boundary

layers, wakes, and so forth in the flow, recirculation zones will either be fully enclosed

within the edge surface or excluded beyond it. Recirculation zones will not disturb

the continuous shear layer edge surface. We press on with the implementation of a

convection-based shear layer feature extraction tool.

2.1.3 Prior Work

CFD investigators currently use feature extraction tools developed for vortex cores

and shock surfaces. To date no comparably successful shear layer tool exists. The

proposed convective extraction method uses much of the same reasoning and method-

ology as turbulence models, although turbulence modeling differs somewhat in its

goals and methods. A paper was published covering the beginning of the work for

this thesis [3].

Turbulence Models

Turbulence models for Reynolds-averaged viscous flows often require knowledge of

shear layer edge information, or at least knowledge of a particular element's location

within a shear layer. Many algebraic models and one-equation turbulence models,

such as the Cebeci-Smith model [6], require an estimate of the boundary layer edge
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location. The Baldwin-Lomax model [2] bypasses this particular difficulty but still

makes use of velocity profile information along a path normal to the surface, as do

many other turbulence models. The dependence upon geometry brings to bear the

difficulties discussed in Section 2.1.1 on line integration.

As a minimum, turbulence models must determine whether to act on the solu-

tion, a determination that still requires knowledge of where shear layers exist. The

most generally applicable models, perhaps the most popular of which is the Spalart-

Allmaras model [23], almost always use vorticity as a basis to describe shear layer

information [11], an approach that works adequately in many flows but contains in-

accuracies mentioned previously in the section on local state properties. The goals of

turbulence models are also different from a shear detector in that they seek to alter

the solution rather than simply measure it.

Let us take a closer look at the Spalart-Allmaras model in particular from the

perspective of mining it for shear layer detection ideas. Its core equation (2.14) for

the dynamic eddy viscosity vt (directly dependent upon the working variable [/) closely

resembles the shear detector convection equation.

Di-
= Cbi[1 - ft2] (2.14)

Dt

+ [v -((v + D)VD) + Cb2(VD) - [cif. - C2lft2 []+ ftiAU 2

The first term on the right-hand side is the driving production term, where S

depends upon the vorticity magnitude. The remaining terms are for diffusion, de-

struction pertaining to log layer accuracy, and tripping from laminar to turbulent

flow, respectively. The freestream value of iD is 0, as is the wall boundary value,

unlike what would be desirable for a general shear detector. The destruction and

diffusion terms, while useful for matching time-averaged turbulent boundary layer

profiles, may not be so useful for catching shear effects in general. The complex-

ity of the model indicates that it may be necessary for a shear detector to actively

distinguish between laminar and turbulent flows.
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Dedicated Detectors

A thesis by Lovely [19] focuses on finding integrated boundary layer thicknesses based

upon the geometry of the simulation. The implementation requires the construction

of integration paths as described in Section 2.1.1 and employs integration of vor-

ticity to determine boundary layer thicknesses. It demonstrates excellent accuracy

when finding boundary layer quantities for simple flow geometries in two dimensions.

Because it is sensitive to freestream vorticity, difficult to apply to wakes, and compu-

tationally expensive, it proved to be impractical for arbitrary geometries and unsteady

simulations.

A convective approach specific to feature extraction was originally implemented

by Haimes for the identification of recirculation regions [12]. It tracks the residence

time of each element of the flow and isolates the portion of the flow that lingers within

the domain. Haimes also explored local velocity gradient tensor indications of shear

flow via eigenvalue analysis [14], work partly described in the section on topological

issues (Section 2.1.2).

2.2 Shear Detector Formulations

2.2.1 Navier-Stokes Equations Viscous Terms Source

One intuitive idea for how to locate shear layers is to calculate the inviscid flow for

the same geometry and flow conditions and then label the regions that do not match

as shear layers. Though the influence of viscosity upon a flow's behavior makes this

idea unrealistic, it is useful to consider such a concept instead in terms of the flow

equations themselves. To this end we can take the difference between the Euler (2.15)

and Navier-Stokes (2.16) momentum equations to be a gauge of viscosity's influence

upon the flow. The vector magnitude of the Navier-Stokes momentum equation's

viscous terms forms a source term for the shear detector convection equation. To

maintain consistency with any turbulence model that may be active in the simulation,

within the stress tensor 'F the viscosity p is composed of the sum of laminar and
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eddy viscosities. The choice of the second viscosity A is actually important to the

evaluation of the source term (see Section 3.2.1). With this source term, x has units

of velocity. The Navier-Stokes viscous terms formulation is pursued extensively in

this investigation.

(P+V -[(pqq]+Vp = 0 (2.15)
at
(P v+ [(pqq] + Vp =1 -T (2.16)
at

-= y + ) +6ijAV- (2.17)
axj axj axi

pE = ||V - =1| (2.18)

2.2.2 Velocity Gradient Tensor Quantities Source

In the discussion on topological shear indicators, it was mentioned that a combination

of vorticity and deviatoric shear scalars came close to characterizing shear layers.

Taken alone, this measure quantifies simple shear but does not fully address the

structure of shear layers. As mentioned in Section 2.1.2, although two plates steadily

sliding past each other with a viscous fluid in between them create simple shear in the

fluid, in such a scenario there is no distinguishable shear layer. Recognition of the fact

that shear layers can be further characterized as regions of shear gradients leads to a

source term dependent upon the gradient of a simple shear measure. The combined

vorticity/deviatoric measure, contextualized by the taking of its gradient, eliminates

compressibility influence explicitly and should therefore target shear layer structure

at the exclusion of other flow topologies. An important feature of the source term

(2.19) is that, for the case of a simplified laminar boundary layer profile composed

only of elemental simple shear, it reduces to Y () (absent a factor of density), just

like the Navier-Stokes source term. The resultant scalar x in the convection equation
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has units of density times velocity, which is specific momentum. The units reflect the

fact that viscous shear influences the momentum of the flow.

pE=pV wpev/ (2.19)

2.2.3 Hypothesized Applicability

Because all shear effects are to be included by the shear detector, a single all-

encompassing three-dimensional boundary layer thickness definition is desired. Once

the detector proves itself reliably against known test cases, it should be able to iden-

tify the edge of shear regions for any given flow solution. A convection-based detector

shows promise for meeting most of the stated ideals for a shear layer extraction tool.

Once the convection equation is non-dimensionalized, it is hypothesized that the de-

tector threshold for the shear layer edge will be invariant across a variety of flow

conditions, most significantly Reynolds number and Mach number.
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Chapter 3

Two-Dimensional Implementation

and Verification

3.1 Implementation

3.1.1 Flow Solver

The CFD code employed in this portion of the investigation is a modification of a

simple finite volume solver written by Ali Merchant [20]. While the original code

solved the compressible Euler equations, the extended and revised code operates on

the compressible Navier-Stokes equations as well as the shear layer detection equation

to be tested. The state vector of conservative variables U is composed from primitive

variables: density p, x- and y-velocity u and v, and total specific energy E, with

the shear detector variable X added on. Non-dimensionalization uses the following

parameters: reference length Lref, freestream density p,, freestream speed of sound

coo, and freestream viscosity p,.
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P

Pu

U pV (3.1)

pE

pX

The equations for the perfect gas law and Sutherland's law are also applied. In

applying the non-dimensionalization, the sole changes are that the terms in F gain a

factor of 1/Re, and that the velocity gradient tensor source likewise becomes (1/Re)E.

The system of equations is discretized explicitly in time using a Runge-Kutta

multi-stage scheme. The flow is modeled in a quasi-steady manner with local time

stepping. The equations are discretized in space using a Jameson finite volume

scheme, which decouples adjacent nodes. The spatial discretization requires second-

order smoothing to capture shocks and damp discontinuities and fourth-order smooth-

ing to attenuate and stabilize numerical sawtooth oscillations [16].

Stability and Smoothing

In fluid dynamics you have to smooth whatever you can, whenever you

can, as much as you can.

A. Jameson, 1994 [28]

Smoothing turned out to be a critical issue, particularly for the shear detector

variable. The goal is to add as much smoothing as possible without excessively dis-

torting the solution. It is a fine line to walk, and just how fine a line it is depends

upon the equations in question. In the case of the Navier-Stokes equations there is

adequate middle ground. Slight sawtooth oscillations remain in places where the vari-

ables trail off asymptotically, which unfortunately includes the edge of the boundary

layer where it is most desirable for the shear detector to be smooth.

For the shear detector equation it was found that the degree of fourth-order

smoothing necessary for stabilization was already enough to significantly influence

the solution. In effect, the fourth-order constant could shift the shear layer edge
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value of x. The shear detector equation employs smoothing constants independent

from the constants used for the rest of the equations so that they can be adjusted

separately. Too much fourth-order dissipation actually destabilizes the shear detector

equation. The results in this section reflect a decision to err on the side of reduced

smoothing such that it introduces as little global error as possible in the data. As a

consequence, local oscillations appear in the data presented in this section. Note that

these oscillations predominate in regions where X is below the edge value, so their

influence on the edge contour is minimal. Still, the oscillations in the shear detector

solution at the boundary layer edge reflect the oscillations in the flow solution.

3.1.2 Mesh

The solver operates on unstructured triangular meshes in the FUN2D [1] format. In

the flat plate test case, a structured-style inviscid channel flow grid generator, written

by David Venditti [26], was modified to concentrate points both across the boundary

layer thickness and isotropically near the plate leading edge (Figure 3-1). In the

airfoil cases an unstructured viscous grid generator, also by Venditti [26], employed

stretched cells near the surface to better resolve the boundary layer (Figure 3-20).

Given that the wake is of particular interest in our shear layer detector investiga-

tion, the proper modeling and resolution of its structure is essential. The unstructured

airfoil grid generator used here, in line with standard practice for grid generators of

this kind, does not attempt to resolve the wake. Therefore adaptive grid refinement,

one of the target applications of this thesis, is introduced.

The wake refinement algorithm uses a combined measure of the shear detector

concentration and the cell area to determine which cells to refine and by how much.

An ellipse of exclusion around the airfoil prevents the corruption of nicely-structured

cells in the boundary layer. The freely available program "Triangle" [22] carries

out the actual reassignment of grid geometry. Three iterations of refinement and

re-convergence of the solver are sufficient to adequately model the wake. This rudi-

mentary refinement produces a prodigious number of cells (Figure 3-21). It could

stand some improvement in the form of grid smoothing, cell stretching in the flow
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direction, and a more accurately targeted and universally applicable measure for the

designation of cells to refine, but it serves the purposes of this experiment.

3.1.3 Visualization

Although the quantitative testing pursued here makes use of the numerical values of

the shear detector variable, as described in Section 3.2, visualization is also possible

even at the earliest stages of the investigation. Flow with a shear detector value below

the edge threshold is excluded, while flow with an equal or higher detector value is

colored on a logarithmic scale. In this manner the investigator can visualize both the

shear layer edge and the degree of shear influence within that edge.

3.2 Test Cases

Each case tests the hypothesis that an iso-surface of the shear detector variable

matches the outer surface of the boundary layers and wakes present in the flow. In

these two-dimensional cases, contour lines of the detector are compared to the known

location of the boundary layer edge at 699. For precise quantification of how well the

contours correspond with 699, samples of the detector value are taken at specific points

along the known edge line. All test case figures use the Navier-Stokes viscous terms

source unless marked with "VGT," for velocity gradient tensor quantities source.

Each test has a baseline flow condition that serves as a control. Individual test

cases vary from the baseline in one variable only. Figures represent the baseline

condition unless otherwise noted.

3.2.1 Flat Plate

The flat plate test is meant to evaluate the performance of the shear detector for the

simplest possible shear layer with no other flow features. The Blasius solution [10],

an analytical solution to incompressible laminar flow along a flat plate, serves as the

standard of comparison.
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99-5.0x
-9 = (3.2)

QRex

The boundary conditions for the flow solver are a symmetry condition leading up

to the plate, no-slip and constant temperature at the plate, freestream conditions

imposed on the flow inlet, and freestream pressure imposed at the top and the outlet

with other conditions extrapolated from within the domain.

Conditions of a Reynolds number of 1 x 103 and a Mach number of 0.3 serve as the

baseline case. The first batch of test cases covered a variation in Reynolds number

from 5 x 102 to 1 x 104. The results demonstrated excellent agreement between a

shear detector contour and the reference edge line. Figure 3-7 is a representative case,

where the dashed line is the boundary layer edge. Increased smoothing can readily

remedy the slight instability at the plate leading edge, again at the potential cost of

accuracy loss. The source term is quite heavily concentrated in a very small region

starting at the plate leading edge and extending a tiny bit downstream and out away

from the plate. Figure 3-6 does not quite do the source concentration justice, since

the peak value touching the plate leading edge is 3.12 on the logarithmic contour

scale. The source contour blip across x = 0 reflects the effect of the switching grid

diagonal direction. Figure 3-8 shows how the contours track well at an increased

Reynolds number.

As hypothesized, nearly the same value of detector contour value corresponded

to the edge line in each simulation, demonstrating the desired detector insensitivity

to Reynolds number. The data in Table 3.1 shows (for the velocity gradient tensor

terms source) that the detector boundary layer edge threshold X6 does exhibit some

Reynolds number dependency. The data in Table 3.2 confirms the suspicion that

source term sensitivity to grid spacing is at least partially at fault. The source term

contains derivatives of quantities that themselves contain derivatives, exacerbating

the effect of errors due to inadequate resolution. In Table 3.2 the vertical spacing of

the grid scales with the boundary layer thickness. For both tables 6 % error refers to

the error in the boundary layer thickness if x6 from the baseline condition is used to
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Table 3.1: Flat plate shear detector threshold dependence upon Reynolds number,
constant grid, VGT source

Re xi 6 % error

500 0.00131 -0.8
1000 0.00140 -
5000 0.00188 4.0

Table 3.2: Flat plate shear detector threshold dependence upon Reynolds number,
grid y-axis scaling with 1/vRe, VGT source

Re xj % error

500 0.00136 -0.4
1000 0.00140 -
5000 0.00160 2.2

represent the boundary layer edge at other flow conditions.

Based upon the accuracy of the solver at different dissipation levels, as presented

in Figure 3-9, the flow equation dissipation constants were set at 0.005 for second-

order and 0.05 for fourth-order. The shear detector dissipation constants were set

very low at 0.001 each. Note that the flow speed-up seen in the contours above the

boundary layer in Figures 3-3 and 3-5, as well as in the profile plot in Figure 3-10,

does not effect the boundary layer edge position, just its edge speed. The speed-

up phenomenon is physically correct. The Blasius profile does not reflect it due

to the assumption of pressure uniformity in the freestream. Profiles represent the

flow at x/L = 0.5. Figures 3-11 and 3-12 show how the source and detector terms,

respectively, vary through the boundary layer, where 6g is at y/L = 0.111.

The next set of tests covered a range of Mach numbers from 0.3 to 0.7 at the

baseline Reynolds number of 1x103 . This time, in comparing Figures 3-7 and 3-13, the

results belie a slight detector sensitivity to Mach number. In the dependency plot in

Figure 3-14, the sensitivity looks high, but because the contours vary logarithmically

in space, a moderate change in contour value means only a small change in physical

location. Some error likely stems from compressibility effects for which the Blasius
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Figure 3-1: Flat plate computational grid
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Figure 3-2: Flat plate boundary layer velocity vector field
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Figure 3-3: Flat plate u/coo contours

Figure 3-4: Flat plate v/coo contours
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Figure 3-5: Flat plate Mach number contours
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Figure 3-6: Flat plate Econtours (exponential scale)
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Figure 3-7: Flat plate X contours (exponential scale)

47



0.25

0.10

.000- --0--

00 .. -0.00 0.55 0.7 1.00

Figure 3-8: Flat plate x contours (exponential scale), Re = 5 x 103
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Figure 3-9: Flat plate velocity profile dependence upon dissipation constants

48



0.15

0.10

0.05 0.05

0.00 e#

0.00 0.05 0.10 0.15 0.20 0.25 0.30

u/c inf
0.35

Figure 3-10: Flat plate velocity profile verification against Blasius solution
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Figure 3-11: Flat plate E profile, 699 = 0.111
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Figure 3-12: Flat plate X profile, 699 = 0.111

solution does not account.

The contours again lie nicely parallel to the edge line, but the contour value

corresponding to that line appeared to bear an exponential or power-law relationship

to the Mach number. It is possible that this effect stems from an unanticipated

compressibility effect on the source term. The detector variation with Mach number

bears similarities to that of drag force. In Figure 3-14, the example trendline is a

2nd order polynomial. Interestingly, even though the divergence of the velocity is

small, the Stokes hypothesis of A = -(2/3)p proved important. When the second

viscosity A is neglected, the contours near the plate leading edge are depressed below

the boundary layer edge and do not follow it as well.

The same tests, when repeated using the velocity gradient tensor terms source,

yielded similar results. As can be seen from Figure 3-19, the Mach dependency is

nearly identical, which is surprising given that bulk expansion has been removed

from the source term. However, Reynolds number dependency as given in Tables 3.1

and 3.2 is reduced from that of the Navier-Stokes source. Also, the velocity gradient

tensor source does not pick up as much of the flow above the boundary layer leading
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Figure 3-13: Flat plate boundary layer x contours (exponential scale), M = 0.7
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Figure 3-14: Flat plate x edge threshold Mach dependence
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edge (Figure 3-15), a trait that is desirable for reducing spurious boundary layer

indications. It is still the case that the source term is heavily concentrated at the

plate leading edge.

0.25

0.
1.00

Figure 3-15: Flat plate VGT E contours (exponential scale)

Figure 3-16: Flat plate VGT x contours (exponential scale)

3.2.2 NACA 0005 Airfoil

The purpose of this laminar, fully attached flow test case is to assess the accuracy

of the shear detector in a flowfield that is within the typical range of complexity

for engineering simulations. At low angles of attack, the boundary layers on the thin

NACA 0005 airfoil remain laminar and attached at relatively large Reynolds numbers.

This trait provides a wide Reynolds number range for physically meaningful test

simulations, given the solver's lack of a turbulence model. In this test the reference

shear layer edge line is given by MSES [7], a well-established airfoil flow modeling

program (see Section 1.2.2). The program operates on boundary layer parameters
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Figure 3-18: Flat plate VGT x profile, 699 = 0.111
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Figure 3-19: Flat plate VGT x edge threshold Mach dependence

directly, so with some manipulation it was made to output coordinates for the shear

layer edge line. Although wakes generally tend to be turbulent in real flows under

the chosen conditions, the laminar Navier-Stokes code demands a laminar standard

of comparison. Therefore it is necessary to modify MSES to eliminate the assumption

that the wake flow is turbulent. Efforts in that direction were not successful, so no

direct standard of comparison is presented for the wake.

As in the flat-plate tests, the Navier-Stokes flow solver uses a no-slip, constant

temperature boundary condition on the surface of the airfoil. The accuracy of the

farfield boundary conditions is improved with a source/vortex model. The baseline

flow conditions are M = 0.3, Re = 1 x 104, and angle of attack a = 1.5 degrees. As

stated before, the grid refinement algorithm resolved the wake flow structure in three

convergence stages (compare Figures 3-20 and 3-21). Figure 3-23 demonstrates the

retention of the boundary layer cell structure. Each refinement stage required 2000

to 10000 iterations, the first and last grids taking the longest.

The Mach contours compare well with MSES (Figures 3-25 and 3-26). Note that

the MSES model represents the boundary layer with a displacement surface and does
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not directly provide velocity contours for the boundary layer and wake. On the plots,

the set of dashed lines closer to the airfoil centerline denotes the displacement surface,

given here merely for reference, and the outer set of lines denotes the shear layer

edge. Shear detector contours matched boundary layer edge lines well in all cases.

The contour value corresponding to the edge demonstrated the desired insensitivity

to Reynolds number, demonstrated by Figures 3-28 and 3-29, as well as to angle of

attack. The edge contour also corresponds to the same flow conditions in the flat

plate case. Once again, in comparing Figures 3-28 and 3-30, some Mach dependency

appeared. The example visualizations in Figures 3-31 and 3-32 vividly demonstrate

the ease with which the observer can detect variations in boundary layer behavior.
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0.0 1.0 2.0 3.0

Figure 3-20: NACA 0005 original computational grid
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Figure 3-21: NACA 0005 refined computational grid
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Figure 3-22: Original grid trailing edge
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Figure 3-23: Refined grid trailing edge
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Figure 3-24: Mach contours, original grid
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Figure 3-25: Mach contours, refined grid
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Figure 3-26: Mach contours using MSES
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Figure 3-27: x contours
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Figure 3-28: X contours, trailing edge detail
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Figure 3-30: X contours, trailing edge detail, M = 0.2
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Figure 3-31: Shear layer visualization
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Figure 3-32: Visualization, Re = 105
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3.2.3 Transonic RAE 2822 Airfoil

The first step in testing whether the shear layer detector rejects other flow features

involves a flowfield with a normal shock. An RAE 2822 airfoil at flow conditions of

M = 0.73, Re = 6.5 x 106, and a = 1.5 degrees carries a weak normal shock on its

suction side (Figure 3-34). The shear layers in such a flow are for all practical purposes

entirely turbulent. One aspect of the flow that we do wish the shear detector to pick

up is the thickening of the boundary layer through the shock. To obtain a physically

correct flow model, the solution from a FUN2D [1] simulation run by Venditti [26]

was used as input to the shear detector equation, which was then run in a post-

processing manner. The eddy viscosity information provided by FUN2D, summed

with to the laminar viscosity, constitutes the viscosity used by the detector equation.

The original solution contains no wake resolution, so the wake cannot be tracked in

this test. Again an MSES simulation serves as the standard of comparison for the

shear layer edge line. Velocity contours compare well with MSES (Figure 3-35).

The shear detector demonstrates excellent shock rejection. The rise in detector

value behind the shock is slight, well below the shear layer edge threshold (Figure 3-

36). The shock influences less finely-targeted properties such as entropy, as plotted in

Figure 3-37. The detector also tracks boundary layer growth reasonably well through

and downstream of the shock (Figure 3-39). Stability difficulties with the detector

equation cropped up in the highly stretched cells in the boundary layer where oscil-

lations are prone to blow up. Increased smoothing damps the oscillations effectively,

although it also skews the detector solution slightly.

The velocity gradient tensor method again fared well (Figure 3-40). The fact that,

in both methods, the detector contours wander across the boundary layer edge line

slightly may mean that the detectors need to be calibrated to the turbulence model in

question. This could be accomplished via additional diffusion and destruction terms

in the style of equation 2.14. Some other physical effect may be at work, however,

in which case an adjustment to the source term or some other remedy could be

warranted. Figures 3-41 and 3-42 illustrate how the turbulent viscosity, governed

in this case by the Spalart-Allmaras model [23], can serve as a conceptual basis for
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a shear layer detector. Its contours follow the shear layer edge approximately as

faithfully as our dedicated detector. In addressing the different and distinct goal of

modeling turbulence, however, it falls to zero at the wall, which is not desirable for

our purposes.
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Figure 3-33: RAE 2822 computational grid
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Figure 3-34: Mach contours

3.2.4 Multielement Airfoil

The laminar Navier-Stokes solver and shear detector were applied to a multielement

high-lift airfoil, again with a grid created by Venditti [26]. This test purports to

demonstrate the generality of the shear detection method to unsteady and separated
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Figure 3-35: Mach contours using MSES
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Figure 3-36: X contours
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Figure 3-37: Entropy contours
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Figure 3-38: Mach contour shock detail, stretched y-axis
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Figure 3-39: X contour shock detail, stretched y-axis
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Figure 3-40: VGT x contour shock detail, stretched y-axis
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Figure 3-41: pt contours
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Figure 3-42: pt contour shock detail, stretched y-axis
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flow. Farfield flow conditions are Re = 1 x 105, M = 0.2, and a = 8.0. Though

the laminar modeling scheme is not truly accurate at these conditions and results in

extensive flow separation, the experiment addresses not precision but generality.

Visualization of the shear detector shows that it tracks well with shear-influenced

flow, most notably in the region between the first and second airfoil elements. The

irregularity of the shear layer edge highlights how flow that is shed from the boundary

layer mixes with the outer flow in an unsteady manner. The complexity of the

computational geometry and the time dependence of the solution do not at all hinder

the operation of the shear detector.

Figure 3-43: Three element airfoil shear layer visualization
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Chapter 4

Three-Dimensional Approach

The last section validated the convective shear layer extraction technique for two-

dimensional flows. To be a fully general feature extraction tool it must also per-

form well in three dimensions. Compared to flow simulations in two dimensions,

three-dimensional flows present a great deal more difficulty in terms of constructing

appropriate grids, modeling turbulence, and interpreting the resultant flowfield. As

a consequence, the additional complexity of the third dimension makes shear layer

extraction all the more attractive for solution improvement, visualization, and other

purposes detailed in the Introduction. It is in unsteady three-dimensional simulations

where feature extraction comes into its own as an essential interpretational tool.

The same shear layer extraction tactics as those used in two dimensions apply

to three dimensions. A scalar detector variable, added to the state vector, time-

marches with its own differential equation alongside the rest of the flow solution. An

iso-surface of the detector variable at some threshold above zero denotes the outer

bound of all shear regions in the flow.

4.1 Shear Detector Formulations

The shear detector equation itself, repeated here as Equation 4.1 for clarity, remains

unchanged. The most significant modification from two dimensions is the construction

of a three-dimensional source term.
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+ V - (pxq) = pE (4.1)
at

4.1.1 Navier-Stokes Equations Viscous Terms Source

In the three-dimensional Navier-Stokes momentum equations, the viscous terms from

the equation for each Cartesian direction again form an element of a vector. Each

vector component describes the local viscous deformation along its respective direc-

tion. The magnitude of the complete vector serves as an agglomerated description of

the local amount of fluid shear. As before, p includes the eddy viscosity in turbulent

flows, and the Stokes hypothesis of A =-jP is expected to work well. The resultant

shear detector scalar has units of velocity.

'9r ±2-,9 + V-q 9[p ( t±+Avq + '9 [2-(+ !2w)]

Tx 2v 2- + ' 2- ++ t± AVq '9 ( v !2-j

(4.2)

pE = | - =IT (4.3)

4.1.2 Velocity Gradient Tensor Quantities Source

The extension of the decomposed velocity gradient tensor source is less rudimentary

than for the Navier-Stokes source. Batchelor [4] presents a pertinent discussion on

relative motion near a point in a fluid. In the following discussion, the Cartesian

construction description leads into the derivation of the more elegant generalized

construction.

Cartesian Construction

An essential concept to recognize is that, on an elemental level, local fluid shear is

a planar phenomenon. The decomposition diagrams from Section 2.1.2 can apply
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equally well to planes within three-dimensional shearing flow. Vorticity and deforma-

tion out of the plane in question do not effect shearing flow considered within that

plane. Taking a scalar measure of simple shear in each of three Cartesian planes

generates three scalar terms, which can combine like a vector magnitude into a single

all-encompassing scalar.

One approach is to charge ahead with an analogy to the Navier-Stokes viscous

terms source. Each of the three momentum equations has scalar viscous terms that

add to form an element of a vector, given in Equation 4.2. Similarly, the scalar

measure of shear in each of the Cartesian planar directions can contribute an element

to a vector description of local simple shear, the magnitude of which becomes the

scalar source for the shear detector equation. The vorticity vector provides another

relevant standard of comparison. Vorticity defined within each Cartesian plane has

a direction perpendicular to that plane. The three components of vorticity combine

to form a three-dimensional vector, the magnitude of which is the amount of local

vorticity in the flow. In the same way, the three components of shear measure can

constitute a vector description of the local shear. With respect to the task at hand,

only the magnitude of the shear vector is important, but for other applications in

which direction is significant, the vector form of local shear measure may prove useful.

As in the two-dimensional discussion, bulk expansion/contraction is removed from

the velocity gradient tensor, and the velocity and deviatoric serve as building blocks

for a simple shear element. Equation 4.7 makes apparent the assignment of deforma-

tion within a plane to the vector direction normal to that plane. The shear detector

variable x in the convection equation (4.1) has units of specific momentum.

wi= -1-- (4.4)

s - =V + (4.5)
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xyz

j= zX (4.7)

zxy

pE =p (4.8)

Generalized Construction

At any point in the flow at any given moment in time, vorticity can be represented as

a single vector. At a point in space and time, rotation occurs around one axis at one

rate: locally, vorticity is a planar phenomenon. Even though the deviatoric tensor is

symmetric and can be broken down into a directional description, it does not readily

reduce to a planar motion the way that vorticity does.

Equation 4.11 gives, in sequence, the bulk expansion/contraction, deviatoric, and

vorticity matrices. The factor of 1 in front of the bulk deformation matrix reflects3

the averaging of bulk deformation over three dimensions. The deviatoric matrix

diagonal terms are in general nonzero, and although they are related to the off-axis

terms through coordinate rotation, they are not simply interchangeable as in the two-

dimensional case. Each diagonal entry contains information from all three dimensions,

while the off-axis terms each contain information from only two dimensions.

'U

= v (4.9)

w

au au au
Ox Oy &z

Vq -- _ v v (4.10)
8&x Dy Dzam aw aw
9X y 49z _
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The most certain way to deal with divining directionalized shear information is

to find the principal axes of the deviatoric. In the coordinate system defined by

principal axes, the off-diagonal terms of the deviatoric vanish, and there may be a

means of using the diagonal terms in the construction of a "deviatoric vector." A

measure of local simple shear could then be constructed through a comparison of the

vorticity vector (4.13) and the directional description of the deviatoric matrix. Such a

comparison would assess whether vorticity and deviatoric strain operate in the same

plane and at the same magnitude, which is the case when shearing flow is present.

1
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1
Wx

Lz

1
=2

The primary disadvantage of a principal

that the process is computationally expensive.

Dw Dv
Dy Dx

Du O (4.13)
Dz D')X

Dv _ u

_Dx Dy

axes-based generalized construction is

Finding the principal axes necessitates
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the solution of a 3 x 3 matrix eigenvalue problem, which is costly to solve when applied

to every point in the flow at every timestep. To reduce computational expense, there

is a huge gain to be realized if there exists a way to take better advantage of the

planar nature of shearing flow.

The desire to make use of a planar measure of local simple shear led to the main

three-dimensional innovation presented in this thesis. As emphasized throughout this

discussion, for two dimensions equal portions of vorticity and deviatoric strain are

equivalent to simple shear. The vorticity acts in a plane (the "vortical plane"). The

two-dimensional simple shear measure from Section 2.2 can apply to the deformation

rate in that plane. Acknowledging that, as in two-dimensional analysis, it is gradients

of simple shear that characterize a shear layer, the magnitude of the three-dimensional

gradient of simple shear measure becomes the three-dimensional E. Deviatoric strain

can take place outside of the vortical plane, but it contributes nothing to simple shear,

so we need not consider it.

The vorticity magnitude w = 10| comes from its three-dimensional vector descrip-

tion (Equation 4.13). The deviatoric magnitude in the vortical plane, which requires

a coordinate transformation, is given in Equation 4.14. In the primed coordinate

system z' is aligned to the vorticity vector and x' and y' lie in the vortical plane with

arbitrary orientation.

OU ' a~'U 2 + Du' Dv 2

D' =+ 5 + (4.14)

pE p V (pwe) (4.15)

As in Equation 2.19, it is appropriate to include the viscosity when calculating E.

Partial derivative values are more readily and cheaply obtained by evaluating them

relative to the grid's coordinate system than relative to a local frame. Because it

is a tensor, a rotation matrix T applied to the grid-frame velocity gradient tensor

produces the correct tensor in the new rotated frame [241, as in Equation 4.16. The

sequence for evaluating E at each node is therefore as follows:
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1. Evaluate the velocity gradient tensor in the grid frame.

2. Use the velocity gradient tensor terms to find the vorticity vector W.

3. Calculate the vorticity magnitude.

4. Find a rotation matrix that aligns the grid-frame z-axis to the vorticity vector.

5. Apply the rotation matrix to the velocity gradient tensor.

6. Use the rotated velocity gradient tensor terms to evaluate the planar deviatoric

magnitude s'.

7. Calculate the simple shear measure pv we at all nodes.

8. In the grid frame, take the magnitude of the simple shear gradient.

(Vq)' =_ T T (Vq)T (4.16)

The rotation matrix can be found in one of two ways. The first is to use the

normalized vorticity vector as the third column of T and then, for the other two

columns, find orthogonal unit vectors in the vortical plane. The second is to find the

Euler angles between the grid-frame z-axis and W and use them to construct T. Note

that only the first two Euler angles are necessary because the third involves rotation

about the z-axis, which is arbitrary. In both cases the columns of T form the basis

of the rotated frame.

The basic question is whether to consider the flow in three dimensions and then

make a two-dimensional assessment of the degree of simple shear, as presented in the

generalized method, or to consider the degree of shear in each Cartesian plane and,

from that assessment, assemble a shear measure that is valid in three dimensions.

Due to the planar nature of elemental shear, the generalized method is the clear

choice because it addresses the problem directly and most likely with the greatest

accuracy. Wherever boundary layer flow in a simulation becomes approximately

two-dimensional, such as flow over a sailplane wing at a low angle of attack, the
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generalized method explicitly reduces to the two-dimensional case regardless of the

sailplane's orientation in the grid frame.

4.2 Verification

Implementation, as in two dimensions, consists of appending a shear detector variable

to the state vector and iterating a convection equation alongside the flow equations,

much like a one-equation turbulence model. Many three-dimensional viscous solvers

are applicable to the task, among them the WIND code [5], which in its memory

structure has accommodations for additional equations.

The options for validating the shear detection method for fully three-dimensional

problems are limited. Though fundamentally a two-dimensional problem, it is useful

to first validate the model on a flat plate test case, which then sets a standard for

the edge threshold of the shear detector. From there validation can continue against

the few analytical solutions available for three-dimensional boundary layer problems.

Stagnation point flow, axially symmetric wake flow, and flow over a yawed cylinder are

possibilities [21], although only the yawed cylinder problem is truly three-dimensional;

the others are axially symmetric. IBLT models can also serve as standards for axially

symmetric geometries. Should an iso-surface of the shear detector accurately match

the shear layer edge surface for all attempted test cases, the detection method would

be applicable to any arbitrary viscous flow geometry.
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Chapter 5

Conclusions

5.1 Validity and Generality

To date, automated fluid feature extraction can reasonably address all features except

for shear layers. Shear layers pose a particularly difficult problem because they are

essentially undetectable in a local sense. If one desires to know whether a particular

point in the flow is within a shear layer or not, information about the surrounding flow

and the time history of the flow must be taken into account. The approach taken

in this body of work bears a strong similarity to one-equation turbulence models,

which represent turbulent flows via an eddy viscosity. Instead of modeling turbulent

viscosity, in this investigation the measure in question is the degree to which shear

has influenced the flow. A source term targets portions of the flow that exhibit

high gradients of shear, and a convection equation uses that source to propagate the

shear influence measure into the full extent of all shear layers present. A threshold

of the shear detector scalar at a small increment above zero provides an iso-surface

that matches the shear layers' edge. Both the Navier-Stokes equations viscous terms

source and the velocity gradient tensor quantities source appear to be dependable,

and the velocity gradient tensor source holds much promise for accurately singling

out shearing flows in three dimensions, to the exclusion of other features.

Laminar flat plate, thin laminar airfoil, and transonic turbulent airfoil test cases

demonstrate the validity of the convective shear layer feature extraction technique.
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Validity is assured for laminar, incompressible flows in two dimensions. The tech-

nique also works well for compressible flows, aside from the fact that the threshold

level exhibits some dependence upon Mach number. Given the threshold's good be-

havior with respect to Reynolds number, the possibility of similar performance with

respect to Mach number is tantalizing. Though with the present formulation no one

threshold value applies to all Mach numbers, the answer to the problem of a universal

threshold value might lie in a different velocity gradient tensor quantities source or

non-dimensionalization of the shear detector variable. For now the threshold for a

particular Mach number comes from the flat plate test case.

As is intended, weak normal shocks are rejected as flow features. Although the

technique is yet to be validated against curved shocks, supersonic flows, and three-

dimensional vortical flows, its finely targeted source term should reject these flow

features as well. One detail that approaches the philosophical is the issue of locating

where the wake vanishes. In most CFD flows the "end of the wake" lies well beyond

the domain, so this is not an issue. For far-wake studies or flows where wakes mingle

with highly disturbed flow, such as rotor blade wakes on a helicopter, light application

of dissipation and/or destruction terms in the convection equations may be appro-

priate to ensure that the detected wake eventually disappears into the surrounding

flow.

The shear layer extraction tool is general to most flows of engineering interest.

With the incorporation of the eddy viscosity and some adjustments specific to the

turbulence model, turbulent shear flows can be found as well as laminar ones. There

is no reason why the extraction method should not also function well in LES and DNS

simulations. Fully developed internal flows may require special treatment, depend-

ing upon the application, to ensure that only the desired shear layers are detected

as opposed to the entire flowfield. The technique is applicable on structured and

unstructured grids, in two and three dimensions, and in both steady and unsteady

simulations. It is in three-dimensional and unsteady flows that feature extraction tools

become indispensable. Without them, the ability of CFD simulations to produce data

outpaces the ability of human beings to fully interpret that data and sometimes even
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outpaces the capability to store it at a reasonable cost. Shear layer feature extraction

makes it practical for an investigator to assess the behavior of 3-D unsteady flow

without probing at every point and at every timestep.

Computation can be executed either via post-processing or co-processing. Happily,

the more empowering method of co-processing is actually computationally cheaper

because the shear detector equation runs within the framework of the flow equations.

Co-processing can make feature extraction an integral part of flow simulation and can

enable a whole range of computational operations, from active solution improvement

to great reductions in data writeout time and size. This investigation demonstrates

the ready utility of active grid refinement in the wake, and other possibilities such as

the use of the shear detector to drive improved algebraic turbulence models are yet

to be explored.

5.2 Further Development

In the immediate future, the next steps for the shear extraction are implementation

and test in three dimensions and spurious source rejection tests against all distin-

guishable types of flow features. The specific long-term implementation tool for our

extraction tool is to incorporate it into the Fluid Feature EXtraction Tool-kit (FX)

being developed by Haimes [15]. The FX package is capable of co- or post-processing

three-dimensional flowfields using a variety of tools. Shear layer feature extraction,

once mature, should become a widely-used component of CFD as it is applied to

solution improvement, visualization, analysis, and design in fluid dynamics.

77



78



Bibliography

[11 W. Anderson and Daryl Bonhaus. An implicit upwind algorithm for computing

turbulent flows on unstructured grids. Computers and Fluids, 23(1):1-21, 1994.

http://fmad-www.larc.nasa.gov/~nielsen/Fun/fun.html.

[2] Barrett Baldwin and Harvard Lomax. Thin layer approximation and algebraic

model for separated turbulent flows. In AIAA 16th Aerospace Sciences Meeting,

Huntsville, Alabama, 16-18 January 1978. AIAA Paper 78-257.

[3] Lawrence Baskett and Robert Haimes. Feature extraction of shear layers. In

15th AIAA Computational Fluid Dynamics Conference, Anaheim, California,

11-14 June 2001. AIAA Paper 2001-2665.

[4] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University

Press, Cambridge, Great Britain, 1980.

[5] R. Bush, G. Power, and C. Towne. WIND: The production flow solver

of the NPARC Alliance. In 36th Aerosciences Meeting & Exhibit, pages

345-354, Reno, Nevada, 12-15 January 1998. AIAA Paper 98-0935.

http://www.grc.nasa.gov/WWW/winddocs/.

[6] T. Cebeci and A. M. 0. Smith. A finite-difference method for calculating com-

pressible laminar and turbulent boundary layers. Journal of Basic Engineering,

92(3):523-535, September 1970.

[7] Mark Drela and Michael Giles. Viscous-inviscid analysis of transonic and

79



low Reynolds number airfoils. AIAA Journal, 25(10):1347-1355, 1987.

http://raphael.mit.edu/projects%26research.html.

[8] Mark Drela, Ali Merchant, and Jaime Peraire. Elimination of spurious loss

in Euler equation computations. In 29th AIAA Fluid Dynamics Conference,

Albuquerque, New Mexico, 15-18 June 1998. AIAA Paper 99-2424.

[9] NASA Dryden Flight Research Center Photo Gallery. http://www.dfrc.nasa

.gov/gallery/photo/index.html.

[10] Robert W. Fox and Alan T. McDonald. Introduction to Fluid Mechanics. John

Wiley & Sons, Inc., New York, fourth edition, 1992.

[11] Robert Haimes. Automated feature extraction from transient CFD simulations.

In Proceeding of the 7th Annual Conference of the CFD Society of Canada, Hal-

ifax, Nova Scotia, May 1999. Keynote address.

[12] Robert Haimes. Using residence time for the extraction of recirculation regions.

In A Collection of the 14th AIAA Computational Fluid Dynamics Conference

Technical Papers, volume 1, pages 345-354, Norfolk, Virginia, 28 June-1 July

1999. AIAA Paper 99-3291.

[13] Robert Haimes and Kirk Jordan. A tractable approach to understanding results

from large-scale 3D transient simulations, January 2001. AIAA Paper 2001-0918.

[14] Robert Haimes and David Kenwright. On the velocity gradient tensor and fluid

feature extraction. In A Collection of the 14th AIAA Computational Fluid Dy-

namics Conference Technical Papers, volume 1, pages 315-324, Norfolk, Virginia,

28 June-1 July 1999. AIAA Paper 99-3288.

[15] Robert Haimes and David Kenwright. FX Programmer's Guide. Massachusetts

Institute of Technology, 0.90 (beta) edition, 10 July 2000. The Fluid Feature

EXtraction Tool-Kit. http://raphael.mit.edu/fx/.

[16] A. Jameson. Numerical solution of the Euler equations by finite volume methods

using Runge-Kutta time stepping schemes, 1981. AIAA Paper 81-1259.

80



[17] David Kenwright. Automatic detection of open and closed separation and at-

tachment lines, 1999. AIAA Paper.

[18] Langley Image Scanning, Archival, and Retreival. NASA Langley Research Cen-

ter. http://lisar.larc.nasa.gov/LISAR/.

[19] David Lovely. Boundary layer and shock detection in CFD solutions. Master's

thesis, Massachusetts Institute of Technology, Department of Aeronautics and

Astronautics, February 2000.

[20 Ali Merchant. Personal communication.

[21] Hermann Schlichting. Boundary-Layer Theory. McGraw-Hill Book Company,

New York, seventh edition, 1979.

[22] Jonathan Shewchuk. Triangle: Engineering a 2D quality mesh gener-

ator and Delaunay triangulator. In First Workshop on Applied Com-

putational Geometry, pages 124-133. ACM, May 1996. http://www-

2.cs.cmu.edu/~quake/triangle.html.

[23] P. R. Spalart and S. R. Allmaras. A one-equation turbulence model for aero-

dynamic flows. In 30th Aerospace Sciences Meeting & Exhibit, Reno, Nevada,

6-9 January 1992. AIAA Paper 92-0439.

[24] Gilbert Strang. Introduction to Applied Mathematics. Wellesley-Cambridge

Press, Wellesley, Massachusetts, 1986.

[25] Milton Van Dyke. An Album of Fluid Motion. The Parabolic Press, Stanford,

California, 1998.

[26] David Venditti. Personal communication.

[27] Frank M. White. Viscous Fluid Flow. McGraw-Hill, Boston, second edition,

1991.

[28] http://aerodyn.org/Miscellanea/quotes.html.

81



82



83



84


