
Model-based Estimation of Probabilistic Hybrid Automata

by

MELVIN MICHAEL HENRY

B.S. Systems and Computer Science
Howard University, 1999

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2002

Copyright © Melvin M. Henry, 2002. All Rights Reserved.

The author hereby grants to MIT permission to reproduce
and to distribute publicly paper and electronic copies

of this thesis document in whole or in part.

Author
Department of Aeronautics and Astronautics

May 23, 2002

Certified by
Brian C. Williams

Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by
Wallace E. Vander Velde

Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECIHNOLOGy

SAUG 1 3 2002

LIBRARIES

MODEL-BASED ESTIMATION OF PROBABILISTIC HYBRID AUTOMATA

by

MELVIN MICHAEL HENRY

Submitted to the Department of Aeronautics and Astronautics
on May 23, 2002 in Partial Fulfillment of the

Requirements for the Degree of Master of Science in
Aeronautics and Astronautics Engineering

ABSTRACT

The ability to monitor and diagnose complex physical systems is critical for
constructing highly autonomous artifacts that can function robustly in harsh environments
over a long period of time. To accomplish this, we need to use high fidelity models that
describe both the discrete stochastic behavior and the continuous dynamics of these
complex systems. These models are used by a hybrid monitoring and diaj~nosis
capability that tracks a system's dynamics as it moves between distinctive behavioral
modes. In this thesis, we address the challenge of learning these hybrid
discrete/continuous models.

We introduce a Hybrid Parameter Estimation System that extracts parameter
estimates from sensor data. First, we review a method for Hybrid Modeling based on
Probabilistic Hybrid Automata (PHA) [Hofbaur and Williams, 2002]. Second, we
introduce Hybrid Parameter Estimation as a technique for learning the parameters of a
PHA, by unifying standard nonlinear estimation techniques with classical probabilistic
estimation techniques. Finally, we introduce the Hybrid Expectation Maximization
algorithm for computing hybrid estimates by combining Hybrid Parameter Estimation
with prior work on Hybrid State Estimation. This approach tracks the most desirable
estimates based on statistical measure of probability. We demonstrate this algorithm on a
simulated Mars habitat called BIO-Plex.

Thesis Supervisor: Brian C. Williams

Title: Associate Professor, Department of Aeronautics and Astronautics and
Department of Electrical Engineering and Computer Science

Acknowledgements

Foremost, I want to give thanks to Jehovah God. Great things he has done. He

has truly brought me through another milestone in my life. Without health and strength, I

would be unable to complete this thesis.

Further, I would like to express my deep appreciation to my thesis supervisor,

Brian C. Williams. He has been a supporter but most of all a true scholar. I admire and

owe him for his broad knowledge and deep insight - as well as his perseverance. Much

credit must be given to him for managing a group where students can explore new

directions and for creating opportunities for me to learn and grow as a researcher.

I am particularly indebted to Michael Hofbaur who functioned as my secondary

advisor. He offered technical support while here at MIT (and after he returned to

Austria). His vast knowledge was always available to me regardless of wherever he was.

For that I am truly grateful. He is an incredible individual who I have great respect and

admiration for. He has been there to listen and to offer valid (and quick) advice on both

academic and professional matters.

I am also grateful to the many student readers in the department of Aeronautics

and Astronautics at MIT. Special mention must be made of Seung Chung who read large

sections of my thesis and offered helpful comments throughout. Also, I am indebted to

Paul Elliott, who assisted with the data analysis of my results. You guys are the best.

Your assistance made this thesis the quality it is today.

3

To Milton and Majorie Samuels, you are God's gift from above to me. Your

kindness and love have truly helped me during these tiring times. Thanks for all your

support. You made me feel like family.

Most of all, thanks to my wonderful family. Mom, Muriel E. Davis, thank you for

your unconditional love and encouragement. To my sisters: Esther, Idetha, Sharlene,

Monique, and Patricia, thanks for believing in me. To my brothers, Lesroy, and

Livingstone, thanks for keeping me focused. Without all of you this victory would be

shallow, if at all possible.

I pay tribute to all my close and special friends: Cherolyn Allen, Kashfia Rahman,

and Audrey Cloyd, you are God sent. Majorie Joseph, Agnes Jordon, Charles

Washington, and Brian Hall, thanks for all your prayers. Nathalie Liburd, Michel Farrell,

Desma Alexander, Kenrick Bell, Merva Lake, Natalie Greaves and Marlo Hudson, thanks

for your support.

Finally, I pay tribute to my sponsor, NASA. This work was supported in part by

the NASA Cross Enterprise Technology Development Program under contract NAG2-

1388, and by the NASA Intelligent Systems Program under contract NCC2-1235.

Melvin M. Henry

Cambridge, MA

23 May 2002

4

Table of Contents

Chapter 1. Introduction...9
1.1 M otivation ... 9
1.2 A pplication.. 11

1.2.1 BIO-Plex complex...12
1.3 Problem Statem ent...13
1.4 T hesis L ayout.. 13

Chapter 2. Literature Review..15
2.1 O verview ... 15

2.2 Prelim inaries.. 15

2.2.1 N otation ... 15

2.2.2 Ordinary differential equations...16
2.2.3 Dynamic Systems..17

2.2.3.1 T erm inology...17
2.2.3.2 Dynamic System model...18

2.3 Hybrid System Concepts..20
2.3.1 Hidden Markov models..20
2.3.2 Continuous Variables...22
2.3.3 Probabilistic Hybrid Automata..22

Chapter 3. A tutorial On Learning System Model...25
3.1 O verview ... 26

3.2 Motivating Example: Electrical System..27
3.3 Estimation Problem...28
3.4 E M algorithm .. 28

3.4.1 The Expectation (E) step..28
3.4.2 The Maximization (M) step...30

3.5 Sum m ary... 32

Chapter 4 Hybrid Automata..33
4 .1 O verview ... 33

4.2 Deterministic Hybrid Automata..34
4.2.1 Motivating Example: n-channel enhancement-mode MOSFET...........34
4.2.2 The behavior of the n-channel enhancement mode MOSFET.............35
4.2.3 Model description of the MOSFET system................................38

4.3 Probabilistic Hybrid Automata..40
4.3.1 Motivating Example: Servo valve..40
4.3.2 Learning the system behavior..41
4.3.3 Model description of Servo valve...44
4.3.4 Hybrid Modeling..46

5

4.4 Summary.. 52

Chapter 5. Learning Of Hybrid Automata...54
5.1 O verview ... 54
5.2 Hybrid Learning...55

5.2.1 Hybrid EM algorithm..56
5.3 Hybrid Mode/State Estimation..58
5.4 Hybrid Parameter Estimation...60
5.5 Summary...68

Chapter 6. Experiments..69
6.1 O verview ... 69

6.2 Experiment 1: Linear Time-Invariant Systems.....................................69
6.2.1 PHA of the LTI system..73
6.2.2 Hybrid Parameter Estimation of the LTI system..........................74
6.2.3 Simulation.. 74
6.2.4 Results...76

6.3 Experiment 2: BIO-Plex Complex...78
6.3.1 Hybrid Modeling of the BIO-Plex...80
6.3.2 Simulation..83
6.3.3 Results..84

6.4 L im itation... 86

6.5 D iscussion .. 87

Chapter 7. Conclusions.. .. 88

7.1 Overview.. 88

7.2 Related Work..88
7.3 Summary...90
7.4 Future Work... 91

7.4.1 Extending HMLR capability to handle HPHA............................91
7.4.2 Model-based Decomposition... 92

7.4.3 Learning of the behavior of Single Robot....................................93
7.4.4 Learning of Cooperative Vehicles..94

7.5 C onclusions.. 96

References..97

Appendices..99
Appendix A. PHA descriptions..99
Appendix B. PHA examples..102
Appendix C. Pseudo code: Hybrid EM algorithm...108
Appendix D. Raw Output Dump...110
Appendix E. Matlab code.. .114

6

List of Figures

Figure 1.1 BIO-Plex complex

Figure 2.1
Figure 2.2

Dynamic system model
PHA showing transition functions associated with mode m,

Figure 3.1 The System's behavior

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12

Figure 4.13
Figure 4.14

Figure 4.15

Figure 4.16

Figure 5.1
Figure 5.2
Figure 5.3

Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9

Figure
Figure
Figure
Figure

6.1
6.2
6.3
6.4

The n-channel and the p-channel MOSFET symbols
Graphical representation of the behavior of the MOSFET
The schematic of the n-channel enhancement-mode MOSFET
The relationship between IDS and VDS with increasing VGS
Hybrid Automaton of the n-channel enhancement-mode MOSFET
The schematic of the Servo valve
Command input (u) vs. the valve opening (Q)
The Sampling rate of the Servo valve
PHA Structure of a Hybrid System
PHA Structure of the Servo valve
Mode Structure of the PHA
Modeling transitions from close valve to either stuck-at close or
Partially open valve
Mode Structure of a close Servo valve
Transition Structure of -r,
Transition Structure of r3 for the Servo valve
PHA of the Servo valve

Block diagram for the Hybrid Expectation Maximization Algorithm
Hybrid EM algorithm
Hybrid Observer contains a Hybrid State Estimator and a Hybrid Mode
Estimator
Function for the Hybrid E step
Function for the Hybrid M step
Update Equation Parameters function
Function for estimating the Transition Probabilities without guards
Function for estimating the Transition Probabilities with guards
PHA Structure with multiple paths from mode me to mpo

System's behavior of the Linear Time-invariant system
The behavior of the Linear Time-invariant system
PHA of the Linear Time-invariant system
The actual transition probabilities of the simulated LTI system

7

Figure
Figure
Figure
Figure
Figure
Figure
Figure

6.5
6.6
6.7
6.8
6.9
6.10
6.11

Figure 6.12

The estimated transition probabilities of the simulated LTI system
Error estimates of transition probabilities
(BIO-Plex) Bioregenerative Planetary Life Support System Test Complex
Selected schematic of BIO-Plex complex
PHA for the subsystem of the BIO-Plex complex
The actual transition probabilities of the simulated BIO-Plex subsystem
The estimated transition probabilities of the simulated BIO-Plex
subsystem
Error estimates of the transition probabilities

Figure 7.1 An example of an ATRV-Jr owned by our research group

8

Chapter 1 - Introduction

1.1 Motivation

Space and planetary vehicles need to be robust. The ability for a vehicle to

perform robustly would be advantageous where human supervision and control is not

feasible. Onboard human control may be unacceptable, for example, in circumstances

where the environment is severe and/or unpredictable. In addition, vehicles may be

required to remain in such environmental conditions for considerable periods of time.

In the past, efforts to achieve vehicular robustness have produced rather mediocre

results. The failures of unmanned vehicles such as Mars Climate Orbiter and Mars Polar

Lander indicates this [Young et al., 2000]. These failures implicate the lack of reactive

software onboard such vehicles that has the capability to estimate and diagnose the

behavior of the vehicles.

Onboard model-based estimation software is therefore critical for constructing

highly autonomous artifacts that can operate robustly in severe environments. Such

software has been successfully demonstrated on space vehicles that have the ability to

estimate a vehicle's behavior as it moves through a series of discrete modes [Williams

and Nayak, 1996; Muscettola et al., 1998]. However, these and other related methods fall

short in that they characterized vehicular behavior as either purely discrete or purely

continuous. Unfortunately, many real-world systems are defined by both discrete and

continuous dynamics. Future estimation capabilities must use high fidelity models to

capture the discrete stochastic behavior and the continuous dynamics of these vehicles.

9

The problem of learning a vehicle's behavior and dynamics presents some major

challenges. First, the system's designer must understand the vehicle's behavior in order

to construct a reasonable model that describes the vehicle. Constructing these models

often requires a difficult analysis from empirical data or from first principles of physics.

Misunderstanding the vehicle's behavior will result in the construction of an

inappropriate vehicular model. Second, the creation of a high fidelity model that

represents the correct behavior of these vehicles can be a challenging task [Nicholson,

1980]. For instance, if the model is a poor representation of the vehicle's behavior, then

it is useless to experiment on such model.

The problem of learning the parameters of a system's model is known in

engineering as the parameter estimation problem. We focus on maximum likelihood

learning, in which a single set of parameters is estimated. We choose this approach over

Bayesian approaches, which treat the parameters as random variables and compute the

posterior distribution of the parameters given the data. We choose the former approach

since it is a more classical approach to parameter estimation. One can also differentiate

between on-line and off-line approaches to learning. On-line recursive algorithms can be

obtained by computing the gradient or the second derivatives of the log likelihood [Ljung

and S6derstr6m, 1983]. Similar gradient-based methods can be obtained for offline

methods. An alternative method for offline learning makes use of the Expectation

Maximization (EM) algorithm [Dempster et al., 1977].

The EM algorithm is an iterative procedure for maximum likelihood parameter

estimation from a data set. The algorithm has two steps: the E-Step and the M-step. The

EM algorithm iterates between an E-step and a M-step. The E-step fixes the current

10

parameters and computes posterior probabilities over the hidden states given the posterior

distributions. On the other hand, the M-step fixes current posterior probabilities and

computes the parameters. For linear dynamic system models, the E-step is exactly the

Kalman smoothing problem, and the M-step simplifies to a linear regression problem

[Shumway and Stoffer, 1982; Digalakis et al., 1993].

In this thesis we focus on a Hybrid Expectation Maximization (Hybrid EM)

algorithm that analyzes quantitative details through statistical analysis. This algorithm

utilizes continuous/discrete automata and learns the equation parameters and transition

probabilities of the automata. We develop this algorithm as a generalization of the EM

algorithm to these automata. We demonstrate this algorithm on our target application of

this research thesis and address this application in the next section. The major challenge

of creating the Hybrid EM algorithm is the size of the automata. Hence central to this

approach is a learning method based on automated model decomposition. We address

this model decomposition capability in Chapter 7.

1.2 Application

The target application of the research in this thesis is the model learning of the

(BIO-Plex) Bioregenerative Planetary Life Support System Test Complex (see Figure

1.1). For the purpose of this research, BIO-Plex can be broadly defined as a closed

artificial environment that evaluates life support technologies pertaining to both

biological and physiochemical life. It provides air, water and up to 90 % of the food

necessary for a crew of four astronauts to survive on a continuous basis.

11

Figure 1.1: BIO-Plex complex

The actual form of the BIO-Plex system, its chemical composition, and the

specific resources available to it were abstracted to a large degree. Instead, the focus was

on constructing a Hybrid EM algorithm that can evaluate the behavior of the BIO-Plex

complex. The information presented in this section is heavily based on the BIO-Plex

complex requirement analysis presented in [Finn, 1999].

1.2.1 BIO-Plex complex

The area of interest includes creating a Hybrid EM algorithm that simulates the

BIO-Plex environment currently being researched at NASA Johnson Space Center in

Houston, Texas. Such an algorithm uses a model to learn the discrete stochastic behavior

and the continuous dynamics of BIO-Plex. In addition, the algorithm uses a variant on

the Expectation Maximization (EM) algorithm to accomplish our learning of the BIO-

Plex model.

12

1.3 Problem Statement

The ability to model complex physical systems is critical for constructing highly

autonomous artifacts that can function robustly in severe environments for considerable

periods of time. Such models must capture both the discrete stochastic behavior and the

continuous dynamics of these complex systems. We propose a hybrid model learning

capability for physical systems that has the ability to learn a system's dynamics as it

moves between distinctive behavioral modes. We address in this thesis, the challenges of

learning and refining models of complex physical systems.

1.4 Thesis Layout

The next chapter, Chapter 2, is a literature review of crucial information to this

thesis. First, we provide a preliminary review of notation used throughout, as well as

ordinary difference equations (ODE) and dynamic systems concepts. Second, we provide

basic definitions that are crucial to this thesis. Such definitions include hidden Markov

models (HMM), continuous variables, and probabilistic hybrid automata (PHA) [Hofbaur

and Williams, 2002].

In Chapter 3, we present a tutorial to learn a system model. We introduce a

general overview of the Expectation Maximization (EM) algorithm. We show by example

how the EM algorithm can be used to estimate the equation parameters (the parameters of

equation) of the system.

Chapter 4 discusses two types of discrete/continuous automata. First we discuss

deterministic discrete/continuous automata (DHA) using an n-channel enhancement-

13

mode MOSFET as an example. Second, we introduce Probabilistic discrete/continuous

Automata using a Servo valve as an example. Finally, we demonstrate how to model a

physical system with discrete/continuous behavior as hybrid automata

(discrete/continuous automata).

In Chapter 5, we introduce a Hybrid Parameter Estimation System that extracts

parameter estimates from sensor data. First, we introduce the method of Hybrid

Learning. Hybrid Learning uses the Hybrid EM algorithm. Hybrid EM algorithm as a

special case of the EM algorithm with added capabilities for handling Hybrid Systems -

complex dynamic systems that have both discrete stochastic behavior and continuous

dynamics. Second, we briefly describe the Hybrid Mode/State Estimation technique,

which uses the E-step. Third, we introduce a technique called Hybrid Parameter

Estimation, which uses the M-step. Fourth, we demonstrate how the E-step and the M-

step fold together.

In Chapter 6, we discuss two types of applications: (1) Linear time-invariant

(LTI) System, and (2) BIO-Plex - an advance life support (ALS) system dynamic

simulation testbed. First, we model the behavior of the system as a probabilistic hybrid

automaton. Second, we estimate the parameters of the system, given the PHA and

measurement data. Finally we assess the quality of our Hybrid Parameter Estimation

system comparing the parameter estimates with the real parameters.

In the final chapter, Chapter 7, we briefly mention other areas of inquiry related to

parameter estimation. This is followed by a summary of the contributions of the thesis.

Finally, we conclude by giving a range of research opportunities that arise from this

work.

14

Chapter 2 - Terminology and Models

2.1 Overview

This chapter provides a literature review of preliminary ideas and definitions that

the reader must understand in order to appreciate this work. Section 2.2 provides a

preliminary review of the notation used throughout this thesis, as well as ordinary

difference equations (ODE) and dynamic systems concepts. Section 2.3 provides basic

definitions of related concepts pertaining to this thesis. Such definitions include hidden

Markov models (HMM), continuous state variables, and probabilistic hybrid automata

(PHA) [Hofbaur and Williams, 2002]. Knowledge of the aforementioned ideas and

concepts is required in order to understand later chapters of this thesis.

2.2 Preliminaries

Throughout this thesis, we assume familiarity with the notation and concepts of

ordinary difference equations [Arnold, 1973], and dynamic systems [Hirsch and Smale,

1974].

2.2.1 Notation

This thesis adopts the following conventions.

A boldface symbol denotes a matrix or vector, i.e.,

b, B scalars

15

b, B matrices or vectors

Inn general, we use boldfaced lowercase letters to represent vectors, lowercase italics to

represent variables, and boldfaced capital letters to denote matrices. All vectors are

assumed to be column vectors, unless explicitly stated.

The following conventions are widely use:

u control input

vci input disturbance

Vc2 measurement noise

y observations or output vector

x state vector

Time is generally the only independent variable considered.

An estimate of the variable is denoted by a superscript caret; for example, £ is an

estimate of x.

A superscript tilde is used to denote a dummy or related variable. So i denotes a

variable similar in character to but different from x.

The equations and the figures are numbered according to the chapter. Section and

subsection numbering do not affect the equation and figure numbering. For example,

(3.2) denotes the second equation of Chapter 3, while Figure 4.10 denotes the tenth figure

of Chapter 4.

2.2.2 Ordinary differential equations

In this thesis, the continuous dynamic behavior of our probabilistic automata are

expressed using ordinary differential equations (ODEs):

16

S(t) = f (x(t)), (2.1)

where x(t) e X c R'. Function f : X -+ R" is called a vector field on R".

A system of ODEs is called time-invariant if its vector field does not depend

explicitly on time.

A plant or an ODE with inputs and outputs is given by

i(t)= f (x(t),u(t)) (2.2)

y(t)= g (x(t)

where the number of components of the state vector, n, is called the order of the system.

The input u(.) and the output y(.) have p and q components respectively. (That is,

x(t) E X c R"n, u(t) E U c RP, y(t) E Y c R , f : R"x RP -4 R", and g : R"n -+- R).

2.2.3 Dynamic Systems

Examples of dynamic systems include a traveling space vehicle, a chemical plant,

a home heating system, the population growth of a country, and the behavior of a

country's economic structure. Some dynamic systems can be understood and analyzed

intuitively. However, many dynamic systems, which are unfamiliar and complex, must

be systematically analyzed. In order to study such complex dynamic systems, certain

basic theory of dynamics must be understood.

2.2.3.1 Terminology

This section defines some basic terms used throughout this thesis to represent a

physical system.

17

System: A system is a generally represented by a mathematical model, which can

take many forms. Such forms include algebraic equations, finite state automata,

difference equations, ordinary differential equations, and partial differential equations.

State x: The system's state summarizes the effects of all the past inputs to the

system. Assuming that the system model is accurate, the current evolution of the system

is specified by the previous value of the state and current inputs.

Control input, u: The control input is the quantity that can be manipulated

(within constraints) to control the state of the system x and hence the output y.

Noise or disturbance vi and v2: The input disturbance vi models the uncertainty

or noise in the inputs to the system. On the other hand, the measurement noise v 2

conceptually models the noise introduced by the measuring device (sensor).

Observation y: The observation is the output of the sensor.

2.2.3.2 Dynamic System model

Mathematical models, which include state space models can represent the

behavior of a dynamic system. State Space models represent information about the past

through a real-valued hidden state variable. The dependency between the present state

variable and the previous state variable is specified through the dynamic equations of the

systems and the noise model.

For example, Figure 2.1 represents a dynamic system that has an input u(.) and an

observed output y(.). Where u(.) can be either u(k) for discrete-time systems or u() for

continuous-time systems.

18

V

U -)

X(.) state of the system

U(.) control input

vi(.) input disturbance

V2(.) measurement noise

y(.) observation

Figure 2.1: Dynamic system model

In this thesis, algebraic, difference, or differential equations are use to represent

the behavior of dynamic systems. The use of either differential or difference equations to

represent the dynamic behavior of the system corresponds respectively to whether the

behavior of the system is viewed as occurring in continuous or discrete time. In general,

for a discrete-time dynamic system model, the evolution of the system's state x and the

output of the system y are governed by the following difference equations:

X(k+) = f(x(k) U(k), VI(k)) (2.3)

Y(k) = (k) (k) 2,(k)

Whereas for a continuous-time dynamic system model, x and y are designated by the

following differential equations:

i(t) f (x(t), u(t), V,(t)) (2.4)

Y(t) g (X(t)I U(t) V2,(t))

19

If the state transition function f and the output function g of the dynamic

system are linear, the following linear time-varying differential equations are obtained:

i(t) At)xtt) + B(t)u(t) + VI(t) (2.5)

Y(t) C(t)x(t) + Du(t) + V2 (t)

where A, B, C, and D are nxn, nxp, qxn, and qxp respectively. If A, B, C,

and D are constant, the dynamic system can be adequately approximated by a set of

linear time-invariant difference equations:

X(k+1) =A (k)+ Bu(k) + Vl(k) (2.6)

Y(k) =Cx(k)+Du (k)+v 2 ,(k)

These disturbances, v, and v2 , can be modeled as a random, uncorrelated sequence with

zero-mean and Gaussian distribution.

2.3 Hybrid Systems Concepts

This section provides a summary of hybrid systems concepts, which include

hidden Markov models, Continuous State variables, and Probabilistic Hybrid Automata

[Hofbaur and Williams, 2002].

2.3.1 Hidden Markov Models

For a hidden Markov model, estimation is framed as the problem of determining

the probability distribution b(k) over the modes .M at time-step k. The probability of

being in a mode mi at time-step k is denoted b~k) [in]. This problem is also called the

belief-state update problem.

20

Definition 1:

The tuple, (M4, Y, IU, Pe, Pr, Po), describes a Hidden Markov Model (HMM).

Where M, Yd and Ud represent finite sets of feasible modes m,,

observations Ydi and control values udi, respectively. The initial state

function, Pe[m], denotes the probability that mi is the initial mode. The

probability of transitioning from mode mj(k 1) to mL(k) at time step k given a

discrete control action u d,(k1) is denoted by the mode transition function,

P (mu I Ud ,mi). The observation function P (Yd I in,) describes the probability

that a discrete value Yd,(k) is observed at k given m.(k).

In general, standard belief update for an HMM is an incremental process. This

process computes the belief-state b(k) at the present time-step given the present

observations Yd,(k)I the belief-state b(k1) and the discrete control action ud,(k-1) from the

previous time-step. Belief update is a two-step process. First, it uses the previous belief-

state and the probabilistic transition function to estimate the belief-state denoted

b(.k)[mi]. Second, it updates this estimation to account for the present observations at

time-step k resulting in the final belief-state b(k) [mi :

b(.k)Lm] = I P (Mi I ud,(kI,mj)b(k])[mJ]
m eM

b [mI_(yd k .
(2.7)

b(k) Lmi Ymj eM (Ok) j o Yd,(k) Inj)

To avoid confusion in terminology, the HMM state is refer to as the system's mode, and the term state is
reserved for the state of a probabilistic hybrid automaton.

21

2.3.2 Continuous State Variables

To estimate the state of a continuous dynamic system, a state observer is generally

used. One approach uses a discrete-time Kalman filter [Gelb, 1974] that captures the

continuous dynamics based on a discrete-time model of the dynamic system.

Definition 2:

The tuple, (xC9ye'uCvC~fC'gC), describes a discrete-time model (DTM).

xe, yc, uc, and vc represent the finite sets of independent state-variables xci,

observed variables yci, control variables uci, and exogenous input variables

vc,, respectively. The state transition function fc predicts the evolution of the

state-variables x ':)= fc(xC(k) ,u ,v) and the output function gc

specifies the observed variables Y,(k) = g (XC,(k), V c(k).

2.3.3 Probabilistic Hybrid Automata

A Probabilistic Hybrid Automata is a hidden Markov model encoded as a finite

set of modes that exhibit continuous dynamic behavior, which can be expressed by

difference, differential or algebraic equations [Hafbaur and Williams, 2002]:

Definition 3

A probabilistic hybrid automata (PHA) can be defined as a tuple

(.M , xe, yCIl-, F ,C , 1) :

22

m The finite set M denotes the modes mi e A4 of the automaton.

- xC and yc denotes the set of independent continuous state-variables and

output variables respectively. The set of input variables,

Ul=uc UUd Uvc, is divided into continuous control variables uc,

continuous exogenous variables vc, and discrete control variables Ud .

Components of continuous variables range over 91, whereas components

of discrete variables range over finite domains V.

* The sets F7, and 09 associate with each mode m, e M functions fe, and

ge, that govern the continuous dynamics exhibited at mode m, by

Xc(k+1) = fa(xC(k) ,uc,(k) ,vc,(k)) andYc(k) = g,(x (k),vc(k)

- T specifies for each mode mi(k) a set of transition functions

1 {I ,..., "}. Each transition function r has an associated guard

condition C (xC(k) Ud(k)) and specifies the probability distribution over

target modes ml(k+) together with an assignment for XC,(k+l.

Figure 2.2 shows a transition function for a mode m, with , ={I, 1, 1 The

transition function r2 represents a transition to either mode i3 with probability p3 or to

mode m4 , whenever its guard condition C2 is satisfied.

23

P4

Figure 2.2: PHA showing transition functions associated with mode m,

The tuple, (m(k), XC(k)) , specifies the hybrid state X(k) of a probabilistic hybrid

automaton at time-step k. Where m(k) e A4 denotes the mode of the automaton and

x, specifies the values of the state-variables. The shorter notation m was used to

denote m(k) = mi .

A probabilistic hybrid automaton is a model of a system with inputs u,, Ud and

v; output y,; internal hybrid state (m, xe). The behavior of the 'PW-A, also called the

trajectory, is represented by the sequence of hybrid states t ={X {0, X(I) ,..., X(k) }.

24

Chapter 3 - A Tutorial On Learning A System Model

3.1 Overview

The purpose of this thesis is to propose a model learning capability for complex

physical systems. This learning capability is a variant on the Expectation Maximization

(EM) algorithm. The EM algorithm is a procedure that is used in many fields of study. It

is an efficient algorithm that solves the problem of learning the parameters of a system's

model.

In this chapter, we provide a simple tutorial that demonstrates how the EM

algorithm learns the parameters of a model. This algorithm has an E-step and a M-step.

The E-step obtains measurements at each time step and estimates the mode of the system.

This operation labels the measurement data with the most likely modes of the system. In

the M-step, the labeling is used to separate the data according to the system's modes.

Having done so allows us to estimate the equation parameters for each mode by using

standard nonlinear estimation techniques [Shumway and Stoffer, 1982].

3.2 Motivating Example: Electrical System

Consider a system that is given an electrical current i as input and produces a

voltage V as output. The behavior of the system (see Figure 3.1) can be approximated as

having three components: a resistor R, a DC voltage source V and an AC voltage source

25

Vd . Furthermore, the system's noise is modeled as an additive noise with a Gaussian

distribution, specified by standard deviation -.

Figure 3.1: The System's behavior

The system has two operational modes, mode 1 and 2. Mode j is expressed by the

linear relationship:

V =iR +VO +V

where je { 1, 2}. In addition, the pair of parameters, (Rj, V,), describes mode j.

assume that each mode of the system is affected by the same noise value Vd .

simplicity, we assume that the system has no failure modes.

(3.1)

We

For

26

3.3 Estimation Problem

Consider the problem of estimating the mode parameters, given a data set that

does not specify the system's current mode. According to the EM algorithm, we can

estimate the mode of the system by repeatedly performing the following two tasks: (1)

estimate values of the pair of parameters, R and VO0, of a particular mode, given data for

that mode, and (2) assign each data point to the mode that most likely generated that

point. Task 1 is simple provided that task 2 is already solved, and vice versa. For

example, assuming that we know the labeling of each data point, we can then calculate R

and V of a particular mode, by taking into account only those data points that are labeled

with that particular mode. Similarly, if we know R and V of each mode of the system,

we can then label every data point in the data set with the most likely system's mode that

generated the point.

3.4 EM algorithm

The basic structure of a typical EM algorithm is as follows:

e Initialize the modes of the system with random equation parameter values.

* Iterate through the data set until the parameter values converge:

E step: Label each data point to the most likely mode it belongs to.

= M step: Update the parameter values of each mode using only the data points

associated with that mode.

27

3.4.1 The Expectation (E) step:

We discuss the E step of the EM algorithm as two subtasks: (A) estimating

probabilities and (B) estimating system modes.

(A) Estimating the mode probability of a data point

In the E step, we assume that the parameter values are known for each mode in

the system. For every data point and system mode, we calculate a residual value that the

data point belongs to the system mode. The residual is then used to compute the

probability of the data point in that mode. Generally, the residual value of the kth data

point is the numerical difference between the observation and the prediction of data point

k for each mode. For our electrical example, we can simply calculate the residual value

rj(k) of a data point k being in mode j by the following linear equation:

r'j,(k) -kRj + V1 0 -V (3.2)

where Ri and V1,O represent the equation parameters of mode j that we need to

estimate. Let us assume for example that modes 1 and 2 of the system are represented by

equations: (1) V = 5i +2 and (2) V = 2i +4, respectively, and that the kth data point is

i= 2 and V = 10.2. Then the residual value of the kth data point for mode 1 is

,(k) = (5x2+ 2)-10.2=1.8, while r2,(ky = (2 x 2+ 4) -10.2= -2.2 represents the

residual value of the kth data point for mode 2.

Having calculated the residual values of every data point in the given data set for

each mode, these values are then used to estimate the probabilities of each data point

belonging to each mode of the system. For example, the probabilities of the kth data

28

point being in mode 1 or 2 can be derived using Bayes' Theorem [Kinney, 1997]. The

probability of being in mode 1, p1 (k) , given that the input is 'k and we observe Vk , is:

p(m1 k, , Vk)

pXm1 ' k IVk) + pXm, "k IVk)
(3.3)

This probability is assumed to be Gaussian and can be calculated by equation (3.4):

P1,(k) =
r2 /2

s ayD e

e
- r /2-2

+ -r /2c2
e-r

Likewise, P2 ,(k) denotes the probability of being in mode 2 given input

observation Vk:

(3.4)

and

P2, (k) = P (M2 ik ,Vk)=
p(m 2 ,ikVk)

p(m,'k ,Vk) + P(M2,k ,Vk)
(3.5)

This probability is assumed to be Gaussian and can be calculated by equation (3.6):

1
e

P2,(k) =
e r

2 /2U
2 + I

-r /2o2

(3.6)
-r / 22

We can cancel
1 from the equations (3.4) and (3.6) to produce equations (3.7) and

(3.8), respectively, because both modes of the system have the same noise source:

er, 2

PI, (k) er2k1a

(k)/2a2

+-r22(k)/22 11
er22 (k)/22

P2,(k) -rI2(k)/22 + r22 (k)/2 2

29

(3.7)

(3.8)

P(" I'k I Vk) =

(B) Estimating the system mode

For our example, given that the kth data point is (,V) = (2, 10.2), the

probability of the kth data point being in modes 1 and 2 is PI,(k) 1 and P2,(k) = 0,

respectively. We can conclude that the most likely mode that generated the kth data point

is mode 1. Assuming that the variance a2 for the two modes of the system are

equivalent, if r,(2 is smaller than 2 then p1 ,(k) is greater than P2,(k) Whenever

P1,(k) is greater than P2,(k) , we can conclude that the most likely system's mode of data

point k is mode 1. This approach produces a data set, "labeled data", that relates each

data point to the most likely mode of the system.

3.4.2 The Maximization (M) step:

The E step computed for every data point in the labeled data set, a probability of

being in a particular mode of the system. The M step uses this labeling to update the

equation parameters. The method we employ to estimate the equation parameters of each

mode in the system's model is call a "weighted least squares fit". The weighted least

squares fit method is a special case of the least square fit method [Strang, 1986]. An

example of the least squares estimation problem is the linear regression problem in which

we fit N data points (i,V) for k =1,..., N, in the data set to a model of the system. For

instance, mode j has two adjustable parameter values (R, V 1). We use equation (3.9),

along with the data, to calculate the best estimated parameter values for mode j:

Vk = V(ik) = V(ik; R,VO) = ik R +Vj, (3.9)

For example, the parameters (R, 17,) of mode j are the solution to equation (3.10):

30

k k kRi~
(3.10)

Yk k k -V 0 k V

However, all the data points may not be equally weighted, and the above model would

not accurately fit the data. To obtain a more accurate measure of how the model fits the

data, we use the weighted least squares fit method. In the weighted least squares fit

method, we are given the probability p1 (k) for each data point in the data set. Equation

(3.10) generalizes to:

k pj(k)i k k k R (kkVk

k k (k) -V p (k) Vk

Therefore, for modes 1 and 2 in the above example, the following equations are obtained:

Yk P1(k)ik k p, (k)ik]RI] [p, (k)ikVk (3.12)

Yk P1 (k k Yk -() V1, 0- - p, (k) Vk

Yk P2 (kk P2 (k R2 _ k P2 k
p(k 2P2(k) [k I(3.13)

.k P 2 k k 2 2,0- .k P2(k)Vk

Calculating a set of parameter values is not the final outcome of the parameter

estimation problem [Press, 1992]. Recall that a set of parameter values represents a

system mode and that all the mode parameters of the system describe the model of the

system. Our aim is to calculate the most likely set of parameters that best fit the model of

the system. To accomplish this, we need to provide the following when we perform

parameter estimation on a system: (1) obtain a set of parameter values which describe the

model, (2) provide error estimates on the model parameters, and (3) provide a means to

assess whether or not the model of the system is appropriate. A system model is

considered appropriate when the model closely resemble a given data set (i.e. the model

31

can describe or matches the given data set). If item (3) suggests that the model is an

unlikely fit to the data, then discard the set of parameter estimates and continue the

parameter estimation process. When we obtain a model that closely resemble the given

data set, we assume the EM algorithm has converged.

3.5 Summary

To summarize this chapter, we provided a general review of the EM algorithm,

which iterates between an E-step and M-step. The E-step fixes the current parameters

and computes a probability distribution over the modes given the measurement data. On

the other hand, the M-step determines the most likely set of parameters, given the

probability distribution produced by the E-step. The M step simplifies to a linear

regression problem [Shumway and Stoffer, 1982].

32

Chapter 4 - Hybrid Automata

4.1 Overview

The goal of this chapter is to model the behavior of complex physical systems,

which may be characterized by both discrete and continuous dynamics. For this purpose,

we introduce a model called a Hybrid Automaton (HA). An HA is a modeling formalism

that merges discrete automata (DA) with continuous systems models. Hybrid Automata

allows us to represent both the discrete stochastic behavior and the continuous dynamics

in an expressive way.

In this chapter, we discuss two types of Hybrid Automata. In the first type of HA,

Deterministic Hybrid Automata (DHA), the regions of operation of a system are modeled

as the modes of the HA. Mode changes are triggered whenever the physical system

moves from one region of operation to another region. For each mode, there is a set of

equations that describes the behavior of the HA within this mode. In this type of HA, all

movements between the modes are considered to be deterministic.

In the second type of HA, Probabilistic Hybrid Automata (PHA), we model the

automata slightly different. Unlikely DHA, PHA's mode changes are triggered whenever

the continuous state variable, x, reaches the domain-boundary for a mode. In this type of

HA, all the transitions between the modes are considered to be probabilistic.

33

4.2 Deterministic Hybrid Automata

We model the movement of a system between modes through a set of transitions.

We consider the case of deterministic transitions in this section, using a MOSFET as an

example.

4.2.1 Motivating Example: n-channel enhancement-mode MOSFET

The Metal-Oxide-Semiconductor Field-Effect Transistor (or MOSFET) has

become one of the most important transistors used in Electronics today. Most

microcomputer and memory circuits are comprised of thousands of MOSFETs on a small

silicon board. MOSFETs are also used as voltage-controlled resistors, switches and in

calculator chips [Mims III, 1983].

Source Gate Drain Source Gate Drain
(S) (G) (D) (S) (G) (D)

NI(silicon) ILPJL
P N

N -MOSFET P -MOSFET

Figure 4.1: The n-channel and the p-channel MOSFET symbols

A MOSFET has three terminals: the source S, the gate G, and the drain D, as

shown in Figure 4.1 [Horowitz and Hill, 1989; McWhorter and Evans, 1994].

34

Enhancement-mode MOSFETs are generally "off' by default and must be switched on

They are switched "on" by a positive (for n-channel) or negative (for p-channel) bias

voltage on the gate.

4.2.2 The behavior of the n-channel enhancement-mode MOSFET

The gate G has no electrical contact with the source S and the drain D. Since

there is no electric current flow into the gate, only the gate-source voltage VGS controls

the behavior of the gate. A positive gate voltage (gate-source voltage) attracts electrons

to the region below the gate. This creates a thin build up of electrons between the source

and drain. At this point, current begins to flow through the channel. Also, VGS

determines the resistance of the channel. Figure 4.2 describes the overall behavior of the

n-channel enhancement-mode MOSFET.

VDS(V.-V)

Vos

T VGS VT

VDs

Figure 4.2: Graphical representation of the behavior of the MOSFET

35

VDS and V, denote the drain-source voltage and the threshold voltage (the value of the

gate-source voltage when the n-channel enhancement-mode MOSFET becomes "on"),

respectively.

The schematic of the n-channel enhancement-mode MOSFET is shown in Figure

4.3, where IG and IDS represent the gate current (the current at the gate), and the drain

current, respectively.

D IDS

VDS

o +

hVas
S

Figure 4.3: The schematic of the n-channel enhancement-mode MOSFET

The n-channel enhancement-mode MOSFET has three regions of operation: "Cutoff',

"Unsaturated" and "Saturated". In the Cutoff region, the n-channel enhancement

MOSFET is off.

For each region of operation, there is an algebraic equation that describes how the

drain current varies with the gate-source voltage [White, 1994]. Whenever the n-channel

enhancement-mode MOSFET is operating within the Cutoff region, no electrical current

flows from the drain to the source (see equation (4.1)):

IDS =0 (4.1)

36

In addition, the gate-source voltage is always less than the threshold voltage (VGS <VT).

Within the Saturated and the Unsaturated regions, the drain current depends on VGS -VT,

the amount by which the gate-source voltage exceeds the threshold voltage. Within the

Unsaturated region, current is now flowing from the drain to source. The drain current

changes as the drain-source voltage and the gate-source voltage both change.

Mathematically,

IDS = 2[2(VGS -VT) VDS VD

However, in the saturation region, only changing the gate-source voltage changes the

drain current. This relationship is expressed by equation (4.3):

IDS= (VGS _VT)
2 (4.3)

2

In equations (4.2) and (4.3), the parameter K is a product of two factors: (1) the

geometry of the n-channel enhancement MOSFET and (2) the capacitance of the silicon.

Figure 4.4 is a graphical representation of how drain current varies with gate-source

voltage during these three regions of operation.

37

VS

VDS

IDS

Cutoff Unsaturated Saturated

Figure 4.4: The relationship between IDS and VDS with increasing VGS

4.2.3 Model description of the MOSFET system

Next we model the behavior of the n-channel enhancement-mode MOSFET as a

hybrid automaton (see Figure 4.5). Our hybrid automaton consists of three nominal

operational modes: Cutoff me (for the Cutoff region of operation), Unsaturated mu (for

the Unsaturated region) and Saturated m, (for the Saturated region). We assume the

system operates perfectly, i.e. our automaton has no failure modes.

Finally we model the movement of a system between modes through a set of

transitions. There are nine possible deterministic transitions. For example, when the n-

channel enhancement-mode MOSFET is in Cutoff mc at time step tk, and a transition

occurs, we can observe one of three scenarios at time step tk+I: the MOSFET remains in

38

mode me , the MOSFET is in mode m,, or the MOSFET is in mode mu. When the

MOSFET remains in me , a self-transition ri, occurs. If the MOSFET moves to mode

m,, transition r 2 occurs. If the MOSFET moves to mode m., transition 'r3 occurs.

K
IDS =-(VGS VT)2

2

T33

IDS VT) VDS - VS
713

Figure 4.5: Hybrid Automaton of the n-channel enhancement-mode MOSFET

39

GS [2(s

I'll "21

4.3 Probabilistic Hybrid Automata

In this section, we capture the behavior of a servo valve and then model its

behavior as a probabilistic hybrid automaton.

4.3.1 Motivation Example: Servo valve

A servo valve is a continuously operated valve, which controls the carbon dioxide

(C0 2) flow into the plant growth chamber (PGC) of the Bioregenerative Planetary Life

Support System Test Complex (BIO-Plex). The schematic of the valve is shown in

Figure 4.6 where P,, P2 , u, and Q represent the CO 2 pressure at the inlet of the valve,

the CO2 pressure at the outlet of the valve, the continuous command input [0... 1] and the

CO 2 flow rate, respectively.

U

P P
14 Y LP Q

Figure 4.6: The schematic of the Servo valve

The continuous input u controls the opening of the servo valve from u = 0

(closed) to u = 1 (completely open). The flow rate exhibits a transient behavior

whenever we change the value of u abruptly, for example, from u = 0 to u = 0.3 at time

40

t =IT (where T denotes the sampling rate of our model learning and refinement

system). In this case and under the assumption that the pressures P and P2 remain

constant, the flow rate Q transitions from Q = 0 to Q = 0.3Qma , where Qmax denotes the

flow rate of the fully open valve for the pressure difference P -P2 .

4.3.2 Learning the system behavior

The transient behavior is assumed to be fast compared to the sampling rate of our

Hybrid EM algorithm, that is the flow rate of the valve settles at its new operational point

prior to the next sampling time point (see Figure 4.7). Furthermore, we want to capture

the imperfect behavior of the servo valve due to friction, where the flow rate deviates

from the desired value by an offset a, for example, u = 0.3 can lead to the flow rate

Q = 0.3Q. + a as shown in Figure 4.7.

41

U

1

0.3

0

Q

0.3

0

AL

-.------------------- -------------------.. . . . I Offset

A0 ti t2 t 3 t 4

close partially open open

t

t

Figure 4.7: command input (u) vs. the valve opening (Q)

Our Hybrid EM algorithm monitors the servo valve by taking sample readings (of

the command u, the pressures P, P2 and the flow rate Q) at specific time points

tk = kT + to, where T represents the sampling rate of the system and to denotes the initial

time point. Given the fast transient behavior of the servo valve with respect to the

sampling rate, we can model the behavior of the valve as follows: A command u at the

time point tk leads to an opening of the valve of AO(Uk+ a) at the following time point

tk+I (see Figure 4.8).

42

U

1

0.3
0

Q
Qrnax

0.3
0

_ -I_

19 t t2 t3 t4
close partially open open

Figure 4.8: The sampling rate of the valve

AO denotes the cross-sectional area of the completely open valve. This allows us to state

the following difference equation for the partially open servo valve:

Xk =Uk_

Qk =J I (xk + a) j~k - (4.4)

where xk denotes the state variable at time step tk and u represents the rheological

resistance of the servo value.

Depending on the value of u at the previous time step tk, , the servo valve can be

close, partially open or completely open at time step tk . These three cases represent the

43

nominal operational modes of the valve. Allowing the control command to range over a

wider interval (e.g. whenever u is the output of a non-limiting continuous controller), it

makes sense to abstract the limiting behavior of the valve by distinguishing among these

three modes explicitly. For example, whenever uk_ 1, we assume a completely open

valve at the next time step leading to the maximal possible flow rate for a given pressure

difference:

Qk= pAo Ik - P2,k (4.5)

and when ukI 0, we assume a close valve at time step tk leading to zero flow rate

Qk =0 (4.6)

irrespective of the pressure difference.

4.3.3 Model description of servo valve

We use the aforementioned description of the servo valve to model the

operational modes of the value: when the servo valve is closed, we model our system to

be in mode me and whenever the valve is partially open, we model our system to be in

mode mpo. A completely open valve causes us to assume that our system is in mode mo.

Like most real systems, the servo valve can fail to function properly during its

operation. Depending on the value of u at the previous time step tk, the valve can

become stuck-closed, stuck-partially open, or stuck-open at time step tk . These three

scenarios represent the common failure modes of the servo valve. For example, if we

assume a closed valve at time point tkI and we issue a continuous input of uk-I > 0, but

we observe a flow rate of Qk = 0, instead of a flow rate of Qk > 0 at time point tk, then

44

we model this scenario as one of the common failure modes of our system. Here we

assume we have a valve stuck-closed. Similarly, if we assume a completely open valve

at time step tkl_ and we issue a command uk_, : 0, but we observe a flow rate at the next

sampling point k, we assume the servo valve is stuck-open. The final failure mode of

the servo valve exists whenever the valve is assumed to be partially open and a command

input of either uk_ 0 or ukl_ 1 is issued, and we observe the same fluid flow rate at

time step tk , then we assume that the valve is stuck-partially open.

We use the following model description to illustrate the common failure modes

for the servo valve: when the valve becomes stuck-closed, our system is assumed to be in

mode m, and whenever the valve is assumed to be stuck-open, we model this valve's

behavior as a different failure mode m,. Similarly, whenever the servo valve is stuck-

partially open, we model our system to be in mode m,

Autonomous mode changes are triggered whenever the continuous state variable

x reaches the domain-boundary for a mode. For example, if we assume a closed valve at

time tk-_ and uk_, > 0, then we observe a gas flow at the next sampling point tk . This

can be modeled by transiting among the modes that are triggered by the value of the

state-variable xk, that is, the transitions are guarded by functions of the form xk > 0. The

transitions are assumed to take place instantaneously, to be more specific, we model

mode transitions to be guarded on the state variable immediately at time step tk and use

the transitioned mode as the valid one for this time step (one could also think that the

transition takes place immediately before the time point tk).

45

Given the aforementioned model description of the servo valve, we can represent

it as a PHA. This automaton can be used to model the modes of the servo valve and how

we transition between these system modes whenever we change the command input. In

the remaining section, we discuss how to formally model a hybrid system as a

Probabilistic Hybrid Automaton using the servo valve as an example.

4.3.4 Hybrid Modeling

A PHA describes a hybrid system as a hidden Markov model encoded as a set of

modes that exhibit continuous dynamic behaviors, which are expressed by differential,

difference, or algebraic equations. By definition, we frame a single Probabilistic Hybrid

Automaton as an automaton that consist of a set of modes, a set of transitions, and a set of

variables. The set of variables is comprised of input(s), state variable(s), and output(s) of

a PHA (see Figure 4.9).

PHA:
Variables: # input(s), # state(s), # output(s)
Modes: .M = {m(O),..., mI) } finite set of modes in the automaton

Transitions: T = {, I ... } finite set of transitions in the automaton

Figure 4.9: PHA Structure of a Hybrid System

The behavior of a servo valve, for instance, can be modeled as a PHA with a

continuous command input u, a state variable x, and an output Q, which denotes the

46

flow rate of the valve. Recall that a servo valve can be modeled with three nominal

operational modes, which are closed mc, partially open mPO , and completely open m

(see Figure 4.10). In addition, a servo valve has three common failure modes, which are

stuck-closed mse , stuck-open ms, and stuck-partially open myn,. Shared among the six

distinctive modes of the PHA, are the sixteen common transitions '", T2 , - -- 1 6 . Using

this information and the modeling formalism cited above, we model the servo valve as a

PHA in Figure 4.10.

PHA: Sv
Variables: 1 input u, 1 state x, 1 output Q
Modes: mC Impo' MO, msc i Mso, mpso
Transitions: z1, r2, z3 ,4 r 5 '7' 7 8 , z9 , z10 ' l "11 1 12 1 "13 ' 14' 715' 16

Figure 4.10: PHA Structure of the Servo valve

Next, a mode of a PHA (see Figure 4.11) is comprised of: (1) an associated set of

ordinary differential (ODEs), difference, or algebraic equation(s), which describes the

behavior of the system in the mode, (2) an associated set of guards that must be satisfied

in order for a particular transition function to occur, (3) a set of transition functions that

transition from the source modes to the target modes in the PHA whenever a set of

particular guards are satisfied. Such mode transitions are a set of outgoing transitions

from a source mode.

47

Mode: m(k)

ODE: the set of ordinary differential/difference equations for this mode
Guards: Ci, , ... , C .@ guards satisfied when exiting mk
Transitions: r, ... , r,) @ the set of transitions for mode mk

Figure 4.11: Mode Structure of the PHA

For instance, in Figure 4.12, when the servo valve is closed and we issue a

command u to the valve, we can observe one of three scenarios: the valve remains closed

m, , the valve is stuck-closed mc due to mechanical failure, or the valve becomes

partially open mp. If the issued command u requests the servo valve to remain closed,

(a transition from mode me to me), a self-transition r, occurs. The transition r, is

guarded by the function of the form xk 0 (CI satisfied). Once C,, remains satisfied,

the servo valve remains in mc (i.e. no modal change occurs). On the hand, if the issued

command u is to open the valve, either a transition r2 from mode mC to Mse , or a

transition r3 from mode me to mpo must occur. Recall that autonomous mode changes

are triggered whenever the continuous state variable x reaches the domain-boundary for

a mode. When x > 0 occurs, guard C12 is satisfied and either transition r 2 or r3 occurs.

48

P

3

p3

P 2

Figure 4.12: Modeling mode transitions from closed valve to either to stuck at close valve

or partially open valve

Figure 4.13 illustrates how we model the closed valve mode of the servo valve using the

PHA formalism.

Mode: me
ODE: Qk =0

Guards: C,, C12

Transitions: r,, -2 , r3

Figure 4.13: Mode Structure of a closed Servo valve

49

Finally, we frame a transition function of a PHA (see Figure 4.14) to consist of:

(1) a source mode that specifies the origin of a particular mode transition, (2) a guard that

has to be satisfied, and (3) an associated thread which gives the probability distribution of

transiting from the source mode(s) to particular target mode(s).

Transition: r,
Source: M(k) ' Source mode of transition r,

Guard: C1 0 guard that has to be satisfied whenever transition r, is taken

Thread: Ip m 1) @ [probability target mode]

Figure 4.14: Transition Structure of r,

For example, in Figure 4.15, the transition function r3 describes the transition

from a close valve mc to a partially open valve %p0 whenever guard C2 is satisfied.

Provided that guard C12 is satisfied, we can transition to the target mode mpo with

probability P3 . We model the transition function r3 as follows:

50

Transition: r3
Source: me
Guard: C 2

Thread: IP 3 Mpo

Figure 4.15: Transition Structure of z3 for the Servo valve

Figure 4.16 shows the Servo valve completely modeled as a PHA. In addition, the

complete PHA structure of a Servo valve is available in Appendix B.

In general, any hybrid system can be modeled as a PHA. Once the modeling task

is accomplished, our system then uses this information along with the measurement data,

to learn the parameters of a PHA. We address the learning of the Hybrid Automata in

Chapter 5.

51

P 4P1

Figure 4.16: PA of8 P8 sevC5v l12

C 552

41 C 42 C 32

10 mesoC mm m

31 C

131

4.4 Summary

In this chapter, we demonstrated how to model a physical system as a Hybrid

Automata. A probabilistic hybrid automaton is a Hidden Markov models (HMM)

represented as a set of modes that exhibit a continuous dynamic behavior, expressed by

difference, differential, or algebraic equations, and a discrete behavior, expressed as

mode transitions.

52

First, we discussed Deterministic Hybrid Automata. In this type of automaton,

we modeled the movement of a system between modes through a set of deterministic

transitions. Second, we introduced Probabilistic Hybrid Automata. We modeled the

behavior of a system as a probabilistic hybrid automaton. In addition, we frame the

dynamics of the valve as it moves from one mode to another through a set of probabilistic

transitions.

53

Chapter 5 - Learning of Hybrid Automata

5.1 Overview

Large-scale model learning has been considered one of the grand challenges of

machine learning. One area where significant progress has been achieved is in the area of

Bayes net learning. Learning of Probabilistic Hybrid Automata (PHA) is a new open

challenge for machine learning with broad application. In this chapter, we address the

challenges of learning Hybrid Automata by introducing a variant of the Expectation

Maximization algorithm. This modified algorithm enables learning of a complex

physical system as it moves between its distinctive behavioral modes.

Chapter 5 is organized as follows. First, we introduce Hybrid Learning as a

Hybrid Expectation Maximization (Hybrid EM) algorithm that folds Hybrid Mode/State

Estimation and Hybrid Parameter Estimation together. Hybrid Learning uses high

fidelity models to describe the discrete stochastic behavior and the continuous dynamics

of hybrid systems. Second, we briefly show how Hybrid Mode/State Estimation tracks

and diagnoses a PHA by creating a Hybrid Observer that uses the results of the

continuous state to estimate the system's modes. Third, we frame Hybrid Parameter

Estimation as a method that unifies standard nonlinear estimation techniques for

estimating the equation parameters of the system's modes with classical probabilistic

estimation techniques for estimating the transition probabilities of a PHA.

54

5.2 Hybrid Learning

To detect the onset of failures such as a Servo valve being stuck-closed; it is

essential that a learning system be able to accurately extract the parameters of a model

from noisy measurement data. The problem of learning the parameters of a hybrid

automaton is modeled as the Hybrid Parameter Estimation problem. More precisely,

Definition: Hybrid Parameter Estimation problem

Given a probabilistic hybrid automata PHA for a system, a sequence of

observations (Y(O),..., Y(k)), a history of control inputs (u(0), ... ,u 1),) a

sequence of state variable estimates (2(0)1 .---I()), and a sequence of the

most likely modes (m(),..., M(k)) , determine the parameters of the PHA.

The parameters of the PHA consist of the equation parameters of a system mode,

for example (p, a) in equation (4.4), with the transition probabilities over the modes. To

determine the parameters of the PHA, we introduce a Hybrid Learning system.

Hybrid Learning is an interactive process, which unifies a Hybrid Mode/State

Estimation technique and a Hybrid Parameter Estimation technique. Figure 5.1 is used to

illustrate this unification. With each execution of the Hybrid Mode/State Estimation

technique, the learning system updates the set of Mode/State estimates and stores the best

set of Mode/State estimates (labeleddata). In addition, with each execution of the

Hybrid Parameter Estimation technique, the learning system re-estimates the parameter

values in order to keep the best set of parameter estimates (Data). Each estimation

55

process is repeated until the best sets of hybrid estimates, i.e. the best of Mode/State

estimates and Parameter estimates are achieved.

labeled data

updated
parameters

Hybrid
Parameter
Estimation

Figure 5.1: Block diagram for the Hybrid Expectation Maximization Algorithm

Our learning system is a variant on EM algorithm. This algorithm we called Hybrid

Expectation Maximization (HybridEM). The next section provides a quick overview of

the Hybrid EM algorithm.

5.2.1 Hybrid EM algorithm

The Hybrid EM algorithm is a procedure that can be used to solve a large variety of

estimation problems in many disciplines. This algorithm modifies the EM algorithm

given in Chapter 3. The basic structure of a typical Hybrid EM algorithm is as follows:

e Initialize the modes of the PHA with random parameter values

e Iterate through the data set until the parameter values converge

E Hybrid E step:

56

" Detect mode changes

= Assign each data point to the most likely mode it belongs to (labeled data).

= Return the labeled data @* Return mode/state estimates

c Hybrid M step:

" Update the equation parameter values of each mode using only the data

points associated with that particular mode.

" Update the transition probabilities of the PHA

- Return Data <@ Return parameters estimates

Figure 5.2 provides the pseudo code of the HybridEM. The HybridEM algorithm is

introduced as a procedure that accepts a data set "Data" and a PHA. First, the

HybridEM algorithm invokes the HybridE step, which labels each data point according

to the mostly likely mode it belongs to (labeleddata). This labeleddata is then passed

to the HybridM step, which uses the labeling to estimate the parameters of the PHA.

The newly updated parameter values are then stored in a text file (Data) and return to the

HybridE step. Both the HybridE and the HybridM steps are repeated until the best set

of parameters estimates are obtained. When the HybridEM algorithm determines the

best set of Hybrid Estimates, we conclude that convergence has occurred in our system.

1 By the best set of Hybrid estimates we mean the best set of most likely modes for the HybridE step and
the best set of parameter values for the HybridM step.

57

Hybrid_EM(Data, PHA)
Begin loop

labeleddata = Hybrid _E(Data, PHA);
UpdatePHA = HybridM(labeled_data, PHA);
If converged?(PHA, UpdatePHA)

Return UpdatePHA
else

PHA = UpdatePHA
End-If

End loop
End-HybridEM

Figure 5.2: Hybrid EM algorithm

The HybridE step is provided by Hybrid Mode/State Estimation technique and the

HybridM step is provided by Hybrid Parameter Estimation technique. In the next two

sections, 5.3 and 5.4, we specify how the E step uses information from the learning

system to guide Hybrid Mode/State Estimation, and how the M step uses results

(measurement data) from the learning system to guide Hybrid Parameter Estimation.

5.3 Hybrid Mode/State Estimation

We adopt the technique called Hybrid Mode/State Estimation, formulated by

[Hofbaur and Williams, 2002] to track and diagnose a PHA. The detailed of such a

technique is outside the scope of this thesis; however, a brief summary of this technique

is provided here. Hofbaur and Williams first introduced the PHA formalism. They then

introduced Hybrid Mode/State Estimation as a technique for tracking and diagnosing a

58

PHA. This combines two techniques, which are the Hybrid Mode Estimation technique

and the Hybrid State Estimation technique.

The Hybrid Mode estimation technique obtains measurements at each time step

and estimates the mode of the system at each step. This technique labels the

measurement data with the most likely modes of the system. We use this labeling to

separate the data according to the most likely mode of the system. The, Hybrid State

Estimation technique maintains a set of likely hybrid state estimates X. The hybrid

state X(k) of a probabilistic hybrid automaton at time-step tk is specified by the tuple

(m(k), XC(k)) , where m(k) e 4 specifies the mode of the automaton and X,(k) specifies

the values of the continuous state-variables. These state variables and automaton modes

can be estimated using a Hybrid observer.

Hybrid Observer:

concurrent UPA model esimated mode & statlg&=(
Obsertionsy Hybrid and i0% beir mate h[X]
and control inputs u Mode ---..

Estimator

59

The hybrid observer, see Figure 5.3, is composed of two components.

Component one, the Hybrid State Estimator, generalizes the Kalman filter, and is

responsible for estimating continuous state variables. Component two, the Hybrid Mode

Estimator, generalizes the Markov observer, and is responsible for maintaining mode

estimates of a hybrid system. The details pertaining to how the Kalman filter and the

Mode Estimator components interact are beyond the scope of this thesis. The reader who

wishes to learn more about these two components should consult [Williams and Hofbaur,

2002].

In Figure 5.4, we produce the basic pseudo code for the HybridE step.

HybridE(Data,PHA)
Detect mode changes
Labels each data point in data set with the most likely mode of Model
Return labeleddata

End-HybridE

Figure 5.4: Function for the Hybrid E step

In the next section, we show how the Hybrid EM algorithm uses the above labeleddata

to determine the parameters of the PHA (Chapter 4).

5.4 Hybrid Parameter Estimation

Hybrid Parameter Estimation is comprised of two estimation techniques: (1) a

technique that estimates the equation parameters of each mode of a PHA, and (2) a

60

technique that estimates all the transition probabilities of a PHA. Recall that the

HybridM step uses the Hybrid Parameter Estimation technique. We frame the

HybridM step as consisting of two tasks: (1) the UpdateEquationParameters task, and

(2) the UpdateTransitionProbabilities task (see Figure 5.5).

Hybrid-M(labeled-data,PHA)
; Given a set of labeled data, estimated the equation parameters and
; transition probabilities for PHA.

UpdatePHA = UpdateEquationParameters(labeleddata, PHA);
UpdatePHA = UpdateTransitionProbabilities(labeleddata, PHA);
Return UpdatePHA

End-Hybrid-M

Figure 5.5: Function for the Hybrid M step

In the UpdateEquationParameters task, the labeling of the measurement data is

used to separate the data according to the modes of the PHA. Having done so allows us

to estimate the equation parameters for each mode by using standard nonlinear estimation

techniques. For example, the labeleddata D is assumed to belong to mode m, and we

use the weighted least squares fitting method to estimate the parameters pj:

pj* = arg min I [yy-j(x1 , p1)]2 (5.1)

The UpdateEquationParameters task is then invoked with the variables, labeleddata

and PHA. First, we determine the number of modes A4 in a PHA. Second, we create

data structures, called buckets, for each mode in the PHA. We store data points

61

belonging to a particular mode in the corresponding bucket. For instance, for mode j,

we create bucket j. Then we store all the data points, which belong to mode j into

bucket j. We perform this task for all the modes of the PHA. Once all data points are

stored in their appropriate buckets, the content of each bucket are placed in a structure

called m_data. To reference a mode j, we would reference mdata(j) of the data

structure. Similarly, the equations for each mode are stored in a data structure called

m_eqn. Both mdata and m-eqn are then used by the function EstimateParameters to

estimate the parameters of each mode in the PHA (see Figure 5.6).

UpdateEquationParameters(labeled-data, PHA)
; Given a set of labeled data, estimates the parameters for the equations
; of every mode in PHA.

For each m in modes(PHA)
bucket(m)={}

End-For
For each <data-point, mode> in labeled-data

add data-point to bucket(mode)
End-For
For each m in modes(PHA)

m-eqn(ID(m)) = equations(m)
m-data(ID(m)) = bucket(m)

End-For
SetofParameters = EstimateParameters(m-eqn, m-data)

return PHA
End-UpdateEquationParameters

Figure 5.6: UpdateEquationParameters function

62

Furthermore, labeling the data according to the modes provides us with an

estimate for the time points when mode changes occur. Observing the system over a

sufficiently large period of time will provide the information necessary to estimate the

transition probabilities for a PHA. This estimation technique is discussed in the

UpdateTransitionProbabilities task. For instance, let us again consider the scenario

when a Servo valve is fully close, and we issue a command u to open the valve. The

transition function r, specifies a self-transition from mode me with probability p, when

guard C,, is satisfied. Similarly, when guard C,2 is satisfied, 'r2 specifies a transition

from mode me to mode msc with probability P 2 or the transition z3 from mode mc to

mode mpo with probability P3 . There are three approaches we consider: approach one

estimates the transition probabilities when the transitions of a PHA do not have guards.

Approach two estimates the transition probabilities for unique path transitions from

source modes to target modes when satisfied guards are taken into account. Approach

three involves estimating the transition probabilities for multiple path transitions from

source modes to target modes when the guards are satisfied.

In approach one, we estimate the probability #3 from mode mc to mode mpo

when all the guards of the PHA are ignored, by the following method: First, we calculate

the number of times a transition occurs from mode mc to mpo, 5cP Second, we

calculate the number of times a transition occurs from mode mc to other targets modes

of the HPA, 5iCCP . Finally, #3 is the quotient of ic, by f5cc:

number of times mc -4 po _ CP CP 52
P,= -t - (5.2)

number of times Mc -4 Mc, 1)MPO, Msc nee,,S nec +nFC, +nFC,

63

The following pseudo code, see Figure 5.7, is used to calculate the transition

probabilities of modes of the PHA using approach one.

Update-transition-probabilities (labeled-data, PHA)
Given a set of labeled data
Estimate the transition probabilities for the model

m = number of modes(PHA)
MTM = matrix(m, m)
MOM = matrix(m, 1)
For each consecutive pair (<data-point 1, mode mc >, <data-point2, mode mpo >)

of labeled-data
i = mode-index(mode me)

j = mode-index(mode mpo)

MTM(i, j) = MTM(i, j) + 1
MOM(i) = MOM(i)+ 1

End-For
UpdatePHA(TP) = Estimate-Transition-Probabilities(MTM, MOM,PHA)
Return UpdatePHA

End-Update-transition-probabilities

Estimate-transition-probabilities(MTM, MOM,PHA)
Bin = matrix(size-of-matrix(MTM))
For i = 1 to number-of-rows(MTM)

For j = 1 to number-of-columns(MTM)
If MOM(i) 0

Bin(i, j) = MTM(i, j) / MOM(i)
End-If

End-For
End-For
Return Bin

End-Estimate-transition-probabilities

Figure 5.7: Function for estimating the Transition Probabilities without guards

64

In approach two, we estimate the transition probabilities of a PHA when the

satisfied guards are taken into account and there is a unique path from source mode to

target mode(s). For example, to estimate the probability P3 from mode me to mode

Mpo when guard C,2 is satisfied, we calculate ne,, the number of times a transition

occurs from mode me to mpo. Then we calculate the number of times a transition

occurs from mode me to other target modes of a PHA ncps - P3 is the quotient of

Cps -

number of times mc -+ mpo

number of times me -> inpo,Msc
ncp ncpn i+
ne, n+nc

By estimating these probabilities #3 and p3 according to the first two approaches,

approaches one and two, it is obvious that 5 , # neP nor h eP, # ne, 5 . Furthermore, these

two probabilities are not equivalent to each other, P3 # P3 - The HybridEM algorithm

currently uses the approach two to estimate the transition probabilities of the modes in the

PHA. The following algorithm is used to calculate the transition probabilities of modes

using approach two (See Figure 5.8):

65

n, by

(5.3)

UpdateTransitionProbabilities (labeled data,PHA)
Given a set of labeled data
Estimate the transition probabilities for the model

m = number of modes(PHA)
gs = guards satisfied whenever we are in mode m

MGM = matrix(m, gs)
ts = transition taken when a particular mode is satisfied

GSMEM = matrix (gs, ts)
MGSM = matrix(sizeof _GSMEM)
MGOM = matrix(length ofGSMEM, 1)
UpdatePHA(TP) = EstimateTransitionProbabilities(MGSM, MGOM, PHA)
Return Model

End-Update-transition-probabilities

Estimate-transition-probabilities(MGSM, MGOM, PHA)
Bin = matrix(size-of-matrix(MGSM))

For i = 1 to number-of-rows(MGSM)
For j = 1 to number-of-columns(MGSM)

If MGOM(i) # 0
Bin(i, j) = MGSM(i, j) / MGOM(i)

End-For
End-For
Return Bin

End-Estimate-transition-probabilities

Figure 5.8: Function for estimating the Transition Probabilities with guards

In approach three, estimating transition probabilities of a PHA becomes more

complex when the guards satisfied are taken into account, and there are multiple-path

transitions. That is there are multiple ways to transition from a source mode to target

mode(s). For example, in Figure 5.9, we assume that there are two ways to move from

mode mc to mode mpo. A mode transition is possible via transition r3 whenever guard

C,2 is satisfied or via transition r5 whenever guard C,3 is satisfied. Since different

66

guards are satisfied when we transition from mode me to mode MP0, we can deduce that

the transition probability estimated will be different from those calculated in the first two

approaches. To date, we have not research this estimation approach in detail; however,

we feel that such an approach may be an interesting topic for further study.

T74 P4

T2 P2

P5 P3

Figure 5.9: PHA with multiple paths from mode m, to mode mpo

Our Hybrid Expectation Maximization algorithm then utilizes a PHA along with

labeleddata to estimate the parameters of the PHA. This estimation problem we framed

as the Hybrid Parameter Estimation problem.

67

5.5 Summary

In summary, we introduced a variant of the Expectation-Maximization algorithm

for parameter estimation. EM is an iterative relaxation algorithm that repeatedly updates

the model parameters. The Expectation step of the EM algorithm uses the current model

to label each data point in the measured data set with one or more most likely modes that

match that data. The Maximization step then uses the labeled data to estimate the

parameters of the model for each mode. This process is repeated until convergence is

achieved.

Recall that the Expectation step, which labels the measurement data with a set of

modes, is exactly the task Hofbaur and Williams addressed under hybrid monitoring and

diagnosis, through the development of HPA mode estimation. Hence hybrid learning

may be view as a generalization of mode estimation that includes the additional

maximization step for PHA.

68

Chapter 6 - Experiments

6.1 Overview

In this chapter, we assess the quality of the solution found by our Hybrid Learning

system. To accomplish this, we test our learning system on two example applications: a

(1) Linear Time-invariant system, and the (2) BIO-Plex Complex. We conclude the

chapter by discussing limitation of the learning system and other issues that arise from

our work.

6.2 Experiment 1: Linear Time-Invariant Systems

Consider a system that accepts an input u and produces an output y (see Figure

6.1). The behavior of the system can be approximated as having four nominal

operational modes, modes 1, 2, 3 & 4. Each mode is assumed to be a linear time-

invariant (LTI) system with an input u, a hidden state x, and an output y.

69

Figure 6.1: System's behavior of Linear Time-invariant System

The modes of the overall system can be represented by a set of linear time-

invariant difference equations:

Xk+1 =Ajx +BU+ (6.1)
Yk = C xk+ D uk + V2,k

where j e {l, 2,3,4} and (A1 ,Bj, C1 , D1) represents the set of equation parameters for

mode j of the system. xk+1 denotes the state variable at time step tk+I . In addition, the

input disturbance, v,, can be modeled as a random uncorrelated sequence with zero-mean

and Gaussian distribution specified by covariance Q. Similarly the measurement noise,

v2 , is zero-mean Gaussian noise with covariance R. We assume that each mode of the

70

system is affected by the same v, and v2 . For simplicity, we assume that the system has

no failure modes.

The transient behavior of the LTI system is assumed to be sufficiently fast in

comparison to our sampling rate (see Figure 6.2). Our hybrid learning system monitors

the LTI's behavior by taking sample measurements of the inputs u, the state variable

estimates xi, the outputs y and the current system mode m at specific time points. In

addition, with each data point we are able to predict the most likely mode of the LTI

system.

71

Figure 6.2: The behavior of the Linear Time-invariant system. With each time step, we

track the behavior of the Linear Time-invariant system. We show its behavior for the

first 1,000 data points out of the 100,000 data points in the labeleddata set.

The behavior of the LTI system is modeled by a probabilistic hybrid automaton, which is

shown in Figure 6.3.

72

6.2.1 PHA of the LTI system

Recall that a PHA is used to model the modes of a system and its transitions

between modes. To transition out of mode ni , for example, either guard condition CII or

C12 must be satisfied. Whenever guard condition C12 is satisfied, the system transitions to

either mode m3 with probability P3 or to mode m4 with probability p4 .

Figure 6.3: PHA of the linear Time-invariant system

73

Ole P22
C41

P44
'rj'j

rQ'rl 2 'rI 3P42

6.2.2 Hybrid Parameter Estimation of the LTI system

Given the PHA of the LTI system and the labeleddata set, we can now estimate

the mode parameters of the system. In section 5.2, we define the mode parameters of a

system as the unification of the equation parameters of the system mode with the

transition probabilities over the modes. According to the hybrid parameter estimation

problem1 , we can estimate the parameter set, (A1, B,, C1 , Dj), and the transition

probabilities of mode j, provided that we know the labeling of each data point in

labeleddata.

6.2.3 Simulation

Results of the Hybrid-E step: We generated a labeleddata set of 100,000 data

points for the above LTI system model. The labeleddata set is comprised of: a sequence

of 100,000 observations (y(O),... Y(99, 999)), control inputs (u(0),..., U(, 999)) , state variable

estimates 0(),...9, 999)) and most likely modes (M ...)) of the LTI system.

The equation parameters for system modes 1, 2, 3, and 4 are given in equations

(6.2), (6.3), (6.4), and (6.5), respectively.

0.8 0 1 B = C1 = [1 1] D= 0 (6.2)
0 0.7 2.5

A =[B2 = [C 2 =[1 1] D 2 =0 (6.3)
-0.8 1.6 1.5

The hybrid parameter estimation problem is stated in section 5.2 of this thesis.

74

A3 = [0.7 0

1 0.8]

A 0.6 0 1
A4 = 0[0 0.8]

In addition, the actual transition probabilities of the system are shown in Figure 6.4:

Guards

C11 p11 P12

C12 P13 P14

C2 1 P21 P22

C3 1 P32 p33

C3 2 p31 p34

C4 1 P41 -

C4 2 p41 p44

Guards

C11 0.990 0.010

C12 0.640 0.360

C2 1 0.100 0.990

C3 1 0.010 0.990

C3 2 0.650 0.350

C4 1 1 -

C4 2 0.010 0.989

Figure 6.4:
condition C12

The actual probabilities of the simulated LTI system. Whenever guard
is satisfied, for example, the system transition from mode m1 to either

mode m3 with the probability p13 = 0.64 or mode m4 with the probability p 4 =0.36.

The Hybrid EM algorithm is to estimate the aforementioned parameters of the

LTI system, given the results of the Hybrid-E step. We initialized the algorithm with the

PHA of the LTI system and the generated labeleddata set. The algorithm initially

assumes that the PHA can be in any one of its four modes with equal probability.

75

D3 = 0B3 = C3 =[1]
2.5

B4 =C4 =[1]
2.5

(6.4)

D4 = 0 (6.5)

6.2.4 Results

The Hybrid EM algorithm is able to estimate the parameters within 120 seconds

on a Pentium I machine. The estimated equation parameters for modes 1, 2, 3, and 4

are given by equations (6.6), (6.7), (6.8), and (6.9), respectively.

A 0.7650 0.02001

0.0 0 7 1 0.6796]

[0 0.92691
A2 =

-0.7495 1.49301

F 0.6893 -0.00071
A3 = I

0.9201 0.7666]

A4 = [0.5313 0.75961
0.0179 0.70381

1.58431
2.4758

B 0.37551
B2 = I

1.2845

[1.35541
B3 = I

2.9214

[3.78171
B4 3= 4L3.84441

C, = [1.0003 1.0004] D, = -0.0058

C2 = [0.9998 1.0003] D2 = -0.0006

C3 = [1.0033 0.9998] D3 = -0.0090

C4 = [0.9999 1.0004] D4 = -0.0044

The Hybrid EM algorithm estimated the transition probabilities of the LTI system as

shown in Figure 6.5:

Guards

C11 p1 p12

C12 p13 p14

C 2 1 P21 P 22

C 3 1 P 32 P 33

C 32 P 31 P 34

C4 1 P41 -

C42 p41 p44

Guards

C11 0.9899 0.0101

C12 0.6380 0.3620

C2 1 0.1001 0.8999

C3 1 0.010 0.990

C32 0.6476 0.3524

C4 1 1 -

C4 2 0.0129 0.9871

Figure 6.5: The estimated probabilities of the simulated LTI system.

76

(6.6)

(6.7)

(6.8)

(6.9)

where the mean of the absolute value of the error is 2.235, the median error is 0.34559,

and the standard deviation is 5.028. Finally, in Figure 6.6, we see that if the Hybrid

algorithm runs 10 times longer, it produces 10 percent less errors. This is justified by the

best-fit line with a slope of 1.0524 through these error estimates.

Figure 6.6: Error estimates of the transition probabilities. The number of incoming
transitions and the actual error in calculating the transition probabilities. Running the
HMLR system for 10 times longer produces 10 percent less errors.

77

These parameters are extremely good since these values are the results of one

complete pass through the entire data. Recall that Hybrid-EM algorithm is an iterative

procedure that iterates between a Hybrid-E step and a Hybrid-M step. The Hybrid-E step

fixes the current parameters and computes posterior probabilities over the hidden states

given the posterior distributions. On the other hand, the Hybrid-M step fixes current

posterior probabilities and computes the parameters. These steps are done until the

algorithm obtains the best set of parameter estimates that matches the model. To evaluate

the performance of the Hybrid EM algorithm after multiple passes through the

labeleddata is interesting. We should be considered this as future work in order to

improve the efficiency of our algorithm.

6.3 Experiment 2: BIO-Plex Complex

Our next application is the NASA's Advance Life Support System, a five-

chamber facility called BIO-Plex (see Figure 6.7). BIO-Plex is a simulated biosphere-

type environment used to appraise technologies essential to life support and human

habitation. It supplies all the necessary oxygen (02), water, and approximately eighty-

five percent of food for a crew of two researchers on a continuous basis. Plants are

grown in the plant growth chambers (PGCs), where they provide food for the researchers.

Food selection includes peanut, potato, rice, soybean and wheat.

78

Figure 6.7: (BIO-Plex) Bioregenerative Planetary Life Support System Test Complex

In addition to the food provided by the plants in the PGC, the plants convert

exhaled carbon dioxide (C0 2) into required 02. The 02 produced by the plants are

captured and supplied to the crew. To effectively sustain a closed-loop system, it is

essential to regulate the gas exchange between the plant growth chambers and the crew

chambers. This regulation is performed by the chamber control subsystem. In this thesis,

we confine our evaluation to four subsystems: the PGC, the lighting system, a CO 2 flow

controller, and the chamber control (see Figure 6.8).

The chamber control subsystem maintains a simulated 20/4-hour day/night

schedule. This schedule is maintained in order for the plants in the PGC to grow

optimally and for effective gas exchange.

79

PlanIt Growth Chambcr

Figure 6.8: Selected schematic of BIO-Plex complex

The behavior of the system is approximated as having four modes. Three nominal

operational modes, which are m,, M2 and m3, and one light failure mode, m 4 . Each

mode of the system can be represented by the following nonlinear time-invariant

difference equation:

fun1= -1.446 x10-2 * (72.0 - K 4 j * e~(xk/ 400)) (6.10)
xk+l =xk+ K * (K2 ,j* funl(xk)+K 3,1 + Uk)

where j E {1,2,3,4}, (KI 1,..., K4 1) represents the equation parameter set for mode j of

system, and xk denotes the state variable at time step tk.

6.3.1 Hybrid Modeling of the BIO-Plex

In Figure 6.9, we modeled the behavior of the system of the BIO-Plex as a PHA.

The system can only be in m, during 0 x 240 minutes of everyday, whereas it can be

80

in any "day" mode during 240 x 1440 minutes in everyday. m, is also called the

night mode. Due to extremely high CO2 concentration in this mode, which is unsuitable

for humans, the PGC's door remains shut (CI I) and the crew is denied access to enter the

PGC (i1). These restrictions are enforced by the chamber control.

When the crew requests to enter the PGC, the CO 2 concentration must be

lowered to 500 ppm (r 12). To accomplish this, the flow regulator is turned off and the

door is opened (C 21). Once these preconditions are achieved, we assume that the

subsystem is in m2 -

Once a set point of 500 ppm is maintained, the door remains open and the crew is

allowed access to the PGC (r 2,). Safety precaution requires the subsystem to inhibit

CO 2 injection (CO1) while the crew of two is in the chamber. We assume that the

subsystem is now in service mode, n 3 . Once in m3 , the crew can perform a single task

or a series of tasks, which include harvesting, re-planting, maintenance or other required

services. Upon the completion of the aforementioned services, the crew quickly exits

PGC (T32).

81

P 33

) 31

P2

P 12

P

P 24

721

Figure 6.9: PHA for the subsystem of the BIO-Plex complex

Like other systems, the system can function improperly during its operations.

There are many possible types of failure, but we model only one failure mode in this

subsystem. The system can only enter this failure mode, m4, whenever it is in m2 at the

previous time step. M4 differs from m 2 only by a change in the lighting system (724) '

In mI2 , the lighting system works perfectly, whereas in m 4 the lighting system functions

at an 80 percent level.

82

I1 T I

6.3.2 Simulation

Having modeled the subsystem as a PHA, our next task is to calculate the

parameters of the PHA. We obtained a labeleddata set of 8,500 data points for the

above subsystem from the Hybrid-E step. The actual equation parameters for modes 1, 2,

3, and 4 are given in equations (6.11), (6.12), (6.13), and (6.14) respectively.

K11 = 20.1625 K 2 1= -1.4461e - 2 K3.1 = 0 K4 1 = 78.89 (6.11)

K1 2 =11.8373 K 2 = -1.4461e - 2 K 3,2 = 0 K4 2 = 78.89 (6.12)

KI 3 = 11.8373 K2 3= -1.4461e - 2 K 3,3 = 0.3 K4 3 = 78.89 (6.13)

K 4 = 11.8373 K 2 ,4 = -1.2094e - 2

The actual transition probabilities of the subsystem

K 3,4 = 0 K 4 4 = 78.89

are shown in Figure 6.10.

Guards

C11 p11 P12

C2 1 p22 p24

C 2 2 P 21 P 23

C 31 P 33 P 32

C 4 1 p44 p42

Guards

C11 0.990 0.010

C2 1 0.990 0.010

C2 2 0.55 0.450

C3 1 0.980 0.020

C4 1 0.980 0.020

Figure 6.10: The
complex.

actual probabilities of the simulated control subsystem of the BIO-Plex

We initialized Hybrid EM algorithm with the PHA of the system and the given

labeleddata set.

83

(6.14)

6.3.3 Results

The Hybrid EM algorithm estimates the parameters within 190 seconds on a

Pentium Im machine. The estimated equation parameters for mode 1, 2, 3, and 4 are

given by equations (6.15), (6.16), (6.17), and (6.18), respectively.

K 1 = 20.2026 K2 1= -1.435e -2 K3,1 = 0.0051 K4 1 = 78.833

K 2 =11.6912 K 2 2=-1.5155e-2 K3,2 = 0.0022

K1 = 11.8330 K2,3=-1.3136e-2 K3, 3 = 0.0096

K 4 = 11.7539 K2,4 =-l .2022e -2 K 3 = 0.0031

The estimated transition probabilities are shown in Figure 6.11.

K4,2=78.7097

K4,3 = 78.8118

K44 = 78.1219

(6.15)

(6.16)

(6.17)

(6.18)

Guards

C11 P1 P12

C 2 1 P 22 P 24

C 22 P 21 P 23

C 3 1 P 33 P32

C4 1 p44 p42

Guards

C11 0.9976 0.024

C2 1 0.9980 0.0020

C2 2 0.5000 0.5000

C3 1 0.9900 0.0010

C4 1 0.9900 0.0010

Figure 6.11: The
Plex complex.

estimated probabilities of the simulated control subsystem of the BIO-

The mean of the absolute value of the error is 0.2796, the median error is 0.1010, and the

standard deviation is 0.3255. Finally, in Figure 6.11, we see that if the Hybrid algorithm

84

runs for 10 times longer, it produces 6 percent less errors. This is justified by the best-fit

line with a slope of 0.6659 through these error estimates.

Figure 6.12. Error estimates of the transition probabilities. The number of incoming
transitions and the actual error in calculating the transition probabilities. Running the
HMLR system for 10 times longer produces 6 percent less errors.

These parameters are extremely good since these parameter estimates are the

results of one complete pass through the entire data. Allowing the Hybrid EM algorithm

to pass multiple times through the labeleddata will improve the parameter estimates

85

obtained over time. We currently are working on folding the Hybrid-E step and the

Hybrid-M step together.

6.4 Limitations

The Hybrid EM algorithm proposed here possesses a range of limitations to the

hybrid parameter estimation problem. These limitations are discussed in this section.

First and foremost, our capability uses a batch approach to learning. This

approach requires a complete pass through the entire data set in order to determine a set

of parameters. This approach makes no attempt to estimate the covariance of the

parameters. In contrast, online approaches provide an incremental estimate of the

parameters and the covariance at each time step. However online algorithms are less

powerful than offline algorithms, since the parameter estimates are general less accurate

than in the batch approach.

Second, our Hybrid EM algorithm is currently incapable of supporting large-scale

modeling of complex physical systems. These physical systems generally exhibit sets of

complex concurrent and sequential behaviors that are well beyond the modeling scope of

our capability. This incapability is due to the modeling representation used by the Hybrid

EM algorithm. Recall that the algorithm uses PHA. A PHA is incapable of capturing

these complex concurrent and sequential behaviors. To make our algorithm capable of

supporting these behaviors, we propose using Hierarchical Probabilistic Hybrid Automata

(HPHA). We discuss HPHA in section 7.4.1 of this thesis.

86

6.5 Discussion

The main conclusion we can draw is that the Hybrid EM algorithm performed

well in these examples, which consisted of four parameters. However, for large number

of parameters performing parameter estimation is extremely difficult. Major difficulties

during parameter estimation include getting stuck in local minima and the slow

convergence rate of optimization algorithms when applied to complex non-linear

problems. Many estimation techniques for example Levenberg-Marquart routine can by

no means escape the curse of dimensionality. They frequently get stuck within local

minima, make little progress or take an immoderate amount of time to converge.

However, most techniques become more efficient when the variable and parameter

spaces are decrease adequately. We therefore have to conduct more experiments to see

how efficient our Hybrid EM algorithm when used on more complex non-linear systems.

87

Chapter 7 - Conclusions and Future Work

7.1 Overview

We begin by briefly mentioning other areas of inquiry related to parameter

estimation. The interested reader should refer to the cited work for more details. This is

followed by a summary of the contributions of the thesis. Finally, section 7.4 gives a

range of research opportunities that arises from this work.

7.2 Related Work

Shumway and Stoffer [1991] address the problem of learning the parameters of

state-space models with a single real-valued hidden state vector and switching output

matrices. The probability of selecting a specific output matrix is a pre-determined time-

varying function, independent of previous selections. Shumway and Stoffer derived a

pseudo-expectation-maximization (pseudo-EM) algorithm in which the expectation step

would require calculating a Gaussian mixture with MT components and is approximated

by a single Gaussian at each time step.

Kim [1994] extends the aforementioned work to the case where both the state

dynamics and the output matrices switch, and where the switching succeed Markovian

dynamics. Kim uses an approximation in which the exponential Gaussian mixture is

reduced to M Gaussians at each time step. Other researchers have used Markov chain

Monte Carlo techniques for state and parameter estimation in switching models [Carter

88

and Kohn, 1994; Athaide, 1995] and in other dynamic probabilistic networks [Dean and

Kanazawa, 1989; Kanazawa et al., 1995].

Ghahramani and Hinton [1996a; 1996b; 1998] introduced a different approach to

parameter estimation. They presented a learning algorithm for all of the parameters of

the model, including the Markov switching parameters. Using a structures variational

approximation [Saul and Jordan, 1996], Ghahramani and Hinton demonstrated that this

algorithm maximizes a strict lower bound on the log likelihood of the data, rather than a

heuristically motivated pseudo-likelihood. The resulting algorithm decouples into

forward-backward recursions on a hidden Markov model, and Kalman smoothing

recursions on each state-space model. The states of the HMM determine the soft

assignment of each observation to a state-space model; and the predictions errors of the

state-space models determine the observation probabilities for the HMM.

Another related proposal comes from Ghahramani and Roweis [1999]. Here they

introduced a generalization of the EM algorithm for parameter Estimation in nonlinear

dynamical systems. The Expectation step uses the Extended Kalman Smoothing

approach to estimate the state, while the Maximization step re-estimates the parameters

using these uncertain state estimates. The nonlinear Maximization step is generally

difficult because it requires integrating out the uncertainty in the states. However,

Ghahramani and Roweis claimed that if Gaussian radial basis function (RBF)

approximators are used to model the nonlinearities, the integrals become tractable and the

maximization step can be solved via systems of linear equations. Like Ghahramani and

Roweis, we introduced a variant of the EM algorithm. Our E step also uses a Hybrid

Observer to estimate the state variables and automaton modes [Hofbaur and Williams,

89

2000]. The Hybrid State Estimator of the E step, (see Chapter 2), generalizes the

Kalman filer, and is responsible for estimating the continuous state variables. The

Maximization step re-estimates the parameters using these uncertain state estimates. The

M step simplifies to a linear regression problem.

7.3 Summary

In Chapter 4, we modeled the behavior of complex physical systems, which may

be characterized by both discrete and continuous dynamics. For this purpose, we

introduce a model called Probabilistic Hybrid Automaton (PHA). A PHA is a modeling

formalism that merges Hidden Markov models (HMM) with continuous system models.

Hybrid Automata allow us to represent both the discrete stochastic behavior and the

continuous dynamics in an expressive way.

In Chapter 5, we addressed the challenges of learning Hybrid Automata by

introducing a variant on the Expectation Maximization algorithm. This modified

algorithm enables learning of a complex physical system as it moves between its

distinctive behavioral modes. First, we introduced Hybrid Learning as the method, which

folds Hybrid Mode/State Estimation and Hybrid Parameter Estimation together. Second,

we briefly demonstrated how Hybrid Mode/State Estimation tracks and diagnoses a PHA

by creating a Hybrid Observer that uses the results of the continuous state to estimate the

system's modes. Third, we framed the Hybrid Parameter Estimation as a method that

unifies standard nonlinear estimation techniques for estimating the equation parameters

of the system's modes with classical probabilistic estimation techniques for estimating

the transition probabilities of a PHA.

90

In Chapter 6, we assessed the quality of the solution found by our Hybrid EM

algorithm. To accomplish this, we tested our learning system on two example

applications: a (1) Linear Time-invariant system, and (2) BIO-Plex Complex. We

produced results as promised for these systems. We concluded the chapter by discussing

limitation of the Hybrid EM algorithm and other issues that arises from our work.

7.4 Future Work

Our overall goal is to provide a high quality Hybrid EM algorithm that supports

large-scale modeling and learning of complex physical systems. Recall that physical

systems, such as Rovers, exhibit a rich set of combined discrete/continuous behaviors.

We introduced hierarchical probabilistic hybrid automata (HPHA) to capture the behavior

of such systems (see section 7.4.1). Our next task is to improve the efficiency of our

Hybrid EM algorithm. To improve efficiency, we introduce model-based decomposition.

We address this issue in section 7.4.2. Finally, we recommend testing our improved

Hybrid EM algorithm on Cooperative vehicles since they exhibit a rich set of continuous

and discrete behavior. Such vehicles may serve as the major test-bed for evaluating and

validating our proposed model learning and refinement methods in the future. We

discuss learning of cooperative vehicles in section 7.4.4.

7.4.1 Extending Hybrid EM algorithm to handle HPHA

Hierarchical probabilistic hybrid automata (HPHA) support large-scale modeling

of complex physical systems. HPHA are generalization of probabilistic hybrid automata

91

(PHA) that are assorted in a hierarchy. That is the mode of a PHA may itself be a PHA,

which is activated by its parent. By introducing hierarchy, we empower the

representation of complex concurrent and sequential behaviors that are well beyond the

modeling range of single PHAs. In addition, each transition in the HPHA may have

multiple targets, permitting a PHA in the HPHA to be in several modes simultaneously.

This approach enables a compact representation of recursive behavior [Hofbaur and

Williams, 2000; Hofbaur and Williams, 2002b].

7.4.2 Model-based Decomposition

Recall that the problem of model learning is for large parameter systems

extremely difficult. Major difficulties during learning include being stuck in local

minima and the slow convergence rate of optimization algorithms when applied to

complex non-linear problems. Techniques that include reducing the variable and

parameter spaces have proven to be efficient in limiting the aforementioned difficulties.

We propose to collapse down the search space visited by learning algorithms by

decomposing the problem into smaller sub-problems. Our decomposition capability will

extend previous work on decompositional model-based learning (DML) [Williams and

Millar, 1998]. DML decomposes a model structure into a set of overlapping sub-models.

Associated with these sub-models are subsets of the observations that are sufficient to

perform learning on the sub-model. This technique is developed only for models

consisting of systems of non-linear equations. For future work, we propose to extend

DML to operate on HPHA models and to formulate the learning algorithms to operate on

the sub-models identified by DML. This will involve, for instance, combining different

92

sets of decomposed estimators, based on which sets of modes likely match each data

point.

7.4.3 Learning of the behavior of Single Robot

The demand for a single robot to carry out complex tasks with little or no

supervision has motivated a great deal of research in the area of autonomy. These robots

must be able to function robustly in unpredictable and dangerous environments. To

support this, we address the problem of learning a robot's environment. This problem is

closely related to the mapping and localization problem [Leonard and Feder, 1999].

Mapping is the problem of creating models of a robot's environment from sensor

data. An interesting area of study is the problem of constructing detailed maps online,

while the robot is moving. The online feature is relevant for a number of problems such

as the Mars exploration problem, in which mapping is constantly interleaved with

decision making as to where to move next [Burgard et. al, 2000; Simmons et. al., 2000].

To map an environment, a robot has to cope with range measurement noise and noise in

odometery. This causes a problem of determining the location of the robot in relation to

its own map, which is a localization problem.

Research conducted in the past on the mapping and localization problem has

proposed many different techniques, such as SLAM algorithms [Castellanos et al. 1999;

Leonard and Feder, 1999]. These techniques have advantages and shortcomings. An

advantage of these techniques is they provide sound online solution to the mapping

problem when applicable. One major shortcoming is that the correct associations

93

between measurements and features in the map must be known. In order for this to

occur, features in the environment must have unique signatures.

In this research, we propose to convert our Hybrid model learning and refinement

capability to an online algorithm that construct maps from sensor measurements, without

the need for exact data association.

7.4.4 Learning of the behavior of Cooperative Vehicles

Robotics systems are now being created that must perform together to robustly

achieve elaborate missions within unpredictable and sometimes dangerous environments.

To achieve this robustness, we must go beyond current programming practice. Research

in this field must address three important open issues. How do we program these teams

of robots or vehicles to perform elaborate missions, while offering them a range of

options for handling the unknown? How will these robots best handle uncertainty with

communication as well as the uncertainty of the environment? How do we give these

robots enough autonomy to perform these agile maneuvers?

The challenge is three folds. First, how do we develop model learning languages

that can handle real-world problems in real-time? Second, how do we perform model

learning and refinement in cooperative vehicles, while being robust to communication

delays and communication lossage? Finally, how do we address the problem in which a

team of robots builds a map online, while simultaneously accommodating errors in their

odometry?

To date, our research has concentrated on a centralized approach to generate an

efficient probabilistic algorithm for learning of complex physical systems. An interesting

94

application is to generalize our approach to support the learning of vehicles that are able

to perform agile stunt maneuvers. To accomplish this, we generalize our approach to

optimum learning of hybrid systems, in which robust hierarchical probabilistic hybrid

automata are used to describe a range of possible agile maneuvers that each vehicle can

perform.

The problem of mapping lends itself nicely to cooperative vehicle solutions,

where such vehicles collaborate and jointly explore unpredictable and dangerous

environments. The model learning and refinement capability will be tested in simulation

on Mars exploration scenarios, where mapping is constantly interleaved with decision

making as to where to move next [Burgard et. al, 2000; Simmons et. al., 2000]. In

addition, our capability will be tested on hardware using a collection of four ATRV

rovers. Hybrid Learning will involve determining the rover's mode parameters with

respect to its surrounding world.

Figure 7.1: An example of an ATRV-Jr owned by our research group.

95

7.5 Conclusion

Although there remain issues to be considered by future work, the research

described in this thesis takes several steps toward the goal of developing hybrid model-

based estimation techniques to address the problem of learning the behavior of complex

physical systems. Probabilistic hybrid automata address the challenge of describing the

behavior of these systems. The Hybrid EM algorithm makes significant strides towards

the goal of creating model-based estimation techniques for these PHA, by generalizing

the previous work on hybrid mode estimation to a Hybrid EM algorithm. However,

many open issues remain to be explored, offering a number of intriguing research

opportunities.

96

References

[Arnold, 1973] V. I. Arnold. Ordinary Differential Equations, The MIT Press,
Cambridge, MA. 1973.

[Athaide, 1995] C. R. Athaide. Likelihood Evaluation and State Estimation for
Nonlinear State Space Models. Ph. D. Thesis, Graduate Group in Managerial Science and
Applied Economics, University of Pennsylvania, Philadelphia, PA.

[Burgard et. al, 2000] W. Burgard, D. Fox, M. Moors, R. Simmons, and S. Thrun.
Collaborative multi-robots exploration. In Proceedings of the IEEE International
Conference on Robotics and Automation, (ICRA), San Franciso, CA, 2000. IEEE.

[Carter and Kohn, 1994] C. K. Carter and R. Kohn. On Gibbs sampling for state space
models. Biometrika, 81:541-553.

[Castellanos et al. 1999] J. Castellanos, J. M. M. Montiel, J. Neira, and J.D. Trad6s.
The Spmap: A probabilistic framework for simultaneous localization and map building.
IEEE Transactions on Robotics and Automation, 15(5):948-952.

[Dean and Kanazawa, 1989] T. Dean and K. Kanazawa. A model for reasoning about
persistence and causation. Computational Intelligence, 5(3):142-150.

[Dempster et. al., 1977] A. P. Dempster, A. N. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical
Society, Series B, 39(1): 1-38, 1977.

[Finn, 1999] C. Finn. Documentation of the BIO-Plex Baseline Simulation Model
(Draft). NASA Ames Research Center. 1999.

Ghahramani and Hinton [1996a] Z. Ghahramani and G. E. Hinton. Parameter estimation
for linear dynamical systems. University of Toronto Technical Report CRG-TR-96-2, 6
pages. http://www.gatsby.ucl.ac.uk/-zoubin/papers.html

Ghahramani and Hinton [1996b] Z. Ghahramani and G. E. Hinton. The EM Algorithm
for Mixtures of Factor Analyzers. University of Toronto Technical Report CRG-TR-96-
1, 8 pages. http://www.gatsby.ucl.ac.uk/-zoubin/papers.html

[Ghahramani and Hinton, 1998] Z. Ghahramani and G. E. Hinton. Variational learning
for switching state-space models. Neural Computation, 12(4):963-996

97

[Ghahramani and Roweis 1999] Z. Ghahramani, S. and Roweis. Learning nonlinear
dynamical systems using an EM algorithm. In M. S. Kearns, S. A. Solla, D. A. Cohn,
(eds.) Advances in Neural Information Processing Systems 11:599-605. MIT Press.

[Hirsch and Smale, 1974] M W. Hirsch and S. Smale. Differential Equations, Dynamic
Systems, and Linear Algebra, Academic Press, San Diego, CA, 1974.
[Hofbaur and Williams, 2002] M. Hofbaur and B.C. Williams. Mode estimation of
probabilistic hybrid systems, in Hybrid Systems: Computation and Control, HSCC 2002,
eds., C. J. Tomlin and M. R. Greenstreet, volume 2289 of lecture Notes in Computer
Science, 253-266, Springer Verlag, 2002.

[Hofbaur and Williams, 2002b] M. Hofbaur and B.C. Williams. Hybrid Diagnosis with
Unknown Behavioral Modes, in Proceedings of the 13th International Workshop on
Principles of Diagnosis, 2002.

[Kanazawa et al., 1995] K. Kanazawa, D. Koller, and S. J. Russell. Stochastic
simulation algorithms for dynamic probabilistic networks. In P. Besnard and S. Hanks,
editors, Uncertainty in Artificial Intelligence. Proceedings of the Eleventh Conference,
pages 346-351. Morgan Kaufmann Publishers, San Francisco, CA.

[Kim, 1994] C. J. Kim. Dynamic linear models with Markov-switching. J.
Econometrics, 60:1-22.

[Kinney, 1997] J. J. Kinney. Probability: An Introduction with Statistical Applications.
pp. 21, 36, & 66. John Wiley & Sons, Inc. New York, 1997.

[Leonard and Feder] J. J. Leonard and H. J. S. Feder. A computationally efficient
method for large-scale concurrent mapping and localization. In J. Hollerbach and D.
Koditschek, editors, Proceedings of the Ninth International Symposium on Robotics
Research, Salt Lake City, Utah, 1999.

[MIMS III, 1983] F. Mims, Ill. Getting Started in Electronics. Radio Shack, 1983.

[McIlrith et al., 2000] S. McIlrith, G. Biswas, D. Clancy, and V. Gupta. Hybrid Systems
Diagnosis. pp 282-295. In Proceedings of Hybrid Systems: Computation and Control,
2000.

[McWhorter and Evans, 1994] G. McWhorter and A. J. Evans. Basic Electronics. Radio
Shack, 1994.

[Nicholson, 1980] H. Nicholson. Modelling of dynamical systems, Vol. 1 (Vol. 2m 1981)
Peter Peregrinus, Stevenage, U.K., 1980.

[Press, 1992] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C, 2 "d Edition. Cambridge University Press. 1992.

98

[Saul and Jordan, 1996] L. Saul and M. I. Jordan. Exploiting tractable substructures in
Intractable networks. In D. Touretzky, M. Mozer, and M. Hasselmo, editors, Advances in
Neural Information Processing Systems 8. MIT Press.

[Savage, 2000] D. Savage. NASA Outlines Mars Exploration Program for the Next Two
Decades. 2000. http://solarsystem.nasa.gov/whatsnew/pr/001026G.html
[Shumway and Stoffer, 1982] R. H. Shumway and D. S. Stoffer. An approach to time
series smoothing and forecasting using the EM algorithm. J. Time Series Analysis,
3(4):253-264, 1982.
[Shumway and Stoffer, 1991] R. H. Shumway and D. S. Stoffer. Dynamic Linear models
with switching. J. of the Amer. Stat. Assoc., 86:763-769, 1991.

[Simmons et. al., 2000] R. Simmons D. Apfelbaum, W. Burgard, M. Fox, D. an Moors,
S. Thrun, and H. Younes. Cordination for multi-robot exploration and mapping. In
Proceedings of the AAAI National Conference on Artificial Intelligence, Austin, TX
2000. AAAI.

[Strang, 1986] G. Strang. Introduction to Applied Mathematics. pp 32 - 41 & 137 - 138.
Wellesley-Cambride Press, Wellesley, MA, 1986.

[White, 1994] R. M. White. Lecture notes in EECS 40 1 & 41 I. University of California
at Berkley, 1994.

[Williams and Millar, 1998] B. Williams and W. Milliar. Deompositonal Model-based
Learning and it Analogy to Diagnosis. In Proceedings of AAAI-1998. AAAI

[Williams and Nayak, 1996] B. Williams and P. Nayak. A Model-based Approach to
Reactive Self-configuring Systems. In Proceedings of AAAI-1996.

[Young et. al., 2000] Report on the Loss of Mars Polar Lander and Deep Space 2, (2000)
in The Mars Program Independent Assessment Team report, 2000. NASA Headquarters.

99

Appendix A - PHA description

We frame a single Probabilistic Hybrid Automaton as an automaton that consist
of the PHA UID, a set of modes, a set of transitions, and a set of variables. Such
variables' set is comprised of input(s), state variable(s), and output(s) of a PHA (see
Figure A.1).

(PHA:
UID: Unique id of PHA
Variables: # input(s), # state(s), # output(s)
Modes: A4 = m,..., m finite set of modes in the automaton
Transitions: Z = { z ,..., Ir,} finite set of transitions in the automaton)

Figure A. 1: PHA Structure of a Hybrid System

Next, we frame a mode of a PHA (see Figure B.2) to comprise of: (1) a mode
UID, (2) an associated set of ordinary differential (ODEs), difference, or algebraic
equation(s), which describes the behavior of the system in the mode, (3) an associated set
of guards that must be satisfied in order for a particular transition function to occur, (4) a
set of transition functions that transition from the source modes to the target modes in the
PHA whenever a set of particular guards are satisfied. Such mode transitions are a set of
outgoing transitions from a source mode.

(Mode:
UID: mtk) @ Unique id of mode
ODE: the set of ordinary differential/difference equations for this mode
Guards: C,..., Gin @ guards satisfied when exiting mk
Transitions: Ir,, ... , r,) @ the set of transitions for mode mk

Figure B.2: Mode Structure of the PHA

Finally, we frame a transition function of a PHA (see Figure B.3) to consist of: (1)
a transition UID, (2) a source mode that specifies the origin of a particular mode
transition, (3) a guard that has to be satisfied, and (4) an associated thread which gives the
probability distribution of transiting from the source mode(s) to particular target mode(s).

100

(Transition:
UID: r
Source: M <k Source mode of transition zr
Guard: guad that has to be satisfied whenever transition r,. is taken
Thread: Lp'j Mi) * [probability target mode]

Figure B.3: Transition Structure of r,

101

Appendix B - PHA Examples

PHA for the Servo valve

The Servo valve used in chapter 4 can be modeled as a Probabilistic Hybrid
Automata (PHA). Below, we give the entire PHA description:

P4

i11

P 6

Figure B. 1: PHA of the Servo valve

102

P 16

P7 T7

"15

PHA: S,
Variables: 1 input u, 1 state x, 1 output Q, 6 modes

Modes: me, mpo) M 0 , Msc , Ms0 , pso

Transitions: T1 , r 2 , T39 T4, T59 76, '7, '8, '9, i Tii, 12 , I Z13, *14, , 16

Next, a mode of the PHA is comprised of: (1) a set of ODE, (2) an associated
Kalman Filter, (3) the guards satisfied to exist a particular mode, (4) a set of transitions:

Mode: mc
ODE: N/A
Filter: N/A
Guards: CH , C12

Transitions: rl, T2 , T3

Mode: mpo
ODE: N/A
Filter: N/A
Guards: C31 , C32 , C33

Transitions: r6 , r , r 8 , z9

Mode: Me0
ODE: N/A
Filter: N/A
Guards: C51, C52

Transitions: 'r, 1r, 1r 4

Mode: mse
ODE: N/A
Filter: N/A
Guards: C 2 1, C22

Transitions: -4 , r5

Mode: mpso

ODE: N/A
Filter: N/A
Guards: C 41, C4 2

Transitions: rTo, z11

Mode: mso
ODE: N/A
Filter: N/A
Guards: C61, C62

Transitions: r,, ,1 6r

We frame a transition of a PHA to comprise of the following: (1) Source mode,
(2) the guard Satisfied, and (3) the thread which consist of the probability of transitioning
from the source mode to the new mode found in the tread:

Transition: r,
Source: me
Guard: C,1
Thread: [p1

Transition: r3
Source: me
Guard: C12
Thread: IP3

Transition: r2
Source: mc
Guard: C12
Thread: [P2mc] Msc]

Transition: r4
Source: mse
Guard: C2 ,

Thread: [p 4 MSCi

103

Mpo

Transition: ,
Source: Mse
Guard: C2 2

Thread: [p,

Transition: r7

Source: mpo

Guard: C31

Thread: P7

Transition: r,

Source: mpo

Guard: C 33

Thread: [p,

Transition: r,,
Source: mSO

Guard: C42

Thread: IpN

Transition: ',2
Source: mo

Guard: C51

Thread: [p 2

Transition: r, 5

Source: mso

Guard: C6 ,

Thread: [p15

me]

Transition: r
Source: mpo

Guard: C31

Thread: IP6 mpo

Transition: r8

Source: mpo

Guard: C3 2

Thread: [p8 M]

Transition: ro
Source: mpsO

Guard: C41

Thread: Ip mpsomc]

MpO I

Transition: ri3

Source: m

Guard: C52

Thread: p 1 3

Transition: ,I4
Source: mi

Guard: C52

Thread: [p14

Transition: r 6

Source: Ms

Guard: C6 2

Thread: [p16

Mo]

MSo]

mpo]

mo]

Linear Dynamic System modeled as a PHA

The following Linear Time-invariant System model is framed as a Probabilistic
Hybrid Automaton. The system has 1 input, 2 state variables and 1 output. It has 4
modes and 13 transitions between the modes.

104

P 3 2

Figure B.2: PHA of Linear Time-invariant System

We frame each mode of the PHA to consist of: (1) a set of ODE, (2) an associated
Kalman Filter, (3) the guards satisfied to exist a particular mode, and (4) a set of
transitions. These are as follows:

Mode: ml1
ODE: N/A
Filter: N/A
Guards: C, C12

Transitions: rl, r2, r3, r4

Mode: m 2

ODE: N/A
Filter: N/A
Guards: C2,
Transitions: r3, r6)

105

Mode: m 3
ODE: N/A
Filter: N/A
Guards: C31 , C32

Transitions: r7 , z- , 1, , rI 0

Mode: m4
ODE: N/A
Filter: N/A
Guards: C41, C42

Transitions: r1 , r12 , C13

We then frame a transition of a PHA to comprise of the following: (1) Source
mode, (2) the guard Satisfied, and (3) the thread, which consist of the probability of
transitioning from the source mode to the new mode found in the tread:

Transition: r,
Source: mi

Guard: C I
Thread: [P11

Transition: z-2

Source: m,
Guard: C,
Thread: [p12

Transition: z 3

Source: mi

Guard: C12

Thread: [p 13

Transition: z-4

Source: in

Guard: C12

Thread: [p14

Transition: r5

Source: m 2

Guard: C21

Thread: [p 21

n]

m21

Transition: r6

Source: m2
Guard: C21

Thread: [P22

Transition: z-

Source: m3
Guard: C3 2

Thread: [p31

Transition: r8
Source: m3
Guard: C31

Thread: [P 32

Transition: rg
Source: m3
Guard: C3 ,

Thread: [p33

Transition: rio
Source: m 3

Guard: C3 2

Thread: [p 34

M31

M41

n1]

106

M2]

nil]

i2]

M31

M4]

Transition: -i,
Source: m 4

Guard: C42

Thread: [p 41 M]

Transition: 3

Source: M4

Guard: C4 ,

Thread: [P p M4]

Transition: r2

Source: m4
Guard: C41

Thread: [p 42 M2]

107

Appendix C - Pseudo code: Hybrid EM algorithm

HybridEM(Data, PHA)
Begin loop

labeleddata = Hybrid _E(Data, PHA);
UpdatePHA = HybridM(labeleddata, PHA);
If converged?(PHA, UpdatePHA)

Return UpdatePHA
else

PHA = UpdatePHA
End-If

End loop
End-HybridEM

HybridE(Data,PHA)
Detect mode changes
Labels each data point in data set with the most likely mode of Model
Return labeleddata

End-HybridE

Hybrid-M(labeled-data,PHA)
; Given a set of labeled data, estimated the equation parameters and
; transition probabilities for PHA.

UpdatePHA = UpdateEquationParameters(labeled data, PHA);
UpdatePHA = UpdateTransitionProbabilities(labeled-data, PHA);
Return UpdatePHA

End-HybridM

UpdateEquationParameters(labeled-data, PHA)
; Given a set of labeled data, estimates the parameters for the equations
; of every mode in PHA.

For each m in modes(PHA)
bucket(m) ={ }

End-For
For each <data-point, mode> in labeled-data

add data-point to bucket(mode)
End-For
For each m in modes(PHA)

m-eqn(ID(m)) = equations(m)
m-data(ID(m)) = bucket(m)

End-For
SetofParameters = EstimateParameters(m-eqn, m-data)

return PHA
End-UpdateEquationParameters

108

UpdateTransitionProbabilities (labeled data,PHA)
Given a set of labeled data
Estimate the transition probabilities for the model

m = number of modes(PHA)
gs = guards satisfied whenever we are in mode m

MGM = matrix(m, gs)
ts = transition taken when a particular mode is satisfied

GSMEM = matrix (gs, ts)
MGSM = matrix(sizeof _GSMEM)
MGOM = matrix(length-ofGSMEM, 1)
UpdatePHA(TP) = EstimateTransitionProbabilities(MGSM, MGOM, PHA)
Return Model

End-Update-Transition-Probabilities

Estimate-Transition-Probabilities(MGSM, MGOM, PHA)
Bin = matrix(size-of-matrix(MGSM))

For i = 1 to number-of-rows(MGSM)
For j = 1 to number-of-columns(MGSM)

If MGOM(i) w 0
Bin(i, j) = MGSM(i, j) / MGOM(i)

End-For
End-For
Return Bin

End-Estimate-Transition-Probabilities

109

Appendix D - Raw Data Dump

To get started, select "MATLAB Help" from the Help menu.
>> main

ans =
------------------------- Please wait---------------------

ans =
----------------Program Executing -------------

Optimization terminated successfully:

Relative function value changing by less than OPTIONS.TolFun

Optimization terminated successfully:

Norm of the current step is less than OPTIONS.TolX

Optimization terminated successfully:

Norm of the current step is less than OPTIONS.TolX

Optimization terminated successfully:

Relative function value changing by less than OPTIONS.TolFun

ans =

ans =

(1) Mode parameters estimated

ans =

(2) Transition probabilities calculated

ans =

(3) PHA update

ans =
-----------------Program Completed ----------------

>> pha
pha =

name: 1

variable: [lx1 struct]

mode: [1x4 struct]

transition: [1x13 struct]

>> pha(1)
ans =

name: 1

variable: [lx1 struct]

mode: [1 x4 struct]

transition: [1x13 struct]

>> pha(l).variable

ans =

inputs: 1

states: 2

outputs: I

modes: 4

>> pha(l).mode

ans =

I x4 struct array with fields:

id
guards

110

transitions
>> pha(1).mode(1)
ans =

id: 1
guards: [1 2]

transitions: [1 2 3 4]
>> pha(1).mode(2)
ans =

id: 2
guards: 3

transitions: [5 6]
>> pha(1).mode(3)
ans =

id: 3
guards: [4 5]

transitions: [7 8 9 10]
>> pha(l).mode(4)
ans =

id: 4
guards: [6 7]

transitions: [11 12 13]
>> pha(1).transition(1)
ans =

id: I
thread: [0.9899 1]

>> pha(1).transition(2)
ans =

id: 2
source: I
guard: I

thread: [0.0101 2]
>> pha(1).transition(3)
ans =

id: 3
source: 1
guard: 2
thread: [0.6380 3]

>> pha(1).transition(4)
ans =

id: 4
source: 1
guard: 2

thread: [0.3620 4]
>> pha(1).transition(5)
ans =

id: 5
source: 2
guard: 3
thread: [0.1001 1]

>> pha(1).transition(6)
ans =

id: 6
source: 2
guard: 3

111

thread: [0.8999 2]
>> pha(1).transition(7)
ans =

id: 7
source: 3
guard: 5
thread: [0.6476 1]

>> pha(1).transition(8)
ans =

id: 8
source: 3
guard: 4

thread: [0.0106 2]
>> pha(1).transition(9)
ans =

id: 9
source: 3
guard: 4

thread: [0.9894 3]
>> pha(1).transition(10)
ans =

id: 10
source: 3
guard: 5
thread: [0.3524 4]

>> pha(1).transition(1 1)
ans =

id: 11
source: 4
guard: 7
thread: [1 1]

>> pha(1).transition(12)
ans =

id: 12
source: 4
guard: 6
thread: [0.0129 2]

>> pha(1).transition(1 3)
ans =

id: 13
source: 4
guard: 6

thread: [0.9871 4]
>> mode(1).parameters
ans =

0.7650 0.0200 1.5843
0.0071 0.6796 2.4758
1.0003 1.0004 -0.0058

>> mode(2).parameters
ans =

-0.0000 0.9269 0.3755
-0.7495 1.4930 1.2845
0.9998 1.0003 -0.0006

>> mode(3).parameters

112

ans =

0.6893 -0.0007 1.3554
0.9201 0.7666 2.9214
1.0033 0.9998 -0.0090

>> mode(4).parameters
ans =

0.5313 0.7596 3.7817
0.0179 0.7038 3.8444
0.9999 1.0004 -0.0044

113

Appendix E - PHA Examples

%%%
%%%%%%%%%%%%%%%%%
%% Programmer: Melvin M. Henry %%
%% Topic: Mode Estimation of Probabilistics Hybrid Automata %%
%% Date: Monday, August 20, 2001 %%

%% TASK: %%
%% The main script that is used to invoke the different functions and %%
%% other scripts that are used to create the PHA model, load %%
%% labeleddata, update Equation paramters, update the transition, %%
%% and update the structure of the PHA %%

%%%
%%%%%%%%%%%%%%%%%

' ---------------------Please wait------------------'
'--------------Program Executing----------------'
% Clear workspace
clear;
% Store PHA in the Hybrid System structure
MODEL;
% Loading the data set and creating "labeleddata"
load ldata8;
% Determine the length of labeleldata
n = length(labeled-data);
% Invoking the Hybrid EM algorithm
mode = Hybrid_EM(labeled-data,pha);
% Invoke of the Hybrid M function
% mode = HybridM(labeleddata,pha);
% Invoking the Update Equation parameter function
% Calculating the parameters of each mode
% mode = UpdateEqnParameters(labeleddata,pha);
% Calculating the transition probabilies of the PHA
TPM = UpdateTranProbabilities(labeled-data,pha);
% Updating the PHA with these probabilities of the PHA
UpdatePHA;
storeResults;

(1) Mode parameters estimated
(2) Transition probabilities calculated
(3) PHA update

' ----------- Program Completed---------------'

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Name: Melvin M. Henry %
% Type: Model %
% Date: Thursday, July 26, 2001 %

% Description: %
% This file explains a particular 'MODEL'that is found in the Hybrid EM %
% alogorithm function. Each PHA has three parts: (1) Name (2) Variables (3) Modes. %

114

% Each mode has an ID, ODEs, associated filters, and transitions.

% This is the new PHA format. %
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Defining the PHA
% Currently, there exist only one Model
% Name of the PHA
pha(l).name = 1;
% Variables of PHA => I input, 2 States, I output
pha(1).variable.inputs = 1;
% State variable of the Model
pha(1).variable.states = 2;
% Output of the PHA
pha(1).variable.outputs = 1;
% Modes of the PHA
pha(1).variable.modes = 4;

% Counter for the number of transitions in the PHA
tn = 0;

% Number of mode in HPA I
mc = pha(l).variable.modes;

% Define the mode structure
% Each mode has an id, associated modes, associated filters, and transitions
% Also each mode displays the "satified guards".
for i = I:mc, % Number of modes

% Setting the guards satisfied whenever mode i exited
if i == 1

g = i;
elseif i == 2 1i == 3

g=i+1;
else

g =i+2;
end

if i == 2
% Mode id
pha(l).mode(i).id =i;
% Mode ode
pha(l).mode(i).ode = i;
% Mode filter
pha(l).mode(i).filter = i;
% Satified guards
pha(l).mode(i).guards = g;
% Mode transition
pha(l).mode(i).transitions = [tn+l, tn+2];
tn = tn + 2;

elseif i == 4
pha(l).mode(i).id = i; % Mode id
pha(l).mode(i).ode = i; % Mode ode
pha(1).mode(i).filter = i; % Mode filter
pha(1).mode(i).guards = [g, g+l]; % Satisfied guards
pha(l).mode(i).transitions = [tn+l, tn+2, tn+3]; % Mode transition
tn = tn + 3;

else % mode 2 has only one transition
pha(l).mode(i).id = i; % Mode id
pha(l).mode(i).ode = i; % Mode ode
pha(l).mode(i).filter = i; % Mode filter

115

pha(l).mode(i).guards = [g, g+l]; % Satisfied guards
pha(1).mode(i).transitions = [tn+1, tn+2, tn+3, tn+4]; % Mode transition
tn = tn + 4;

end
end

% Define the transitions of the HPA
% Each transition has an id, an associated guards, and associated threads
for i = 1:mc,

for h = I:tn,
% Each mode has at most 4 transitions
if h >= 1 & h <= 4
if h == I h == 2

C = 1; % Setting the Guards for each Transition
else

C =2;
end

elseif h >= 5 & h <= 6
C = 3;

elseif h >= 7 & h <= 10
if h == 7 | h == 10

C = 5; % Setting the Guards for each Transition
else

C =4;
end

else
ifh== 11

C = 7; % Setting the Guards for each Transition
else

C =6;
end

end

% Setting the mode the system transition to
ifh== I|h==51h==71h==11

m= 1;
elseif h == 2 h == 6 h == 8 | h == 12

m = 2;
elseif h == 3 |h == 9

m =3;
else

m = 4;
end

% Transition counter for a mode
tc = length(pha.mode(i).transitions);
forj = 1:tc,

% Intializing the transitions of the PHA
if pha(1).mode(i).transitions(j) == h

% transition id
pha(1).transition(h).id = h;
% source of transition
pha(1).transition(h).source = i;
% guard transition
pha(1).transition(h).guard = C;
% transition thread
pha(1).transition(h).thread = [h, in;];

end
end

end
end

116

%%%
%%%%%%%%%%%%%%%%%%%%%

%% Name: Melvin M. Henry %%
%% Date: Monday, May 7, 2001 %%

%% Algorithm: HybridEM %%

%% The HybridEM algorithm is acroymn for Hybrid Expectation %%
%% Maximization algorithm. It consists of two steps: %%
%% (1) Hybrid Expectation Step (E-Step) %%
%% (2) Hybrid Maximization Step (M-Step) %%

%% METHOD: %%
%% The function HybridEM receives two arguments Data and Model. %%
%% First, the HybridE function is invoked with these two arguments. %%
%% Within the HybridE, each data point is assigned to the most likely %%
%% mood it is belief it belongs to. However, inorder to perform this %%
%% task, the assumption that the parameters of the model are known. %%
%% Then the function HybridM is invoked. Here, this function has %%
%% two arguments: labeleddata and Model. These arguments are used to %%
%% estimate the parameters of the model and the transition probabilites. %%
%% The 'newModel'is returned which contains these estimates. The %%
%% new_Model is compared to the current 'Model'to check for convergence %%

%%%
%%%%%%%%%%%%%%%%%%%%%

function NewModel = HybridEM(labeled-data,pha)

% Given a set of Data points and a Model, labeled the data according to
% the most likely mode it is belief to be in.
% labeleddata = HybridE(Data,Model);

NewModel = HybridM(labeled-data,pha);

%%%
%%%%%%%%%%%%%%%%%
%% Programmer: Melvin M. Henry %%
%% Topic: Mode Estimation of Probabilistics Hybrid Automata %%
%% Date: Friday, May 4, 2001 %%

%% TASK: %%
%% Given a set of labeled data, estimate the equation parameters %%
%% and transition probabilities for the Model. %%

%% METHOD: %%
%% The first function is invoked to estimate the equations %%
%% Parameters. Then the second function is invoked to estimate %%
%% the Transition Probabilities. %%

%%%
%%%%%%%%%%%%%%%%%

function Model = HybridM(labeled-data,pha)

% Invokes functions
Model = UpdateEqnParameters(labeleddata,pha);
% Model] = UpdateTranProbabilities(labeled-data,pha);

117

%%%
%%%%%%%%%%%%%%%%%
%% Programmer: Melvin M. Henry %%
%% Topic: Mode Estimation of Probabilistics Hybrid Automata %%
%% Date: Friday, June 29, 2001 %%

%% TASK: %%
%% Given a set of labeled data, estimate the parameters for the %%
%% equations of every mode in the model. Each labeled data is %%
%% a pair of (<data point, mode>). %%

%% METHOD: %%

%%%
%%%%%%%%%%%%%%%%%

function Model = UpdateEqnParameters(labeleddatapha)

% Allocating memory for local variable called bucket. Each bucket is
% used to sort a data point according to the most likely mode that the
% data point belong to.

% Allocate memory for local variables

% 1 is equal to the number of columns in labeleddata
I = size(labeled-data);
nc = 1(1,2);
Id = length(labeled_data);

% Each bucket is a local variable used to sort the data points
% There are three modes of this system
% Determine the number of modes in the Model
m = pha(1).variable.modes;

% Each mode is governed by a set of equations.
% m eqn is a local variable used to stored these set of equations
m-eqn = zeros(m,1);

% Handles a variable set of modes
% Creating the same number of buckets as modes.
for i = 1:m,

bucket(i,1).mode = i;
% Buckets are filled with zeros
bucket(i,1).values = zeros(ld,nc);
% Initialize the bucket counter
bucket(i,1).counter = 0;

end

for i = 1:m,
% For mode i, check for transition out of mode i. If
% transition occurs, the data point is not stored in bucket i.

% Store the datapoints into buckets. Each bucket represents a mode of the PHA.
% Data points are stored according to the most likely mode.
forj = 1:ld-1,

if (labeleddata(j,nc) == i)
if (labeled-data(j+1,nc) == i)

% Increment the bucket counter by 1

118

bucket(i,1).counter = bucket(i,1).counter + 1;
% store all remaining data points belonging to mode i into bucket i
bucket(i, I).values(bucket(i,1).counter,:) = labeled data(j,:);

end
end

end
end

% Store datapoints found in buckets into mdata matrices
for i = I:m,

m_data(i,1).mode = i;
m_data(i,1).values = bucket(i,1).values(l:bucket(i).counter,:);
m_data(i,1).counter = bucket(i,1).counter;

end

Model = EstimateParameters(m-eqn, m-data);

%%%

%%%%%%%%%%%%%%%%%
%% Programmer: Melvin M. Henry %%
%% Topic: Mode Estimation of Probabilistics Hybrid Automata %%
%% Date: Friday, June 29, 2001 %%

%% TASK: %%
%% Given a set of labeled data, estimate the transition %%
%% probabilities for the model. Each labeled data is a pair %%
%% (<data point, mode>). %%
%% METHOD: %%

%%%
%%%%%%%%%%%%%%%%%

function Model = EstimateParameters(m_eqn,m-data)

% The different types of outputs
ny = 1;

% The different types of inputs
nu = 1;

% the different types of state-variables that exist.
nx = 2;

% Number of States and output combined
nyd = nx + ny;

% Number of types of States and inputs combined
nxd = nx + nu;

xO = zeros(3);

% Determine the number of modes in the labeled data
m = m_data(length(m-data)).mode; % Change to make it not fixed

% Creating number of input vectors of 1 row by mode counter cloumn
% filled with Is. one for each mode of the system.
for i = 1:m,

u(i,1).mode = i;
u(i,1).values = mdata(i,1).values(1 :m data(i,1).counter,1);
u(i, 1).counter = m-data(i, 1).counter;

end

119

% Creating the number of state vectors
for k = I:nx,

for i = I:m,
x(i,k).mode = i;
x(i,k).values = mdata(i,I).values(l:mdata(i,l).counter,k+l);
x(i,k).counter = m data(i,1).counter;

end
end

% Creating the number of output vectors (structures)
for i = I:m,

y(i,1).mode = i;
y(i,1).values = m data(i,1).values(1:mdata(i,1).counter,4);
y(i,1).counter = mdata(i, 1).counter;

end

for i = I:m,
% Creating storage area for XDATA and YDATA
% Setting XDATA and YDATA to matrices of zeros
ydata = zeros(length(x(i,1).values),nyd);
xdata = zeros(length(x(i,1).values),nxd);
% Storing the values into XDATA and YDATA
for j = 1:nxd,

cl = length(x(i).values);
for k = 2:c1,

if j == nxd,
ydata(k-1,j) = y(i,1).values(k-1,1);
xdata(k-1,j) = u(i,1).values(k-1,1);

else
ydata(k-1,j) = x(ij).values(k,1);
xdata(k-1,j) = x(ij).values(k-1,1);

end
end

end
% Transpose matrix so information can be representing in
% the proper format for accessing.
xdata = transpose(xdata);
ydata = transpose(ydata);
% Store the parameters of each mode in a data struture for
% future access
mode(i).parameters = lsqcurvefit(@calParam,xO,xdata,ydata);
% Store the parameters of mode i into mat file resultsD
% save resultsD store -MAT -APPEND
% save resultsD2 resultsD -ASCII

end

% Return the structure that contains all the modes' parameters
% of the PHA structure
Model = mode;

%%%
%%%%%%%%%%%%%%
%% Programmer: Melvin M. Henry %%
%% Topic: Mode Estimation of Probabilistics Hybrid Automata %%
%% Date: Wednesday, August 1, 2001 %%

%% TASK: %%
%% Given a set of labeled data, estimate the transition %%
%% probabilities for the model. Each labeled data is a pair %%
%% (<data point, mode>). This implementation takes into %%

120

%% consideration the guards that are satisfied whenever there %%
%% is a transition from mode i to mode j %%

%% METHOD: %%
%% For each pair of modes (mode-1, mode-2), estimate the %%
%% fraction of times a transition is made from mode-i to %%
%% mode-2 among all transtions out of mode-1. %%
%%%
%%%%%%%%%%%%%%

function Model = UpdateTranProbabilities(labeled-data,pha)

% Allocate memory for local variables
% determine the number of modes in the PHA
m = pha(1).variable.modes;

% Mode entered after a guard is satified
me = 2;

% For each mode, determine the number of guards it has.
% Store largest number of guards found while looking at the modes.
mGlen = length(pha(1).mode(1).guards);
for i = 2:m,

% If the next mode has more guards than the previous mode,
% store the maximum number of guards always
Glen = length(pha(l).mode(i).guards);
if Glen > mGlen

mGlen = Glen;
end

end

% Create a matrix for guards of each mode
MGM = zeros(m,mGlen);

for i = I:m,
% Determine how many guards are there in each mode
tgl = length(pha(1).mode(i).guards);
for el = 1:tgl,

% Store the guards satisfied by each mode into the
% Mode Guard Matrix (MGM)
MGM(i,cl) = pha(l).mode(i).guards(cl);

end
end

% For a particular guard c, iterate through the transition set
% to determine which modes are entered whenever mode i is existed.
for i = 1:m,

% Store the length of each mode transition's set
tranLen = length(pha.mode(i).transitions);
% Store the first transition ID in the transition set
tranLow = pha.mode(i).transitions(1);
% Store the last transition ID in the mode transition set
tranHigh = pha.mode(i).transitions(1) + tranLen - 1;
for cl = I:mGlen,

Mn =1;
% For a particular mode i and a guard position
% store the guard satisfied
Gid = MGM(i,cl);
for t = tranLow:tranHigh,

if Gid == pha.transition(t).guard
% Store modes entered from mode i into the

121

% Guard satified Mode entered matrix (GSMEM)
GSMEM(Gid,Mn) = pha.transition(t).thread(me);
Mn =Mn+1;

end
end

end
end

% Store the dimension of the GSMEM. We really want the column size
% of the GSMEM
ML = size(GSMEM);
ML = ML(1,2);

% Creating a matrix the same size as GSMEM to store the number of
% times each mode is entered whenever a guard is satisfied
SM = size(GSMEM);

% Mode Guard Satisfication Matrix
% use to store the guard satisfied whenever we exit a particular mode
MGSM = zeros(SM(l,1), SM(1,2));
MGOM = zeros(SM(1,1), 1);

% Determine the column that contains the mode of each data point
mc = size(labeled-data);
mc = mc(1,2);

% Calculating the length of the labeleddata
Id = length(labeled-data);

for k = 2:ld-1,
% Modes are located in the last column of Labeleddata

% For each consecutive pair (<data-point 1,mode 1 >,<data-point l,mode 1>)
% in the labeleddata, calculate the transition probabilities
% whenever a particular guard is satisfied.
u = labeleddata(k,mc);
v = labeleddata(k+1,mc);

for cl = 1:mGlen,
% Finding all the Guard IDs whenever we exit a particular mode
Gid = MGM(u,cl);
for tl = l:ML,

if Gid -= 0 & GSMEM(Gid,tl) = 0 & GSMEM(Gid,tl) == v
% Increment the current value by one whenever a transition
% occur which satisfied Guard 'Gid'and a particular mode
MGSM(Gid,tl) = MGSM(Gid,tl) + 1;
% Increment the current value by one whenever a transition
% occur which satisfied Guard 'Gid'
MGOM(Gid) = MGOM(Gid) + 1;

end
end

end
end

% Invoke the function that estimate the Transition Probabilities
Model = EstimateTranProbabilities(MGSM, MGOM, pha);

%%%
%%%%%%%%%%%%%%
%% Programmer: Melvin M. Henry %%
%% Topic: Mode Estimation of Probabilistics Hybrid Automata %%

122

%% Date: Thursday, May 31, 2001 %%

%% TASK: %%
%% Given the Mode Transition Matrix (MTM) and Mode Origination %%
%% Matrix (MOM)of some unknown model, calculate the transition %%
%% Probabilities of the Model. %%
%%%
%%%%%%%%%%%%%%

function Bin = EstimateTranProbabilities(MGSM, MGOM, pha)

% Allocate memory for matrix 'Bin'the same size as MGSM
% Set all the values of Bin to zero
Bin = zeros(size(MGSM));

% Store the dimension of MGSM
n = size(MGSM);

% Calculate the Transition Probabilities of each mode
% over all rows of MGSM
for i = 1:n(l,1),

% over all columns of MGSM
forj = 1:n(1,2),

Bin(ij) = MGSM(ij) / MGOM(i);
end

end

%%%
%%%%%%%%%%%%%%%%%
%% Programmer: Melvin M. Henry %%
%% Topic: Mode Estimation of Probabilistics Hybrid Automata %%
%% Date: Monday, August 20, 2001 %%

%% TASK: %%
%% Given the old PHA and the Transition probabilities matrix, we can %%
%% update the PHA to contain these estimated valves. %%
%% a pair of (<data point, mode>). %%

%% METHOD: %%

%%%
%%%%%%%%%%%%%%%%%

% Allocate memory for local variables
% determine the number of modes in the PHA
m = pha(1).variable.modes;

% Mode entered after a guard is satified
% Represents the position where the mode entered is stored
me = 2;

% For each mode, determine the number of guards it has.
% Store largest number of guards found while looking at the modes.
mGlen = length(pha(l).mode(1).guards);
for i = 2:m,

% If the next mode has more guards than the previous mode,
% store the maximum number of guards always
Glen = length(pha(1).mode(i).guards);

123

if Glen > mGlen
mGlen = Glen;

end
end

% Create a matrix for guards of each mode
MGM = zeros(m,mGlen);

for i = 1:m,
% Determine how many guards are there in each mode
tgl = length(pha(1).mode(i).guards);
for cl = 1:tgl,

% Store the guards satisfied by each mode into the
% Mode Guard Matrix (MGM)
MGM(i,cl) = pha(1).mode(i).guards(cl);

end
end

% For a particular guard c, iterate through the transition set
% to determine which modes are entered whenever mode i is existed.
for i = I:m,

% Store the length of each mode transition's set
tranLen = length(pha.mode(i).transitions);
% Store the first transition ID in the transition set
tranLow = pha.mode(i).transitions(1);
% Store the last transition ID in the mode transition set
tranHigh = pha.mode(i).transitions(1) + tranLen - 1;
for l = 1:mGlen,

Mn =1;
% For a particular mode i and a guard position
% store the guard satisfied
Gid = MGM(i,cl);
for t = tranLow:tranHigh,

if Gid == pha.transition(t).guard
% Store modes entered from mode i into the
% Guard satified Mode entered matrix (GSMEM)
GSMEM(Gid,Mn) = pha.transition(t).thread(me);
Mn = Mn+1;

end
end

end
end

% Determining the number of transitions in the PHA
In = length(pha.transition);

% Updating the transition probabilities of the PHA
for k = 1:ln,

% Guard satisfied when the mode was exits
Gid = pha(1).transition(k).guard;
% destination of mode transition
d = pha(1).transition(k).thread(me);

% Search through GSMEM to find the destination mode of the
% guarded transtion
for l = 1:mGlen,

dm = GSMEM(Gid,cl);
if dm == d

% Storing probabilities for each transition
% into the PHA's structure
p = TPM(Gid,cl);
pha(1).transition(k).thread = [p, d;];

124

end
end

end

%%%
%%%%%%%%%%%%%%%%%
%% Programmer: Melvin M. Henry %%
%% Topic: Mode Estimation of Probabilistics Hybrid Automata %%
%% Date: Friday, November 11, 2001 %%

%% TASK: %%
%% Once we have calculated the equation parameters for each mode and %%
%% we have estimated all the transition probabilities of the PHA, we %%
%% should store these results in a text file called data which is then %%
%% used by the Hybrid E step of the Hybrid EM algorithm. %%

%% Method: %%
%% The Parameters of the PHA are stored in a text file called data %%
%% in the standard Lisp format since the Hybrid E step is written in %%
%% Lisp. %%

%%%
%%%%%%%%%%%%%%%%%

% Transition function Starting number
st = 1;
% Open the file data with write permission
fid = fopen('data.tex', 'w);
% Transition through the each mode in the PHA
for i = 1:mc,

% intializing the row and column to begin at 1
r= 1;
c = 1;
if i= 1

fprintf(fid,[\n\n');
end
% Print the results estimated to file storeResults
% Storing mode i of the PHA
fprintf(fid,['((M',num2str(pha.mode(i).id)]);
% Storing the parameter A in the file
fprintf(fid,[\n(A((',num2str(mode(i).parameters(r,c)),'']);
fprintf(fid,[num2str(mode(i).parameters(r,c+1)),)]);
fprintf(fid,['(',num2str(mode(i).parameters(r+1,c)),']);
fprintf(fid,[,num2str(mode(i).parameters(r+1,c+l)),)))]);
% Storing the parameter B in the file
fprintf(fid,[\n(B(',num2str(mode(i).parameters(r+2,c)),'']);
fprintf(fid,[num2str(mode(i).parameters(r+2,c+1)),))]);
% Storing the parameter C in the file
fprintf(fid,[\n(C((',num2str(mode(i).parameters(r,c+2)),)(]);
fprintf(fid,[num2str(mode(i).parameters(r+l,c+2)),')))]);
% Storing the parameter D in the file
fprintf(fid,[\n(D(',num2str(mode(i).parameters(r+2,c+2)),'))]);
% Transition counter for a mode
tc = length(pha.mode(i).transitions);
en = st + tc - 1;
n = 1;
% Transitioning through all the transition fucntions for mode i
for j = st:en,

% Storing the transition probilities of each mode i
% Storing the transition function (TF) number j
fprintf(fid,[\n(T',num2str(n)]);

125

% Storing the mode i and the transition goal of TF
fprintf(fid,['((M',num2str(pha(l).transition(j).thread(2)),''J);
% Storing the transition probability of TF
fprintf(fid,[num2str(pha(1).transition(j).thread(l)),')))]);
if j == tc

fprintf(fid,')));
end
n = n + 1;

end
% The next transition function number is I greater than last TF number
st = en + 1;

end
% Close the file with file identifier FID
st = fclose(fid);

126

