The Involution Principle and h-positive Symmetric Functions

by

Benjamin S. Joseph

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2001

©Benjamin S. Joseph MMI. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document
in whole or in part, and to grant others the right to do so.

Author ..

Department of Mathematics

August 9, 2001

Certified by

Richard P. Stanley
Professor of Mathematics

Tutor Supervisor

Accepted by

Daniel J. Kleitman
Chairman, Applied Mathematics Committee

Accepted by

Tomasz S. Mrowka
Chairman, Department Committee on Graduate Students
FINAL APPROVAL FORM FOR PH.D. THESIS

I certify that I have examined the thesis of Benjamin Joseph, a candidate for the Ph.D. degree, and consider the thesis acceptable to the Applied Mathematics Program.

Thesis Examination Committee Chairperson, Richard Stanley
Date 8/9/01

Thesis Advisor, Richard Stanley
Date 8/9/01

Thesis Committee Member, Daniel Kleitman
Date

Thesis Committee Member, Ira Gessel
Date August 9, 2001

Thesis Committee Member,
Date
The Involution Principle and h-positive Symmetric Functions
by
Benjamin S. Joseph

Submitted to the Department of Mathematics on August 9, 2001, in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY

Abstract

The criterion of h-positivity corresponds to the criterion that a polynomial representation of the general linear group of V is a sum of tensor products of symmetric powers of V. Expanding the iterated exponential function as a power series yields coefficients whose positivity implies the h-positivity of the characteristic of the symmetric group character whose value on the permutation w is the number of labeled forests with $c(w)$ vertices, where $c(w)$ is the number of cycles of w. Another example of an h-positive symmetric function is the characteristic of the top homology of the even-ranked subposet of the partition lattice. In this case, the positive coefficients of the characteristic refine the tangent number E_{2n-1} into sums of powers of two.

Thesis Supervisor: Richard P. Stanley
Title: Professor of Mathematics
Acknowledgments

I would like to thank my advisor, Richard Stanley, for his exemplary mathematical work and for his guidance in the writing of this thesis. I would also like to thank Sheila Sundaram, John Stembridge, and Richard Stanley for their interesting conjectures.
Contents

1 Symmetric Functions and h-positivity .. 9
1.1 Symmetric Functions ... 9
1.2 Representations of $GL(V)$... 12
1.3 \mathfrak{S}_n modules ... 14

2 The Combinatorics of the Monomial Character 17
2.1 The Compositional Formula ... 17
2.2 Rooted Trees and Forests ... 21
2.3 Trees with Increasing Leaves ... 22
2.4 Cycles and Permutations ... 23
2.5 A Combinatorial Formula for the Monomial Character 24

3 The Iterated Exponential .. 29
3.1 Coefficients of the Iterated Exponential 29
3.2 The Character $\chi(u) = (c(u) + 1)^{c(u) - 1}$ 38
3.3 A Related Character $\tilde{\chi}$... 41

4 Homology of the Even-Ranked Subposet of the Partition Lattice 43
4.1 Partition Lattice and Subposets .. 43
4.2 Poset Homology ... 44
4.3 Sundaram’s Conjecture ... 45
4.4 The Tangent Number and André Permutations 63
Chapter 1

Symmetric Functions and h-positivity

1.1 Symmetric Functions

The following questions are the same question posed in three different contexts.

1. When is an s-positive symmetric function h-positive?

2. When is a polynomial representation of $GL(V)$ isomorphic to a sum of tensor products of symmetric powers of V?

3. When is an \mathfrak{S}_n character a sum of characters induced from trivial representations on Young subgroups?

In this section, the meaning of these questions and their equivalence is discussed. First, h-positivity is defined as the basic facts about symmetric functions are recalled without proof. A better exposition may be found in [4], which includes proofs of all of the facts compiled here with the exception of Proposition 2, which is proven in the next section. Symmetric functions are indexed by partitions of n.

A partition of n is a sequence which is a composition of n, and whose terms are weakly decreasing.

Definition 1. (Partitions of a Positive Integer n) The set $\text{Par}(n)$ of partitions of the positive integer n is the set of sequences of nonnegative integers

$$\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots)$$

such that both $\sum_{i \geq 1} \lambda_i = n$ and $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \cdots$.

If the partition λ has l nonzero parts, then the integer l is called the length of the partition λ. In this case, the partition λ will also be denoted by the sequence $(\lambda_1, \lambda_2, \ldots, \lambda_k)$.

Let $(x_i)_{i \geq 1}$ be a set of indeterminates and let n be a nonnegative integer.
Definition 2. (Monomial Symmetric Functions)
The monomial symmetric function of degree n indexed by $\lambda \in \text{Par}(n)$ is the formal power series
\[m_\lambda = \sum_{(a_1, a_2, a_3, \ldots)} x_1^{a_1} x_2^{a_2} x_3^{a_3} \ldots \]
where the sequence (a_1, a_2, a_3, \ldots) ranges over all distinct permutations of $(\lambda_1, \lambda_2, \lambda_3, \ldots)$.

The module Λ^n is the \mathbb{Z}-module $\mathbb{Z}[(m_\lambda)_{\lambda \in \text{Par}(n)}]$. Its elements are called the homogeneous symmetric functions of degree n. Evidently, if $f \in \Lambda^n$, then given any permutation u of the positive integers, the formal power series f is invariant under the action of u. That is,
\[f(x_1, x_2, x_3, \ldots) = f(x_{u(1)}, x_{u(2)}, x_{u(3)}, \ldots). \]
Conversely, any formal power series g in the indeterminates $(x_i)_{i \geq 1}$ whose terms are each of degree n, and which is invariant under the action of any given permutation u of the positive integers is a linear combination of the monomial symmetric functions. Hence, the usual definition of the module Λ^n as the set of such formal power series g coincides with the definition of Λ^n given here. Notice that the \mathbb{Z}-module, $\Lambda = \bigoplus_{n \geq 0} \Lambda^n$ inherits the structure of a graded ring as a subring of $\mathbb{Z}[x_1, x_2, x_3, \ldots]$. Thus, the ring Λ is called the ring of symmetric functions.

Definition 3. (Complete Symmetric Functions)
The nth complete symmetric function is the formal power series
\[h_n = \sum_{i_1 \leq i_2 \leq \cdots \leq i_n} x_{i_1} x_{i_2} \cdots x_{i_n}. \]
The complete symmetric function of degree n indexed by $\lambda \in \text{Par}(n)$ is the formal power series
\[h_\lambda = h_{\lambda_1} h_{\lambda_2} \cdots h_{\lambda_l}, \]
where λ has l parts.

Thus, the generating function $H(t)$ for the sequence $(h_n)_{n \geq 0}$ with $h_0 := 1$ is the formal power series,
\[1 + H(t) := \sum_{n \geq 0} h_n t^n = \prod_{i \geq 1} \frac{1}{1 - x_i t} \quad (1.1) \]
A symmetric function that has nonnegative, integer coefficients when written in the basis of complete symmetric functions is an h-positive symmetric function.
Definition 4. (h-positivity)
The symmetric function \(f \in \Lambda^n \) is defined to be h-positive if

\[
f = \sum_{\lambda \in \text{Par}(n)} a_\lambda h_\lambda,
\]

and the coefficient \(a_\lambda \) is a nonnegative integer.

In general, u-positivity may be defined for any basis \(\{(u_\lambda)_{\lambda \in \text{Par}(n)}\} \) of the homogeneous symmetric functions \(\Lambda^n \). Say that the symmetric function \(f \in \Lambda^n \) is u-positive if the formal power series \(f \) may be written as a linear combination of the basis functions \(u_\lambda \) with nonnegative coefficients.

Counting the multiplicity of the monomials which appear in \(h_\lambda \) yields the following result.

Proposition 1. (h-m Transition Matrix)

\[
h_\lambda = \sum_{\mu \in \text{Par}(n)} N_{\lambda \mu} m_\mu
\]

where \(N_{\lambda \mu} \) is the number of matrices with nonnegative, integer entries whose row sums are \(\lambda \) and column sums are \(\mu \).

Thus,

\[
\prod_{i \geq 1} \frac{1}{1 - x_i y_j t} = 1 + \sum_{n \geq 1} t^n \sum_{\lambda \in \text{Par}(n)} \sum_{\mu \in \text{Par}(n)} N_{\lambda \mu} m_\lambda m_\mu
\]

\[
= 1 + \sum_{n \geq 1} t^n \sum_{\lambda \in \text{Par}(n)} m_\lambda h_\lambda. \quad (1.2)
\]

A \(\mathbb{Q} \)-basis of \(\Lambda^n \otimes_{\mathbb{Z}} \mathbb{Q} \) is spanned by the power sum symmetric functions.

Definition 5. (Power Sum Symmetric Functions)
The \(n \)th power sum symmetric function is the formal power series

\[
p_n = \sum_{i \geq 1} x_i^n.
\]

The power sum symmetric function of degree \(n \) indexed by \(\lambda \in \text{Par}(n) \) is the formal power series

\[
p_\lambda = p_{\lambda_1} p_{\lambda_2} \cdots p_{\lambda_l},
\]

where \(\lambda \) has \(l \) parts.

A combinatorial definition of the numbers \(\phi^\lambda(\mu) \) is given in Definition 20. These numbers are the entries of the \(p-h \) transition matrix.

Proposition 2. (p-h Transition Matrix)

\[
p_\mu = \sum_{\lambda \in \text{Par}(n)} \phi^\lambda(\mu) h_\lambda.
\]
Proposition 2 is a basic fact proven, for example, in [9]. Its proof is given in the next section. The entries of the transition matrix $\phi^\lambda(\mu)$ determine the monomial character ϕ^λ of S_n indexed by λ whose central role in the study of h-positivity is discussed below.

A third \mathbb{Z}-basis of Λ^n are the Schur functions, which will not appear here except in the introduction.

Definition 6. (Schur Symmetric Functions and s-m Transition Matrix)
The Schur symmetric function of degree n indexed by $\lambda \in \text{Par}(n)$ is the formal power series

$$s_\lambda = \sum_{\mu \in \text{Par}(n)} K_{\lambda \mu} m_\mu,$$

where $K_{\lambda \mu}$ is the number of semi-standard Young tableaux of shape λ and content μ.

Semi-standard Young tableaux of shape λ and content μ are matrices with non-negative integer entries whose positive entries are μ. Furthermore, these positive entries are top-left justified, strictly increasing in columns, weakly increasing in rows, and the number of positive entries in the ith row is λ_i.

Proposition 3. h-s Transition Matrix

$$h_\mu = \sum_{\mu \in \text{Par}(n)} K_{\lambda \mu} s_\lambda.$$

In particular, every h-positive symmetric function is s-positive.

1.2 Representations of $GL(V)$

The direct sum of two representations W and X of $GL(V)$ is the representation $W \oplus X$ where for $g \in GL(V)$, g acts on $W \oplus X$ by linearly extending the action $g(w \oplus x) = g(w) \oplus g(x)$. The tensor product of two representations of $GL(V)$ is the representation $W \otimes X$, where for $g \in GL(V)$, g acts on $W \otimes X$ by linearly extending the action $g(w \otimes x) = g(w) \otimes g(x)$. Thus, the ring of polynomial $GL(V)$ representations $R(GL(V))$ is a ring whose addition operation is the direct sum \oplus and whose multiplication operation is the tensor product \otimes.

Let Λ_m denote the ring of symmetric functions in m variables. Let Λ_m^n denote the ring of homogeneous symmetric functions of degree n in m variables. Define the projection

$$\rho_m : \Lambda \to \Lambda_m$$

$$\rho_m f(x_1, x_2, x_3, \ldots) = f(x_1, x_2, \ldots, x_m, 0, 0, 0, \ldots)$$

Note that the restriction of ρ_m to Λ^n for $m \geq n$ gives an isomorphism between Λ^n and Λ_m^n.

12
Theorem 1. Suppose V is a vector space over \mathbb{C} of dimension m. The map which sends a representation of $GL(V)$ to its character,

$$\text{ch} : R(GL(V)) \to \Lambda_m$$

is a ring isomorphism.

Hence $R(GL(V))$ is in fact a graded ring.

$$R(GL(V)) = \bigoplus_{n \geq 0} R_n(GL(V))$$

where $R_n(GL(V)) := \text{ch}^{-1}\Lambda_m^n$. Thus $R_n(GL(V))$, the homogeneous, polynomial representations of $GL(V)$ of degree n, consists of those polynomial representations of $GL(V)$ whose character is a homogeneous symmetric function in m variables of degree n. Let $S^n(V)$ denote the nth symmetric power of V, and suppose $\dim_{\mathbb{C}}(V) = m \geq n$. Then, evidently,

$$\text{ch}(S^n(V)) = \rho_n h_n$$

Thus,

$$\text{ch}(S^\lambda(V) \otimes \cdots \otimes S^\lambda(V)) = \rho_m h_\lambda$$

where $\lambda \in \text{Par}(n)$ is a partition with l parts. Hence, Theorem 1 has the following corollary.

Corollary 1. For a polynomial representation W of $GL(V)$, $f = \text{ch}(W)$ is h-positive if and only if

$$W \cong \bigoplus_{\lambda \in \text{Par}(n)} (S^\lambda(V) \otimes \cdots \otimes S^\lambda(V))^{\otimes_{\mathbb{A}} \lambda}.$$

Above, $V^{\otimes k}$ denotes the k-fold direct sum of V.

The representation ring $R(GL(V))$ is endowed with another product which corresponds to the operation of composing two representations and which will appear in Chapter 4. Suppose that $\phi : GL(U) \to GL(V)$ is a representation of $GL(U)$ and that $\psi : GL(V) \to GL(W)$ is a representation of $GL(V)$. Suppose $\dim_{\mathbb{C}}(U) = m$ and $\dim_{\mathbb{C}}(V) = l$. The function $\text{ch}(\psi \circ \phi)$ is defined to be the plethystic product or simply the plethysm of $\text{ch}(\psi)$ with $\text{ch}(\phi)$. The symmetric function $\text{ch}(\psi \circ \phi)$ may be defined more explicitly in terms of $\text{ch}(\psi)$ and $\text{ch}(\phi)$. If $\text{ch}(\phi) = \tilde{g}(x_1, \ldots, x_m) = \sum_{i=1}^l x^{a_i}$ and $\text{ch}(\psi) = \tilde{f}(x_1, \ldots, x_l)$ then $\tilde{f}[\tilde{g}] := \text{ch}(\psi \circ \phi) = \tilde{f}(x^{a_1}, \ldots, x^{a_l})$. For symmetric functions $f, g \in \Lambda$ such that $\rho_m g = \tilde{g}$ and $\rho_l f = \tilde{f}$, plethysm is defined so that $\rho_m f[g] = \tilde{f}[\tilde{g}]$.

Definition 7. (Plethysm of Symmetric Functions) Suppose that the symmetric function g is a sum of monomials with coefficient one, and f is a symmetric function. Thus, in multi-index notation, $g = \sum_{i \geq 1} x^{a_i}$. Then, the plethysm of f with g is the symmetric function,

$$f[g] := f(x^{a_1}, x^{a_2}, x^{a_3}, \ldots).$$
1.3 \(\mathfrak{S}_n \) modules

The polynomial representations of \(GL(V) \) are closely related to representations of the symmetric groups \(\mathfrak{S}_n \). For some \(\mathfrak{S}_n \) module \(M \), a given homogeneous, degree \(n \), polynomial representation \(W \) of \(GL(V) \) may be written in the form,

\[
W \cong V^{\otimes n} \otimes_{\mathbb{C}[S_n]} M
\]

(1.3)

where \(V^{\otimes n} \) denotes the \(n \)-fold tensor product of \(V \). \(V^{\otimes n} \) is an \(\mathfrak{S}_n \) module since linearly extending the map given by \(u(v_1 \otimes \ldots \otimes v_n) = (v_{u(1)} \otimes \ldots \otimes v_{u(n)}) \) to \(V^{\otimes n} \) gives an \(\mathfrak{S}_n \) action. Let \(R(\mathfrak{S}_n) \) denote the representation ring of \(\mathfrak{S}_n \). Then, there is a bijection \(\phi_n \) defined by,

\[
\phi_n : R(\mathfrak{S}_n) \to R_n(GL(V))
\]

\[
\phi_n(M) = V^{\otimes n} \otimes_{\mathbb{C}[S_n]} M.
\]

(1.4)

Evidently, \(\phi_n \) is an isomorphism of \(R(\mathfrak{S}_n) \) and \(R_n(GL(V)) \) as abelian groups with addition \(\oplus \), and thus \(\phi_n \) is an isomorphism of vector spaces over \(\mathbb{C} \). Now, suppose \(N \) is an \(\mathfrak{S}_n \) module and \(L \) is an \(\mathfrak{S}_l \) module. Then,

\[
\phi_n(N) \otimes \phi_l(L) \cong (V^{\otimes n} \otimes_{\mathbb{C}[S_n]} N) \otimes (V^{\otimes l} \otimes_{\mathbb{C}[S_l]} L)
\]

\[
\cong V^{\otimes n+l} \otimes_{\mathbb{C}[S_{n+l}]} \text{ind}_{\mathfrak{S}_n \times \mathfrak{S}_l}^{\mathfrak{S}_{n+l}} N \otimes L.
\]

Hence define:

\[
N \times L := \text{ind}_{\mathfrak{S}_n \times \mathfrak{S}_l}^{\mathfrak{S}_{n+l}} N \otimes L
\]

Extend \(\times \) linearly to obtain a product on \(\bigoplus_{n \geq 1} R(\mathfrak{S}_n) \) such that \(\phi_{n+l}(N \otimes L) = \phi_n(N) \otimes \phi_l(L) \). Thus, we have the following proposition.

Proposition 4. Define a map,

\[
\phi : \bigoplus_{n \geq 1} R(\mathfrak{S}_n) \to R(GL(V))
\]

as the linear extension of the maps

\[
\phi_n(N) = V^{\otimes n} \otimes_{\mathbb{C}[S_n]} N
\]

for \(N \in R(\mathfrak{S}_n) \). Then, \(\phi \) is a ring homorphism.

A representation \(\phi : \mathfrak{S}_n \to GL(V) \) is determined by its character. The character \(\chi \) of \(\phi \) is the function,

\[
\chi : \mathfrak{S}_n \to \mathbb{C}
\]

\[
\chi(u) = \text{tr}(\phi(u)),
\]

where \(\text{tr}(\phi(u)) \) is the trace of the linear map \(\phi(u) \). Every character is a class function which is to say that it is constant on the conjugacy classes of \(\mathfrak{S}_n \).
Definition 8. For \(u \in \mathfrak{S}_n \) and \(\lambda \in \text{Par}(n) \), define,

\[
\text{type}(u) = \lambda,
\]

if the lengths of the cycles of \(u \) are the parts of \(\lambda \).

The permutations \(u, v \in \mathfrak{S}_n \) belong to the same conjugacy class if and only if \(\text{type}(u) = \text{type}(v) \). Hence, the conjugacy classes of \(\mathfrak{S}_n \) are indexed by partitions of \(n \).

The Frobenius characteristic associates a symmetric function to each class function.

Definition 9. (Frobenius Characteristic)

The Frobenius Characteristic of the \(\mathfrak{S}_n \) class function \(\chi \) is the symmetric function

\[
\Phi(\chi) := \frac{1}{n!} \sum_{u \in \mathfrak{S}_n} \chi(u)p_{\text{type}(u)}
\]

The Frobenius characteristic of an \(\mathfrak{S}_n \) module \(N \) is by definition the Frobenius characteristic of its character.

Theorem 2. Suppose \(N \) is an \(\mathfrak{S}_n \) module whose character is \(\chi_N \). Then, the linear extension of the map taking \(N \) to its Frobenius characteristic \(\Phi(\chi_N) \) is a ring isomorphism,

\[
\Phi : \bigoplus_{n \geq 1} R(\mathfrak{S}_n) \to \Lambda.
\]

The Schur-Weyl duality motivates the definition of \(\Phi \) and gives the relationship between the character of the \(\mathfrak{S}_n \) module \(N \) denoted \(\chi_N \) and the character of the \(GL(V) \) module \(\phi(N) = V^{\otimes n} \otimes_{\mathbb{C}[\mathfrak{S}_n]} N \).

Theorem 3. (Schur-Weyl Duality)

Suppose \(N \) is an \(\mathfrak{S}_n \) module whose character is \(\chi_N \) and \(\text{dim}_\mathbb{C}(V) = m \). Then,

\[
\text{ch}(V^{\otimes n} \otimes_{\mathbb{C}[\mathfrak{S}_n]} N) = \rho_m \Phi(\chi_N)
\]

Suppose \(\text{dim}(V) = m \). Let \(\Phi^{-1} \) denote the inverse of the Frobenius characteristic, and suppose \(\phi \) is defined as in Proposition 4. Then, the Schur-Weyl duality states that the composition of maps,

\[
\Lambda \xrightarrow{\Phi^{-1}} \bigoplus_{n \geq 1} R(\mathfrak{S}_n) \xrightarrow{\phi} R(GL(V)) \xrightarrow{\text{ch}} \Lambda_m
\]

satisfies

\[
\rho_m = \text{ch} \circ \phi \circ \Phi^{-1}.
\]

For example, denote the identity \(\mathfrak{S}_n \) module by \(1_{\mathfrak{S}_n} \). Then,

\[
V^{\otimes n} \otimes_{\mathbb{C}[\mathfrak{S}_n]} 1_{\mathfrak{S}_n} \cong S^n(V).
\]
Hence,
\[\Phi(1_{\mathfrak{S}_n}) = h_n. \]

Since \(\Phi \) is a ring isomorphism,
\[\Phi(1_{\mathfrak{S}_{\lambda_1}} \times \cdots \times 1_{\mathfrak{S}_{\lambda_l}}) = h_{\lambda}, \]
where \(\lambda \) is a partition of \(n \) with \(l \) parts. Recall that \(1_{\mathfrak{S}_{\lambda_1}} \times \cdots \times 1_{\mathfrak{S}_{\lambda_l}} = \text{ind}^{\mathfrak{S}_n}_{\mathfrak{S}_{\lambda_1} \times \cdots \times \mathfrak{S}_{\lambda_l}} 1. \)

A subgroup of the form \(\mathfrak{S}_{\lambda_1} \times \cdots \times \mathfrak{S}_{\lambda_l} \) is called a Young subgroup or a parabolic subgroup. Thus, we have the following corollary to Theorem 2.

Corollary 2. Suppose \(N \) is an \(\mathfrak{S}_n \) module whose character is \(\chi_N \). \(f = \Phi(\chi_N) \) is \(h \)-positive if and only if
\[N \cong \bigoplus_{\lambda \in \text{Par}(n)} (\text{ind}^{\mathfrak{S}_n}_{\mathfrak{S}_{\lambda_1} \times \cdots \times \mathfrak{S}_{\lambda_l}} 1)^{\mathfrak{S}_\lambda}. \]

Denote the irreducible representation of \(\mathfrak{S}_n \) indexed by \(\lambda \in \text{Par}(n) \) by \(S^\lambda \). Then \(S^\lambda(V) := V^{\otimes n} \otimes_{\mathfrak{S}[\mathfrak{S}_n]} \mathfrak{S}_\lambda \) is the irreducible representation of \(GL(V) \) indexed by \(\lambda \). Furthermore,
\[\rho_m \text{ch}(S^\lambda(V)) = \Phi(S^\lambda) = s_\lambda. \]

Thus, the class function \(\chi \) is the character of an \(\mathfrak{S}_n \) module if and only if \(\Phi(\chi) \) is \(s \)-positive. Proposition 3 states that if \(\Phi(\chi) \) is \(h \)-positive then it is \(s \)-positive. In fact, if \(\Phi(\chi) \) is \(h \)-positive then Corollary 2 states that \(\chi \) is not only a character but also the character of an \(\mathfrak{S}_n \) module which is the sum of trivial modules induced from Young subgroups. Now, suppose that it is not known whether the \(\mathfrak{S}_n \) module \(N \) is the sum of trivial modules induced from Young subgroups, or equivalently whether \(\Phi(N) \) is \(h \)-positive. Suppose that \(\chi_N \) is the character of \(N \). Then, using the definition of \(\Phi \) and Proposition 2,
\[\Phi(N) := \frac{1}{n!} \sum_{u \in \mathfrak{S}_n} \chi_N(u)p_{\text{type}}(u) = \frac{1}{n!} \sum_{\lambda \in \text{Par}(n)} \sum_{u \in \mathfrak{S}_n} \chi_N(u)\phi^\lambda(u)h_{\lambda}. \]

Hence, we have the following corollary of Proposition 2.

Corollary 3. \(\Phi(N) \) is \(h \)-positive if and only if for each \(\lambda \in \text{Par}(n) \)
\[\sum_{u \in \mathfrak{S}_n} \chi_N(u)\phi^\lambda(u) \]
is a positive integer.

This corollary explains the central importance of the monomial character \(\phi^\lambda \) in determining the \(h \)-positivity of the Frobenius characteristic of an \(\mathfrak{S}_n \) module.
Chapter 2

The Combinatorics of the Monomial Character

2.1 The Compositional Formula

Definition 10. (Hypergraph)
A hypergraph $h = (V(h), E(h))$ consists of a vertex set $V(h)$ together with an edge set $E(h)$. The edge set $E(h) = \{A_1, A_2, \ldots, A_{h_1}\}$ is a collection of subsets of $V(h)$ such that each subset A_i has cardinality at least two.

If each edge A_i of the hypergraph has cardinality exactly two, then the hypergraph h is a graph with vertex set $V(h)$. If the elements in each edge A_i of a hypergraph h are assigned an order then the hypergraph h becomes a directed hypergraph.

Definition 11. (Directed Hypergraph)
A directed hypergraph $h = (V(h), E(h))$ consists of a vertex set $V(h)$ together with an edge set $E(h)$. The edge set $E(h) = \{A_1, A_2, \ldots, A_{h_1}\}$ is a collection of ordered subsets of $V(h)$ such that each ordered subset A_i has cardinality at least two.

Let D_S denote the set of all directed hypergraphs h whose vertex set $V(h)$ is the set S. If each edge A_i of the directed hypergraph has cardinality exactly two, then the hypergraph h is a directed graph with vertex set $V(h)$.

Suppose that the function w assigns an element of the ring R to each element of the set S. For example, say that the ring R is the integers \mathbb{Z}.

$$w : S \to \mathbb{Z}.$$

The function w may be extended to the set 2^S of subsets of S, by setting

$$w(A) = \sum_{s \in A} w(s),$$

where $A \in 2^S$. Then,

$$w(A \sqcup B) = w(A) + w(B)$$

17
where $A \coprod B$ denotes the disjoint union (coproduct) of A and B for $A, B \in 2^S$. Suppose w_1, w_2 are functions from S_1, S_2 respectively to the integers. Then define the function $w = w_1 \coprod w_2$ from $S_1 \coprod S_2$ to the integers by setting,

$$\begin{align*}
w(s) := \begin{cases}
w_1(s), & s \in S_1 \\
w_2(s), & s \in S_2 \end{cases}.
\end{align*}$$

Let $S_1 \times S_2 = \{(s_1, s_2) | s_1 \in S_1, s_2 \in S_2\}$ denote the product of S_1 and S_2. Then define a function,

$$\tilde{w} : S_1 \times S_2 \to \mathbb{C}$$

by

$$\tilde{w}(s_1, s_2) = w(s_1)w(s_2).$$

Hence, if A and B are both subsets of S, then $w(A \times B) = w(A)w(B)$. Throughout this section, if the function w has as its domain the disjoint union $S_1 \coprod S_2$, then the function \tilde{w} whose domain is $S_1 \times S_2$ will also be called w. That is, it will be written that

$$w(s_1, s_2) = \tilde{w}(s_1, s_2) = w(s_1)w(s_2),$$

where $s_1 \in S_1$ and $s_2 \in S_2$.

In this section, the combinatorial interpretation of the composition of formal power series is recalled. A proof of the compositional formula along with many examples can be found in [6].

Suppose that the set $\mathcal{F}_{[n]}$ is a subset of the directed hypergraphs $\mathcal{D}_{[n]}$ with vertex set $[n]$. Let $F(x)$ be the weighted exponential generating function for the sequence of hypergraphs $\mathcal{F}_{[n]}$. That is,

$$F(x) = \sum_{n \geq 0} w(\mathcal{F}_{[n]}) \frac{x^n}{n!},$$

where $w(\mathcal{F}_{[0]}) := f_0$. Suppose, similarly, that

$$G(x) = \sum_{n \geq 0} w(\mathcal{G}_{[n]}) \frac{x^n}{n!},$$

where $w(\mathcal{G}_{[0]}) := g_0$.

Then we have the following result.

Proposition 5. (Multiplication Formula)

$$F(x)G(x) = \sum_{n \geq 0} w \left(\coprod_{B_1 \subseteq [n]} \mathcal{F}_{B_1} \times \mathcal{G}_{[n]-B_1} \right) \frac{x^n}{n!}$$
Proof.

\[F(x)G(x) = \sum_{n \geq 0} \sum_{k=0}^{n} \binom{n}{k} w(\mathcal{F}_k)w(\mathcal{G}_{n-k}) \frac{x^n}{n!} \]

\[= \sum_{n \geq 0} \sum_{B_1 \subseteq [n]} w(\mathcal{F}_{B_1})w(\mathcal{G}_{[n]-B_1}) \frac{x^n}{n!} \]

\[= \sum_{n \geq 0} w \left(\prod_{B_1 \subseteq [n]} \mathcal{F}_{B_1} \times \mathcal{G}_{[n]-B_1} \right) \frac{x^n}{n!}. \]

\[\square \]

Let \(\Pi^k_S \) denote the set of partitions of the set \(S \) into \(k \) blocks.

Definition 12. (Partitions of the set \(S \) into \(k \) blocks) A partition \(\Lambda = \{\Lambda_1, \ldots, \Lambda_k\} \) of the set \(S \) into \(k \) blocks is a collection of \(k \) disjoint subsets of the set \(S \) whose union is \(S \).

An element \(\Lambda_i \) of a partition \(\Lambda \) is called a block of the partition. Let \(\Pi_S \) denote the set of all partitions of the set \(S \).

\[\Pi_S := \coprod_{k \geq 1} \Pi^k_S. \]

The set \(\Pi_S \) is also a lattice as will be explained in a later section.

Let \(\text{Comp}_k S \) be the set of partitions of \(S \) into \(k \) ordered blocks.

Definition 13. (Ordered Partitions of the Set \(S \)) An ordered partition \(B = (B_1, \ldots, B_k) \) of the set \(S \) into \(k \) blocks is an ordered \(k \)-tuple of disjoint subsets of set \(S \) whose union is \(S \).

Thus, if the tuple \(B = (B_1, \ldots, B_k) \) is an ordered partition of \(S \), then the unordered set \(\{B_1, \ldots, B_k\} \) is a partition of \(S \) into \(k \) blocks. The set of all ordered partitions of \(S \) will be denoted by \(\text{Comp} S \).

\[\text{Comp} S = \coprod_{k \geq 1} \text{Comp}_k S \]

Throughout this section, the set \(\{1, \ldots, n\} \) will be denoted by \([n]\), and the set \(\Pi^k_{[n]} \) will be denoted by the standard notation \(\Pi^k_{[n]} \).

Notice that \(G(x) \) has a zero constant term in the following proposition which is proved by iterating Proposition 5 for such \(G(x) \).
Proposition 6. If

\[G(x) = \sum_{n \geq 1} w(G_{[n]}) \frac{x^n}{n!}, \]

then

\[G^k(x) = \sum_{n \geq 1} w \left(\prod_{B \in \text{Comp}_k [n]} G_{B_1} \times \cdots \times G_{B_k} \right) \frac{x^n}{n!}. \]

☐

Proposition 7. (Compositional Formula)

If, for \(f_0 \in R \)

\[F(x) = f_0 + \sum_{n \geq 1} w(\mathcal{F}_{[n]}) \frac{x^n}{n!} \]

and

\[G(x) = \sum_{n \geq 1} w(G_{[n]}) \frac{x^n}{n!} \]

then

\[F(G(x)) = f_0 + \sum_{n \geq 1} w \left(\prod_{\Lambda \in \Pi_n} \mathcal{F}_{[\Lambda]} \times G_{\Lambda_1} \times \cdots \times G_{\Lambda_k} \right) \frac{x^n}{n!}. \]

Proof.

\[F(G(x)) = f_0 + \sum_{k \geq 1} w(\mathcal{F}_{[k]}) \frac{(G(x))^k}{k!} \]

then using Proposition 6.

\[F(G(x)) = f_0 + \sum_{k \geq 1} w(\mathcal{F}_{[k]}) \frac{1}{k!} \sum_{n \geq 1} w \left(\prod_{B \in \text{Comp}_k [n]} G_{B_1} \times \cdots \times G_{B_k} \right) \frac{x^n}{n!} \]

\[= f_0 + \sum_{n \geq 1} \sum_{k \geq 1} w(\mathcal{F}_{[k]}) w \left(\prod_{\Lambda \in \Pi_n} G_{\Lambda_1} \times \cdots \times G_{\Lambda_k} \right) \frac{x^n}{n!} \]

\[= f_0 + \sum_{n \geq 1} w \left(\prod_{\Lambda \in \Pi_n} \mathcal{F}_{[\Lambda]} \times G_{\Lambda_1} \times \cdots \times G_{\Lambda_k} \right) \frac{x^n}{n!} \]

☐

When for each positive integer \(n \) the value \(w(\mathcal{F}_{[n]}) \) is equal to one and \(f_0 = 1 \), then

\[\exp(x) = F(x) = 1 + \sum_{n \geq 1} \frac{x^n}{n!}. \]

In this special case, the compositional formula is called the exponential formula.
Proposition 8. (Exponential Formula)

Suppose

\[G(x) = \sum_{n \geq 1} w(G_{[n]}) \frac{x^n}{n!} \]

then

\[\exp(G(x)) = 1 + \sum_{n \geq 1} w \left(\coprod_{\Lambda \in \Pi_n} G_{\Lambda_1} \times \cdots \times G_{\Lambda_A} \right) \frac{x^n}{n!} \]

For example, the exponential formula states that the exponential generating function for the number of graphs with vertex set \([n]\) is given by exponentiating the exponential generating functions for connected graphs with vertex set \([n]\).

2.2 Rooted Trees and Forests

Let \(T_{[n]}\) be the set of rooted trees with vertex set \([n]\). That is, \(T_{[n]}\) consists of trees labeled by \([n]\) with a distinguished vertex.

Set

\[T(x) = \sum_{n \geq 1} \#(T_{[n]}) \frac{x^n}{n!}. \]

In fact,

\[T(x) = \sum_{n \geq 1} n^{n-1} \frac{x^n}{n!}. \]

Cayley's formula, which implies that the number of rooted trees is \(n^{n-1}\) has been given numerous proofs [6]. Let \(F_{[n]}\) be the set of rooted forests with vertex set \([n]\). That is, \(F_{[n]}\) consists of graphs whose connected components are rooted trees. Set

\[F(x) = 1 + \sum_{n \geq 1} \#(F_{[n]}) \frac{x^n}{n!}. \]

Proposition 9.

\[T \left(\frac{x}{\exp(x)} \right) = x \]

or equivalently

\[F \left(\frac{\log x}{x} \right) = x \]

Proof. By the exponential formula,

\[F(x) = \exp T(x). \]

Thus, the two parts of the proposition are indeed equivalent. Now, a rooted tree consists of a distinguished vertex \(k\) which is connected to the roots of a rooted forest
with vertex set \([n] - k\). That is,

\[
\mathcal{T}_n \cong \prod_{k=1}^{n} \{k\} \times \mathcal{F}_{[n]-k}.
\]

Thus, by the multiplication formula, Proposition 5,

\[
T(x) = x F(x),
\]

\[
T(x) = x \exp T(x).
\]

Thus,

\[
\frac{T(x)}{\exp T(x)} = x,
\]

and

\[
T \left(\frac{x}{\exp x} \right) = x,
\]

which is to say that \(T(x)\) and \(x/\exp x\) are compositional inverses. \(\square\)

2.3 Trees with Increasing Leaves

Say that a leaf of a rooted tree labeled by \([n]\) is increasing if it is greater than its parent.

Let \(\mathcal{I}_{[n]}\) denote the set of rooted trees with vertex set \([n]\) such that all leaves of the tree are increasing. Let \(\mathcal{G}_{[n]}\) denote the set of rooted trees whose vertex set consists of the blocks of a partition \([n]\) such that no leaf vertex of the tree is a single-element block. Let \(\mathcal{H}_{[n]}\) denote the set of rooted forests whose vertex set consists of the blocks of a partition \([n]\) such that no leaf vertex of the forest is a single-element block.

Evidently, there is a bijection:

\[
\phi : \mathcal{I}_{n} \rightarrow \mathcal{G}_{n}
\]

If \(i \in \mathcal{I}_n\), form the tree \(\phi(i)\) by replacing each vertex \(v\) which is the parent of some leaves \(l_1, \ldots, l_k\) with the subset \(\{l_1, \ldots, l_k, v\} \subseteq [n]\) which consists of the vertex \(v\) and its children leaves, and removing the leaves \(l_1, \ldots, l_k\) from the tree. Conversely, suppose \(b \in \mathcal{G}_{[n]}\), form the tree \(\phi^{-1}(b)\) by replacing each node \(\{l_1, \ldots, l_k, v\}\) which is a block with more than one element with the least element in the block, say \(v\), and from the remaining elements of the block forming leaves \(l_1, \ldots, l_k\) each of which is a single element of \([n]\), and such that each leaf has the vertex \(v\) as its parent.

Now, \(b \in \mathcal{G}_{[n]}\) consists of a distinguished subset \(S\) together with a forest \(h \in \mathcal{H}_{[n]}\) none of whose components is a single element since such would form a leaf in the tree \(b\). That is,
\[\mathcal{G}_{[n]} \cong \prod_{S \subset [n]} \left(S \times \prod_{\Lambda \in \Pi_{[n]-S} \Lambda_i \neq 1} \mathcal{G}_{\Lambda_{\Lambda_i}} \right). \]

Let \(G(x) \) be the weighted exponential generating function for the set \(\mathcal{G}_{[n]} \). Then by the multiplication formula, Proposition 5, and the compositional formula, Proposition 7:

\[G(x) = (e^x - 1)e^{G(x) - x} = (1 - e^{-x})e^{G(x)}. \]

Thus,

\[\log\left(\frac{e^{G(x)}}{e^{G(x)}} \right) = 1 - e^{-x}. \]

Thus,

\[e^{G(x)} = F\left(\frac{\log\left(\frac{e^{G(x)}}{e^{G(x)}} \right)}{e^{G(x)}} \right) = F(1 - e^{-x}). \]

For \(n \geq 1 \) and \(\Lambda_i \subset [n] \), set \(\text{sgn}(\Lambda_i) = (-1)^{\#(\Lambda_i)-1} \). Then,

\[
\begin{align*}
\text{e}^{G(x)} &= F(1 - e^{-x}) \\
&= 1 + \sum_{n \geq 1} \text{sgn} \left(\prod_{\Lambda \in \Pi_n \Lambda_i \neq 1} (\mathcal{F}_{[\Lambda_i]} \times \Lambda_1 \ldots \times \Lambda_{i_\Lambda}) \right) \frac{x^n}{n!} \quad (2.1)
\end{align*}
\]

2.4 Cycles and Permutations

The set \(\mathcal{Z}_{[n]} \) consists of directed graphs which are \(n \)-cycles.

Definition 14. The set \(\mathcal{Z}_{[n]} \) denotes directed cycles with vertex set \([n]\).

If \(z \in \mathcal{Z}_{[n]} \), set

\[\text{sgn}(z) = (-1)^{n-1}. \]

Then,

\[\log(1 + x) = -\sum_{n \geq 1} (n - 1)! \frac{(-x)^n}{n!} = \sum_{n \geq 1} \text{sgn} \mathcal{Z}_{[n]} \frac{x^n}{n!}, \]

and

\[-\log(1 - x) = \sum_{n \geq 1} (n - 1)! \frac{(x)^n}{n!} = \sum_{n \geq 1} \# \mathcal{Z}_{[n]} \frac{x^n}{n!}. \]

Definition 15. \(\mathcal{S}_{[n]} \) denotes directed graphs with vertex set \([n]\) whose connected components are directed cycles

A permutation may be regarded as a directed graph. Given a permutation \(u \in \mathcal{S}_n \) construct a graph with vertex set \([n]\) whose directed edges go from \(i \) to \(u(i) \) for each
\(i \in [n] \). For example, for \(z \in \mathcal{Z}_n \subset \mathfrak{S}_n \), the graph \(z \) may be regarded as a cyclic permutation of \(n \). Henceforth, the notation \(\mathfrak{S}_n \) will be used to denote the group of permutations of \(n \) elements as well as the set \(\mathcal{S}_n \) of directed graphs with vertex set \([n]\) whose connected components are directed cycles.

For \(u \in \mathfrak{S}_n \), define

\[
c(u) := \# \{ \text{connected components of } u \} = \# \{ \text{cycles of } u \} \quad (2.2)
\]

Set

\[
\text{sgn}(u) = (-1)^{n-c(u)}
\]

which coincides with the usual definition of the character \(\text{sgn} \) on the group \(\mathfrak{S}_n \). Evidently, the usual decomposition of a permutation into disjoint cycles gives a bijection

\[
\phi: \prod_{\Lambda \in \Pi_n} (\mathcal{Z}_{\Lambda_1} \times \cdots \times \mathcal{Z}_{\Lambda_l}) \to \mathfrak{S}_n. \quad (2.3)
\]

Furthermore, if \(\phi^{-1}(u) = (z_1, \ldots, z_{l_\Lambda}) \in \mathcal{Z}_{\Lambda_1} \times \cdots \times \mathcal{Z}_{\Lambda_l} \), then

\[
\text{sgn}(\phi^{-1}(u)) = \text{sgn}(z_1) \cdots \text{sgn}(z_{l_\Lambda}) = (-1)^{\#(\Lambda_1)-1} \cdots (-1)^{\#(\Lambda_l)-1} = (-1)^{n-c(u)} = \text{sgn}(u). \quad (2.4)
\]

Thus, the bijection \(\phi \) and the exponential formula, Proposition 8, imply

\[
1 + \sum_{n \geq 1} \text{sgn}(\mathfrak{S}_n) \frac{x^n}{n!} = \exp(\log(1 + x)) = 1 + x,
\]

and

\[
1 + \sum_{n \geq 1} \#(\mathfrak{S}_n) \frac{x^n}{n!} = \exp(-\log(1 - x)) = \frac{1}{1 - x}.
\]

Both of these formulæ are immediately verifiable.

\section{2.5 A Combinatorial Formula for the Monomial Character}

\(\mathcal{P}_n \) consists of directed graphs which are paths.

Definition 16. \(\mathcal{P}_n \) denotes directed paths with vertex set \([n]\).

Evidently, \(\mathcal{P}_n \cong \mathfrak{S}_n \) since permutations may be written in one-line notation as well as cycle notation. For \(P \in \mathcal{P}_n \), set

\[
w(P) = h_n
\]

where for \(i \geq 1 \), \(h_i \) are commuting indeterminates. Then, set
\[H(x) = \sum_{n \geq 1} h_n x^n = \sum_{n \geq 1} w \left(P_{[n]} \right) \frac{x^n}{n!}. \]

By the compositional formula, Proposition 7,

\[\log H = \sum_{n \geq 1} w \left(\prod_{\Lambda \in \Pi_n} Z_{[\Lambda]} \times P_{\Lambda_1} \times \cdots \times P_{\Lambda_{1_{\Lambda}}} \right) \frac{x^n}{n!}. \]

Set

\[Z^P_{[n]} := \prod_{\Lambda \in \Pi_n} Z_{[\Lambda]} \times P_{\Lambda_1} \times \cdots \times P_{\Lambda_{1_{\Lambda}}}. \]

Then the set \(Z^P_{[n]} \) consists of tuples \((z, P_{\Lambda_1}, \ldots, P_{\Lambda_{1_{\Lambda}}})\) such that \(z \) is a cyclic permutation of paths, \(P_{\Lambda_1}, \ldots, P_{\Lambda_{1_{\Lambda}}} \), and such that \(\Lambda \in \Pi_n \). Now, a directed cycle of paths which partition \([n]\) may itself be regarded as a directed cycle with vertex set \([n]\). Indeed, there is a bijection

\[\psi : Z^P_{[n]} \rightarrow Z^P_{[n]} \]

where \(Z^P_{[n]} \) is defined below.

Definition 17. \(Z^P_{[n]} \) is the set of tuples \((z, P_{\Lambda_1}, \ldots, P_{\Lambda_{1_{\Lambda}}})\) such that \(z \) is a directed cycle with vertex set \([n]\) which contains the paths, \(P_{\Lambda_1}, \ldots, P_{\Lambda_{1_{\Lambda}}} \), and such that \(\Lambda \in \Pi_n \).

For \((z, P_{\Lambda_1}, \ldots, P_{\Lambda_{1_{\Lambda}}}) \in Z^P_{[n]}\), set

\[w(z, P_{\Lambda_1}, \ldots, P_{\Lambda_{1_{\Lambda}}}) = w \left(\psi^{-1}(z, P_{\Lambda_1}, \ldots, P_{\Lambda_{1_{\Lambda}}}) \right) = (-1)^{|\Lambda|} h_{\#(\Lambda_1)} \cdots h_{\#(\Lambda_{1_{\Lambda}})} = (-1)^{|\Lambda|-1} h_{\text{type}(\Lambda)} \]

Thus, we have the following proposition.

Proposition 10.

\[\log H = \sum_{n \geq 1} w \left(Z^P_{[n]} \right) \frac{x^n}{n!}. \]

By Proposition 10,

\[\sum_{i \geq 1} \log H(x_i t) = \sum_{n \geq 1} \frac{t^n}{n!} p_n(x) w \left(Z^P_{[n]} \right). \]

For \(z \in Z^P_{[n]} \), set

\[\tilde{w}(z) := p_n(x) w(z) \]

so that

\[\sum_{i \geq 1} \log H(x_i t) = \sum_{n \geq 1} \frac{t^n}{n!} \tilde{w} \left(Z^P_{[n]} \right). \]
Thus, by the exponential formula, Proposition 8,

\[
\exp \left(\sum_{i \geq 1} \log H(x_i t) \right) = 1 + \sum_{n \geq 1} \frac{t^n}{n!} \tilde{w} \left(\prod_{\Lambda \in \Pi_n} \mathcal{Z}_{\Lambda_1}^P \times \cdots \times \mathcal{Z}_{\Lambda_n}^P \right). \tag{2.5}
\]

Evidently, the usual decomposition of a permutation into cycles (2.3) induces a bijection

\[
\mathcal{G}_{[n]}^P := \prod_{\Lambda \in \Pi_n} \mathcal{Z}_{\Lambda_1}^P \times \cdots \times \mathcal{Z}_{\Lambda_n}^P \xrightarrow{\phi} \mathcal{G}_{[n]}^P
\]

where \(\mathcal{G}_{[n]}^P \) is defined as follows.

Definition 18. \(\mathcal{G}_{[n]}^P \) is the set of tuples \((u, P_{\Lambda_1}, \ldots, P_{\Lambda_k})\) such that \(u\) is a permutation of \(n\) and \(u\) contains paths \(P_{\Lambda_1}, \ldots, P_{\Lambda_k}\) whose vertex sets partition \([n]\).

For \((u, P_{\Lambda_1}, \ldots, P_{\Lambda_k}) \in \mathcal{G}_{[n]}^P\), set

\[
\tilde{w}(u, P_{\Lambda_1}, \ldots, P_{\Lambda_k}) = \tilde{w}(\phi^{-1}(u)) = (-1)^{\sigma(u) p_{\text{type}(u)}(x)} (-1)^{l_{\text{type}(\Lambda)}} = \text{sgn}(u) p_{\text{type}(u)}(x) (-1)^{n + l_{\text{type}(\Lambda)}}. \tag{2.6}
\]

Then, by (2.5)

\[
\exp \left(\sum_{i \geq 1} \log H(x_i t) \right) = 1 + \sum_{n \geq 1} \frac{t^n}{n!} \tilde{w} \left(\mathcal{G}_{[n]}^P \right). \tag{2.6}
\]

In order to further refine the above formula (2.6), one may define the set \(\mathcal{G}_{[n]}^P \) by defining subsets \(C_{u\Lambda} \).

\[
C_{u\Lambda} := \left\{ s \mid s = (u, P_{\Lambda_1}, \ldots, P_{\Lambda_k}) \in \mathcal{G}_{[n]}^P, \quad \text{type}(\Lambda) = \lambda \right\}
\]

Thus, we have the following equivalent definition deduced in [9].

Definition 19. \(C_{u\lambda} \) is the set of tuples \((u, P_{\Lambda_1}, \ldots, P_{\Lambda_k})\) such that \(u\) is a permutation of \(n\) and \(u\) contains paths \(P_{\Lambda_1}, \ldots, P_{\Lambda_k}\) of lengths \(\lambda_1, \lambda_2, \ldots, \lambda_{\lambda_k}\) such that the vertex sets of the paths partition \([n]\).

Evidently if \(\text{type}(u) = \text{type}(u')\), then \(\#C_{u\lambda} = \#C_{u'\lambda}\) so that the function \(\#C_{u\lambda}\) of the permutation \(u\) is a class function on \(\mathcal{G}_n\). The monomial character \(\phi^\lambda\) indexed by \(\lambda\) is defined as follows.

Definition 20. (Monomial Character)

\[
\phi^\lambda(u) := \text{sgn}(u)(-1)^{n - l_{\lambda}} \#(C_{u\lambda}).
\]
Thus, returning to equation (2.6)

\[
\exp \left(\sum_{i \geq 1} \log H(x_i t) \right) = 1 + \sum_{n \geq 1} \frac{t^n}{n!} \hat{w} \left(\mathcal{S}_{[n]}^P \right)
\]

\[
= 1 + \sum_{n \geq 1} \frac{t^n}{n!} \hat{w} \left(\prod_{u \in \mathcal{S}_n} \prod_{\lambda \in \text{Par}(n)} C_{u, \lambda} \right)
\]

\[
= 1 + \sum_{n \geq 1} \frac{t^n}{n!} \sum_{u \in \mathcal{S}_n} \sum_{\lambda \in \text{Par}(n)} \#(C_{u, \lambda}) \text{sgn}(u)p_{\text{type}(u)}(-1)^{n+\lambda_\lambda} h_\lambda.
\]

Hence, supposing that \(1 + H(t) = 1/ \prod_{i \geq 1} (1 - y_i t) = 1 + \sum_{i \geq 1} h_i(y) t\), we have the following proposition.

Proposition 11.

\[
\exp \left(\sum_{i \geq 1} \log H(x_i t) \right) = 1 + \sum_{n \geq 1} \frac{t^n}{n!} \sum_{u \in \mathcal{S}_n} \sum_{\lambda \in \text{Par}(n)} \phi^\lambda(u)p_{\text{type}(u)}(x) h_\lambda(y)
\]

The above proposition may be compared with the following proposition [6] [4].

Proposition 12.

\[
\exp \left(\sum_{i \geq 1} \log H(x_i t) \right) = 1 + \sum_{n \geq 1} \frac{t^n}{n!} \sum_{u \in \mathcal{S}_n} p_{\text{type}(u)}(x)p_{\text{type}(u)}(y)
\]

Proof.

\[
\sum_{i \geq 1} \log H(x_i t) = \sum_{i \geq 1} \log \left(\prod_{j \geq 1} \frac{1}{1 - t x_i y_j} \right)
\]

\[
= \sum_{i \geq 1} \sum_{j \geq 1} \log \left(\frac{1}{1 - x_i y_j t} \right)
\]

\[
= \sum_{i \geq 1} \sum_{j \geq 1} \sum_{n \geq 1} \frac{(x_i y_j t)^n}{n}
\]

\[
= \sum_{n \geq 1} \frac{t^n}{n!} p_n(x)p_n(y)
\]

Then, \(\sum_{n \geq 1} \frac{t^n}{n!} (n - 1)! p_n(x)p_n(y)\) may be considered the exponential generating function for circular permutations of length \(n\) weighted by \(p_n(x)p_n(y)\).

Thus, applying the exponential formula, Proposition 8, proves the proposition. \(\square\)

Equating the coefficient of \(p_{\text{type}(u)}(x)\) in Proposition 11 and Proposition 12 proves Proposition 2 recorded in the Introduction and also proven in [9].

27
Chapter 3

The Iterated Exponential

3.1 Coefficients of the Iterated Exponential

The iterated exponential

\[y = x^{x^{x^{\ddots}}} \]

is the limit, when it exists, of the sequence

\[x_1 = x, x_2 = x^x, x_3 = x^{(x^x)}, \ldots, x_k = x^{(x^{(x^{(x_{k-1})})})}, \ldots \]

Euler determined the interval of convergence of \(y \) for \(x \in \mathbb{R} \). When \(\frac{1}{e^e} \leq x \leq e^{\frac{1}{e}} \), \(y = x^{x^{x^{\ddots}}} \) converges to a limit. Whenever \(x > 1 \), the sequence \((x_k)_{k \geq 1} \) increases monotonically

\[x_1 < x_2 < x_3 < \cdots. \]

If additionally, \(x > e^{\frac{1}{e}} \), the sequence diverges as it increases without bound. Whenever \(x < 1 \), the sequence \((x_k)_{k \geq 1} \) oscillates

\[x_1 < x_2 > x_3 < x_4 > \cdots. \]

The odd subsequence increases monotonically to a limit

\[x_1 < x_3 < x_5 < \cdots, \]

while the even subsequence decreases monotonically to a limit

\[x_2 > x_4 > x_6 > \cdots. \]

If additionally \(x > \frac{1}{e^e} \), the limits of the odd and even subsequences are the same and \(y \) converges. Otherwise, the limits are distinct, and \(y \) does not converge. On its interval of convergence, \(y \) satisfies \(y = x^y \) so that \(x = y^{1/y} \) is the partial inverse of \(y \). For more information on the history of the iterated exponential, and a further discussion of its analytic properties see [3].

It is possible to expand \(y \) as a power series about \(x = 1 \) whose positive coefficients
have both a combinatorial and a representation-theoretic description. Richard Stanley first conjectured that the coefficients of this power series are positive and suggested to investigate their combinatorial significance. John Stembridge first gave the coefficients the representation-theoretic description (3.1). Before Stanley’s conjecture is proven in Theorem 4, the iterated exponential will be expanded as a power series about \(x = 1 \) whose coefficients are a sum of both positive and negative terms. The iterated exponential \(y \) satisfies the functional equation

\[
y = x^y
\]

Thus,

\[
\frac{\log y}{y} = \log x.
\]

Substituting the variable \(z = x - 1 \) in the above equation gives

\[
\frac{\log y}{y} = \log(1 + z).
\]

Thus by Proposition 5,

\[
y = F\left(\frac{\log y}{y}\right) = F(\log(1 + z)).
\]

Recall that for an \(n \)-cycle \(u \in \mathcal{Z}_{[n]} \), \(\text{sgn}(u) = (-1)^{n-1} \) so that

\[
\log(1 + z) = \sum_{n \geq 1} \text{sgn}(\mathcal{Z}_{[n]}) \frac{z^n}{n!}.
\]

Then, by the compositional formula, Proposition 7,

\[
y = F(\log(1 + z)) = \sum_{n \geq 1} \text{sgn} \left(\prod_{\Lambda \in \Pi_n} \mathcal{F}_{[\Lambda]} \times \mathcal{Z}_{B_1} \times \cdots \times \mathcal{Z}_{B_k} \right) \frac{z^n}{n!}.
\]

As in (2.3), the usual decomposition of a permutation into disjoint cycles, gives a bijection

\[
\prod_{\Lambda \in \text{Part}_{[n]}} \mathcal{F}_{[\Lambda]} \times \mathcal{Z}_{B_1} \times \cdots \times \mathcal{Z}_{B_k} \cong \prod_{u \in \mathcal{S}_n} \mathcal{F}_{[c(u)]}
\]

Then define the set \(\mathcal{Y}_{[n]} \) by

\[
\mathcal{Y}_{[n]} := \left\{ (F, u) \left| \begin{array}{c} u \in \mathcal{S}_n \\ F \in \mathcal{F}_{[c(u)]} \end{array} \right. \right\}
\]

\[
\cong \prod_{u \in \mathcal{S}_n} \mathcal{F}_{[c(u)]}
\]
Recall as defined in (2.2) that \(c(u) \) denotes the number of cycles of \(u \in \mathcal{S}_n \). Furthermore, as in (2.4), the weight function \(\text{sgn} \) on cycles \(\mathcal{Z}_n \) extends to the usual sign character on \(\mathcal{S}_n \). Thus, \(\text{sgn}(f, w) = \text{sgn}(w) \) so that

\[
y_n = \text{sgn}(\mathcal{Y}_n) = \sum_{u \in \mathcal{S}_n} (c(u) + 1)^{c(u) - 1} \text{sgn}(u) = n! \langle \chi, \text{sgn} \rangle,
\]

where \(\chi \) denotes the \(\mathcal{S}_n \) character given by \(\chi(u) = (c(u) + 1)^{c(u) - 1} \) so that \(\chi(u) \) is the number of forests with vertex set \([c(u)] \), and \(\text{sgn} \) is the sign character for \(\mathcal{S}_n \).

Theorem 4. The coefficients \(y_n \) of the iterated exponential

\[
y = x^x = \sum_{n \geq 0} y_n \frac{(x - 1)^n}{n!}
\]

expanded about \(x = 1 \) satisfy

\[
y_n > 0.
\]

Proof. To prove this we will construct an involution

\[
\iota : \mathcal{Y}_n \rightarrow \mathcal{Y}_n
\]

such that \(\text{sgn}(\iota((F, u))) = -\text{sgn}((F, u)) \) for \((F, u) \notin \text{Fix}(\iota) \), and such that if \((F, u) \in \text{Fix}(\iota) \), then \(\text{sgn}((F, u)) = 1 \). Consequently,

\[
\text{sgn}(\mathcal{Y}_n) = \text{sgn}((\text{Fix}(\iota)) = \#(\text{Fix}(\iota)) \geq 0.
\]

In the proof, \((F, u) \in \mathcal{Y}_n \) will be considered to be a forest, \(F \), with vertex set \(\{z_1, \ldots, z_{c(u)}\} \), the cycles of \(u \in \mathcal{S}_n \). In turn, each cycle \(z \) will be considered to be a directed graph, and \(z \) will be considered to be the set of its vertices, together with a cycle structure, so that \(z = (\min(z), u(\min(z)), u^2(\min(z)), \ldots) \).

Suppose that \(v \) is a vertex of \(F \), where \((F, u) \in \mathcal{Y}_n \). Say that the vertex \(v \) is pre-active if one of the conditions 1-4 below holds.

1. The vertex \(v \) is an even cycle and the image \(u(\min v) \) of the minimal element \(\min v \) of the cycle \(v \) is less than all of the one-cycle leaf children of \(v \).

2. The vertex \(v \) is an odd cycle with at least one one-cycle, leaf child, and the minimum element \(\min(v) \) of the cycle \(v \) is less than all of the one-cycle, leaf children of \(v \).

3. The vertex \(v \) is an even cycle with a one-cycle leaf child \(l \) such that \(l \) is less than the image \(u(\min v) \) of the minimal element \(\min v \) of the cycle \(v \).
4. The vertex v is an odd cycle with only one child c. The vertex c is a one-cycle such that $c > \min(v)$. Furthermore, the vertex c has a one-cycle, leaf child l such that $c > l$.

Notice that in case the vertex v is an even cycle then either condition 1 or condition 3 holds. Now, for $1 \leq i \leq 4$ define a subset P_i of the vertices $V(F)$ of the forest F by saying that the vertex v is in the set P_i if condition i holds for the vertex v.

Consider all of those pre-active vertices with no pre-active descendants. Call the set of these vertices P. Among the vertices in the set P, find the vertex z whose minimal element $\min z$ is the least. That is, the vertex z is the vertex whose minimal element $\min z$ is less than any element in any other vertex v in the set P. Say that the vertex z is active. Now, the action of the involution ι may be defined according to which of the conditions 1-4 holds for the vertex z. In case i, condition i holds for the vertex z for $1 \leq i \leq 4$. In each case, as the action of the involution ι is defined below, the active vertex z' of the forest ιF will be identified, and it will be determined which of the conditions 1-4 hold for the active vertex z'.

In case 1, condition 1 holds for the vertex z. The vertex set $V(F')$ of the forest $F' := \iota F$ is given by

$$V(F') := V(F) - z \cup z' \cup m$$

where m is set equal to $u(\min z)$, and if $z' = (\min z, m = u(\min z), z_3, z_4, \ldots, z_{\#z})$, then the vertex z' is set equal to $(\min z, z_3, z_4, \ldots, z_{\#z})$. Throughout the proof, given some vertex $w \in V(F)$, let E_w denote the set of edges adjacent to the vertex w in the forest F. That is,

$$E_w := \left\{ \{w, v\} \mid v \in V(F), \{w, v\} \in E(F) \right\}.$$

Throughout the proof, a second notation E_w' will be used. Suppose that w is a vertex of F and w' is a vertex of F'. Then, the subset E_w' of edges of F' is defined by

$$E_w' := \left\{ \{w', v\} \mid v \in V(F) \cap V(F'), \{w, v\} \in E(F) \right\}.$$

Notice that if $v \neq z$ then v is in both $V(F)$ and $V(F')$ so that the pair $\{w', v\}$ may be an edge of F'. The definition of the forest F' may now be completed by determining the edge set $E(F')$.

$$E(F') := E(F) - E_z \cup E_z' \cup \{z', m\}.$$

Since none of the descendents of the vertex $z \in V(F)$ are pre-active none of the descendents of the vertex $z' \in V(F')$ are pre-active except possibly the vertex $u(\min z)$. However, the vertex $u(\min z)$ is a one-cycle, not an even cycle, and since it is a leaf, it is not pre-active. Furthermore, z' retains the element $\min(z)$, so the element $\min z'$ is minimal among the pre-active vertices, and the vertex z' is active in the forest F'. Now, the vertex z' is an odd cycle with a one-cycle leaf child m in the forest F'. Furthermore, $\min z' = \min z < l$. If $l \neq m$ is a one cycle leaf child of z' in F', then l is a child of z in the forest F. Hence, since z satisfies condition 1, $m < l$. 32
It follows that condition 2 holds for the vertex z' in the forest F'.

In case II, condition 2 holds for the active vertex z. Since condition 2 holds, there exists a minimal one-cycle, leaf child m of z such that $m > \min z$. The vertex set $V(F')$ of the forest $F' := iF'$ is given by

$$V(F') := V(F) - z \cup z' - m$$

where if $z = (\min z, z_2, z_3, \ldots, z_{\#z})$, then the vertex z' is set equal to $(\min z, m, z_2, z_3, \ldots, z_{\#z})$. The edge set of F' is set equal to

$$E(F') := E(F) - E_z \cup E_z'^{z'}$$

In this case, notice that the set of edges $E_z'^{z'}$ does not include the edge $\{z', m\}$ since m is not an edge of the forest F'.

None of the descendants of z' may be pre-active since none of the descendants of z are pre-active. Again, z' retains the element $\min z = \min z' < m$, so z' is active in F'. Now, the vertex z' is an even cycle. Furthermore, if l is a one-cycle, leaf child of z' in the forest F' then l is a one-cycle leaf child of the vertex z in the forest F. Thus, since condition 2 holds for the vertex z in $V(F)$, it follows that $\min z' = \min z < m < l$. Since $z' = (\min z, m, z_2, z_3, \ldots, z_{\#z})$, the active vertex z' in $V(F')$ satisfies condition 1.

In case III, condition 3 holds for the active vertex z. The vertex set $V(F')$ of the forest $F' := iF'$ is given by

$$V(F') = V(F) - z \cup z' \cup m$$

where, as in case I, m is set equal to $u(\min z)$, and if $z = (\min z, m = u(\min z), z_3, z_4, \ldots, z_{\#z})$, then the vertex z' is set equal to $(\min z, z_3, z_4, \ldots, z_{\#z})$. If the vertex v is the child of some other vertex p in $V(F)$, then the edge set of F' is set equal to

$$E(F') := E(F) - E_z \cup E_z^m \cup \{m, p\} \cup \{z', p\} \cup \{z', m\}.$$

If the vertex v is not the child of any other vertex in $V(F)$, then the edge set of F' is set equal to

$$E(F') := E(F) - E_z \cup E_z^m \cup \{z', m\}.$$

Since condition 3 holds in this case, there exists a one-cycle, leaf child l of the vertex z such that $l < m$. Now, the only possible vertex in F' which may be pre-active among the descendants of z is m. In the forest F', the vertex l is a child of the vertex m. Condition 2 may not hold for the vertex $m \in V(F')$, since $\min m = m > l$. Furthermore, condition 2 may not hold for the vertex $m \in V(F')$, since although the vertex l may be the only child of m in the forest F', it is a leaf of F'. Furthermore, the vertex z' retains the element $\min z = \min z'$, so the vertex z' is active in the forest F'. Now, the vertex z' is an odd cycle that has an only child m in the forest F' such that $\min z' = \min z < m$. Since condition 3 holds for the vertex z in $V(F)$, there exists a one-cycle leaf child l of the vertex z in the forest F such that $m > l$. Then,
the vertex \(l \) is a one-cycle leaf child of the vertex \(m \) in the forest \(F' \). Hence, condition 4 holds for the vertex \(z' \).

In case IV, condition 4 holds for the active vertex \(z \). Since condition 4 holds, there exists a vertex \(m \) which is the only child of \(z \), and furthermore \(m > \min z \). The vertex set \(V(F') \) of the forest \(F' := i(F) \) is given by

\[
V(F') = V(F) - z \cup z' - m,
\]

where, as in case II, if \(z = (\min z, z_2, z_3, \ldots, z_{#z}) \), then the vertex \(z' \) is set equal to \((\min z, m, z_2, z_3, \ldots, z_{#z}) \). If the vertex \(z \) is the child of some other vertex \(p \) in \(V(F) \), then the edge set of \(F' \) is set equal to

\[
E(F') := E(F) - E_m \cup E_m^z - \{z, p\} \cup \{z', p\}.
\]

Notice that the edge \(\{z', z\} \) is not in \(E_m^z \), since \(z \) is not in \(V(F') \). If the vertex \(z \) is not the child of any other vertex in \(V(F) \), then the edge set of \(F' \) is set equal to

\[
E(F') := E(F) - E_m \cup E_m^z.
\]

None of the descendants of the vertex \(z' \) in the forest \(F' \) may be pre-active since none of the descendants of the vertex \(m \) in the forest \(F \) are pre-active. Again, the vertex \(z' \) retains the element \(\min z = \min z' \), so the vertex \(z' \) is active in the forest \(F' \). Now, the vertex \(z' \) is an even cycle. Since condition 4 holds for the vertex \(z \) in \(V(F) \), there exists a one-cycle leaf child \(l \) of the vertex \(m \) such that \(m > l \). Then, the vertex \(l \) is a one-cycle leaf child of the vertex \(z \) in \(V(F') \). Since \(z' \) is equal to \((\min z, m, z_2, z_3, \ldots, z_{#z}) \), condition 3 holds for the active vertex \(z' \).

It must be checked that \(i(i(F)) = F \)

In case I, the vertex set \(V(F') \) is equal to

\[
V(F') = V(F) - z \cup z' \cup m
\]

Since the active vertex \(z' \) in the forest \(F' \) satisfies condition 2 the vertex set \(V(F'') \) is equal to

\[
V(F'') = V(F') - z' \cup z'' - m'
\]

In fact, it is easy to verify that \(m' = m \) so that \(z'' = z \). Hence,

\[
V(F'') = V(F) - z \cup z' \cup m - z' \cup z - m = V(F).
\]

In this case, the edge set \(E(F') \) is equal to

\[
E(F') = E(F) - E_z \cup E_z^{z'} \cup \{z', m\}
\]

Since the active vertex \(z' \) in the forest \(F' \) satisfies condition 2 the vertex set \(E(F'') \) is equal to

\[
E(F'') = E(F') - E_{z'} \cup E_{z'}^{z''}
\]
Then since the vertex \(z'' \) is equal to the vertex \(z \),
\[
E(F'') = E(F) - E_\bar{z} \cup E'_z \cup \{z', m\} - E_{z'} \cup E''_z
\]
Since the edge \(\{z', m\} \) is in the set \(E_{z'} \), it follows that
\[
E(F'') = E(F).
\]

In case II, the vertex set \(V(F') \) is equal to
\[
V(F') = V(F) - z \cup z' - m
\]
Since the active vertex \(z' \) in the forest \(F' \) satisfies condition 1, the vertex set \(V(F'') \) is equal to
\[
V(F'') = V(F') - z' \cup z'' \cup m'
\]
Again, it is easy to verify that \(m' = m \) so that \(z'' = z \). Hence,
\[
V(F'') = V(F) - z \cup z' - m - z' \cup z \cup m = V(F).
\]
In this case, the edge set \(E(F') \) is equal to
\[
E(F') = E(F) - E_\bar{z} \cup E'_z
\]
Since the active vertex \(z' \) in the forest \(F' \) satisfies condition 2, the vertex set \(E(F'') \) is equal to
\[
E(F'') = E(F') - E_{z'} \cup E''_{z} \cup \{z'', m'\}
\]
where \(z'' = z \) and \(m' = m \). Thus,
\[
E(F'') = E(F) - E_{z'} \cup E'_z \cup E_{z'} - E_{z'} \cup E''_{z} \cup \{z, m\}.
\]
Since the edge \(\{z, m\} \) is in the set \(E_z \) but \(\{z', m\} \) is not an edge in the set \(E_{z'} \), it follows that
\[
E(F'') = E(F).
\]

In case III, checking that \(V(F'') = V(F) \) is entirely analogous to checking that \(V(F'') = V(F) \) in case I. In case III, the vertex set \(V(F') \) is equal to
\[
V(F') = V(F) - z \cup z' \cup m
\]
Since the active vertex \(z' \) in the forest \(F' \) satisfies condition 2, the vertex set \(V(F'') \) is equal to
\[
V(F'') = V(F') - z' \cup z'' - m'
\]
It is easy to verify that \(m' = m \) so that \(z'' = z \). Hence,
\[
V(F'') = V(F) - z \cup z' \cup m - z' \cup z - m = V(F).
\]
In this case, if the vertex \(v \) is the child of some other vertex \(p \) in \(V(F) \), then the edge set of \(F' \) is set equal to

\[
E(F') = E(F) - E_z \cup E_{z'}^m - \{m, p\} \cup \{z', p\} \cup \{z', m\}.
\]

Then the active vertex \(z' \) will be the child of the vertex \(p \) in the forest \(F' \). Hence, since condition 4 holds for the active vertex \(z' \), the edge set \(E(F'') \) is equal to

\[
E(F'') = E(F') - E_{m'} \cup E_{m'}^{z''} - \{z', p\} \cup \{z'', p\},
\]

where \(z'' = z \) and \(m' = m \). Thus,

\[
E(F'') = E(F) - E_z \cup E_{z}^m - \{m, p\} \cup \{z', p\} \cup \{z', m\} - E_{m} \cup E_{m}^z - \{z', p\} \cup \{z, p\}.
\]

The vertices \(m \) and \(z' \) do not appear in \(F'' \). Also, notice that the edge \(\{z, p\} \) is in \(E(F'') \). Hence,

\[
E(F'') = E(F).
\]

Now suppose that the vertex \(z \) is not the child of any other vertex in \(V(F) \). Then, the edge set of \(F' \) is set equal to

\[
E(F') := E(F) - E_z \cup E_{z}^m \cup \{z', m\}.
\]

The active vertex \(z' \) will not be the child of any other vertex in \(V(F') \). Hence, since condition 4 holds for the active vertex \(z' \), the edge set \(E(F'') \) is equal to

\[
E(F'') = E(F') - E_{m'} \cup E_{m'}^{z''},
\]

where \(z'' = z \) and \(m' = m \). Thus,

\[
E(F'') = E(F) - E_z \cup E_{z}^m \cup \{z', m\} - E_{m} \cup E_{m}^z
\]

Since the vertex \(\{z', m\} \) is in the set \(E_m \), it again follows that

\[
E(F'') = E(F).
\]

In case IV, checking that \(V(F'') = V(F) \) is entirely analogous to checking that \(V(F'') = V(F) \) in case II. In case IV, the vertex set \(V(F') \) is equal to

\[
V(F') = V(F) - z \cup z' - m
\]

Since the active vertex \(z' \) in the forest \(F' \) satisfies condition 3, the vertex set \(V(F'') \) is equal to

\[
V(F'') = V(F') - z' \cup z'' \cup m'
\]

Again, it is easy to verify that \(m' = m \) so that \(z'' = z \) Hence,

\[
V(F'') = V(F) - z \cup z' - m - z' \cup z \cup m = V(F).
\]
If the vertex z is the child of some other vertex p in $V(F)$, then the edge set of F' is set equal to

$$E(F') = E(F) - E_m \cup E^z_m - \{z, p\} \cup \{z', p\}.$$

Then, the active vertex z' will be the child of the vertex p in the forest F'. Hence, since condition 3 holds for the active vertex z', the edge set $E(F'')$ is equal to

$$E(F'') = E(F') - E_{z'} \cup E^m_{z'} - \{m', p\} \cup \{z'', p\} \cup \{z', m\},$$

where $z'' = z$ and $m' = m$. Thus,

$$E(F'') = E(F) - E_m \cup E^z_m - \{z, p\} \cup \{z', p\} - E_{z'} \cup E^m_{z'} - \{m, p\} \cup \{z, p\} \cup \{z, m\}.$$

The edge $\{z', p\}$ is in the set $E_{z'}$. Furthermore, in both F and F'' the vertex z is only adjacent to the edges $\{z, p\}$ and $\{z, m\}$, while m is not adjacent to p in F. Hence,

$$E(F'') = E(F).$$

If the vertex z is not the child of any other vertex in $V(F)$, then the edge set of F' is set equal to

$$E(F') = E(F) - E_m \cup E^z_m.$$

The active vertex z' will not be the child of any other vertex in $V(F')$. Hence, since condition 3 holds for the active vertex z', the edge set $E(F'')$ is equal to

$$E(F'') := E(F') - E_{z'} \cup E^m_{z'} \cup \{z'', m'\},$$

where $z'' = z$ and $m' = m$. Thus,

$$E(F'') = E(F) - E_m \cup E^z_m - E_{z'} \cup E^m_{z'} \cup \{z, m\}.$$

Then, the vertex m is the only child of z in both the forest F and the forest F''. Hence, again

$$E(F'') = E(F).$$

Recall that if $(F, u) \in \mathcal{Y}_{[n]}$ then the permutation u coincides with the vertex set $V(F)$ of the forest F. Hence, the number $c(u)$ of cycles of u is the number $\#V(F)$ of vertices of the forest F. Thus,

$$\text{sgn}(F, u) = \text{sgn}(u) = (-1)^{n-c(u)} = (-1)^{n-\#V(F)}.$$

In cases I and III, $\#V(F') = \#V(F) + 1$, while in cases II and IV, $\#V(F') = \#V(F) - 1$. Hence, if the forest F is not in the fixed set $\text{Fix}(\iota)$ of the involution ι, then

$$\text{sgn}(\iota(F, u)) = -\text{sgn}(F, u).$$

The fixed set $\text{Fix}(\iota)$ of the involution ι consists of forests none of whose vertices are pre-active. In particular, all of the vertices of the forest F must be odd cycles. Since the vertex set of F is the set of cycles of the permutation u where $(F, u) \in \mathcal{Y}_{[n]}$, n
all of the cycles of \(u \) must be odd. Thus, if the forest \(F \) is in the fixed set \(\text{Fix}(\iota) \), then
\[
\text{sgn}(F, u) = \text{sgn}(u) = 1.
\]

Thus,
\[
y_n = \text{sgn}(\mathcal{Y}_n) = \#\text{Fix}(\iota) > 0
\]

A forest \(F \) is in the fixed set \(\text{Fix}(\iota) \) if and only if all of its vertices are odd cycles and in addition properties 1-2 below hold.

1. If any vertex \(z \) in the forest \(F \) has a one-cycle, leaf child, then there must exist some one-cycle, leaf child \(l \) of the vertex \(z \) such that \(l < \min z \).

2. If any vertex \(z \) in the forest \(F \) has an only child \(m \), and this only child \(m \) has a one-cycle leaf child, then \(m < \min z \).

If property 1 above holds, then condition 2 cannot hold for the vertex \(z \). If property 2 above holds, then condition 4 cannot hold for the vertex \(z \). Thus, if both properties hold and \(z \) is an odd cycle, then \(z \) is not pre-active.

3.2 The Character \(\chi(u) = (c(u) + 1)^{c(u)-1} \)

The iterated exponential \(y = x^{x^{\cdot^{\cdot^x}}} \) may be generalized by setting \(H = \sum_{n \geq 1} h_n x^n \) for commuting, algebraically independent variables \(h_n \) and then considering the function \(Y = (1 + H)^{(1 + H)^{(1 + H)^{\cdot^{\cdot^x}}}} \). For instance, in this case, what is the coefficient of \(x^n h_\lambda \) in \(Y \)?

To answer this question, proceed as in the case of the iterated exponential. Since
\[
Y = (1 + H)^Y,
\]
\[
\log Y = Y \log(1 + H).
\]

Thus, by Proposition 9
\[
Y = F \left(\frac{\log Y}{Y} \right) = F(\log(1 + H)),
\]

where \(F(x) \) is the exponential generating function for rooted forests. Applying the compositional formula, Proposition 7, and using Proposition 10,
\[
F(\log(1 + H)) = 1 + \sum_{n \geq 1} \frac{x^n}{n!} \left(\prod_{\Lambda \in \Pi_n} \mathcal{F}_{\mathcal{H}_\Lambda} \times \mathcal{Z}_{\Lambda_1}^P \times \cdots \times \mathcal{Z}_{\Lambda_{\Lambda}}^P \right).
\]

38
Thus, using Definition 19

\[F(\log(1 + H)) = 1 + \sum_{n \geq 1} \frac{x^n}{n!} w \left(\prod_{u \in S_n} F_{[c(u)]} \times \prod_{\lambda \in \text{Par}(n)} C_{u, \lambda} \right) \]

\[= 1 + \sum_{n \geq 1} \frac{x^n}{n!} \sum_{u \in S_n} \sum_{\lambda \in \text{Par}(n)} w(F_{[c(u)]}) \#(C_{u, \lambda}) \text{sgn}(u)(-1)^{n+\lambda} h_{\lambda}, \]

where \(w(F_{[c(u)]}) = (c(u) + 1)^{c(u)-1} = \chi(u) \) is the number of rooted forests with vertex set \([c(u)]\). Then the definition of the monomial character Definition 20 and the definition of \(\chi \) imply that

\[F(\log(1 + H)) = 1 + \sum_{n \geq 1} \frac{x^n}{n!} \sum_{\lambda \in \text{Par}(n)} \sum_{u \in S_n} \phi^\lambda(u) \chi'(u) h_{\lambda} \]

\[= 1 + \sum_{n \geq 1} \Phi(\chi_n) x^n. \]

In general, suppose that \(\chi_f(u) = \tilde{f}_{c(u)} \) where \(\tilde{f}_{c(u)} \) is an arbitrary function of \(c(u) \). Then, \(\chi_f(u) \) is a class function on \(S_n \). Furthermore, in this more general context, replacing \(F(x) \) with \(\tilde{F}(x) = \sum_{n \geq 0} \tilde{f}_n \frac{x^n}{n!} \) in the above argument proves the following proposition.

Proposition 13. For any class function that depends only on the number of cycles of a permutation, \(\chi_f(u) = \tilde{f}_{c(u)} \), the Frobenius characteristic of \(\chi_f \) in the basis of homogeneous symmetric functions is given by

\[\tilde{F}(\log(1 + H)) = \tilde{f}_0 + \sum_{n \geq 1} \Phi(\chi_f(w)) = x^n. \]

Returning to the case of the iterated exponential,

\[\Phi(\chi) = \sum_{\lambda \in \text{Par}(n)} \sum_{u \in S_n} \#(C_{u, \lambda}) \text{sgn}(u)(-1)^{n-\lambda} \chi(u) h_{\lambda}. \]

Thus, since \(\#(C_{u, \lambda}) = 1 \) for all \(u \in S_n \) the coefficient \(a_{1^l} \) of \(h_{1^l} \) in \(\Phi(\chi) \) is

\[a_{1^l} = \sum_{u \in S_l} (-1)^{c(u)}(-1)^l(c(u) + 1)^{c(u)-1}. \]

Now, for \(l = l_{\lambda} \), compare \(a_{1^l} \) with the coefficient \(a_{\lambda} \) of \(h_{\lambda} \) in \(\Phi(\chi) \).

\[a_{\lambda} = \sum_{u \in S_n} \#(C_{u, \lambda})(-1)^{c(u)}(-1)^l(c(u) + 1)^{c(u)-1}. \]
Recall that

\[C_{u\lambda} := \left\{ (u, P_{\lambda_1}, \ldots, P_{\lambda_\Lambda}) \middle| \begin{array}{l}
 u \in \mathcal{S}_n \\
 \text{for } 1 \leq i \leq l_\Lambda,
 P_{\lambda_i} \in \mathcal{P}_{\lambda_i} \\
 P_{\lambda_i} \subset u \\
 \Lambda \in \Pi_n \\
 \text{type}(\Lambda) = \lambda
 \end{array} \right\}. \]

Thus,

\[
\begin{align*}
 a_\lambda &= \sum_{u \in \mathcal{S}_n} \sum_{x \in C_{u\lambda}} (-1)^{c(u)}(-1)^i(c(u) + 1)^{c(u)-1} \\
 &= \sum_{\lambda \in \Pi_n} \sum_{\{P_{\lambda_1}, \ldots, P_{\lambda_\Lambda}\} \subset \mathcal{P}_{\lambda}} \sum_{u \in \mathcal{S}_n} (-1)^{c(u)}(-1)^i(c(u) + 1)^{c(u)-1}.
\end{align*}
\]

Recall that a permutation \(u \in \mathcal{S}_n \) containing paths \(\{P_{\lambda_1}, \ldots, P_{\lambda_\Lambda}\} \) such that the labels of the paths partition \([n]\), defines a permutation \(v \in \mathcal{S}_l \) of the paths \(P_{\lambda_i} \) such that \(c(v) = c(u) \). Hence,

\[
\begin{align*}
 a_\lambda &= \sum_{\lambda \in \Pi_n} \sum_{\{P_{\lambda_1}, \ldots, P_{\lambda_\Lambda}\} \subset \mathcal{P}_{\lambda}} \sum_{u \in \mathcal{S}_l} (-1)^{c(v)}(-1)^i(c(v) + 1)^{c(v)-1} \\
 &= \sum_{\lambda \in \Pi_n} \sum_{\{P_{\lambda_1}, \ldots, P_{\lambda_\Lambda}\} \subset \mathcal{P}_{\lambda}} a_i^l \\
 &= \binom{n}{\lambda_1, \ldots, \lambda_l} \frac{1}{m_1!m_2!m_3!\cdots} a_i^l,
\end{align*}
\]

where \(m_i \) is the multiplicity of \(i \) in \(\lambda \). Thus, in particular \(a_\lambda > 0 \). The formula

\[
a_\lambda = \binom{n}{\lambda_1, \ldots, \lambda_l} \frac{1}{m_1!m_2!m_3!\cdots} a_i^l
\]

was first proven by John Stembridge.
3.3 A Related Character $\tilde{\chi}$

Suppose that $\text{type}(u) = \lambda$, and $c(u) = l$. Then define the character $\tilde{\chi} : \mathfrak{S}_n \rightarrow \mathbb{C}$ by

$$\tilde{\chi}(u) = n! \frac{1}{(\lambda_1 - 1)! (\lambda_2 - 1)! \cdots (\lambda_l - 1)!} (l + 1)^{l-1}.$$

Note that

$$\sum_{u \in \mathfrak{S}_n : \text{type}(u) = \lambda} \tilde{\chi}(u) = n! \left(\begin{array}{c} n \\ \lambda_1, \ldots, \lambda_l \end{array} \right) \frac{1}{m_1! m_2! \cdots (l + 1)^{l-1}}$$

$$= n! \sum_{\Lambda \in \Pi_n : \text{type}(\Lambda) = \lambda} (l + 1)^{l-1}.$$

For an arbitrary class function f, consider

$$S(f) = \sum_{\lambda \in \Pi(n)} \sum_{u \in \mathfrak{S}_n : \text{type}(u) = \lambda} \frac{f(u)}{(\lambda_1 - 1)! (\lambda_2 - 1)! \cdots (\lambda_l - 1)!}$$

Using the usual decomposition (2.3) of a permutation into disjoint cycles,

$$S(f) = \sum_{\Lambda \in \Pi_n} \sum_{x \in Z_{\Lambda_1} \times \cdots \times Z_{\Lambda_l}} \frac{f(\text{type}(\Lambda))}{(\lambda_1 - 1)! (\lambda_2 - 1)! \cdots (\lambda_l - 1)!}$$

$$= \sum_{\Lambda \in \Pi_n} f(\text{type}(\Lambda))$$

Consider the inner product $\langle \tilde{\chi}, \text{sgn} \rangle := \frac{1}{n!} \sum_{u \in \mathfrak{S}_n} \tilde{\chi}(u) \text{sgn}(u)$.

$$\langle \tilde{\chi}, \text{sgn} \rangle = \sum_{\lambda \in \Pi(n)} \sum_{u \in \mathfrak{S}_n : \text{type}(u) = \lambda} \frac{\text{sgn}(u)(l + 1)^{l-1}}{(\lambda_1 - 1)! (\lambda_2 - 1)! \cdots (\lambda_l - 1)!}$$

$$= \sum_{\Lambda \in \Pi_n} (-1)^{n+\Lambda}(l + 1)^{l-1}.$$

Comparing the above with equation (2.1) shows that $\langle \tilde{\chi}, \text{sgn} \rangle$ is the number of rooted forests with increasing leaves.
Chapter 4

Homology of the Even-Ranked Subposet of the Partition Lattice

4.1 Partition Lattice and Subposets

The elements of the set Π_n may be ordered by refinement. If $\Lambda, M \in \Pi_n$, then

$$\Lambda \leq M$$

if each block $\Lambda_j \in \Lambda$ is contained in some block $M_k \in M$. That is,

$$\Lambda_j \subset M_k.$$

Definition 21. (The Partition Lattice Π_n)

Π_n denotes the set Π_n partially ordered by refinement.

A chain in a poset P is a totally ordered subset of P. A maximal chain of P is a chain not properly contained in another chain. A poset P whose maximal chains are all of the same length is said to be ranked. The rank of an element $x \in P$ in the ranked poset P is the maximum cardinality of those chains whose elements are all less than x. For example, Π_n is a ranked poset. If $\Lambda \in \Pi_n$ has l_{Λ} blocks, then $n - l_{\Lambda}$ is the rank of Λ. Let $\Lambda \wedge M$ denote the partition with blocks $\Lambda_j \cap M_k$ for each pair of blocks $(\Lambda_k, M_j) \in \Lambda \times M$. Then, $\Lambda \wedge M$ is the greatest lower bound of Λ and M.

Since, additionally, Π_n, has a maximal element $\hat{1}$ consisting of the single block $[n]$, Π_n is indeed a lattice. Define

$$\text{Par}_e[n] := \prod_{k=1}^{[n/2]} \text{Par}_{2k}[n].$$

Order $\text{Par}_e[n]$ by refinement and for any $\Lambda \in \text{Par}_e[n]$, set $\Lambda < \hat{1}$. This poset is denoted Π_{2n}^e.

43
Definition 22. (The Even-Rank-Selected Subposet of the Partition Lattice) The poset Π_{2n}^e is the subposet of Π_{2n} consisting of partitions with an even number of blocks together with an adjoined maximal element $\hat{1}$

In general, Π_{2n}^e is not a lattice.

4.2 Poset Homology

Suppose P is a poset with a maximal element $\hat{1}$ and a minimal element $\hat{0}$, and K is a field. Then, let $C_i(P)$ be the set of i-chains in P.

$$C_i(P) := \{(\hat{0} < x_0 < x_2 < \cdots < x_i < \hat{1}) \mid \text{for } 1 \leq j \leq i, x_j \in P\}$$

Definition 23. (ith Chain Group of the poset P) $C_i(P)$ is the K-span of basis vectors indexed by $C_i(P)$

Suppose the longest chain of P is of length l, then let $C(P) := \bigoplus_{i=0}^{l} C_i(P)$. Note that we have defined the -1th Chain Group to be the one-dimensional vector space over K spanned by $(\hat{0} < \hat{1})$.

Definition 24. (Boundary Operator) The linear transformation

$$\partial_i : C_i(P) \to C_{i-1}(P)$$

is the linear extension of

$$\partial_i(\hat{0} < x_0 < x_2 < \cdots < x_i < \hat{1}) = \sum_{j=0}^{i} (-1)^j (\hat{0} < x_0 < x_2 < \cdots \hat{x}_j \cdots < x_i < \hat{1}) .$$

$$(\hat{0} < x_0 < x_2 < \cdots \hat{x}_j \cdots < x_i < \hat{1})$$ is the chain $(\hat{0} < x_3 < x_2 < \cdots < x_{j-1} < x_{j+1} < \cdots < x_i < \hat{1})$ with the element x_j omitted. Since $\partial_i \circ \partial_{i+1} = 0$, we make the following definition.

Definition 25. (Reduced Homology of a Poset P)

$$\tilde{H}_i(P) = \frac{\ker \partial_i}{\text{im } \partial_{i+1}}$$

For a Cohen-Macaulay poset P whose longest chain is of length l,

$$\tilde{H}(P) := \bigoplus_{i=0}^{l} \tilde{H}_i(P) = \tilde{H}_l(P) = \ker \partial_l . \quad (4.1)$$

In particular, $\tilde{H}_i(P) = 0$ for $i \neq l$. In turn, for a poset P whose longest chain is of l and whose reduced homology satisfies $\tilde{H}(P) = \tilde{H}_l(P)$,

$$\dim \tilde{H}(P) = |\mu_P(\hat{0}, \hat{1})| \quad (4.2)$$
The posets Π_n and Π_{2n}^e are Cohen-Macaulay posets whose reduced homology therefore satisfies (4.1) and (4.2). Evidently, the action of \mathcal{S}_{2n} on $[n]$ induces an action on Π_{2n} and Π_{2n}^e. Thus, $C(\Pi_{2n})$ and $C(\Pi_{2n}^e)$ are \mathcal{S}_{2n} modules. Furthermore, for $u \in \mathcal{S}_{2n}$

$$\partial_i \circ u = u \circ \partial_i$$

Hence, $\tilde{H}(\Pi_{2n})$ and $\tilde{H}(\Pi_{2n}^e)$ are \mathcal{S}_{2n} modules. For example, [8], as \mathcal{S}_n modules,

$$\tilde{H}(\Pi_n) = \tilde{H}_n(\Pi_n) \cong \text{Lie}_n \otimes \text{sgn}$$

where

$$\text{Lie}_n := \text{ind}_{\mathcal{S}_n}^{\mathcal{S}_{2n}} e_{\mathcal{S}_n}^{2n i}.$$

4.3 Sundaram’s Conjecture

> From the point of view of [8], the reduced homology of rank-selected subposets of Cohen-Macaulay lattices encodes combinatorial invariants of the lattice. In this section, the work of Sundaram to understand the \mathcal{S}_{2n} module $\tilde{H}(\Pi_{2n}^e) = \tilde{H}_{n+1}(\Pi_{2n}^e)$ is described. Recall that to determine the \mathcal{S}_{2n} module $\tilde{H}(\Pi_{2n}^e)$, the symmetric function which is its Frobenius characteristic $\Phi \tilde{H}(\Pi_{2n}^e)$ may equivalently be determined. Also, recall Definition 7, the definition of the plethystic product of symmetric functions f and g, denoted $f[g]$ which corresponds to the composition of representations of $GL(V)$. Sundaram has found a plethystic recurrence for $\Phi \tilde{H}(\Pi_{2n}^e)$ in [11].

Theorem 5. Sundaram [11]

$\Phi \tilde{H}(\Pi_{2n}^e)$ is the sum of terms of degree $2n$ in the symmetric function,

$$\left(\Phi \tilde{H}(\Pi_{2(n-1)}^e) - \Phi \tilde{H}(\Pi_{2(n-2)}^e) + \cdots + (-1)^{n-2}\Phi \tilde{H}(\Pi_2^e) + (-1)^{n-1}h_1 \right) \sum_{j \geq 1} h_j,$$

whose terms of even degree are all of degree $2n$.

Recall that h_n denotes the nth homogeneous symmetric function. Sundaram is able to deduce from the plethystic recurrence in Theorem 5 a recurrence for the coefficients of $\Phi(\tilde{H}(\Pi_{2n}^e))$ in the homogeneous basis.

Theorem 6. Sundaram [11]

$$\Phi \tilde{H}(\Pi_{2n}^e) = \sum_{i=2}^n b_i(n) h_2^i h_1^{2(n-i)}$$

where

$$b_i(n) = \sum_{k \geq 0} \binom{2(n-i) + k}{k} \sum_{r \geq 1} (-1)^{r-1} \binom{i - k}{2r - k} b_{i-k}(n-r),$$

with the initial conditions $b_2(n) = 1$, for $n \geq 2$, and $b_i(n) = 0$, unless $2 \leq i \leq n$.

45
Sundaram's conjecture that $b_i(n) > 0$ is proven in Theorem 8. Hence, Corollary 4 states that $\Phi \tilde{H}(\Pi_{2n}^e)$ is h-positive. Equivalently, $\tilde{H}(\Pi_{2n}^e)$ is isomorphic to a sum of trivial modules induced from Young subgroups to \mathfrak{S}_{2n}. Furthermore, Sundaram has determined the dimension of $\tilde{H}(\Pi_{2n}^e)$ to be $(2n)!E_{2n-1}/2^{2n-1}$, where E_{2n-1} is the tangent number.

Theorem 7. Sundaram [11]

$$\dim(\tilde{H}(\Pi_{2n}^e)) = \frac{(2n)!}{2^{2n-1}} E_{2n-1}$$

Thus, by (6),

$$\frac{(2n)!}{2^{2n-1}} E_{2n-1} = \sum_{i=2}^{n} b_i(n) \frac{(2n)!}{2^i}.$$

Thus,

$$E_{2n-1} = \sum_{i=2}^{n} b_i(n)2^{2n-i-1}.$$ \hspace{1cm} (4.3)

Hence, Corollary 5 states that (4.3) gives a refinement of the tangent number E_{2n-1} into sums of powers of two. This Corollary and its relation to André permutations studied by [1] is discussed in the next section.

Theorem 8. For each $2 \leq i \leq n$,

$$b_i(n) > 0,$$

where $b_i(n)$ is defined recursively by,

$$b_i(n) = \sum_{k \geq 0} \binom{2(n-i)+k}{k} \sum_{r \geq 1} (-1)^{r-1} \binom{i-k}{2r-k} b_{i-k}(n-r),$$

with the initial conditions $b_2(n) = 1$, for $n \geq 2$, and $b_i(n) = 0$, unless $2 \leq i \leq n$.

Proof. First, interpret $b_i(n)$ combinatorially by defining a set $\mathcal{B}_{i,n}$ together with a function $\text{sgn} : \mathcal{B}_{i,n} \to \{1, -1\}$ such that:

$$b_i(n) = \sum_{B \in \mathcal{B}_{i,n}} \text{sgn}(B)$$
Figure 4-1: r_1 and k_1 for the first term B_1 of a sequence B.

Let $B_{i,n}$ be the set of sequences $(B_j)_{j=0}^{J_B}$ of the following form,

$$B_j = \left\{ \begin{array}{l}
 r_j, k_j \\
 y_{j,1}, \ldots, y_{j,2R_j-K_j} \\
 (x_{j,1}, z_{j,1}), \ldots, (x_{j,K_j}, z_{j,K_j})
\end{array} \right| \begin{array}{l}
 r_j, k_j, y_{j,t}, x_{j,t} \in \mathbb{N} \\
 \text{conditions 1-12 below are satisfied}
\end{array}$$

1. $k_0 = i$, $r_0 = n$,
2. $K_0 = 0$, $K_j = k_{j-1} - k_j$ for $1 \leq j \leq J_B$
3. $R_0 = 0$, $R_j = r_{j-1} - r_j$ for $1 \leq j \leq J_B$

Hence, $\{(x_{0,1}, z_{0,1}), \ldots, (x_{0,K_0}, z_{0,K_0})\} = \emptyset = \{y_{0,1} < \cdots < y_{0,2R_0-K_0}\}$
4. With the lexicographic order on 2-tuples $(x_{j,1}, z_{j,1}) < \cdots < (x_{j,K_j}, z_{j,K_j})$
5. $y_{j,1} < \cdots < y_{j,2R_j-K_j}$
6. $2 \leq r_j < r_{j-1}$ for $0 \leq j \leq J_B$
7. $2 \leq k_j \leq k_{j-1}$ for $0 \leq j < J_B$, and $k_{J_B} = 2$
8. $K_j \leq 2R_j$
9. $2R_j \leq k_j - 1$
10. $k_j \leq x_{j,t} < r_{j-1}$. If $X_j = 1$, then $k_j < r_{j-1}$ 11. $z_{j,t} \in \{0, 1\}$, and if $x_{j,t} < k_{j-1}$ then $z_{j,t} = 0$.
12. $0 \leq y_{j,t} < k_j$

Notice that these properties imply that,
13. $k_j \leq r_j$

Otherwise, in case $j \neq J_B$, property 10 implies

$$k_{j+1} < r_j < k_j.$$

If $j = J_B$, then by property 6, and 7

$$k_j = 2 \leq r_j.$$

A typical sequence, $(B_j)_{j=0}^{J_B} \in B_{i,n}$, is plotted in Figures 1-7.

47
Figure 4-2: \((x_{1,1}, z_{1,1})\) and \((x_{1,2}, z_{1,2})\) for the first term \(B_1\) of a sequence \(B\) with \(K_1 = 2\). The distinct boxes \((x_{1,1}, z_{1,1})\) and \((x_{1,2}, z_{1,2})\) may lie anywhere within the shaded region.

Figure 4-3: The first term \(B_1\) of a sequence \(B\). A choice of \(y_{1,1}\) and \(y_{1,2}\) for \(B_1\) with \(2R_1 - K_1 = 2\) completes the description of \(B_1\). The distinct boxes \(y_{1,1}\) and \(y_{1,2}\) may lie anywhere within the shaded region.

Figure 4-4: \(r_2\) and \(k_2\) for the first term \(B_2\) of a sequence \(B\) plotted together with the first term \(B_1\).
Figure 4-5: \((x_{2,1}, z_{2,1})\) for the second term \(B_2\) of a sequence \(B\) with \(K_2 = 1\) plotted together with the first term \(B_1\). The box \((x_{2,1}, z_{2,1})\) may lie anywhere within the shaded region.

Figure 4-6: The second term \(B_2\) of a sequence \(B\) plotted together with the first term \(B_1\). A choice of \(y_{2,1}\) for \(B_2\) with \(2R_1 - K_1 = 1\) completes the description of \(B_2\). The box \(y_{2,1}\) may lie anywhere within the shaded region.

Figure 4-7: The sequence \(B = (B_j)_{j=0}^4\) with five terms.
The following notation will be used to describe the data contained in a term B_j.

\[X_j = \{ (x_{j,1}, z_{j,1}), \ldots, (x_{j,K_j}, z_{j,K_j}) \} \]
\[Y_j = \{ y_{j,1}, \ldots, y_{j,2R_j-K_j} \} \]

Furthermore, it will be assumed that $\{k_j, r_j, X_j, Y_j\}$ indicates data that satisfy 1-13 for some choice of r_{j-1} and k_{j-1}, which may be specified. In particular, these data will be denoted by $C_{k_{j-1}, r_{j-1}}$.

\[C_{k_{j-1}, r_{j-1}} = \{ B_j = \{k_j, r_j, X_j, Y_j\} | B_j \text{ satisfies } 1-12, \text{ given } r_{j-1}, k_{j-1} \} \]

For example,

\[B_{i,n} = \left\{ \begin{array}{c}
B_{j = 0} \\
B_j = \{k_j, r_j, X_j, Y_j\} \in C_{k_{j-1}, r_{j-1}} \text{ for } 1 \leq j \leq J_B \\
B_0 = \{ r_0 = n, k_0 = i \}
\end{array} \right\} \]

The sign of a term of a sequence is defined as $\text{sgn}(B_j) = (-1)^{R_j-1}$. The sign of a sequence is defined as the product of the signs of its terms. Hence, $\text{sgn}(\{B_j\}_{j=1}^{J_B}) = \prod_{j=1}^{J_B} \text{sgn}(B_j)$.

The sum of the signed sequences in $B_{i,n}$ satisfies the recurrence,

\[\sum_{B \in B_{i,n}} \text{sgn}(B) = \sum_{(B_j)_{j=1}^{J_B} \in B_{i,n}} \text{sgn}(B_1) \prod_{j=2}^{J_B} \text{sgn}(B_j) \]

Assume that $B_j = \{k_j, r_j, X_j, Y_j\}$. Then,

\[\sum_{B \in B_{i,n}} \text{sgn}(B) = \sum_{B_1 \in C_{i,n}} \text{sgn}(B_1) \sum_{\{B_j\}_{j=1}^{J_B} \in C_{k_{j-1}, r_{j-1}}} \prod_{j=2}^{J_B} \text{sgn}(B_j) \]

\[= \sum_{B_1 \in C_{i,n}} \text{sgn}(B_1) \sum_{B' \in B_{k_1, r_1}} \text{sgn}(B') \quad (4.4) \]

Recall that for $B_1 = \{r_1, k_1, X_1, Y_1\} \in C_{i,n}$, $k_1 = i - K_1$ and $r_1 = n - R_1$. Furthermore, by properties 1, 6 and 7, $2 \leq k_1 \leq i$ and $2 \leq r_1 < n$. Thus,

\[0 \leq K_1 \leq i - 2, \]

and

\[1 \leq R_1 \leq n - 2. \]

Now, define

\[C_{i,n}^{K,R} := \{ B_1 \in C_{i,n} | K_1 = K, R_1 = R \} \]

50
Then, the recursion (4.4) becomes

\[
\sum_{B \in \mathcal{B}_{i,n}} \text{sgn}(B) = \sum_{K=0}^{i-2} \sum_{R=1}^{n-2} \sum_{B_1 \in \mathcal{C}^{K,R}_{i,n}} \text{sgn}(B_1) \sum_{(B'_i)_{i=0}^{i-K} \in \mathcal{B}_{i-K,n-R}} \text{sgn}(B').
\]

Note that for \(B_1 \in \mathcal{C}_{i,n}\) such that \(K = K_1\) and \(R = R_1\),

\[
\text{sgn}(B_1) = (-1)^{R_1-1} = (-1)^{R_1-1}
\]

Thus,

\[
\sum_{B \in \mathcal{B}_{i,n}} \text{sgn}(B) = \sum_{K=0}^{i-2} \sum_{R=1}^{n-2} \#(\mathcal{C}^{K,R}_{i,n})(-1)^{R_1-1} \sum_{(B'_i)_{i=0}^{i-K} \in \mathcal{B}_{i-K,n-R}} \text{sgn}(B'). \tag{4.5}
\]

Now, compare (4.5) with Sundaram's recursion. Sundaram's recursion is

\[
b_{i,n} = \sum_{K=0}^{i-2} \binom{2(n-i)+K}{K} \sum_{R=1}^{n-2} (-1)^{R_1-1} \binom{i-K}{i-2R} b_{i-K,n-R}
\]

Evidently the recursion (4.4) for \(\sum_{B \in \mathcal{B}_{i,n}} \text{sgn}(B)\) is the same recursion as Sundaram's recursion for the numbers \(b_{i,n}\) provided that

\[
\#(\mathcal{C}^{K,R}_{i,n}) = \binom{2(n-i)+K}{K} \binom{i-K}{i-2R} \tag{4.6}
\]

The equality (4.6), and hence the equivalence of the recursion (4.5) and Sundaram's recursion, may be verified by enumerating the set \(\mathcal{C}^{K,R}_{i,n}\). If \(B_1 = \{r_1, k_1, x_1, y_1\} \in \mathcal{C}^{K,R}_{i,n}\), then, as noted above, \(k_1 = i - K\), and \(r_1 = n - R\). The data in \(B_1\) must satisfy properties 1-12. Already, properties 1-3, 6, and 7 evidently hold regardless of the additional data \(X_j\) and \(Y_j\). Properties 8 and 9 also must hold if \(\binom{i-K}{i-2R}\) is non-zero. In particular, if \(\binom{i-K}{i-2R} > 0\), then \(i - 2R \geq 0\) which verifies property 9, and \(2R - K \geq 0\) which verifies property 8. Finally, the data \(X_1\) and \(Y_1\) must be chosen such that properties 4, 5, 10, 11, and 12 hold.

If \(k_1 \leq x_{1,t} < i\) then \(z_{1,t} = 0\) by property 10. If \(i \leq x_{1,t} < n\), then \(z_{1,t} \in \{0, 1\}\) by property 11. Hence, there are \(\binom{2(n-i)+K}{K}\) possibilities for the data \(X_1 = \{(x_{1,1}, z_{1,1}), \ldots < (x_{1,K}, z_{1,K})\}\) so that \(X_1\) satisfies properties 4, 10, and 11.

By property 12, \(y_{1,t}\) satisfies \(1 \leq y_{1,t} \leq k_1 = i - K_1\). Hence there are \(\binom{i-K}{i-2R-K}\) choices for \(Y_1 = \{y_{1,1}, \ldots < y_{1,2R-K}\}\) so that \(Y_1\) satisfies properties 5, and 12.

Thus, it is verified that \(\mathcal{C}^{K,R}_{i,n}\) has the required cardinality so that the recursion (4.4) for \(\sum_{B \in \mathcal{B}_{i,n}} \text{sgn}(B)\) is the same recursion as Sundaram's recursion for the numbers \(b_{i,n}\).
Now, we construct an involution

$$\iota : B_{k,n} \rightarrow B_{k,n}.$$

The image of the involution \(\iota \) will be denoted by

$$\left(B'_q \right)_{q=1}^{Q_B} = \iota \left(B_q \right)_{q=0}^{Q_B}.$$

The involution \(\iota \) is described in six cases. In the \(i \)th case \(j \in S_i \) where

$$j = \min_{q \in \cup_{i=1}^6 S_i} q,$$

and where \(S_i \) is defined below. Let \(B \) denote the sequence \((B_j)_{j=1}^{J_B} \) with \(J_B \) terms.

\[
S_1(B) = \left\{ q \left| R_q > 1 \right. \quad K_q \in \{0,1\} \right\}
\]

\[
S_2(B) = \left\{ q \left| R_q > 1 \right. \quad K_q \geq 2 \text{ if } q \neq J_B \quad K_q > 2 \text{ if } q = J_B \right\}
\]

\[
S_3(B) = \left\{ J_B \left| B_{J_B}, R_{J_B} > 1 \right. \quad K_{J_B} = 2 \right\}
\]

\[
S_4(B) = \left\{ q \left| B_q, R_q = 1 \right. \quad K_q \in \{0,1\}, \quad K_{q+1} = 0 \right\}
\]

\[
S_5(B) = \left\{ q \left| B_q, R_q = 1 \right. \quad K_q = 2 \right\}
\]

\[
S_6(B) = \left\{ J_B \left| K_{J_B} = 2 \right. \quad R_{J_B} = 1 \right\}
\]

In Cases I and II, \(\iota \) acts to "add a term at \(j \)" to the sequence \((B_q)_{q=0}^{Q_B} \). Set \(B'_q = B_q \) for \(q < j \), and set \(B'_q = B_{q-1} \) for \(q > j + 1 \). Then, \(Q_{B'} = Q_B + 1 \). Set \(r'_j = r_{j-1} - 1 \). Set \(r'_{j+1} = r_j \). Set \(k'_{j+1} = k_j \). In Case I, set \(k'_j = k_j \). In Case II, set \(k'_j = k_{j-1} - 2 \). Set \((x'_{j,t}, z'_{j,t}) = (x_{j,t}, z_{j,t} \cup \{K'_j, K'_{j+1}\}) \) for \(1 \leq t \leq K'_j \), and \((x'_{j,t+1}, z'_{j,t+1}) = (x_{j,t}, z_{j,t}) \) for \(1 \leq t \leq K'_{j+1} \). Finally, set \(y'_{j+1,t} = y_{j,t+1} + 2R_{j+1} - K'_{j+1} \) for \(1 \leq t \leq 2R'_j - K'_j \), and set \(y'_{J_B+1,t} = y_{J_B+1,t} \) for \(1 \leq t \leq 2R'_{J_B+1} - K'_{J_B+1} \).

In Case III, \(\iota \) acts to "modify the final term, \(B_{J_B} \)". Set \(B'_q = B_q \) for \(q < j \). Set \(k'_j = k_j \), set \((x'_{j,t}, z'_{j,t}) = (x_{j,t}, z_{j,t}) \) for \(1 \leq t \leq K'_j \), and set \(R'_j = 1 \).

In Cases IV and V, \(\iota \) acts to "delete a term at \(j \)" in the sequence \((B_q)_{q=0}^{Q_B} \). Set \(B'_q = B_q \) for \(q < j \), and \(B'_q = B_{q+1} \) for \(q > j \). In these cases, set \(r'_j = r_{j+1} \) and set \(k'_j = k_{j+1} \). Set \((x'_{j,t}, z'_{j,t}) = (x_{j+1,t}, z_{j+1,t}) \) for \(1 \leq t \leq K_{j+1} \), and set \((x'_{j,t+K_{j+1}}, z'_{j,t+K_{j+1}}) = (x_{j,t+K_{j+1}}, z_{j,t+K_{j+1}}) \)
Figure 4-8: A sequence \((B_j)_{j=0}^2\). Since, \(R_1 = 2\) and \(K_1 = 1\), this sequence is in case I and \(\iota\) acts to add a term at 1. Thus, the image of \(\iota\) is the sequence plotted in Figure 9.

\[
\begin{array}{|c|c|c|c|c|}
\hline
k_2 & k_1 & k_0 & r_2 & r_1 & r_0 \\
\hline
2 & 5 & 6 & 9 & 11 & 13 \\
\hline
\end{array}
\]

Figure 4-9: A sequence \((B_j)_{j=0}^3\). Notice that \(R_1 = 1\), \(K_1 = 1\), \(K_2 = 0\), and \(y_{2,2} < y_{1,1}\). Hence, this sequence is in case III and \(\iota\) acts to delete a term at 1. The image of \(\iota\) is the sequence plotted in Figure 8.

\[
\begin{array}{|c|c|c|c|c|}
\hline
k_3 & k_2 & k_1 & k_0 & r_3 & r_2 & r_1 & r_0 \\
\hline
2 & 5 & 6 & 9 & 11 & 12 & 13 \\
\hline
\end{array}
\]

\((x_{j,t}, z_{j,t})\) for \(1 \leq t \leq K_j\). Set \(y_{j,t} = y_{j+1,t}\) for \(1 \leq t \leq 2R_{j+1} - K_{j+1}\), and set \(y_{j,t+2R_{j+1} - K_{j+1}} = y_{j,t}\) for \(1 \leq t \leq 2R_j - K_j\).

In Figure 8, a sequence is plotted. Its image under \(\iota\) is plotted in Figure 9.

In Figure 10, a sequence is plotted. Its image under \(\iota\) is plotted in Figure 11.

In Case VI, \(\iota\) acts to “modify the final term, \(B_{jB}\)”. Set \(B'_{q} = B_q\) for \(q < j\), and set \(k'_{j} = k_j = 2\) \((x'_{j,t}, z'_{j,t}) = (x_{j,t}, z_{j,t})\) for \(1 \leq t \leq K_{jB} = 2\). Set \(r'_{jB} = r_{jB-1} - 2\), set \(y_{jB,1} = 0\), and set \(y_{jB,2} = 1\).

In Figure 12, a sequence is plotted. Its image under \(\iota\) is plotted in Figure 13.

Now, it must be proven that \((B'_{q})_{q=0}^{Q'}\) satisfies properties 1-12 in cases I-VI. In all cases, it is evident that \((B'_{q})_{q=0}^{Q'}\) has properties 1-6. For the remaining properties, it must be verified that \((B'_{q})_{q=0}^{Q'}\) has these given properties by considering each of the six cases.

In cases II-VI, it is evident that \((B'_{q})_{q=0}^{Q'}\) has property 7. In case I, it must be verified that \(k'_{j} > 2\) since \(B'_{j}\) is not the final term of the sequence \((B'_{q})_{q=0}^{Q'}\). In case I, if \(K_j = 0\) then

\[k'_{j} = k_j = k_{j-1} > 2.\]
Figure 4-10: A sequence \((B_j)_{j=0}^2\). Note that \(R_1 = 1\), \(K_1 = 1\), but \(K_2 \neq 0\), so \(\iota\) does not act at \(j = 1\). Since \(R_2 = 2\) and \(K_2 = 4\), this sequence is in case II and \(\iota\) acts to add a term at 2. Thus, the image of \(\iota\) is the sequence plotted in Figure 11.

Figure 4-11: A sequence \((B_j)_{j=0}^3\). Since \(R_1 = 1\), \(K_1 = 1\), but \(K_2 \neq 0\), so \(\iota\) does not act at \(j = 1\). Note that \(R_2 = 1\), \(K_2 = 2\), \(K_3 = 0\) \((x_{3,2}, z_{3,2}) < (x_{2,1}, z_{2,1})\), \(x_{3,2} \geq k_1 = 6\), and \(z_{3,1} = 0\). Hence this sequence is in case IV and \(\iota\) acts to delete a term at 2. Thus, the image of \(\iota\) is the sequence plotted in Figure 10.

Figure 4-12: A sequence \((B_j)_{j=0}^3\). Note that \(R_1 = 1\), \(K_1 = 1\), but \(K_2 \neq 0\) so \(\iota\) does not act at 1. Note that \(R_2 = 1\), \(K_2 = 2\), but \((x_{3,2}, z_{3,2}) > (x_{2,1}, z_{2,1})\), so \(\iota\) does not act a 2 either. Since \(J_B = 3\) and \(K_3 = 2\) and \(R_3 = 2\), this sequence is in case III. Thus, the image of \(\iota\) is the sequence plotted in Figure 13.
Figure 4-13: A sequence $(B_j)^3_{j=0}$. Note that $R_1 = 1$, $K_1 = 1$, but $K_2 \neq 0$ so i does not act at 1. Note that $R_2 = 1$, $K_2 = 2$, but $(x_{3,2}, z_{3,2}) > (x_{2,1}, z_{2,1})$, so i does not act a 2 either. Since $J_B = 3$ and $K_3 = 2$ and $R_3 = 1$, this sequence is in case VI. Thus, the image of i is the sequence plotted in Figure 12.

In case I if $K_j = 1$, then $4 \leq 2R_j \leq k_{j-1}$, thus

$$k_j' = k_{j-1} - 1 \geq 3.$$

In all cases, $(B')^Q_{q=0}$ has property 8. In case I, $K_j \in \{0, 1\}$. Thus,

$$K_j', K_{j+1}' \in \{0, 1\} \leq 2R_j.$$

In case II, $K_j' = 2 \leq 2R_j$. Furthermore,

$$K_{j+1}' + 2 = K_j' + K_{j+1}' = K_j \leq 2R_j = 2R_j' + 2R_{j+1}' = 2 + 2R_{j+1}'.$$

In case III, $K_j' = 2 \leq 2R_j$. In cases IV and V,

$$K_j' = K_j + K_{j+1} \leq 2R_j + 2R_{j+1} = 2R_j'.$$

In case VI, $K_{j_B}' = 2 \leq 2R_{j_B}'$.

In all cases, $(B')^Q_{q=0}$ has property 9. In cases I, II, and III, $2R_j' = 2 \leq k_{j-1}'$. In cases I, $2 > k_{j-1} - k_j = k_{j-1} - k_j'$. In case II, $2 = k_{j-1} - k_j'$. Hence, in cases I and II,

$$2R_{j+1}' + 2 = 2R_j \leq k_{j-1} \leq k_j' + 2.$$

In case IV, $y_{j,1}' < y_{j,2}' < \cdots < y_{j,2R_j'-K_j'} = y_{j,2R_j-K_j}$. Since $y_{j,2R_j-K_j} < k_{j+1}$, it follows that

$$2R_j' - K_j' < k_{j+1} = k_j'.$$

In case V, it is trivial to verify that $(B')^Q_{q=0}$ has property 9. In Case VI,

$$R_{j_B}' \leq R_{J_B} \leq k_{j-1} = k_{j-1}.'$$
In all cases, \((B')^{Q_{B'}}_{q=0}\) has property 10. In case I, if \(K'_j = 0\), then
\[
k'_j = k_j < r_{j-1} = r'_{j-1}.
\]
Otherwise, in case I, if \(K'_j = 1\), then
\[
k'_j = k_j \leq x'_{j,1} = x_{j,1} < r_{j-1} = r'_{j-1}.
\]
In case I, by property 13,
\[
k'_{j+1} = k_j \leq r_j < r'_{j}.
\]
In case II, if \(x_{j,K_j-2} \geq k_{j-1} - 2\), then
\[
x'_{j,t} = x_{j,K_j-2+t} \geq x_{j,K_j-2} \geq k_{j-1} - 2 = k'_j.
\]
Otherwise, in case II, if \(x_{j,K_j-2} < k_{j-1} - 2\), then for \(1 \leq t \leq K_j - 2\), \(z_{j,t} = 0\). Furthermore,
\[
(x_{j,1}, z_{j,1}) < (x_{j,2}, z_{j,2}) < \cdots < (x_{j,K_j}, z_{j,K_j}).
\]
Hence,
\[
k_j \leq x_{j,1} < x_{j,2} < \cdots < x_{j,K_j-2}.
\]
Hence,
\[
k_{j-1} - 2 = k_j + K_j - 2 \leq x_{j,K_j-2}
\]
which is a contradiction.

In case II,
\[
x'_{j,t} = x_{j,K'_j+1+t} < r_{j-1} = r'_{j-1}.
\]
In case II,
\[
k'_{j+1} = k_j \leq x_{j,t} = x'_{j+1,t}.
\]
Furthermore, in case II, since \(x_{j,K_j} < r_{j-1}\), it follows that \(x_{j,K_j-2} < r_{j-1} - 1\). Otherwise, since \(x_{j,K_j} < r_{j-1}\) by property 10, it follows that
\[
x_{j,K_j-2} = x_{j,K_j-1} = x_{j,K_j} = r_{j-1} - 1.
\]
Hence,
\[
x'_{j+1,K'_j+1} = x_{j,K'_j+1} = x_{j,K_j-2} < r_{j-1} - 1 = r'_j.
\]
In case III, \((B')^{Q_{B'}}_{q=0}\) evidently has property 10. In cases IV and V,
\[
k'_j = k_{j+1} \leq x_{j+1,1} = x'_{j,1} \leq x'_{j,1}.
\]
Furthermore, in cases IV and V,
\[
x'_{j,t} \leq x'_{j,2K_j-K'_j} = x_{j,2K_j-K_j} < r_{j-1} = r'_{j-1}.
\]
In case VI, \((B')^{Q_{B'}}_{q=0}\) evidently has property 10.

In all cases, \((B')^{Q_{B'}}_{q=0}\) has property 10. In cases I and II, if \(x'_{j,t} = x_{j,K'_j+1+t} < k_{j-1} = \)
\(k'_{j-1}\), then
\[z'_{j,t} = z_{j,k'_{j+1}+t} = 0.\]
If \(x'_{j+1,t} < k'_j\) then \(x_{j,t} = x'_{j+1,t} < k'_j \leq k'_{j-1} = k_{j-1}\). Hence,
\[z'_{j+1,t} = z_{j,t} = 0.\]

In case III, \((B')^{Q_B'}_{q=0}\) evidently has property 11. In cases IV and V, if \(1 \leq t \leq K_{j+1}\)
and if \(x'_{j,t} = x_{j+1,t} < k_{j-1} = k'_{j-1}\), then since \(k_{j-1} \leq k_j\), it follows that
\[z'_{j,t} = z_{j+1,t} = 0.\]
If \(1 \leq t \leq K_j\) and if \(x'_{j,t+K_{j+1}} = x_{j,t} < k_{j-1} = k'_{j-1}\) then
\[z'_{j,t+K_{j+1}} = z_{j,t} = 0.\]

In case VI, \((B')^{Q_B'}_{q=0}\) evidently has property 11.

12. In cases I and II,
\[y'_{j,t} = y_{j,t+2R_{j+1} - K_{j+1}} < k_j \leq k'_j.\]
Similarly,
\[y'_{j+1,t} = y_{j,t} < k_j = k'_{j+1}.\]
In case III, \((B')^{Q_B'}_{q=0}\) trivially has property 11. In case IV, if \(1 \leq t \leq 2R_{j+1} - K_{j+1}\)
then
\[y'_{j,t} = y_{j+1,t} < k_{j+1} = k'_j.\]
If \(1 \leq t \leq 2R_j - K_j\), then
\[y'_{j,t+2R_{j+1} - K_{j+1}} = y_{j,t} < k_j = k_{j+1} = k'_j.\]
In case V, \((B')^{Q_B'}_{q=0}\) trivially has property 11. In case VI, \((B')^{Q_B'}_{q=0}\) evidently has property
11.

13. In case I, it must be verified that \(k'_j > 2\).
If \(K_j = 0\) then \(k'_j = k_j = k_{j-1} > 2\). If \(K_j = 1\), then \(4 \leq 2R_j \leq k_{j-1}\), thus
\(k'_j = k_{j-1} - 1 \geq 3\) Cases II,III,IV,V,VI are evident.

In the following, set \(B' := \iota(B)\) as above. Set \(B'' := \iota(B')\). The verification \(B'' = B\) proceeds in cases. As above, set
\[j = \min_{q \in \cup_{k=1}^n S_k(B)} q,\]
and set
\[j' = \min_{q \in \cup_{k=1}^n S_k(B')} q.\]
In case I, \(j \in S_1(B) \). Thus, \(r_j' = r_{j-1} - 1 \) and \(k_j' = k_j = k_{j+1} \). Hence,

\[
R_j' = 1,
\]

and

\[
K_{j+1}' = 0.
\]

Furthermore,

\[
K_j' = K_j \in \{0, 1\},
\]

and

\[
y_j+1,2R_{j+1}'-K_{j+1}' = y_j,2R_{j+1}'-K_{j+1}' < y_j,2R_{j+1}'-K_{j+1}' + 1 = y_j'.
\]

Hence, if \(j \in S_1(B) \), then \(j' \in S_4(B') \).

In case II, \(j \in S_2(B) \). Thus, \(r_j' = r_{j-1} - 1 \), and \(k_j' = k_{j-1} - 2 \). Hence,

\[
R_j' = 1,
\]

and

\[
K_j' = 2.
\]

Furthermore,

\[
(x_j',K_j'+1, z_j'+1, K_j'+1) = (x_j,K_j'+1, z_j,K_j'+1) < (x_j,K_j'+1, z_j,K_j'+1) = (x_j', z_j'),
\]

and if \(x_j'+1,t = x_j,t < k_{j-1} \), then

\[
z_j'+1,t = z_j,t = 0.
\]

Hence, if \(j \in S_2(B) \), then \(j' \in S_5(B') \).

For the cases I and II, the data in \(B, B' \), and \(B'' \) are compared below. In both cases I and II, for \(q < j \),

\[
B''_q = B'_q = B_q,
\]

while for \(q > j \),

\[
B''_q = B'_{q+1} = B_q.
\]

In both of these cases, for \(q = j \),

\[
r_j'' = r_j' = r_j,
\]

\[
k_j'' = k_j' = k_j,
\]

\[
(x''_j,t, z''_j,t) = (x_j'+1,t, z_j'+1,t) = (x_j,t, z_j,t) \text{ for } 1 \leq t \leq K_j'+1,
\]

\[
(x''_{j,t+K_j'+1}, z''_{j,t+K_j'+1}) = (x_j',z_j',t) = (x_j,K_j'+1+t, z_j,K_j'+1+t) \text{ for } 1 \leq t \leq K_j',
\]

\[
y_j'' = y_j'+1,t = y_j,t \text{ for } 1 \leq t \leq 2R_{j+1}' - K_j',
\]

\[
y_j,2R_{j+1}'-K_{j+1}' = y_j'+1,t = y_j,t+2R_{j+1}'-K_{j+1}' \text{ for } 1 \leq t \leq 2R_j' - K_j'.
\]

Hence, in cases I and II, \(B'' = B \).
In case III, \(j \in S_3(B) \). Thus, \(K'_{J_B} = K_{J_B} = 2 \), and while \(R'_{J_B} = 2 \),
\[
R''_{J_B} = 1.
\]

Hence, \(j' \in S_6(B') \).

In case III, note that \(2 = 2R_{J_B} - K_{J_B} = 2R''_{J_B} - K''_{J_B} \) so that,
\[
y_{J_B,1} < y_{J_B,2} = y_{J_B,2R_{J_B}-K_{J_B}} \leq k_{J_B} = 2.
\]

Thus,
\[
y_{J_B,1} = 1 = y''_{J_B,1},
\]

and
\[
y_{J_B,2} = 2 = y''_{J_B,2}.
\]

The only other data changed by \(i \) in case III and VI are \(R_{J_B} \), and \(R'_{J_B} \). Since, \(R'_{J_B} = 1 \),
\[
R''_{J_B} = 2 = R_{J_B}.
\]

In case VI, \(j \in S_6(B) \). Thus, \(K'_{J_B} = K_{J_B} = 2 \) and while \(R'_{J_B} = 1 \),
\[
R''_{J_B} = 2 = R_{J_B}.
\]

Hence, \(j' \in S_3(B') \). Now, \(0 = 2R_{J_B} - K_{J_B} = 2R''_{J_B} - K''_{J_B} \) so that,
\[
\{y_{J_B,1}, \ldots, y_{J_B,2R_{J_B}-K_{J_B}}\} = \emptyset = \{y''_{J_B,1}, \ldots, y''_{J_B,2R_{J_B}-K_{J_B}}\}.
\]

Again, the only other data changed by \(i \) are \(R_{J_B} \), and \(R'_{J_B} \). Since, \(R'_{J_B} = 2 \),
\[
R''_{J_B} = 1 = R_{J_B}.
\]

In case IV, \(j \in S_4(B) \). Thus, \(r'_j = r_{j+1} \), and, since \(K_{j+1} = 0 \), \(k'_j = k_{j+1} = k_j \).

Hence,
\[
R'_j = R_{j+1} + R_j \geq 2,
\]

and
\[
K'_j = K_j \in \{0, 1\}.
\]

Hence, \(j' \in S_1(B') \)

In case V, \(j \in S_5(B) \). Thus, \(r'_j = r_{j+1} \), and \(k'_j = k_{j+1} \). Hence,
\[
R'_j = R_{j+1} + R_j \geq 2,
\]

and
\[
K'_j = K_{j+1} + K_j \geq 2,
\]

since \(K_j \geq 2 \). If \(k'_j = k_{j+1} = 2 \) and \(K'_j = 2 \) so that
\[
0 = K_{j+1} = k_{j+1} - k_{j},
\]

59
which is impossible since then $k_{j+1} = k_j = 2$, but $k_q = 2$ only when $q = J_B$
Hence, $j' \in S_2(B')$

For the cases IV and V, the data in B, B', and B'' are compared below. In both cases I and II, for $q < j$,
\[B''_q = B'_q = B_q, \]
while for $q > j + 1$,
\[B''_q = B'_{q-1} = B_q. \]
For the jth term, in both case IV and V,
\[r''_j = r'_{j-1} - 1 = r_{j-1} - 1 = r_j, \]
since $R_j = 1$. For the $j + 1$st term, in both of these cases,
\[r''_{j+1} = r'_{j} = r_{j+1}. \]
In case IV,
\[k''_j = k'_j = k_{j+1} = k_j, \]
while in case V,
\[k''_j = k'_{j-1} - 2 = k_{j-1} - 2 = k_j, \]
since $K_j = 2$. In both cases,
\[k''_{j+1} = k'_j = k_{j+1}. \]
Thus, $K''_j = K_j$ and $K''_{j+1} = K_{j+1}$. In both cases IV and V, for $1 \leq t \leq K''_j = K_j$,
\[(x''_{j,t}, z''_{j,t}) = (x'_{j, K''_{j+1}+t}, z'_{j, K''_{j+1}+t}) = (x_{j,t}, z_{j,t}), \]
and for $1 \leq t \leq K''_{j+1} = K_{j+1}$,
\[(x''_{j+1,t}, z''_{j+1,t}) = (x'_{j+1, t}, z'_{j+1, t}) = (x_{j+1,t}, z_{j+1,t}). \]
In both cases for $1 \leq t \leq 2R''_j - K''_j = 2R_j - K_j$,
\[y''_{j,t} = y'_{j, t + 2R''_{j+1} - K''_{j+1}} = y_{j,t}, \]
and for $1 \leq t \leq 2R''_{j+1} - K''_{j+1} = 2R_{j+1} - K_{j+1}$,
\[y''_{j+1,t} = y'_{j+1, t} = y_{j+1,t}. \]

Hence, in all cases, $B'' = B$, and ι is an involution.

It must be verified that $\text{sgn}(B) = -\text{sgn}(\iota(B))$.
Recall that,
\[\text{sgn}(B) = \prod_{j=1}^{J_B} (-1)^{R_j - 1} = (-1) \sum_{j=1}^{J_B} R_j (-1)^{J_B} = (-1)^{r_0 - r_B} (-1)^{J_B}. \]
Again set $B' = \iota(B)$, and $j = \min \{ q \in \cup_{i=1}^{3} S_i(B) \} q$, and assume that in the ith case, $j \in S_i(B)$. In case I and II,

$$J_{B'} = J_B + 1$$

while

$$r_{J_{B'}}^j = r_{J_B+1} = r_J,$$

since $J_B \geq j$. In cases III and VI,

$$J_{B'} = J_B.$$

In case III,

$$r_{J_{B'}}^j = r_J - 1,$$

while in case VI,

$$r_{J_{B'}}^j = r_J + 1.$$

In case IV and V,

$$J_{B'} = J_B - 1,$$

while

$$r_{J_{B'}}^j = r_{J_B-1} = r_J,$$

since $J_B \geq j$. Thus, in all cases, $\text{sgn}(B) = -\text{sgn}(\iota(B))$. Finally, note that if $(B_j)_{j=1}^{J_B}$ has a term B_j such that $R_j > 1$, then

$$j \in \cup_{i=1}^{3} S_i(B).$$

Hence if $B_j^{J_B} \in \text{Fix}(\iota)$, then $R_j = 1$ for $1 \leq j \leq J_B$. Thus, $r_0 - r_J = J_B$, so that

$$\text{sgn}(B) = (-1)^{r_0-r_J} (-1)^{J_B} = (-1)^{2J_B} = 1.$$

Now, the fixed set may be characterized as those sequences B such that $\cup_{i=1}^{3} S_i(B) = \emptyset$. Already, it has been shown that for such a sequence, $R_j = 1$ for $1 \leq j \leq J_B$. Thus, since $K_j < 2R_j = 1$, for $1 \leq j \leq J_B$,

$$K_j \in \{0, 1, 2\}.$$

Also, if $B \in \text{Fix}(\iota)$,

$$K_{J_B} \neq 2.$$

Otherwise $\{J_B\} = \{S_3 \cup S_4\}$. Next, suppose $K_j \in \{0, 1\}$, then if $K_{j+1} = 0$,

$$y_{j+1, 2R_{j+1} - K_{j+1}} \geq y_{j,1}.$$

Otherwise, $j \in S_4$. Now, suppose $K_j = 2$, then either

$$(x_{j+1, K_{j+1}}, z_{j+1, K_{j+1}}) \geq (x_{j,1}, z_{j,1}).$$
or both $\exists x_{j+1,t}$ such that

$$x_{j+1,t} \leq k_{j-1},$$

and

$$z_{j+1,t} = 0.$$

Otherwise, $j \in S_5$.

Note, for example, that when $K_j = 2$, $K_{j+1} \neq 0$.

This completes both the characterization of the fixed set $\text{Fix}(\iota)$ of the involution ι, and the proof that

$$b_{n,i} = \#(\text{Fix}(\iota))$$

□

Corollary 4. The Frobenius characteristic of the reduced top homology of Π_{2n}^e is h-positive.

$$\Phi \tilde{H}(\Pi_{2n}^e) = \sum_{i=2}^{n} b_{i}(n) h_2 h_1^{2(n-i)}$$

Equivalently, $\tilde{H}(\Pi_{2n}^e)$ is a sum of trivial modules induced from Young subgroups,

$$\tilde{H}(\Pi_{2n}^e) \cong \bigoplus_{i=2}^{n} (\text{ind}_{\langle \mathfrak{S}_2 \rangle \times \langle \mathfrak{S}_1 \rangle \times \langle \mathfrak{S}_1 \rangle \times 2(n-i)}^{\mathfrak{S}_{2n}} 1_{\langle \mathfrak{S}_2 \rangle \times \langle \mathfrak{S}_1 \rangle \times \langle \mathfrak{S}_1 \rangle \times 2(n-i)})^{\otimes b_i(n)}$$
4.4 The Tangent Number and André Permutations

Let \((u_1, u_2, \ldots, u_n)\) denote the permutation \(u \in \mathcal{S}_n\) written in one-line notation. An down-up or alternating permutation in \(u \in \mathcal{S}_n\) is a permutation that satisfies \(u_1 > u_2 < u_3 > u_4 < \cdots u_n\).

Definition 26. (Euler Number \(E_n\))

\(E_n\) is the number of down-up permutations \(u \in \mathcal{S}_n\).

Evidently, for \(n \geq 1\), the Euler numbers satisfy the recursion,

\[
2E_{n+1} = \sum_{k=0}^{n} \binom{n}{k} E_k E_{n-k}
\]

Since the exponential generating function for the Euler numbers is

\[
\sum_{n \geq 0} E_n \frac{x^n}{n!} = \tan(x) + \sec(x)
\]

Corollary 5.

\[E_{2n-1} = \sum_{i=2}^{n} b_i(n) 2^{2n-i-1}\]

\(E_{2n-1}\) is called a tangent number and \(E_{2n}\) is called a secant number.

The tangent number has been shown by Foata and Schützenberger in [1] to be the number of André permutations with \(k\) peaks. Let \(\mathcal{A}_n\) denote the subset of \(\mathcal{S}_n\) which are André permutations. Let \((u_1, u_2, \ldots, u_n)\) denote the permutation \(u \in \mathcal{S}_n\) written in one-line notation. Let \(IL_j = (u_i, \ldots, u_j)\) be the largest interval ending with \(u_j\) such that for \(i \in IL_j\), \(i \geq u_j\). Similarly let \(IR_j = (u_j, \ldots, u_r)\) be the largest interval beginning with \(u_j\) such that for \(i \in IR_j\), \(i \geq u_j\). Set \(L_j = IL_j - u_j\) and \(R_j = IR_j - u_j\). Note that \(j\) is a trough or a valley if and only if both \(L_j\) and \(R_j\) are nonempty.

Definition 27. (André Permutations) \(\mathcal{A}_n\) is the set of permutations \((u_1, u_2, \ldots, u_n)\) in \(\mathcal{S}_n\) such that

1. \(u\) has no two consecutive descents
2. for each trough \(j\), \(\max(L_j) < \max(R_j)\)

Proposition 14.

\[E_{n-1} = \#(\mathcal{A}_n)\]

Foata and Schützenberger study the André permutations with \(k\) peaks \(\mathcal{A}_{n,k}\). The position \(j\) is a peak if both \(L_j\) and \(R_j\) are nonempty. If \(j \neq 1\) and \(j \neq n\) then this coincides with the usual criterion \(u_{j-1} < u_j > u_{j+1}\). Any refinement of the set of
André permutations, or the set of down-up permutations, gives a refinement of the
tangent numbers.

\[E_{n-1} = \sum_{k=1}^{\lfloor n/2 \rfloor} \#(A_{n,k}) \]

Furthermore,

Proposition 15.

\[E_{2n-1} = 2^{n-1} \#(A_{2n-1,n}) \]

Comparing with Corollary 5 shows that the numbers \(b_i(n) \) in fact refine \(\#(A_{2n-1,n}) \)
into sums of powers of two. Thus, we have the following corollary of Theorem 8.

Corollary 6.

\[\#(A_{2n-1,n}) = \sum_{i=2}^{n} b_i(n) 2^{n-i}. \]
Bibliography

