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Abstract
This thesis investigates three processes that control the evolution of oceanic

margins. Chapter 2 presents seismic images of a ~2-km-thick evaporite body in
Guaymas Basin, central Gulf of California. In rifts, evaporites form under conditions
unique to the latest stages of continental rupture, and the presence, age, thickness, and
shape place new constraints on the history of early rifting there. Chapter 3 presents
numerical experiments that show that diapirs can form in sediments on the down-going
plate in subduction zones and rise into the mantle wedge, delivering the sedimentary
component widely observed in arc magmas. Chapter 4 presents measurements of
seismic anisotropy from wide-angle, active-source data from the Middle America
Trench that address the hypothesis that the upper mantle is hydrated by seawater
flowing along outer-rise normal faults. These measurements indicate that the upper
mantle is ~1.57 to 6.89% anisotropic, and this anisotropy can be attributed to bending-
related faulting and an inherited mantle fabric. Accounting for anisotropy reduces
previous estimates for the amount of water stored in the upper mantle of the down-
going plate from ~2.5 to 1.5 wt%, a significant change in subduction zone water
budgets.
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Chapter 1:

Introduction

Fundamental geologic processes that occur along oceanic margins regulate

chemical cycles essential to life on Earth and provide energy and mineral resources that

fuel the industrial and technological advancement of modern society. New ocean basins

are created by tectonic extension and eventual rupture of the continental lithosphere.

During this extension, upwelling in the mantle under thinned crust drives mantle

melting. Magmatic intrusion into the crust and volcanism along rift zones, and the

ensuing creation of new oceanic crust along seafloor-spreading centers, delivers heat to

the Earth's surface, cooling the lithosphere and promoting mantle convection. This

magmatism also returns chemicals-including water, carbon dioxide, and metals-

cycled through the mantle to the Earth's surface, supplying key nutrients to organisms

and producing economically important mineral deposits. Marine life thrives in young,

nutrient-rich rift basins, and these organisms, along with weathering of extended

continental rocks, sequester carbon from the atmosphere and ocean into marine

sediments, influencing global climate. These carbon-rich sediments accumulate first in

shallow rift basins and later on continental margins, and heat supplied by rift-

magmatism drives alteration of these sediments into the world's major deposits of

hydrocarbons such as coal, oil, and natural gas.

Oceanic crust is returned to the mantle by subduction at oceanic trenches,

completing a global-scale cycle. During subduction, water stored in the oceanic

lithosphere is released into the mantle, where it has a significant effect on rock rheology
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and geochemistry. Water supplied to the mantle wedge from the subducting

lithosphere drives mantle melting and arc volcanism (Davies and Stevenson, 1992;

Iwamori, 1998; Grove et al., 2006), and promotes secondary convection that

incorporates sediments from the top of the subducting slab into these magmas (Gerya

et al., 2003; Behn et al., 2011). Over-pressuring and weakening caused by the presence

of water at the interface between the overriding and down-going plates enables the

oceanic lithosphere to subduct (Wang et al., 1995), and water fluxing through the

down-going slab may force the transition from gabbro to eclogite at depth (John and

Schenk, 2003), increasing slab density and promoting subduction. Globally, rheologic

weakening caused by widespread hydration of the upper mantle allows for the

movement of tectonic plates (Hirth and Kohlstedt, 1996). Without this weakening, plate

tectonics may be impossible, with mantle convection on Earth resembling the

"stagnant-lid" convection thought to occur on the other terrestrial planets (Solomatov

and Moresi, 1996). Together, plate tectonics, volcanism, and mantle convection, enable

global geochemical cycles, and sustaining these processes through recycling of water

and other chemicals into the mantle at subduction zones is essential for life on Earth.

Geologic processes at oceanic margins are also responsible for natural disasters and

catastrophic events. Megathrust earthquakes at subduction zones and resulting

tsunamis have claimed nearly 500,000 human lives and cost nearly 500 billion in U.S.

dollars in the last two decades alone (Athukorala and Resosudarmo, 2005; World Bank,

2011). Violent eruptions of arc volcanoes, such as Krakatoa and Mount St. Helens, have

also caused substantial losses of life and property throughout human history (Saarinen

and Sell, 1985; Winchester, 2013). The world's largest magmatic provinces are located
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in rift zones, and these eruptions have been associated with rapid climate change and

mass extinctions throughout Earth's history (Marzoli et al., 2004; Kozur and Weems,

2011). Long after rifting has progressed to seafloor spreading, submarine landslides on

rifted margins have generated tsunamis and destroyed seafloor and coastal

infrastructure (Masson et al., 2006). Understanding the processes that create, shape,

and destroy oceanic margins is a critical component in mitigating risk to society from

these natural hazards, as well as in extracting natural resources and understanding the

role margins play in the interconnected dynamics of a changing planet.

Studying oceanic margin processes requires a scientific approach that spans spatial

and temporal scales, as well as disciplines. For example, the shape of a rift basin is

related to global plate motions, regional- and global-scale dynamics and geochemistry

of the upper mantle, and, more locally, to the strength of crustal rocks. Seismic images

of such a basin can be used to test interpretations of regional geologic history,

geodynamic models of lithospheric-scale extension, and models of mantle melting and

magmatism during rifting. Conversely, the chemistry of rocks forming and filling

basins can be used to constrain the age and evolution of rifts, and geodynamic models

test interpretations of structures in seismic images. Similarly, using seismic wavespeeds

to measure the effects of chemical and physical processes in mantle rocks requires

integrating knowledge from fields such as rock mechanics, crystallography, and

geochemistry.

In this thesis, I present research on three specific processes that shape oceanic

margins, and each topic is approached from a different perspective. Chapter 2 presents

seismic reflection images of a thick salt deposit in the Gulf of California and investigates
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implications for the kinematics of early rifting there. The Gulf of California occupies

the boundary between the Pacific and North American plates, and, at present, extension

at seafloor spreading centers accommodates a majority of relative motion between these

plates. These spreading centers are oriented perpendicularly to the direction of relative

Pacific-North America motion, but this trend is ~30* from the orientation of the Gulfs

rifted margins. This obliquity suggests that a fundamental change occurred in how

extension was accommodated within this region between ca. 12 Ma, when continental

extension accelerated as subduction stalled offshore (Atwater and Stock, 1998), and

lithospheric rupture and the onset of seafloor spreading at ca. 6.3 Ma (Oskin and Stock,

2003).

The seismic data come from the Guaymas Basin of the central Gulf of California,

and these data image a -2-km-thick evaporite body that appears to have formed on

extended continental crust during the Late Miocene (11.2 to 5.3 Ma). Thick evaporites

have not been previously documented in the Gulf of California. In rifts, evaporites

typically form under conditions unique to the latest stages of continental rupture and

the onset of seafloor spreading (Evans, 1978). Thus, the presence, age, thickness, and

shape of the evaporite in the Guaymas Basin place new constraints on the history of

marine incursions and early basin development during this transitional stage. In

particular, the large volume of evaporites, and a correlation to dated gypsum beds on

the Gulfs western margin, indicate that substantial marine incursions and subsequent

evaporite deposition occurred ca. 7 Ma and prior to lithospheric rupture. Furthermore,

the seismic images, along with gravity data, indicate that the basin is "S"-shaped, a
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geometry indicative of transtensional basins, suggesting that oblique extension existed

in the central Gulf of California ca. 7 Ma.

Chapter 3 presents numerical experiments and a scaling analysis that shows that

diapirs can form in sediments on the down-going plate in subduction zones and rise into

the mantle wedge, delivering a sedimentary component widely observed in the

geochemistry of arc magmas (Plank and Langmuir, 1998). Modern subduction-zone

thermal models (Wada and Wang, 2009; Syracuse et al., 2010) predict slab-surface

temperatures in excess of the fluid saturated solidus for subducted metasediments,

implying that subducted sediments may melt at the slab surface. However, recent trace-

element-depletion trends in metasedimentary rocks that endured subduction to high

pressures (>2 GPa) and temperatures suggest that key trace elements associated with

the observed "sediment-melt signature" are not released until temperatures exceed

- 10504C (Behn et al., 2011)-significantly hotter than slab-surface temperatures at

similar pressures in the subduction zone thermal models. Behn et al. (2011) interpreted

this discrepancy as evidence that, although melting may begin at lower temperatures,

the sediment-melt signature is retained to higher temperatures, and proposed that

sediments detach from the slab and rise diapirically into the overlying mantle wedge.

These diapirs would undergo decompression melting as they ascend into the hot mantle

wedge (Gerya and Yuen, 2003), rapidly cycling sediment-derived melts and volatiles

into arc magma systems.

The numerical experiments in Chapter 3 predict timescales for the growth of

sediment diapirs over a range of subduction conditions. Diapir growth in these models

depends strongly on the temperature of the subducting slab and mantle wedge, yet
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sediments can form diapirs that detach from the slab at locations corresponding to the

location of arc volcanism over a wide range of slab thermal structures. In 'hot'

subduction zones with young slabs and/or slow convergence rates (e.g., Cascadia),

effective viscosities are relatively small, enabling instabilities to form over a broad range

of sediment thicknesses and mantle-wedge thermal and strain rate structures. In colder

subduction zones with old slabs and/or fast convergence rates (e.g., Izu-Bonin),

effective viscosities are greater, slowing instability growth, and secondary controls such

as the ratio of sediment to mantle viscosities and the length scale of viscous decay in the

mantle play a more significant role in the development of sediment diapirs.

Chapter 4 presents measurements of seismic anisotropy from wide-angle, active-

source data that constrain the flux of water delivered into the mantle at the Middle

America Trench. Water carried to depth by subducting oceanic lithosphere is the

primary source of mantle hydration, an essential component of many arc- and global-

scale processes. The upper mantle is often assumed to be efficiently dehydrated by

melting at ridges, but recent seismic-reflection images of bending-induced normal faults

extending into the upper mantle (Ranero et al., 2003; Nedimovid et al., 2009) and

reduced upper-mantle seismic velocities under the outer rise near trenches (Van.

Avendonk et al., 2011) have been interpreted as evidence that the subducting mantle is

pervasively hydrated via serpentinization by seawater penetrating through the crust

along plate-bending-induced faults. This seawater may fill cracks in the upper mantle

with free water; react strongly with olivine in upper mantle peridotite, filling cracks and

fault zones with serpentinite; and/or diffuse between fault zones, pervasively

serpentinizing the upper mantle.
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The seismic velocity of serpentinized rocks is much slower than that of unaltered

mantle rocks, and much of the support for the hypothesis that subducting mantle is

commonly hydrated near the outer rise comes from isotropic seismic velocity analyses

that assume observed slow velocity anomalies can be entirely attributed to the presence

of serpentine. However, the outer-rise normal faults themselves, as well as inherited,

strain-induced crystal-preferred orientation (CPO) of mineral grains in the upper

mantle can produce azimuthally dependent seismic wave speeds that are up to -0.5

km/s slower in one direction than in another, an effect comparable to the change in

velocity due to -20% pervasive serpentinization (Christensen, 1966). To accurately

estimate the degree of serpentinization at the outer rise and trench using seismic travel

times, the azimuthal variation of seismic wave speed must be determined, and the

competing effects of a CPO of mantle minerals, faulting, and hydration, each with their

own azimuthal dependence, must be distinguished.

The wavespeed measurements shown in Chapter 4 indicate that the upper mantle is

between ~1.6 and 4.4% anisotropic beneath the outer rise. This anisotropy can be

explained by combining wavespeed variations from an alignment of olivine grains in a

relic mantle fabric with anisotropy from cracks and/or joints aligned along the strike of

bending-related normal faults. Measurements made using rays that turn at different

depths indicate that this anisotropy varies with depth in the mantle, with anisotropy

from aligned cracks composing a larger portion of the wavespeed variations in the

upper-most mantle. Anisotropy in both the upper-most mantle and over depths up to 24

km below the Moho appears to include a significant component attributable to large

joints aligned with the bending-induced faults, although it is unclear how much of this
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signal can be explained by crustal, as opposed to mantle, faulting. Accounting for up to

-4.4% upper-mantle anisotropy in seismic-velocity-based measurements of

serpentinization reduces current estimates for the water content of the upper mantle

offshore of Nicaragua from ~2.5 to 1.5 wt%, a significant difference in the water input to

the mantle at subduction zones (Rupke et al., 2004).
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Chapter 2:

Thick evaporites and early rifting in the Guaymas Basin, Gulf of
California*

Abstract

Multichannel seismic transects reveal an -2-km-thick, ~50 x 100 km evaporite
body under the shelf on the eastern margin of the Guaymas Basin, central Gulf of
California (Mexico). These thick newly discovered evaporites appear to be correlated
with well-known gypsum beds near Santa Rosalia to the northwest, on the Baja
California peninsula. Closing the Gulf of California along kinematic flow lines suggests
that the thin, scattered, ca. 7 Ma Santa Rosalia gypsum beds formed on the fringe of the
much thicker evaporite deposit. This correlation, and the large volume of the Guaymas
evaporates, implies that substantial marine incursions and subsequent evaporite
deposition occurred during the Late Miocene and prior to lithospheric rupture.
Furthermore, the shape of the Guaymas evaporite is indicative of a transtensional basin,
suggesting that oblique extension existed in the central Gulf of California ca. 7 Ma.
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ABSTRACT
Multichannel seismic transects reveal an -2-km-thick, -50 x 100 km evaporite body under

the shelf on the eastern margin of the Guaymas Basin, central Gulf of California (Mexico).
These thick newly discovered evaporites appear to be correlated with well-known gypsum
beds near Santa Rosalia to the northwest, on the Baja California peninsula. Closing the Gulf of
California along kinematic flow lines suggests that the thin, scattered, ca. 7 Ma Santa Rosalia
gypsum beds formed on the fringe of the much thicker evaporite deposit. This correlation, and
the large volume of the Guaymas evaporates, implies that substantial marine incursions and
subsequent evaporite deposition occurred during the Late Miocene and prior to lithospheric
rupture. Furthermore, the shape of the Guaymas evaporite is indicative of a transtensional
basin, suggesting that oblique extension existed in the central Gulf of California ca. 7 Ma.

INTRODUCTION
The Gulf of California (Mexico) is part of

a young rift system that occupies the bound-
ary between the Pacific and North American
plates. In the modern Gulf of California, -92%
of Pacific-North America relative motion is
accommodated at short seafloor-spreading
centers offset by long transform faults (Fig. 1;
DeMets and Dixon, 1999; Dixon et al., 2000).
These spreading centers are perpendicular to
the direction of Pacific-North America relative
motion. but they are oblique, by -30". to the
rifted margins of the Gulf of California. This
obliquity suggests that there was a fundamental
change in how extension was accommodated
within the region between ca. 12 Ma, when
continental extension accelerated as subduction
stalled offshore (Atwater and Stock, 1998), and
lithospheric rupture and the onset of seafloor
spreading ca. 6.3 Ma (Oskin and Stock, 2003).

Two distinct models have been proposed for
how Pacific-North America relative motion
was accommodated in the Gulf of California
region prior to lithospheric rupture. One model
argues that early strain was partitioned between
NNW-trending dextral strike-slip faults west
of the modern Baja California peninsula and
NNW-striking normal faults within the proto-
gulf (e.g., Oskin and Stock, 2003). A second
model argues that, prior to rupture, extension
was accommodated by transtensional defor-
mation across the proto-gulf region, with a
smaller amount of strike-slip motion west of
the peninsula (Fletcher et al., 2007; Suther-
land et al., 2012; Bennett et al., 2012a). In

San
S5 Marcos

Figure 1. Geology and tectonics of south-
western North America. Black arrow indi-
cates amount of post-rupture displacement
between east Guaymas evaporite (EGE) and
gypsums near Santa Rosalla, Baja California
Sur, Mexico (detail after Wilson and Rocha,
1955). Colored arrows indicate other esti-
mates of displacement since onset of sea-
floor spreading (green-Fletcher at al., 2007;
blue-Sutherland et al., 2012; red-Oskin and
Stock, 2003). Blue boxes show locations and
ages (see key) of earliest marine sediments
(references in Table DRI [see footnote 1]).
Map background is shaded relief map (Smith
and Sandwell, 1997) with overlain intrusive
(red), volcanic (gray), and metamorphic (ma-
genta) rocks (after Reed at al., 2005) and
magnetic anomalies (blue--after Maus et al.,
2009). Plate boundaries (black, red, and gray
lines) are after Fletcher et al. (2007).

this model, basins within the proto-gulf have
morphologies similar to the rhomboid-shaped
pull-apart basins of the modern Salton Trough
region, where Pacific-North America relative
motion is accommodated by basin-scale strain

partitioning and wrench tectonics (e.g., Axen
and Fletcher, 1998). These two kinematic
models predict different patterns of faulting in
the proto-gulf, and imaging of the early exten-
sional basins tinder the thick sediments of the
eastern margin of the Gulf of California can
improve our understanding of early rift evolu-
tion in the gulf.

We present multichannel seismic (MCS)
data from the 2002 R/V Maurice Ewing cruise
EWO210 (part of the PESCADOR seismic
experiment) that cross the eastern Guaymas
Basin (Fig. 1). These data image a unit that
we interpret as an -2-km-thick evaporite body
that formed on extended continental crust dur-
ing the Late Miocene. Thick evaporites have
not been previously documented in the Gulf of
California. In rifts, evaporites typically form
under conditions unique to the latest stages of
continental rupture and the onset of seafloor
spreading (Evans, 1978). Thus, the presence,
age, thickness, and shape of the evaporite in the
Guaymas Basin place new constraints on the
history of marine incursions and early basin
development during this transitional stage in
the Gulf of California.

THICK EVAPORITE IN GUAYMAS
BASIN

A prominent feature of stacked MCS data
from the eastern Guaymas Basin is a bright
undulating reflector at -1.5-2.0 s two-way
traveltime (TWT) (Fig. 2; see the GSA Data
Repository'). We interpret this reflector as the
top of a thick evaporite unit, which we refer to as
the east Guaymas evaporite (EGE). This inter-
pretation is based on the similarity of features
in these data to the structure and seismic char-
acter of well-studied salt bodies, such as Late
Miocene Mediterranean evaporites (e.g., Fiduk,
2009). The polarity of the high-amplitude
reflection from the top of salt is consistent with

*E-mail: ncm@mit.edu.
'GSA Data Repository item 2013070, Figures DRI-DR4 (high-resolution plots and interpretations of seismic data), Figure DR5 (cross section and ca. 7 Ma recon-

struction), and Table DR I (locations and ages of earliest marine sediments), is available online at www.geosociety.org/pubs/ft20l3.htmn. or on request from editing@
geosociety.org or Documents Secretary. GSA, P.O. Box 9140, Boulder, CO 80301, USA.

GEOLOGY Data Repository item 2013070 I doi: 10 1 130/G33747.1
@ 2012 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org.
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Figure 2. Interpreted post-
stack time migration of
multichannel seismic data
(lower) and shipboard
free-air gravity anomaly
(FAA) data (upper) from
Line 25 of 2002 R/V
Maurice Ewing cruise
EW0210. Line location is
shown in Figure 3. SDR-
seaward-dipping reflector.

evaporites underlying sediments. The salt body
is seismically transparent, with a base defined
by an irregular reflection at -3 s TWT. A seis-
mic velocity model across the Guaymas Basin
(Lizarralde et al., 2007) resolves the imaged
evaporite body as a region with velocities of
-4.0-4.5 km/s, consistent with halite or gypsum
(e.g., Sharma, 1997). Using these velocities, we
estimate that the evaporite is -2 km thick.

Deformation in the EGE is consistent with
models and observations of salt flowing sea-
ward on a subsiding margin (e.g., Brun and Fort,
2011). To the southeast, the evaporite is overlain
by an -30-km-wide basin, and the salt is thinned
and diapiric, features indicative of salt with-
drawal (Vendeville, 1992). To the northwest, the
evaporite is thickened by gentle folds, indicat-
ing that the salt was compressed as it flowed
downslope from beneath the withdrawal basin.

Sediments overlying the EGE can be divided
into upper and lower sections, separated by an
angular unconformity that marks the onset of
salt deformation. In the -750-m-thick lower sec-
tion, folds are parallel to the top of the evaporite.
indicating that these sediments were deposited
on a flat evaporite surface, and the salt began
to flow seaward later, presumably after mar-
gin subsidence and sediment load reached a
critical point. The upper sedimentary section is
characterized by mostly undeformed sediments
that onlap the folded lower section surface. The
dip in these beds decreases upsection, indicat-
ing that deposition of the upper section was
synchronous with the seaward flow of the salt.
These sediments are as thick as -750 m in the
center of the withdrawal basin and pinch out
against topographic highs in the lower sedi-
ments. Where the salt is thickest (180-190 km;
Fig. 2), this upper section is absent and the lower
sediments are pushed up to the seafloor. At the
southeastern edge of the withdrawal basin, beds
are offset by normal faults and form a roll-over
anticline, a feature of syntectonic sedimentation.
These faults offset the seafloor, indicating that
salt withdrawal is ongoing. The same thickness
of sediment appears to have been deposited sea-
ward of the salt, but these units were undisturbed

by salt flow and thus lack the angular unconfor-
mity that separates the units over the evaporite.

The areal extent of the EGE is constrained by
the edge of salt on four seismic lines that cross
the unit and by gravity data. The imaged salt
body is coincident with a low free-air anomaly
observed in shipboard gravity profiles along the
MCS lines (Fig. 2). A low in altimetry-derived
gravity appears to be the same feature imaged
by the MCS data (Fig. 3A). This -50 x 100 km
anomaly traces a north-south-trending west-
em margin, which correlates with the western
evaporite edge revealed by the MCS data, and
a northeast-southwest-trending southeastern
margin. To the north and south, the anomaly and
imaged evaporite terminate against the North
Guaymas and Carmen Fracture Zones, respec-
tively (Lines 26 and 1183-1184; see the Data
Repository). Near its center and near the South
Guaymas Fracture Zone, the basin appears to
step to the southeast.

The EGE is on extended continental crust with
rift-related, magmatic intrusions (Lizarralde et
al., 2007). The MCS data show that the seaward
(northwestern) edge of the evaporite is abrupt
and steeply dipping. Seaward of this edge, the
basement reflector is bright and rough, sugges-
tive of extrusive igneous rocks. A seaward-dip-
ping reflector sequence is present just seaward
of this rough basement. Seaward-dipping reflec-
tors are commonly attributed to subaerial lava
flows near the continent-ocean transition of vol-
canic rifted margins (e.g., White and McKenzie,
1989). In the seismic velocity model, a lateral
change in lower crustal seismic velocities from
continental (intermediate) to oceanic (mafic) is
centered below the seaward-dipping reflectors,
suggesting that the edge of the evaporate is near
the continent-ocean transition and the onset of
new igneous crustal production.

CORRELATION TO THE SANTA
ROSALIA EVAPORITES

Scattered gypsum beds are well documented
to the northwest near Santa Rosalfa, on the Baja
California peninsula (Fig. 1). On the southern
end of Isla San Marcos, a continuous outcrop of

gypsum, -2 x 4 km in areal extent, is exposed
by one of the world's largest gypsum mines
(Ochoa-Landfn et al., 2000; Founie, 2007). In
the nearby Santa Rosalfa Basin. scattered gyp-
sum beds extend over an -10 x 30 km region
and locally reach thicknesses of as much as
-70 m (Wilson and Rocha, 1955).

Figure 3. A: Satellite-derived free-air gravity
anomaly (FAA) data (Sandwell and Smith,
2009) in eastern Guaymas Basin (Gulf of Cal-
ifornia, Mexico) with interpreted extents of
east Guaymas evaporite (EGE, white dotted
line) based on extent of salt imaged by mul-
tichannel seismic data (thick white lines).
NGFZ-North Guaymas Fracture Zone,
SGFZ-South Guaymas Fracture Zone,
CFZ-Carmen Fracture Zone, and CTF-Car-
men transform fault. B: Reconstruction of
EGE, gypsums in Santa Rosalfa basin (SrB)
and on Isle San Marcos (ISM), FAA grav-
ity data, and modern coastlines obtained
by displacing Baja California peninsula by
280 km along azimuth of 126*.
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It is likely that the Santa Rosalfa evaporites
formed at the same time and place as the EGE.
These gypsum beds reconstruct to the southern
edge of the EGE basin if the Guaymas rift seg-
ments and the Carmen segment are closed by
280 ± 20 km along an azimuth of 3064. parallel
to the modem spreading direction and bound-
ing transform faults and fracture zones (Fig. 3).
The ±20 km uncertainty is the half-width of
the EGE border along the Carmen Fracture
Zone. This reconstruction places the relatively
thin northwestern evaporites at the edge of the
more extensive. -2-km-thick EGE. The rela-
tive thickness of the two units makes sense if
the Santa Rosalfa evaporites formed along the
fringe of the larger EGE basin, as suggested by
the reconstruction.

The -280 km displacement vector implied
by the correlation of the [GE with gypsum
units near Santa Rosalfa is in close agreement
to two independent estimates of post-rupture
extension. implying that the reconstruction
represents a time just before lithospheric rup-
ture and the onset of seafloor spreading. Using
seismic refraction data, Lizarralde et al. (2007)
estimated -280 km of new igneous crust forma-
tion along the modem spreading direction in
the northern Guaymas rift segment. Oskin and
Stock (2003) correlated and dated volcanic tuffs
in the northern Gulf of California and estimated
276 ± 13 km of post-rupture separation along an
azimuth of 3150 across the Upper Delfin Basin-
Tibur6n Basin rift segment since ca. 6.3 Ma.
Similar magnitude. post-rupture displacements
of -275-310 km have been suggested for the
southern Gulf of California (Fig. 1; Fletcher et
al., 2007; Sutherland et al., 2012).

The Santa Rosalfa gypsums are generally
underlain by and locally interbedded with lime-
stones (Wilson and Rocha, 1955) that contain
Late Miocene (11.2-5.3 Ma) marine fauna (Ort-
lieb and Colletta, 1984). Holt et al. (2000) con-
cluded that these marine rocks were deposited
by 6.93-7.09 Ma, based on an "Ar-" 9Ar age of
6.76 ± 0.9 Ma for the Cinta Colorada. an andes-
itic tuff that overlies the limestone and gypsum
units, and magnetostratigraphy. This well-con-
strained age for the Santa Rosalfa gypsums sug-
gests that the EGE also formed during the Late
Miocene, beginning ca. 7 Ma.

EARLY MARINE INCURSIONS AND
BASIN FORMATION

Evaporite volume is a function of source-
water salinity, evaporation efficiency, and
deposition duration. Complete evaporation of
a 100-m-deep column of typical ocean water
(-3.5 wt% dissolved salt) produces a total evap-
orite thickness of -1.7 m (Warren, 2006). Thus,
-115 km of seawater is needed to produce the
-2-km-thick EGE. This is a substantial amount
of seawater, and the required amount would be
even greater if the brine water was less saline

GEOLOGY | www.gsapubs.org

than seawater. For this reason, marine-fed brines
have been invoked as the source of salt depos-
its of similar thickness (Warren, 2006), such
as those in the Mediterranean (e.g., Hsu et al.,
1973) and the Atlantic (e.g., Evans, 1978; Jack-
son and Cramez, 2000). The observed 2 km
of salt could have been deposited in as few as
-57-115 k.y., assuming an initial brine with the
salinity of seawater and modern subtropical net
evaporation rates of 1-2 n/yr (e.g., Schanze et
al., 2010). We thus infer that the EGE resulted
from substantial, repeated marine incursions,
and, based on the correlation with the Santa
Rosalfa gypsum units, we infer that these incur-
sions began just prior to ca. 7 Ma, -0.5-1.0 m.y.
before the earliest marine incursions in the
northern Gulf of California (e.g., McDougall,
2008; Dorsey et al., 2011; Bennett et al., 2012b).

The Late Miocene rocks of the Santa Rosalfa
Basin inforn us of conditions during deposition
of the associated EGE. This basin is floored by
scattered marine limestone and gypsum units
that unconformably overlie heavily faulted pre-
rift Comondu arc volcanic rocks (Wilson and
Rocha. 1955), indicating that these units repre-
sent the first deposition in proto-gulf extensional
basins. Color banding in the gypsum units sug-
gests that brine chemistry varied through time,
and the gypsum is interbedded with thin elastic
horizons (Ochoa-Landfn et al., 2000), suggest-
ing that sediment supply also varied. Both the
basal marine limestone and gypsum are overlain
by a sequence of prograding fan-delta deposits
that formed during repeated periods of basin-
floor subsidence, a result of synrift extensional
faulting (Wilson and Rocha, 1955; Ochoa-
Landin et al., 2000). These sequences suggest
that a series of marine incursions flooded the
Santa Rosalsa Basin through the end of the Late
Miocene into the Pleistocene (Ochoa-Landin et
al., 2000). Large positive values of S2S in the
gypsum units (Ortlieb and Colletta, 1984) have
been interpreted as evidence that they formed
by evaporation of seawater in isolated basins
(Ochoa-Landin et al., 2000). A similar setting
has been invoked to explain the deposition of
thin gypsum deposits in Late Miocene basins
of the northern Gulf of California (Escalona-
Alcdzar et al., 2001). These observations and
interpretations suggest that the EGE formed in
an isolated basin supplied by a series of marine
flooding events.

In the proto-gulf, extensional tectonics and
volcanic ridges would have created elongate
basins with restricted access to inundating sea-
water, conditions favorable for sustaining hyper-
saline brines throughout the deposition of thick
evaporites (e.g., Warren, 2006). A modern ana-
logue of such a setting is the Danakil Depres-
sion (Afar triangle, Africa; Orszag-Sperber et
al., 1998; Jackson and Cramez, 2000), where
marine water from the Red Sea seeps through
and/or periodically spills over an emerging

horst, supplying brine water to fault- and lava
flow-bounded basins (Manighetti et al., 1997;
Jackson and Cramez. 2000). In these isolated
basins, the resupply of saline water is outpaced
by evaporation, enabling brines to maintain sat-
uration and precipitate thick salt deposits (Fried-
man. 1972). These Afar evaporites are forming
directly on proto-oceanic crust in the latest
stages of a transition from continental extension
to seafloor spreading. similar to the rift stage
suggested for formation of the EGE by the prox-
imity of seaward-dipping reflectors (Fig. 2) and
fast lower crustal velocities. In the Afar triangle.
heat supplied by rift-related magmatism aides in
evaporation from brines, as may have been the
case during magma-rich rifting of the Guaymas
Basin (Lizarralde et al., 2007).

IMPLICATIONS FOR THE KINEMATICS
OF EARLY RIFTING

The margins of the evaporite likely follow the
orientation of basin-bounding faults, providing
constraints on models of strain partitioning dur-
ing the earliest stages of rifting. The interpreted
western edge of the [GE basin trends north-
south. implying that, without regional rotation,
early basin-forming faults along this edge also
trended approximately north-south, and that
some component of proto-gulf extension was
oriented east-west (Fig. 3). The southeastern
edge of the evaporite trends northeast-south-
west. This edge is colocated with a 5-km-deep
escarpment in the crustal velocity model (see the
Data Repository). This escarpment also appears
to trend northeast-southwest in the gravity data,
implying that a significant component of early
extension was oriented parallel to the modern,
northwest-southeast spreading direction. Fur-
thermore, the EGE steps to the southeast near
the South Guaymas Fracture Zone, creating an
S-shaped outline that is similar to the shape of a
salt deposit in the transtensional Laguna Salada
Basin of the southern Salton Trough (e.g., Axen
and Fletcher, 1998). Together, these observa-
tions suggest that early extension, as it localized
within the Gulf of California ca. 7 Ma. was par-
titioned onto both north-south- and northeast-
southwest-striking normal faults within trans-
tensional basins. This conclusion is consistent
with the model Bennett et al. (2012a) proposed
to explain transtensional deformation in coastal
Sonora that accelerated ca. 6.5 Ma.

CONCLUSIONS
Seismic data reveal a large evaporate unit

that formed during repeated marine incursions
into the Late Miocene proto-Gulf of California.
Closing the gulf along northwest-striking frac-
ture zones places evaporites near Santa Rosalfa
along the southern edge of the EGE, suggesting
that these gypsum units formed along the fringe
of the much larger EGE and that the evaporites
were deposited prior to lithospheric rupture. The
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shape and size of the basin, and our inferred age
for the evaporite, support a kinematic model
in which a significant portion of Pacific-North
America relative motion is accommodated by
transtensional shearing along the eastern proto-
Gulf of California ca. 7 Ma.
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Supplementary materials for Chapter 2

These supplementary materials were originally published as GSA Data Repository

Item 2013070. Included are a higher-resolution plot of seismic data and interpretations

for Line 25 (Figure A-1) and seismic data and interpretations from additional lines

crossing the East Guaymas Evaporite (EGE) (Figures A-2 through A-4). These

seismic data, along with gravity data, form the basis of our interpreted evaporite basin

extents shown in Figure 3 of the paper. Figure A-5 shows the position of the EGE in

the crustal velocity model of Lizarralde et al. (2007), as well as within a cross section

and map-view reconstruction for -7 Ma. Table A-1 includes references for the

locations and ages of earliest marine sediments shown in the Figure 1 of the paper.

Supplementary Tables

Table A-1. Locations and ages of earliest marine sediments in the Gulf of California.

Locality' Latitude Longitude Location Unit Age (Reference)
San Gorgonio Imperial 6.3-6.5 Ma

1 33.9063 -116.6856 Pass Formation (McDougall et al., 1999)

6.3 Ma
Imperial Fish Creek (Dorsey et al., 2007;

2 33.0144 -116.0761 Valley Gypsum Dorsey et al., 2011)
Sierra San San Felipe marine 5.5-6.0 Ma (Boehm, 1984)

3 31.1155 -115.3572 Felipe sequence [6.8±0.3 Ma] (Stock, 1997)

3.27±0.04
Arroyo Puertecitos (Martin-Barajas et al., 1997)

4 30.3888 -114.6442 Matomi Formation [6.1±O.5] (Nagy et al., 1999)
SW Isla Tiburon

5 28.8779 -112.5377 Isla Tiburon marine sequence 6.0-6.8 Ma (Bennett et al., 2012)
Bahia de Los Unnamed marine C12.1±0.1 Ma]

6 28.6919 -113.3762 Angeles sedimentary rocks (Delgado-Argote et al., 2000)

7 27.4192 -112.3580 Santa Rosalia Boleo Formation 6.93-7.09 Ma (Holt et al., 2000)
San Jose del Trinidad 6.9 Ma (Carreflo, 1992)

8 23.5790 -109.5913 Cabo Formation 7.5 Ma (Molina-Cruz, 1994)
Late Miocene - Early Pliocene

Islas Tres Arroyo Hondo (Carrefto, 1985)
9 21.6312 -106.5811 Marias sedimentary rocks 7.0-8.2 (McCloy et al., 1988)

'Locality numbers refer to the numbers in the blue boxes in Figure 1 of the paper.
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Supplementary Figures
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Figure A-1. Shipboard free-air gravity anomaly (top), post-stack time migration of MCS data (middle),
and seismic data interpretations (bottom) along Line 25 of cruise EWO210. EWo210 data were collected
using the Ewing's 20-element airgun array and a 6-km-long hydrophone streamer. The shot spacing for
this line was 100 m. Data were processed by common-midpoint (CMP) sorting, band-pass filtering,
velocity analysis, normal move out, inside and outside muting, stacking, post-stack wavenumber filtering
to remove energy from the water-bottom multiple, and post-stack time migration. Line location is shown
in the inset.
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Figure A-9. Stacked MCS data (above) and interpretations (below) along Line 38 of cruise EWo210.
The shot spacing for this line was 50 m. Data were processed using a standard flow of CMP sorting,
band-pass filtering, velocity analysis, normal move out, inside and outside muting, and stacking. Line
location is shown in the inset.
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Figure A-s. Stacked MCS data (above) and interpretations (below) along Line 26 of cruise EWO210.
The shot spacing for this line was 100 m. Line location is shown in the inset. Data were processed as in
Figure A-2. NGFZ-North Guaymas Fracture Zone (Figure 3 of the paper).
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Figure A-4. Stacked MCS data (above) and interpretations (below) along Lines 1183 and 1184 (referred
to collectively as "Line 1188_1184") of cruise GUAYO2WT. SGFZ-South Guaymas Fracture Zone
(Figure 3 of the paper). These data were collected using an MCS system, operated by the Scripps
Institution of Oceanography (SIO), consisting of a 3-element airgun array towed at -s m and a 1920-m-
long, 24-channel hydrophone streamer. Shots were fired at a spacing of -50 m. Stacked data shown here
for Line 1183 1184 were processed by SIO and were obtained from the Academic Seismic Portal at the
University of Texas Institute for Geophysics (http://www.ig.utexas.edu/sdc/). Data from GUAYO2WT
were originally processed and interpreted by Albertin (1989), but this work did not report evaporites in
the Guaymas Basin.
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Chapter 3:

Timescales for the growth of sediment diapirs in subduction zones*

Abstract

In this study, we calculate timescales for the growth of gravitational instabilities
forming in the sediment layer on the downgoing slab at subduction zones. Subducted
metasediments are buoyant with respect to the overlying mantle and may form diapirs
that detach from the slab and rise upwards into the mantle wedge. We use a particle-in-
cell, finite-difference method to calculate growth rates for instabilities forming within a
buoyant, wet-quartz metasediment layer underlying a dense mantle half-space
composed of wet olivine. These growth rates are used to determine where sediment
diapirs initiate and detach from the slab over a range of subduction zone thermal
structures. We find that, given a sufficient layer thickness (200-800 m, depending on
slab-surface and mantle-wedge temperatures), sediment diapirs begin to grow rapidly at

depths of -80 km and detach from the slab within 1-3 Myr at tempera- tures 9000 C
and at depths roughly corresponding to the location of the slab beneath the arc. Diapir
growth is most sensitive to absolute slab temperature, however it is also affected by the
viscosity ratio between the sediment layer and the mantle wedge and the length-scale
over which viscosity decays above the slab. These secondary affects are most
pronounced in colder subduction systems with old slabs and faster subduction rates. For
a broad range of subduction zone thermal conditions, we find that diapirs can efficiently
transport sediments into the mantle wedge, where they would melt and be incorporated
into arc magmas. Thus, we conclude that sediment diapirism is a common feature of
many subduction zones, providing a potential explanation for the 'sediment signature' in
the chemistry of arc magmas.

* Originally published as: Miller, N.C., and Behn, M.D., 2012, Timescales for the growth of sediment
diapirs in subduction zones: Geophysical Journal International, p. 1361-1377, doi: 10.1111/j.1365-
246X.2012.05565.x.
Reprinted with permission from Geophysical Journal International.
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SUMMARY
In this study, we calculate timescales for the growth of gravitational instabilities forming in

the sediment layer on the downgoing slab at subduction zones. Subducted metasediments are

buoyant with respect to the overlying mantle and may form diapirs that detach from the slab

and rise upwards into the mantle wedge. We use a particle-in-cell, finite-difference method

to calculate growth rates for instabilities forming within a buoyant, wet-quartz metasediment
layer underlying a dense mantle half-space composed of wet olivine. These growth rates are

used to determine where sediment diapirs initiate and detach from the slab over a range of

subduction zone thermal structures. We find that, given a sufficient layer thickness (200-

800 m, depending on slab-surface and mantle-wedge temperatures), sediment diapirs begin

to grow rapidly at depths of -80 km and detach from the slab within 1-3 Myr at tempera-

tures <900 'C and at depths roughly corresponding to the location of the slab beneath the

arc. Diapir growth is most sensitive to absolute slab temperature, however it is also affected

by the viscosity ratio between the sediment layer and the mantle wedge and the length-scale

over which viscosity decays above the slab. These secondary affects are most pronounced in

colder subduction systems with old slabs and faster subduction rates. For a broad range of

subduction zone thermal conditions, we find that diapirs can efficiently transport sediments

into the mantle wedge, where they would melt and be incorporated into arc magmas. Thus, we

conclude that sediment diapirism is a common feature of many subduction zones, providing a

potential explanation for the 'sediment signature' in the chemistry of arc magmas.

Key words: Numerical approximations and analysis; Subduction zone processes; Dynamics

of lithosphere and mantle; Mechanics, theory, and modelling; Diapir and diapirism.

1 INTRODUCTION

It is well established that subducted sediments are incorporated into
magmatic systems beneath arcs and that these sediment melts influ-
ence the production and chemical composition of new continental
crust. Despite an abundance of isotopic and trace-element evidence
for a sedimentary component in arc magmas (e.g. Armstrong 1968,
1991; Sun 1980; Karig et al. 1981; White et al. 1985; Tera et al.
1986; Plank & Langmuir 1993, 1998), as well as geochemical (e.g.
Elliott et al. 1997; Hawkesworth et al. 1997; Behn et al. 2011)
and geophysical (e.g. Vogt 1974; Marsh 1979; de Bremond d'Ars
et al. 1995) constraints on subduction zone melting processes, the
mechanism for sediment melting and the transport of these melts
to the surface remains uncertain. Two primary classes of models
have been proposed: (1) slab-surface melting of sediments with
subsequent porous or diapiric flow of the melts to the surface (e.g.
Spiegelman & McKenzie 1987; Hall & Kincaid 2001)and (2) 'cold'
diapirism in which the sediment layer detaches from the downgoing
slab and melts as it ascends through the hot mantle wedge (e.g.
Kelemen et al. 2003). In the latter case, diapirism can be driven by
hydration and partial melting of the mantle wedge at the slab surface

(e.g. Gerya & Yuen 2003; Gerya et al. 2006; Castro & Gerya 2008)
or by the intrinsic buoyancy of the sediment layer itself (Currie et al.
2007; Behn et al. 2011).

Modem subduction zone thermal models that include
temperature- and stress-dependent viscosities (van Keken et al.
2002; Kelemen et al. 2003; Conder 2005; Arcay et al. 2007; Wada &
Wang 2009; England & Katz 2010; Syracuse et al. 2010) and recent
geothermometry (Plank et al. 2009) predict slab-surface temper-
atures in excess of the fluid-saturated solidus for metasediments
at slab depths corresponding to the location of the volcanic arc
(-650 'C at 2 GPa; Nichols et al. 1994; Schmidt et al. 2004),
implying that sediments may melt at the slab surface. However,
trace-element-depletion trends in metasedimentary rocks that en-
dured subduction to pressures in excess of 2 GPa suggest that key
trace elements associated with the observed 'sediment-melt signa-
ture' are not released until temperatures exceed ~1050 "C (Behn
et al. 2011 )-significantly hotter than slab-surface temperatures
at similar pressures in subduction zone thermal models (e.g. van
Keken et al. 2002; Wada et al. 2008). Behn et al. (2011) interpreted
this discrepancy to imply that, although melting may commence
at lower temperatures, the sediment-melt signature is retained in

( 2012 The Authors 1361
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accessory mineral phases (e.g. phengite, monazite, allanite) to
higher temperatures, and proposed that sediments detach from the
slab and rise diapirically into the overlying mantle wedge. These
diapirs would undergo melting as they ascend into the hot mantle
wedge (e.g. Gerya & Yuen 2003), rapidly cycling sediment-derived
melts and volatiles into arc magma systems.

The growth of diapiric, Rayleigh-Taylor-type instabilities in a
buoyant sediment layer underlying a dense mantle half-space is
controlled by the layer buoyancy and the absolute and relative
viscosities of both materials (e.g. Rayleigh 1883; Taylor 1950;
Chandrasekhar 1961; Whitehead & Luther 1975). Increasing den-
sity contrasts and/or layer thicknesses increase buoyancy, promoting
faster instability growth. Diapirs form more readily at lower abso-
lute viscosities, and the dependence of viscosity on strain rate has a
significant effect on instability growth. Specifically, diapirs in linear
(i.e. Newtonian) rheologies grow exponentially whereas materials
with strain-rate-dependent, nonlinear (i.e. non-Newtonian) rheolo-
gies weaken as they deform, giving rise to superexponential growth
(e.g. Conrad & Molnar 1997; Houseman & Molnar 1997; Jull &
Kelemen 2001). The relative viscosities of the sediment layer and
mantle half-space also play a key role in controlling the growth of
diapirs, with a larger layer-to-half-space viscosity ratio promoting
faster growth (e.g. Conrad & Molnar 1997; Houseman & Molnar
1997; Jull & Kelemen 2001).

Previous scaling analyses (Behn el aL. 2011) and geodynamic
models (Currie et aL. 2007), suggest that subducted metasediments
are buoyant in the mantle and may form diapiric instabilities. As-
suming a fixed ratio of sediment and mantle viscosities, background
strain rate and density contrast, Behn et al (2011) showed that, for
typical subduction zone thermal structures (Wada & Wang 2009),
instabilities would form over a broad range of sediment layer thick-
nesses. However, the densities and viscosities of the sediment layer
and overlying mantle wedge are expected to evolve independently as
the slab warms during subduction, causing the key controls on diapir
growth (i.e. density contrast, viscosity ratio and half-space viscosity
structure) to vary with depth along the slab interface. Currie et aL
(2007) included these depth-dependent effects in subduction-zone-
scale geodynamic models that characterized the fate of subducted

sediments. Although this work explored the sensitivity of diapir
growth to sediment and mantle material parameters, the effect of
far-field parameters (e.g. slab age/temperature, convergence rate
and depth of mechanical decoupling between the slab and mantle
wedge) was not investigated. Further, these models lacked the res-
olution required to accurately quantify the growth of small-scale
instabilities in sediment layers <2 km thick.

In this study, we used a finite-difference method (Gerya 2010)
to determine timescales for the growth of individual instabilities
initiating within a wet-quartz metasediment layer underlying an
olivine mantle wedge, with independent temperature- and strain-
rate-dependent viscosities in each layer. To predict the location of
diapir formation, we integrated these timescales over time- and
depth-varying thermal structures and background strain rates from
a range of modern subduction zone thermal models (Wada & Wang
2009; Syracuse et al. 2010). We find that, while diapir growth de-
pends strongly on the temperature of the subducting slab and mantle
wedge, sediments can form diapirs that detach from the slab at lo-
cations corresponding to the location of arc volcanism over a wide
range of slab thermal structures. In 'hot' subduction zones (young
slabs and/or slow convergence rates, for example, Cascadia), effec-
tive viscosities are relatively small, enabling instabilities to form
over a broad range of sediment thicknesses and mantle-wedge ther-
mal and strain rate structures. In colder subduction zones (old slabs
and/or fast convergence rates, for example, Izu-Bonin), effective
viscosities are greater, slowing instability growth, and secondary
controls such as the ratio of sediment to mantle viscosities and the
length scale of viscous decay in the mantle play a more significant
role in the development of sediment diapirs.

2 METHODS

We modelled the growth of metasedimentary diapirs in subduction
zones as Rayleigh-Taylor-type instabilities forming in a buoyant,
water-rich, quartz layer that underlies a dense, hydrous, olivine half-
space (Fig. I). We first used a 2-D, particle-in-cell, finite- difference
method (Gerya 2010) to calculate diapir growth rates for Newtonian
and non-Newtonian viscosities at a range of temperatures and strain

(a) model domain

.

.

free-slipc
sides & topc

y=0
x rigid bottom x

x=0 .. .. x=.2 . ...

(b) Instability parameters

Yo(x)=h+Yo cos(2nxA)

Density

(c) rheologic parameters

PH nL nH
Viscosity

Figure 1. Schematic diagrams showing the initial model setup and parametrization. (a) Model domain, boundary conditions, and initial particle layout. (b)
Density structure and initial layer geometry. (c) Initial viscosity structure.
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rates. From these growth rates, we calculated timescales for diapir
formation, which we quantified through the 'instability time' (de-
fined below for Newtonian and non-Newtonian rheologies). Next,
we exploited previously derived scaling relationships found by lin-
ear analysis and numerical experiments (e.g. Rayleigh 1883; Taylor
1950; Chandrasekhar 1961; Whitehead & Luther 1975; Conrad
& Molnar 1997; Houseman & Molnar 1997; Molnar et al. 1998)
to scale instability times for the range of temperature and strain
rate conditions in subduction-zone thermal models (Wada & Wang
2009; Syracuse et al. 2010). Finally, we integrated these instability
times over the history of subduction to estimate the timescales for
diapir formation in individual thermal models. Comparing calcu-
lated timescales from a range of subduction zone settings reveals
the sensitivity of sediment-diapir growth to key parameters such as
sediment-layer thickness, slab temperature (slab age and subduc-
tion rate) and the strength of the slab/mantle interface (e.g. Wada &
Wang 2009; Syracuse et al. 2010). The symbols and scaling terms
defined below and used throughout this paper are listed in Table 1.

2.1 Rheologic flow law

The absolute and relative viscosities of the sediments and over-

lying mantle determine how easily a buoyant sediment layer can

flow upward into the dense mantle. In most rock-forming minerals,
viscosity decreases with increasing strain rate and temperature (e.g.
Hirth & Kohlstedt 2003). To model deformation with this behaviour,
we use the flow law (e.g. Kirby 1983)

k= Au"exp Rn - -) (1)

where A is an empirical constant, a = a,,x - aj, is the differential

stress, n is the stress exponent, Q is the activation energy, R is the
gas constant (= 8.31 J K mole-') and T is temperature. Assuming
that deviatoric stress rij is related to strain rate ki; by the constitutive
relationship

rij = eff 
8'ii (2)

we define an effective viscosity leff as

Table 1. Symbols.

x, y

z

wI = u'h/Thp
q' = qTA,

q" = qT;,spE

C' = CTA,

t' = t/TAp,. t, = th/TAp

S= 1l/2 (kn, - k2 )

h
YO = YOh
k = k'/h
A = 27t/k = A'h

yo(x) = h + Yo cos (27xx/A)
Ymax
Y = (Ymax - h)/h
p, Ap = (Pl - PH)
R
A; AL, AHn

n;nL. nil

Q; Q;;

B = A exp ( L) Bt. B1,

r = BLIB;

To

11 
RT

2

L =

Horizontal, vertical Cartesian
coordinates in diapir models
Depth coordinate in subduction zone
thermal models

Timescale

Timescale

Maximum vertical velocity
Exponential growth rate scaled by layer
thickness and density contrast
Exponential growth rate scaled by layer
thickness, density contrast, and
background strain rate
Super exponential growth rate scaled by
layer thickness and density contrast
Elapsed time, instability time rate scaled
by layer thickness and density contrast

Second invariant of the strain rate tensor

Layer, half-space strain rate invariant.
Layer thickness
Initial perturbation size
Wavenumber of initial perturbation
Wavelength of initial perturbation
Initial layer boundary position
Maximum height of material interface
Maximum fractional displacement
Density, layer-half-space density contrast
Universal gas constant
Empirical rheologic constant; rheologic
constant in layer, half-space
Stress exponent; stress exponent in layer,
half-space
Activation energy; activation energy in
half-space

Rheologic parameter; rheologic
parameter in layer, half-space
Ratio of layer to half-space rheologic
parameters
Layer and boundary temperature
Slope of linear geothermal gradient in
mantle wedge

e-folding length of mantle-wedge
viscosity

1leff = fln
2

(3)

where 1 = 1 /2(k §. - s,) is the second invariant of the strain-

rate tensor P. The rheologic parameter B describes the sensitivity of

viscosity to changes in strain rate and temperature and is defined

(Molnar et al. 1998):

B =- 3(n+I)/2n ( . - 5/n exp ( T).
\G2) \nR T

(4)

For n = 1 (Newtonian), Ileff = B/2, viscosity varies with temper-
ature alone, and strain rate is a linear function of stress. For n > I
(non-Newtonian), viscosity depends on strain rate and temperature,
causing strain rate to vary nonlinearly with stress.

2.2 Theoretical model: scaling relationships and
non-dimensionalization

Solutions found by linear analysis of the Stokes equation (i.e. the
Navier-Stokes equations with inertial terms ignored) can describe
the growth of infinitesimal-amplitude instabilities in a buoyant layer
underlying a half-space with Newtonian or non-Newtonian viscosi-
ties in each. For instabilities to form, the layer boundary must be
initially perturbed. In prior analytic solutions and in our models, the
height of this initial boundary is defined by

yo (x) = h + Yo cos (2irx/X), (5)

where Yo is the perturbation amplitude and X = 2
K/k is the wave-

length of the perturbation.
For Newtonian materials, Chandrasekhar (1961) showed that

maximum instability displacement Y increases exponentially from
this initial deflection according to

Y = Yo exp(qt), (6)

where t is time and q is a growth rate. Here, maximum vertical

velocity w is given by

w = wo exp(qt), (7)

where wo = q Yo is the initial velocity.
To quantify the timescale for instability formation, we used the

'instability time' (e.g. Houseman & Molnar 1997), which we refer
to by the symbol th. For the Newtonian (i.e. exponential growth)
case, we define tb as the time at which diapir displacement reaches
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a height equal to the initial layer thickness h, and setting Y = h in
eq. (6) yields

th(q)= ln . (8)

Non-dimensionalization reveals the sensitivity of diapir growth
to changes in layer buoyancy, initial perturbation wavelength and
viscosities. By choosing the initial layer thickness (h), the density
contrast between the layer and half-space (Ap = pl, - p,,), and
the rheologic parameter and stress exponent in the sediment layer
(BL and nL, respectively) as characteristic scales, we can define a
characteristic timescale (Houseman & Molnar 1997)

(h; BL 
"

Apgh)

and the following non-dimensional (primed) quantities

Y' = Y/h; YO = Yo/h;

t' = t/ThA,; un' = ! TA,; and
h

k' = kh = 2r/X'.

The exponential growth rate from eqs (6) and (7) is then

(10)

to decay exponentially (eq. 3) into the mantle wedge. This viscous
decay can be quantified in terms of the e-folding length scale L
(Fletcher & Hallet 1983; Conrad & Molnar 1997), defined by

L = n, R TO, (15)
QHIH'

where To and fi describe a linear, mantle-wedge geotherm, T(y) =
To + #uy. The ratio of L to the layer thickness h also controls
instability growth (Conrad & Molnar 1997; Houseman & Molnar
1997). If L/h is small, the half-space weakens rapidly with distance
from the interface and the layer 'senses' the lower viscosity within
the half-space, shortening instability times. For such cases, Molnar
et al. (1998) showed that the relationships in eqs (6-14) still apply,
although L replaces h as the controlling length scale.

In settings with strong background strain rates, such as those
associated with corner flow in the mantle wedge, Molnar et al.
(1998) showed that diapirs first grow exponentially according to
eq. (6), but with viscosities given by eq. (3) with k defined by the
background strain rate. For this initial growth stage, Molnar et al.
(1998) defined a second timescale

(16)

q = q' (k', r) /TAp,, (1 1)

where r = BLIBI, is the ratio of the layer to half-space (B,1)
rheologic parameters.

For cases with non-Newtonian rheologies in which BL and B1, are
constant throughout each layer, Houseman & Molnar (1997) showed
that the maximum vertical displacement of the layer and the velo-
city change with time according to the superexponential functions:

(Y/h)'-"' = (n, - 1) (C'Apgh ( - t) (12)

and

S[C, (nL -L I) Ap "h'I"L (1,, - t) ]. (13)

respectively, where C'(k/, r) = CThA, is a growth rate analogous
to q'. In this case, the instability time t, is defined as the time at
which maximum vertical velocity accelerates to infinity (Houseman
& Molnar 1997), given by

)( n aB , V' _a.h ,-
t4(c' = n k - ) Yo h (14)

C'Apgh (n, - 1)

As the velocity accelerates to infinity, Y rapidly approaches h, and
the instability time given by eq. (14) can thus be compared directly
to the instability time defined by eq. (8).

At depth in subduction zones, temperature increases with distance
from the slab surface (e.g. Wada & Wang 2009), causing viscosities

where EL is the second invariant of the background strain rate tensor
in the layer. The initial, exponential growth rate is then:

q = q" (k', r, nL) /TAk. (17)

As long as the background strain rate is much faster than strain
rates from local, diapiric flow, instability growth remains exponen-
tial. If local strain rates never exceed the background strain rate, the
final instability time is simply

tb(q")= - (TA/q")In In (18)

If, however, local strain rates become sufficiently large, growth will
become super exponential and displacement will follow the form of
eq. ( 12).

2.3 Model parameters for subduction zones

We calculated growth rates and instability times for the range of
thermal and background strain rate conditions in the subduction-
zone modelling results of Wada & Wang (2009) and Syracuse et al.
(2010). To calculate viscosities, we assume that the subducting sed-
iments and overlying mantle are both hydrated (Hacker 2008). We
apply values for rheologic parameters (A, n and Q) reported for
hydrous quartz (Hirth et al. 2001) to the metasediment layer and
those for hydrous olivine (Hirth & Kohlstedt 2003) to the overly-
ing mantle wedge (Table 2). While slab-top conditions can exceed
the fluid-saturated solidus for metasediments (Nichols et al. 1994;

Table 2. Rheologic parameters.

Material In(A) [MPa-" s-1] n Q [kJ mol~'] Reference

Metasediments
Ruby Gap quartzite (wet) -11.2 +0.6 4 135 i 15 Hirth et al. (2001)
Synthetic coesite (dry)a -3.7 i 4.3 3 i 1 275 + 50 Renner et al. (2001)
Mica schist (weak T and E dependence)a -910 171 ± 6 98 i 9 Shea & Kronenberg (1992)
Mica schist (strong T and E dependence)a -154 31 ± 1 98 9 Shea & Kronenberg (1992)
Mantle wedge
Olivine (wet)" 13.6 3.5 +0.3 480+40 Hirth & Kohlstedt (2003)

aShown for comparison. The Hirth et al. (2001) rheology for wet quartz is used for metasediments in all models.
'A calculated using A = a(CoH)' where Coly = 5000 H/10 6 Si, r = 1.2 and a = 30.
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Figure 2. (a) Effective viscosity as a function of temperature for hydrous
quartz (Hirth et al. 200 1) and olivine (Hirth & Kohlstedt 2003) at different
strain rates. For comparison, shaded regions indicate the viscosity range of
mica shist (strong T and t dependent rheology of Shea & Kronenberg 1992)
and dry coesite (Renner et al. 2001). In subduction zone thermal models,
both slab-surface and mantle wedge temperatures and strain rates vary from
-200 to -1000 "C and from -10- 16 to -10- s-1, respectively. (b)
Density contrast between UHP rocks (sediments) and harzburgite (mantle
wedge) with 2 wt% 1H20 as a function of temperature and pressure (Behn
et al. 2011). Lines show the pressure-temperature trajectory of the slab
surface in the Cascadia (red) and lzu (black) subduction zone models of
Wada & Wang (2009).

Schmidt et aL. 2004), we assume that any melting has a negligi-
ble effect on viscosity. If melt migration is rapid compared to the
timescale of the matrix flow, only a small amount (:3 per cent) of
melt is likely to be retained in the sediment layer and/or overlying
mantle (McKenzie 1984), reducing viscosities by at most an order
of magnitude (Zimmerman & Kohlstedt 2004).

Subducted metasediments are likely similar in composition to
ultrahigh pressure (UHP) metapelites (Behn et aL. 2011). These
rocks have between 47 and 76 wt/o SiO2 and, at pressures less than
-2.5 GPa, would be composed of -35 per cent quartz by volume,
with smallervolumesofphengiteandplagioclase(Behnetal. 2011).
Of these minerals, quartz is the weakest phase (Fig. 2a). Multiphase
rocks have been shown to deform according to the rheology of the
weakest phase when even small amounts (<15 per cent) of that
mineral are present (Dell'Angello & Tullis 1996), and we thus
model deformation in the sediment layer with a quartz rheology. At
pressures greater than -2.5 GPa, quartz undergoes a phase change
to coesite (Fig. 2b), which is stronger than quartz (Fig. 2a). As

discussed below in Section 4, this viscosity change will have only
a small effect on instability times for diapirs forming in subduction
zones, and thus we ignore the quartz-to-coesite transition in our
calculations of layer viscosity.

Hirth et aL. (2001) used microstructures and thermochronology
in naturally deformed quartzite samples, along with laboratory ex-
periments, to constrain the rheologic parameters of quartz at strain
rates of~10-14 s-' and over a temperature range of -600-1200 "C.
For strain rates typical of active deformation (10-"' to 10-12 S-1),

this flow law has been shown to fit stress profiles inferred from nat-
urally deformed, metamorphosed rocks from the mid-crust (Behr
& Platt 2011). These 'conditions are similar to the strain rates and
temperatures for diapir formation in our models, suggesting that
this flow law can accurately describe deformation in subducted
metasediments. For olivine, Hirth & Kohlstedt (2003) used experi-
mental results to determine rheologic parameters for temperatures of
-1100-1300 "C and strain rates of~10-4-10-6. Viscosity profiles

extrapolated from these experimental conditions to upper mantle
conditions agree well with constraints on viscosities from geophys-
ical observations (Hirth & Kohlstedt 2003), indicating that these
parameters accurately describe the rheology of the bulk upper man-
tle over the range of conditions in the mantle wedge at subduction
zones.

For our calculations of instability times for exponential growth,
we imposed a constant background strain rate in the mantle wedge
(E,1 ) based on average values in the Wada & Wang (2009) ther-
mal models. Strain rates in the sediments depend on assumptions
about the nature of mantle-wedge flow and strain localization at the
slab surface. Both the Wada & Wang (2009) and Syracuse et al.
(2010) models include a shallow (<50-90 km) region in which the
subducting slab descends faster than the overall flow in the mantle
wedge, requiring that strain be accommodated within a weak zone
at the slab surface. This shallow 'decoupling' creates a stagnant,
cold, mantle-wedge nose beneath the forearc, a feature needed to
explain surface heat flow and seismic attenuation measurements
(e.g. Kneller et aL. 2005, 2007; Abers et aL. 2006; Wada & Wang
2009). At shallow depths, we assume that strain is accommodated
within the sediment layer, and we set the background strain rate in
the sediments based on the layer thickness and the slab/arc conver-
gence velocity. At greater depths, we set the background strain rate
in the sediment layer to be equal to the strain rate in the mantle
wedge (Ell). That is,

E1 1 (2h) z - zoc

Nul z > zoc
(19)

where z is depth in the subduction zone model, V,,L is the slab
velocity, and zDc is the depth of the decoupling/coupling transition
in the thermal models. In this way, the strain rate in the sediment
layer can differ from the strain rate governing the non-Newtonian
viscosity of the overlying mantle wedge. 6 is a value less than one
that determines how much of the relative motion between the slab
and mantle wedge is accommodated within sediments on the slab
surface. For consistency with the parametrization of the thermal
models, we set 6 to 1.0 (full decoupling) in the Wada & Wang
(2009) models and 0.98 (partial decoupling) in the Syracuse et al.
(2010) models.

The absolute and relative viscosities of hydrous quartz and
olivine vary by several orders of magnitude over the range of
subduction zone temperatures (-200-1000 "C) and background
strain rates (~10-1_10-12 s') predicted by thermal models
(Fig. 2a), suggesting that growth rates for sediment diapirs may vary
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1366 N.C. Miller and M.D. Behn

significantly. While quartz and olivine are brittle at low tempera-
tures (<280-350 "C for quartz, Stockert et al. 1999; <600 "C for
olivine, Boettcher et al. 2007), we are interested in the formation of
sediment diapirs at depths greater than -50 km in subduction zones,
where diapirs would be incorporated into arc magma systems. At
these depths, temperatures are near or above the temperature of the
brittle/ductile transition for quartz and olivine, and we thus only
consider deformation by viscous flow. At -600 "C, olivine viscosi-
ties are high (1020-1023 Pa s for strain rates of 10- 1210- 16 s 1)
and the viscosity ratio of quartz to olivine (i.e. r = B./B.1) at a
given strain rate is <10-3. As temperature increases to -1000 "C,
olivine viscosities decrease to ~10'-1021 Pa s for strain rates of
10i-0 6-1 s-', approaching the viscosity of quartz and causing
r to increase to 20. 1. This decrease in absolute viscosities with
increasing temperature promotes diapir growth, shortening insta-
bility times. Further, the relative weakening of olivine with respect
to quartz (i.e. larger r) with temperature allows quartz diapirs to
more readily ascend into the overlying olivine half-space, decreas-
ing instability times (e.g. Houseman & Molnar 1997; Conrad &
Molnar 1997).

The effect of the viscous decay length on the growth of sed-
iment diapirs depends on the ratio of L to the layer thickness
h. In subduction zone thermal models, L is typically minimal at
depths of -80 km (Fig. 3e) and acts to weaken the mantle with
respect to the sediment layer, promoting diapir growth. This de-
crease in L is a consequence of steepening, inverted geotherms near
the slab/mantle decoupling/coupling transition (e.g. Wada & Wang
2009). The abruptness of the transition determines both the shape of
the mantle geotherms and the depth and magnitude of the minimum
in L (Syracuse et al. 2010), which in turn influences the time it takes
sediment instabilities to form.

Diapirism is driven by the buoyancy of the sediment layer, which
depends on the density contrast between the sediments and the
overlying mantle and the thickness of the sediment layer. We assign
a density contrast Ap between the sediments and mantle wedge
based on Behn et al.'s (2011) calculations of temperature- and
pressure-dependent densities for metasediments and mantle-wedge
harzburgite along a slab-top geotherm (Fig. 2b). These densities
assume 2 wt/o H20 in both compositions, which is representative
of the amount of H20 retained by subducting sediments at 700 "C

|--Cascadia l
2

4o 5

100 7

150

8 9

(a) (b) (c)
200-

400 800 1200

Slab T ('C)

-13 -12 -400 -200 0

10910(0 (s-) Ap (kg m-3)

and 3 GPa (Hacker 2008). The resulting density contrast varies from
-340 to -80 kg m-3 at depths <100 km, but is nearly constant at
~-200 kg m-3 at depths >100 km (Fig. 3c).

The geometry and thickness of the subducting sediment layer is
largely unconstrained at depth, and we therefore calculate timescales
for diapirism over a range of layer thicknesses and initial pertur-
bation sizes. The average thickness of the sediment layer on the
incoming plate at trenches varies from -100 to -4000 m globally
(Plank & Langmuir 1998), although much of this of sediment is
scraped off the slab at the trench, leaving at most -1000 m that
is transported to depths beyond the forearc (von Huene & Scholl
1991; Clift & Vannucchi 2004). For completeness, we consider in-
stabilities forming in 10-2000-m-thick layers, given that sediment
layers could be >1000 m locally.

Deposition over rough topography and deformation during sub-
duction likely cause sediments to vary in thickness across the
slab, with undulations that are potentially similar in amplitude
and wavelength to abyssal hill topography on the subducting plate.
These variations in thickness would provide the initial perturba-
tions in the layer surface (i.e. YO) that are required for diapirism.
While large portions of the sediment layer may be removed at
the trench during subduction, sediments are deposited in lows on
the abyssal hill topography and erosion from the top of the layer
would leave significant variations in sediment thickness. Folding
and faulting during shallow subduction would also create vari-
ations in sediment thickness. Abyssal hills can be 100s of me-
ters tall (e.g. Goff & Jordan 1988) and shallowly deformed slab-
top sediments have fold amplitudes of up to -500 m (Chauhan
et al. 2009), leading us to conservatively (instability time de-
creases with increasing YO) consider instability growth from ini-
tial perturbations of 10 and 30 per cent of the layer thickness
(YO = [0.1, 0.31).

Diapirs grow fastest at a preferred wavelength that depends on
the viscosities of the layer and half-space (e.g. Whitehead & Luther
1975), and this wavelength of fastest growth may vary significantly
from the initial perturbation wavelength (Schmeling 1987). In our
models and scaling for the growth of sediment diapirs in subduc-
tion zones, we find that a majority of instability growth occurs at
temperatures greater than -800 "C and that, at these temperatures,
diapirs grow fastest at wavelengths near X = 27rh or k' = 1. For the

log 1,(r)
-6 -5 -4 -3 -2 -1

16 18 20 22
log10 (11) (Pa s)

0 2 4 6 8 1012

L (km)

Figure 3. Key parameters controlling instability growth from models of the Cascadia (red) and Izu (blue) subduction zones (Wada & Wang 2009) plotted as
a function of slab depth. (a) Slab-surface temperature. Circles indicate increments of I Myr in subduction time from an arbitrary reference point. (b) Strain
rate in the sediment layer and mantle wedge. (c) Density constrast of UHP rocks (sediments) and harzburgite (mantle wedge) (Behn et aL. 2011). (d) Effective
viscosity of quartz and olivine. (e) e-folding length scale for viscous decay in the mantle wedge (solid lines) and ratio of quartz-to-olivine rheologic parameters
(dashed lines).
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sediment thicknesses that we consider (10-2000 m), wavelengths
corresponding to k' = I are within the spectra of typical, largely
stochastic, abyssal hill topography (Goff & Jordan 1988), suggest-
ing that diapirs forming in subducted, abyssal sediments may initiate
at this preferred spacing. In predicting timescales and detachment
depths for instabilities forming in subduction zones, we therefore
focus on diapir growth at k' = 1.

2.4 Numerical model

To calculate instability times th(q")and th(C') (eqs (18) and(14)), we
first calculated the growth rates q" and C'. Since no analytic growth
rate solution exists for the case of non-Newtonian rheologies and an
exponentially decaying half-space viscosity (i.e. finite L), we cal-
culated these growth rates using a particle-in-cell, finite-difference
method (Gerya 2010). The code assumes plane strain and solves
equations for two-dimensional Stokes flow and continuity on a fixed
(Eulerian) grid with regularly spaced, advecting (Lagrangian) tracer
points (particles). Material properties (i.e. density and rheologic pa-
rameters) are carried by the particles and transferred to the grid by
bilinear interpolation. The particles are advected over small time
steps by first-order Runge-Kutta integration of the gridded veloci-
ties.

We setup the initial material geometry by defining a buoyant layer
beneath a dense half-space (Fig. 1). The layer and half-space were
distinguished by assigning particle densities PL and p,,, rheologic
parameters BL and B, and stress exponents n, and nl, respectively.
The material boundary was defined by eq. (5). We assigned a tem-
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perature To to particles within the layer, and imposed a temperature
profile T = To + #H(y - h) in the half-space. Our models do not
explicitly include the effects of thermal diffusion, a simplification
that does not significantly alter the accuracy of the model results.
The subduction zone models of Wada & Wang (2009) and Syracuse
et al. (2010) include heating of the subducting slab by thermal diffu-
sion, and, by assigning values for To and pil from these subduction
zone models, we implicitly include this effect as a starting condition
in our diapir models.

We set the width of the model domain to A/2, ignoring possible
interactions between adjacent perturbation peaks. We numerically
simulated a half-space by setting the model height to be four times
this width-the minimum height found to prevent interaction of
the layer with the top boundary during initial instability growth
in our models. For mechanical boundary conditions, we assumed
that the sediment layer is rigidly coupled to deeper slab rocks (i.e.
u = w = 0 at y = 0) and imposed free-slip side and top boundaries
(i.e. u a , = 0 at x = [0, x 2] and y = y 2).

In all of our models, we used a 64 x 256-node grid (resolution
of k/128 in the horizontal and vertical) with 25 particles in each
grid cell, resolutions that we found to produce accurate results as
compared to predictions of growth rates from analytic solutions. We
determined growth rates by tracking the maximum vertical velocity
of the layer particles as a function of time. For a layer and half-
space with homogenous, Newtonian viscosities, plotting ln(w') as
a function of t' produces a linear relationship with a slope of q',
verifying that the numerical instabilities grow according to eq. (7)
(Fig. 4a). Similarly, plotting w' -"LVIL versus t' for models with
non-Newtonian rheologies yields a linear relationship with slope

(b) nL=nH = 3

0
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16

14
C
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Figure 4. Plots of non-dimensionaled, maximum vertical velocity w' as function of non-dimensional time t' (top panels) in numerical models with (a)
Newtonian and (b) non-Newtonian rheologies and different initial perturbation wavenumbers k'. In the Newtonian case, velocity increases exponentially and
plotting In (u') versus t' (lower panel) produces a linear function (thin line). Similarly for the non-Newtonian case, velocity evolves according to a power law
and can be linearized by plotting w'1 -")1" versus t'. In both cases, the slope of linearized velocities is proportional to the growth rate factor (i.e. q' or C').
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Figure 5. Comparison ofnon-dimensional growth rates plotted asa function
of the ratio of rheologic parameters r found numerically (dots) and analyti-
cally (lines) for Newtonian (n = 1) and non-Newtonian (n = 4) rheologies
and different initial perturbation wavenumbers (k').

q'(n. - 1)/n,, indicating that the code can model the superexpo-
nential growth predicted by eq. (13) (Fig. 4b).

The effective viscosities of metasediments and the mantle vary
by several orders of magnitude over the range of temperatures and
strain rates in subduction zone thermal models (Fig. 2a), requir-
ing that the models be able to handle significant viscosity contrasts
(i.e. r). A comparison of q' predicted by analytic solutions (eq.
(33) in Conrad & Molnar 1997) to maximum values found numer-
ically (Fig. 5) shows that we can calculate growth rates for r <
0.1 (i.e. the range for quartz and olivine under subduction condi-
tions) to within -0.03 of the analytic solutions. In the scaling for
subduction zone conditions that follows, this 0(10-2) uncertainty
in non-dimensional growth rate translates to a <I Myr uncertainty
in instability time or a <25 km uncertainty in the depth for diapir
detachment for typical subduction rates.

2.5 Calculating instability times for sediment diapirs.
in subduction zones

To evaluate the likelihood of sediment diapir growth in subduction
zones, we first calculated non-dimensional exponential (q") and su-
perexponential (C') growth rates for quartz diapirs in an olivine half-
space over a range of temperatures (To = 200-1200 "C), thermal
gradients (L/h = 1-1000) and perturbation wavenumbers (k' =
0.5-5). Examples of these growth rates are shown in Fig. 6 at 600
and 1000 "C and all values are reported in Table 3.

We then used these growth rates to calculate dimensional insta-
bility times tb(q") and tb(C') using eqs (18) and (14), respectively,
for a range of thermal conditions (To and pl) and, for th(q"), a range
of background strain rates (E and EH). In the calculations of ex-
ponential growth (eq. 18), E enters only through the timescale
TA,; (eq. 16). For a constant value of 5kL, increasing E1 reduces
the effective viscosity of the mantle wedge with respect to the vis-
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Figure 6. Numerically calculated growth rate factors as a function of
wavenumber k' = 2;r/)' for quartz diapirs in an olivine half-space with
a homogenous layer temperature of 600 and 1000 "C for different length
scales for viscous decay in the half-space (L/h). In (a), viscosities are held
constant, and the diapirs grow exponentially. In (b), viscosities decay with in-
creasing strain rate and diapir growth is super-exponential. If L/h is small, the
half-space viscosity decays rapidly with distance from the layer boundary,
while if L >> h, viscosity in the half-space is nearly homogenous. Changes
in L/h have a much stronger effect at low temperatures where quartz is weak
with respect to olivine (i.e. small r) than at higher temperatures where quartz
and olivine viscosities are comparable.

cosity of the layer, increasing the viscosity ratio r = B,./BH, and
we thus included EH via the scaling for r. We found that tl,(q")
and th(C') differ by several orders of magnitude over the range of
temperatures predicted along the slab top, implying that, at low
temperature, instability times would be controlled by exponential
growth, but, at higher temperatures, would be dominated by super-
exponential growth (Fig. 7). We thus approximate instability times
for diapirs forming in the presence of a background strain rate by
writing:

1b = min [th (q") , t4(C')]. (20)

We then scaled these instability times for different layer
thicknesses, initial perturbation amplitudes, and density contrasts
(Fig. 8). From eq. (14), it can be shown that differences in h, Yo and
Ap are related to a difference in instability time by

t2 = tbi [ Aphi )"( 2 ) 11
\( Ap2h2 /Y2 /Lo

(21)
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Table 3. Non-dimensional, exponential and superexponential growth rates for quartz diapirs in an olivine half-space for various initial perturbation wavenumbers
(k'). Models were run with fixed temperatures (T) and fixed relative length scales for viscous decay in the half-space (L/h).

Exponential growth rate (q') Superexponential growth rate (C')

k' LIlh = I LIh = 2 Llh = 5 LIh = 1000 Lh = I Lh = 2 Lh = 5 L/h = 1000

T = 200 "C 0.5 1.920E-07 7.240E-08 3.350E-08 1.860E-08 1.090E-06 3.730E-07 1.530E-07 8.980E-08
1 3.670E-08 1.940E-08 l.260E-08 9.320E-09 3.160E-07 1.490E-07 9.410E-08 7.750E-08
2 9.670E-09 6.770E-09 5.410E-09 4.660E-09 1.150E-07 9.190E-08 8.580E-08 8.410E-08
3 5.11 OE-09 3.990E-09 3.430E-09 3.1 IOE-09 1.220E-07 1.1OOE-07 1.060E-07 1.030E-07
4 3.380E-09 2.810E-09 2.5 1OE-09 2.330E-09 l.240E-07 1.250E-07 1.250E-07 1.230E-07
5 2.520E-09 2.170E-09 1.980E-09 1.860E-09 1.51OE-07 1.440E-07 l.430E-07 1.410E-07

T = 300 "C 0.5 1.830E-05 7.020E-06 3.280E-06 1.830E-06 1.050E-04 4.610E-05 1.820E-05 l.O1E-05
I 3.550E-06 1.900E-06 1.230E-06 9.140E-07 3.910E-05 2.220E-05 1.470E-05 1.1OOE-05
2 9.450E-07 6.630E-07 5.310E-07 4.570E-07 1.920E-05 1.370E-05 1.120E-05 9.710E-06
3 5.OOOE-07 3.910E-07 3.370E-07 3.050E-07 1.410E-05 1.130E-05 8.190E-06 8.950E-06
4 3.310E-07 2.750E-07 2.460E-07 2.280E-07 9.570E-06 8.190E-06 7.300E-06 6.940E-06
5 2.470E-07 2.120E-07 1.940E-07 1.830E-07 8.320E-06 7.450E-06 6.970E-06 6.860E-06

T = 400 "C 0.5 4.440E-04 1.740E-04 8.190E-05 4.580E-05 1.710E-03 7.820E-04 3.880E-04 2.270E-04
I 8.820E-05 4.740E-05 3.090E-05 2.290E-05 6.560E-04 3.71 OE-04 2.480E-04 1.920E-04
2 2.360E-05 1.660E-05 1.330E-05 1.150E-05 3.320E-04 2.370E-04 1.970E-04 1.730E-04
3 1.250E-05 9.820E-06 8.450E-06 7.650E-06 2.500E-04 2.040E-04 1.780E-04 1.630E-04
4 8.310E-06 6.910E-06 6.180E-06 5.740E-06 2.150E-04 1.850E-04 1.670E-04 1.560E-04
5 6.190E-06 5.330E-06 4.870E-06 4.590E-06 1.980E-04 1.730E-04 1.600E-04 1.540E-04

T = 500 "C 0.5 4.240E-03 1.790E-03 8.710E-04 4.930E-04 1.230E-02 5.960E-03 3.050E-03 1.810E-03
I 9.460E-04 5.140E-04 3.360E-04 2.500E-04 5.040E-03 2.930E-03 1.970E-03 1.530E-03
2 2.570E-04 1.810E-04 1.450E-04 1.250E-04 2.610E-03 1.940E-03 1.580E-03 1.430E-03
3 1.360E-04 1.070E-04 9.220E-05 8.340E-05 2.040E-03 1.630E-03 1.420E-03 1.340E-03
4 9.050E-05 7.530E-05 6.740E-05 6.260E-05 1.750E-03 1.480E-03 1.380E-03 1.290E-03
5 6.740E-05 5.810E-05 5.310E-05 5.OOOE-05 1.580E-03 1.380E-03 1.310E-03 1.250E-03

T = 600 "C 0.5 1.670E-02 8.980E-03 4.870E-03 2.890E-03 4.800E-02 2.550E-02 1.390E-02 8.700E-03
I 5.740E-03 3.180E-03 2.1OOE-03 1.560E-03 2.290E-02 1.350E-02 9.450E-03 7.400E-03
2 1.610E-03 1.140E-03 9.140E-04 7.880E-04 1.250E-02 9.090E-03 7.670E-03 6.720E-03
3 8.570E-04 6.740E-04 5.810E-04 5.260E-04 9.570E-03 7.910E-03 6.920E-03 6.330E-03
4 5.690E-04 4.750E-04 4.250E-04 3.940E-04 8.240E-03 7.180E-03 6.500E-03 6.080E-03
5 4.250E-04 3.660E-04 3.350E-04 3.150E-04 7.680E-03 6.720E-03 6.200E-03 5.890E-03

T = 700 "C 0.5 3.030E-02 2.210E-02 1.470E-02 9.770E-03 1.070E-01 6.920E-02 4.190E-02 2.810E-02
1 2.210E-02 1.280E-02 8.650E-03 6.5 1OE-03 7.230E-02 4.540E-02 3.11 OE-02 2.460E-02
2 6.810E-03 4.860E-03 3.920E-03 3.380E-03 4.120E-02 3.130E-02 2.580E-02 2.330E-02
3 3.660E-03 2.890E-03 2.490E-03 2.260E-03 3.280E-02 2.640E-02 2.400E-02 2.200E-02
4 2.440E-03 2.040E-03 1.830E-03 1.700E-03 2.830E-02 2.400E-02 2.250E-02 2.1 IOE-02
5 1.820E-03 1.570E-03 1.440E-03 1.360E-03 2.570E-02 2.250E-02 2.150E-02 2.050E-02

T = 800 'C 0.5 4.01OE-02 3.410E-02 2.690E-02 2.030E-02 1.610E-01 1.220E-01 9.060E-02 6.470E-02
I 5.600E-02 3.580E-02 2.520E-02 1.940E-02 1.560E-01 1.070E-01 7.820E-02 6.250E-02
2 2.140E-02 1.550E-02 1.250E-02 1.090E-02 1.040E-0I 7.990E-02 6.880E-02 6.060E-02
3 1.170E-02 9.320E-03 8.070E-03 7.320E-03 8.370E-02 6.810E-02 6.230E-02 5.730E-02
4 7.860E-03 6.590E-03 5.9 1OE-03 5.500E-03 7.260E-02 6.440E-02 5.860E-02 5.500E-02
5 5.880E-03 5.090E-03 4.670E-03 4.400E-03 6.590E-02 6.030E-02 5.590E-02 5.320E-02

T = 900 "C 0.5 5.210E-02 4.600E-02 3.900E-02 3.180E-02 1.970E-0l 1.750E-0l l.410E-01 1.090E-0l
I 9.990E-02 7.190E-02 5.410E-02 4.320E-02 2.450E-01 1.920E-01 1.500E-01 1.270E-01
2 5.200E-02 3.860E-02 3.170E-02 2.760E-02 2.010E-01 1.590E-01 1.390E-01 1.280E-01
3 2.970E-02 2.390E-02 2.080E-02 1.890E-02 1.660E-01 1.420E-01 1.310E-01 1.210E-01
4 2.010E-02 1.700E-02 1.530E-02 1.430E-02 1.450E-01 1.300E-01 1.230E-01 1.160E-01
5 1.510E-02 1.320E-02 1.210E-02 1.140E-02 1.370E-01 1.220E-01 1.180E-01 1.120E-01

T= 1000 "C 0.5 6.850E-02 6.1OOE-02 5.320E-02 4.520E-02 2.480E-01 2.090E-01 1.740E-01 1.510E-01
I 1.420E-01 1.130E-01 9.080E-02 7.560E-02 3.190E-0I 2.690E-01 2.300E-0I 2.OOOE-01
2 L.OOOE-01 7.750E-02 6.500E-02 5.740E-02 3.050E-0I 2.650E-01 2.350E-01 2.180E-01
3 6.11 OE-02 5.020E-02 4.420E-02 4.050E-02 2.730E-01 2.400E-01 2.230E-01 2.080E-01
4 4.2 1OE-02 3.620E-02 3.280E-02 3.080E-02 2.410E-0I 2.200E-01 2.1OOE-0I 1.990E-01
5 3.190E-02 2.810E-02 2.600E-02 2.470E-02 2.210E-01 2.060E-01 2.OOOE-01 1.920E-01

(D 2012 The Authors, GJ/, 190, 1361-1377
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Table 3. (Continued.)

Exponential growth rate (q') Superexponential growth rate (C')

k' L/lh=1 L/h=2 L/h=5 L/h=1000 Llh=1 Llh=2 LI/h=5 Llh=1000

T= 1100"C 0.5 8.430E-02 7.690E-02 6.910E-02 6.060E-02 2.920E-01 2.670E-01 2.130E-01 1.880E-01
I 1.770E-01 1.510E-01 1.280E-01 1.1 l0E-01 3.770E-01 3.290E-01 2.990E-0I 2.580E-01
2 1.580E-01 1.280E-01 1.110E-01 9.950E-02 3.850E-01 3.450E-01 3.290E-01 3.100E-01
3 1.040E-01 8.840E-02 7.920E-02 7.330E-02 3.480E-01 3.240E-01 3.11OE-01 3.070E-01
4 7.390E-02 6.480E-02 5.950E-02 5.610E-02 3.190E-01 3.010E-01 2.920E-01 2.890E-01
5 5.660E-02 5.070E-02 4.730E-02 4.510E-02 2.960E-01 2.880E-0I 2.780E-01 2.710E-01

T= 1200 "C 0.5 9.650E-02 9.050E-02 8.340E-02 7.510E-02 3.670E-01 3.140E-01 2.560E-01 2.230E-01
I 2.040E-0I 1.830E-01 1.620E-0I 1.450E-0I 4.140E-01 3.720E-01 3.370E-01 3.120E-01
2 2.120E-01 1.810E-01 1.620E-01 1.480E-01 4.560E-01 4.170E-01 3.900E-01 3.780E-01
3 1.520E-01 1.330E-01 1.220E-01 1.140E-01 4.210E-01 3.950E-01 3.760E-01 3.660E-01
4 1.110E-01 9.970E-02 9.290E-02 8.840E-02 3.890E-01 3.730E-01 3.620E-01 3.500E-01
5 8.600E-02 7.860E-02 7.410E-02 7.120E-02 3.670E-01 3.520E-0I 3.450E-01 3.350E-01
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Figure 7. Example determination of diapir instability time. At low temper-
atures, diapirs grow fastest when Newtonian viscosities are calculated for
a finite background strain rate (EL = _1 = 10- 16 s-') (dashed line). At
higher temperatures, diapirs grow faster when viscosities are non-Newtonian
and decay with increasing local strain rates (dotted line). To determine an
instability time as a function of temperature, we choose the minimum of
these two curves (solid line). Instability times are shown for wet-quartz
(black lines) and dry-coesite (grey lines) layers underlying a wet-olivine
half-space.

where n = I (exponential growth) or n = n L (superexponential
growth) and the subscripts I and 2 refer to the original and scaled
values, respectively.

Finally, to determine the point at which diapirs will detach from
the downgoing slab for specific subduction zone models, we inte-

grated the scaled instability times calculated for slab-surface con-
ditions as a function of depth. If instability time as a function of
time elapsed during subduction (i.e. 'subduction time', t,) is th(t,),

then the time at which diapir displacement approaches the initial
layer thickness is found by solving for when the sum of fractional
displacement

is > I, where n is the total number of time (depth) intervals along
the slab surface and i is the index of a discrete subduction time.
After reaching this doubling height, diapirs ascend vertically at a
nearly constant velocity, effectively detaching from the downgoing
slab and the depth of detachment can thus be inferred from ,.

3 SENSITIVITY OF DIAPIR GROWTH
TO TEMPERATURE AND STRAIN RATE

3.1 Effect of temperature and half-space thermal structure

Calculated dimensional instability times show the strong depen-
dence of diapir growth on temperature (Fig. 8). At low tempera-
tures (;<800 'C), diapir growth is slow, viscosities are dominated by
background strain rates, and superexponetial growth does not occur
until after displacement reaches the doubling height (i.e. Y = h). At
temperatures greater than -800 "C, lower viscosities enable faster
instability growth, causing local strain rates (from the diapiric flow)
to exceed background strain rates and enabling superexponential
growth to initiate before diapir displacement reaches the doubling
height, thereby reducing instability times.

Non-dimensionalizing growth rates by ThA, shows that diapir
growth is also sensitive to secondary controls such as the ratio of the
sediment-to-mantle viscosity, r, which is a function of temperature
and the length scale of viscous decay in the mantle wedge, L (Fig. 6).
At low temperatures (-600 'C), olivine is much more viscous than
quartz (r = 5.2 x 10-4) and the ascent of weak quartz diapirs into the
strong, overlying olivine half-space is slow ([q', C'] = 0(10-2)). At
these low temperatures, diapirs grow fastest at small wavenumbers
(k' < 0.5) (Fig. 6). As temperature increases, olivine weakens with
respect to quartz (r = 4.6 x 10-2 at 1000 "C), enabling faster diapir
growth ([q', C'] = 0(10 ')). By 800 "C, the preferred wavenumber
for diapir growth begins to converge on k' ~ I (Table 3).

The thermal gradient in the mantle wedge also influences the
relative viscosities of the sediment layer and mantle wedge and
has the strongest effect on diapir growth at lower temperatures and
longer wavelengths. For example, decreasing L from L >> h to L =
h increases q' by a factor of -3 at 600 'C and k' = I (Fig. 6);
this same change in the decay length has only a minimal effect at
hotter temperatures and/or short wavelengths (k' > 3). In terms of
dimensional instability time, this same change in L/h results in a
shortening of t6(q") by two orders of magnitude at 600 "C, but only
one order of magnitude at 1000 "C (Fig. 8).

3.2 Effect of background strain rate

Finite background strain rates reduce effective viscosities, shorten-
ing diapir instability times and effectively reducing the temperature
and/or sediment layer thickness required to produce diapirs. The

C 2012 The Authors, GJ/, 190, 1361-1377
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scaled instability times in Fig. 8 show that increasing the back-
ground strain rate from 10-16 to 10-1 S-' can reduce the time
required to form an instability by up to three orders of magnitude
(~109 to 106 yr) at temperatures of 600-800 "C. Similarly, for
Yo = 0.3 and a temperature of 900 C, a background strain rate of
10-" s' allows a 100-m-thick sediment layer to reach a doubling
height in approximately the same time it takes a 500-m-thick layer
to grow by the same amount with 10-16 s-'. The relative value of
the layer and mantle background strain rates also has an effect on
instability times, with a factor of 100 increase in E 1,a slowing
instability times by up to half an order of magnitude (Fig. 8). As
shown above in instability times for variable Ll h and To, these
results demonstrate the importance of the relative viscosities of the
sediment layer and the mantle half-space in diapir formation.

4 TIMESCALES FOR SEDIMENT
DIAPIRS IN SUBDUCTION ZONES

4.1 Instability times for subduction zone thermal models

The sensitivity of sediment diapir growth to the thermal and strain
rate structure of the slab and mantle wedge is revealed by scaling
instability times to the conditions found in a range of subduction
zone thermal models (Fig. 9). Diapir growth is principally controlled
by the viscosity-reducing effect of temperature, with instabilities
initiating when slab-surface temperatures reach -500 'C (rl, ~
101--1024 Pa s) and detaching (i.e. growing to a height equal to
the initial layer thickness) within -1-3 Myr. The depth of initiation
depends on the temperature of the incoming slab, which is a function
of plate age and, at depth in subduction zones, subduction rate
(Molnar & England 1990; Molnar & England 1995). In arcs with
young slabs subducting at moderate rates, such as Cascadia, the
slab reaches -500 "C at -30 km and diapirs begin to grow. Here,
instabilities forming in a 1500-m-thick sediment layer, for example,
would detach at a depth of -90 km. By contrast, sediments on older,
faster subducting slabs, such as Izu, do not reach -500 'C until a
depth of -70 km. At this depth, diapirs forming in the same 1500-
m-thick layer would begin to grow rapidly and detach from the slab
at a depth of -140-170 km.

The maximum depth of full or partial mechanical decoupling be-
tween the slab and mantle wedge significantly influences the thermal
structure of subduction zone models, and thus affects viscosities
and the growth of sediment diapirs in our calculations of instability
times. The decoupling/coupling transition marks an abrupt onset
of mantle-wedge flow that brings heat from the back arc to the
slab (e.g. van Keken et aL. 2002; Wada et al. 2008). The shallower
the depth of this transition, the sooner subducting sediments heat
up, leading to lower absolute viscosities and faster diapir growth.
This effect can be seen in instability times scaled for subduction
zone thermal models that make different assumptions about what
controls the depth of the decoupling/coupling transition (e.g. D80:
prescribed 80 km depth, X25: distance from arc, T550: depth of
the brittle/ductile transition, W1300: subarc mantle temperatures;
see Syracuse et al. 2010 for full discussion; Fig. 9). The change
in temperature across the transition, and therefore the effect of the
transition depth on diapir growth, is most pronounced in subduction
zones with colder ambient temperatures. In models of diapirs form-
ing on a cold slab such as that subducting at Izu, increasing the depth
of the decoupling/coupling transition from 80 to 120 km delays the
onset of hotter slab-surface temperatures and produces a similar dif-
ference in the predicted depth of diapir detachment. By contrast, a

30 km difference in the depth of the decoupling/coupling transition
in models of the hotter Cascadia arc produces only small differences
in slab temperatures, and thus diapir detachment depths are similar
in these models. Changes in the degree of slab/mantle coupling also
have strong effects on the thermal structure of the mantle wedge,
with partial coupling in the D80 Syracuse et al. (2010) models en-
abling mantle flow to reach further into the mantle-wedge nose than
in the Wada & Wang (2009) models, which assume full slab/mantle
decoupling at depths less than 80 km. This enhanced mantle flow
produces hotter slab-top and mantle temperatures, promoting di-
apirism (Fig. 10).

A shortening of the viscous decay length in the mantle wedge near
the depth of the decoupling/coupling transition promotes the devel-
opment of instabilities, enabling diapir growth in even the coldest
subduction systems. In the mantle wedge, the decoupling/coupling
transition is marked by a zone of steep, inverted geotherms (i.e. short
L) at depths of -50-180 km in both hot and cold subduction systems
(Wada & Wang 2009; Syracuse et al. 2010). In colder subduction
systems, olivine is stronger with respect to quartz (i.e. small r)
and diapir growth is more sensitive to these changes in L (Fig. 6).
At depths of-70 km in thermal models of Izu, L shortens rapidly as
r increases with temperature (Fig. 9). This short-lived zone where
both L/h and r are small enables rapid diapir growth while quartz
and olivine viscosities are still relatively large, promoting diapirism
on cold slabs.

Variability in sediment-layer geometry can produce large differ-
ences in diapir detachment depths (Fig. 10). As with other param-
eters influencing diapirism, instability growth is most sensitive to
changes in these parameters in colder subduction systems where ab-
solute viscosities are larger. For diapirs growing from a 30 per cent
initial perturbation (Y/o = 0.3) in the Izu model of Syracuse et al.
(2010), reducing the sediment layer thickness from 2000 to 1000 m
deepens the depth for diapir detachment from -130 to -190 km.
In the Cascadia models, the same reduction in layer thickness only
produces a -20 km change in the depth of detachment. Because
diapirs grow significantly in the exponential (background-strain-
rate dominated) regime (Fig. 8), increasing the initial perturbation
amplitude has a similar effect as increasing the layer thickness
(eq. 19).

4.2 Sensitivity of instability times to variability in viscosity

The growth of sediment diapirs is sensitive to uncertainties in rhe-
ologic parameters and background strain rates. Varying these pa-
rameters changes effective viscosity, and thus we assessed the sen-
sitivity of instability times to uncertainty in viscosity by calculating
timescales for different background strain rates in the mantle wedge
(Fig. 11). As with other instability parameters, diapir growth is most
sensitive to changes in viscosity in colder subduction systems, such
as Izu, where changing EH from 10-13 to 10- 12 s reduces the
minimum thickness required for diapir formation by up to -550 m.
In the hot Cascadia models, changing E11 by the same amount re-
duces this minimum thickness by only -100 m. This one order of
magnitude change in background strain rate is equivalent to a one
order of magnitude change in effective viscosity (Fig. 2).

We assessed the effect of the quartz-to-coesite transition on sed-
iment rheology in our instability calculations. This phase change
occurs at a pressure of -2.5 GPa (-700 'C for Izu and -900
'C for Cascadia) (Fig. 2b) and would increase viscosity by up to

two orders of magnitude at low temperatures (700 "C) (Fig 2a). To

U, 2012 The Authors, GJ/, 190, 1361-1377
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Figure 9. (a-c) Subset of the model parameters shown in Fig. 3. (d) Instability times scaled for conditions at depth (lines) and depths for diapir detachment
found by integrating these instability times (circles) for Cascadia (top) and Izu (bottom). W&W refers to models from Wada & Wang (2009) in which the
decoupling/coupling transition is set to 80 km and the mantle-wedge temperature is allowed to evolve to steady state. Other models are from Syracuse et al.
(2010) and have the following prescribed parameters: (D80) Depth of decoupling/coupling transition is set to 80 km. (T550) The decoupling/coupling transition
occurs where the slab surface reaches the brittle/ductile transition at 550 "C. (W1300) The minimum temperature in the mantle wedge beneath the arc is held
fixed at 1300 'C. (X25) The decoupling/coupling transition is placed 25 km from the arc. See references for additional model details.

determine the maximum effect of this viscosity change on diapir
growth, we calculated instability times for a dry-coesite layer un-
derlying a wet-olivine half-space (Fig. 7). For exponential growth,
instability times are similar to those for wet quartz, while for super-
exponential growth, instability times are up to an order of magni-
tude slower. Consequently, including the quartz-to-coesite transition
would delay the onset of superexponential growth from -700 "C (for

a quartz layer) to >950 "C (for a coesite layer). In both hot and cold
subduction zones, however, a significant portion of diapir growth
occurs in the exponential regime (i.e. at temperatures <700-950 "C)
(Figs 8 and 9). Further, because vertical velocity increases either
exponentially or superexponentially with time, this late-stage
change in growth rate will have a minimal effect on the time-
integrated instability times.
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Figure 10. Locations of sediment diapir detachment in the D80 Syracuse et al. (2010) and the Wada & Wang (2009) models of the Cascadia and Izu subduction
zones. Scale on slab surface indicates the location of diapir detachment for different layer thicknesses and a 30 per cent initial perturbation.

5 DISCUSSION

Growth rates calculated from numerical models predict that, for
sufficiently thick sediment layers and/or large enough initial pertur-
bations, sediment diapirs will form in a broad range of subduction
zone settings (Fig. 10). For initial perturbations that are larger than
-30 per cent of the layer thickness, diapirs form and detach from
the slab within the mantle wedge (i.e. within -100 km of the slab
depth below the arc) when sediment layers are as thin as 200 m in
hot subduction systems (young slabs and/or slow subduction rates,
for example, Cascadia) or -800 m in cold systems (old slabs and/or
fast subduction rates, for example, Izu) (Fig. 11). Globally, esti-
mates for the thickness of subducted sediment layers range from
150 to >1000 m (e.g. Clift & Vannucchi 2004), suggesting that
subducted sediments commonly form diapirs. Our predicted min-
imum layer thickness for diapirism at the Izu arc is similar to the
result of Currie et at. (2007), who found that, in trenches with
old (>70 Ma), cold subducting slabs, diapirs forming in sediment
layers >350 m will detach within the mantle wedge. However,
Currie et aL. (2007) required a much larger density contrast
(<-400 kg m-3) than the ~-200 kg m-3 density contrast at which
diapirs grow in our models.

Our calculations of instability times suggest that sediment di-
apir growth depends strongly on subduction zone thermal structure,
which is largely influenced by the depth of the decoupling/coupling
transition (e.g. Wada & Wang 2009; Syracuse et al. 2010). In gen-
eral, the deeper the depth of this transition, the longer it takes sub-
ducting sediments to be heated by mantle flow from the back arc,
resulting in absolute viscosities that remain larger to greater depths,
increasing instability times (Fig. 9). At the decoupling/coupling
transition, rapidly increasing temperatures and steepening mantle
geotherms create a narrow zone in which the viscosity ratio be-

tween the sediments and mantle increases sharply and the length
scale for viscous decay in the mantle shortens-both conditions that
promote instability growth. These effects are strongest in cold sub-
duction zones where the contrast in slab and mantle temperatures is
more pronounced and diapir growth is most sensitive to changes in
secondary controls (i.e. r and L).

A key result of our study is that that the -200 kg m- den-
sity contrast between subducted sediments and the mantle wedge
alone is sufficient to drive diapirism. This contrasts with previous
studies in which sediments are entrained in cold diapirs that arise
from hydration of the mantle above the subducting slab (Gerya &
Yuen 2003; Gerya et aL. 2006; Gorczyk et al. 2006, 2007). In such
models, fluids supplied to the mantle wedge by slab dehydration at
depth may serpentinize the mantle, reducing the mantle density by
100-300 kg m-3 in a thick (-5-20 km) layer above the slab (e.g.
Gerya & Yuen 2003). Hydration would also drive partial melting
of the mantle, further reducing mantle density. These reductions in
mantle density would inhibit the growth of sediment diapirs into
the serpentine layer (by reducing the density contrast between the
sediment layer and overlying mantle), but may result in the devel-
opment of mixed plumes that rise off the top of the slab and entrain
the underlying sediment layer. Numerical models have suggested
that these hydrous, cold plumes initiate at depths of -50-200 km
(Gerya & Yuen 2003), similar to the depths predicted for the detach-
ment of sediment diapirs. However, because these plumes originate
from a much thicker buoyant layer, they are typically larger than
diapirs arising from the sediment layer alone, and thus have a much
greater effect on the dynamics and thermal structure of the mantle
wedge than the sediment diapirs that we consider here. In our mod-
els, sediment diapirs typically form at temperatures and pressures
exceeding the stability field for serpentinite (e.g. Wada & Wang
2009), implying that the density reduction by serpentinization of
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Figure 11. Slab-surface pressures (top) and temperatures (bottom) at the
location of diapir detachment plotted as a function of sediment layer thick-
ness in thermal models for the (a) Cascadia and (b) Izu subduction zones.
Values are for a 30 per cent initial perturbation with wavenumber k' = 1.
Colour coding is the same as in Fig. 9.

the mantle would not strongly influence the growth of sediment
diapirs.

In hot subduction zones, diapirs detach from the slab at temper-
atures between -850 and 1000 "C and at pressures between -2.5
and 5.5 GPa (Fig. I1). In cold subduction zones, diapirs detach from
the slab at greater depths (pressures of -4-6 GPa), but at slab-top
temperatures as low as -700 "C. Sediments at these temperatures
and pressures are near the fluid-saturated solidus (Nichols et aL.
1994; Schmidt et aL. 2004), but still below 1050 "C-the tempera-
ture threshold associated with the depletion of key trace elements
forming the sediment melt signature in high- and ultra-high pressure

metasediments that have undergone subduction (Behn et aL. 2011).
Thus, our results support the hypothesis that the sediment-melt sig-
nature observed in many arc magmas is generated when subducting
sediments detach from the slab as diapirs and rapidly rise into the
mantle wedge, where they would undergo melting (Gerya & Yuen
2003). Both sediment-derived melts and sediment diapirs would
rapidly (cm yr-' to m yr-') traverse the mantle wedge (Kelemen
et aL. 1997 and references therein; Hall & Kincaid 2001; Gerya
& Yuen 2003), satisfying U/Th isotope measurements from arc
magmas that imply slab-to-surface transfer times on the order of a
million years (e.g. Hawkesworth et aL. 1997). Ascending sediments
may also be re-laminated to the base of the upper plate (Hacker

et aL. 2011).
To assess how efficiently sediment diapirs transport sediments

into the mantle wedge, we allowed several models to run past the

instability time (Fig. 12). We found that diapirs form plume heads

-1

(b) T=1000'C (super exp.)

5 -6t=1.264t,

3

1.103
tb

t=tb

0 t=0

-1

Figure 12. Snapshots of quartz diapirs in an olivine half-space for an initial
perturbation wavenumber k' = I and amplitude Y = 0.3. In (a), viscosi-
ties are held constant but are calculated for a temperature of 400 'C and a
background strain rate of 10- 3 s , and growth is exponential. In (b), tem-
perature is set to 1000 'C, viscosities are allowed to change with increasing
local strain rates, and growth is superexponential.

by -2. 1tb at lower temperatures (400 "C), where instability growth
is exponential. At higher temperatures (1000 "C), where superex-

ponential growth dominates, plume heads are nearly fully formed at
th. In both cases, plume heads have a width of-- 0.2x. Since diapir
accent rates eventually reach m yr -, greater than the cm yr~' rate

of mantle corner flow, these instabilities can efficiently transport
sediments into the core of the mantle wedge near the location of
detachment from the slab. We also note that, in both cases, the rigid
bottom boundary condition causes a thin veneer of sediment to re-
main attached to the slab, which implies that diapir formation may
not be 100 per cent efficient in recycling sediments into the mantle

wedge.
The models considered here are 2-D with a horizontal bottom

boundary, and thus our instability timescales correspond to diapirs
forming in trench-parallel sheets. An important question for future
work is how sediment diaper growth rates will change for the case
of a 3-D, dipping slab. Theoretical and observational studies sug-
gest that both finger-like and sheet-like instabilities form in three
dimensions (Ribe 1998; Zhu et al. 2009) and have growth rates that
are similar to those for 2-D diapirs (Kaus & Podladchikov 2001).
Nonetheless, understanding the morphology of such instabilities
in three dimensions will be important for determining how sedi-

ments released from the slab will eventually be incorporated into
the melting region beneath the arc.

6 CONCLUSIONS

Using instability growth rates calculated from numerical models
of quartz diapirs forming in an olivine half-space, we predict that
sediment diapirs detach from the downgoing slab and ascend into
the mantle wedge in a broad range of subduction zone settings. The
growth of sediment diapirs is largely controlled by layer buoyancy
and the absolute viscosities of the sediments and mantle wedge.
In hot subduction zones (young slabs and/or slow subduction rates),

lower absolute viscosities enable rapid diapir growth and instabili-
ties can form and detach from the slab in layers as thin as -200 m.
Diapirs also form in arcs with cold subducting slabs, although larger
sediment layer thicknesses (>800 m) are required. These values are
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similar to estimates of the subducted sediment-layer thickness in a
majority of subduction zones, suggesting that sediment diapirism is
a common feature of arcs and may be responsible for the 'sediment
signature' in the chemistry of many arc magmas. The growth of
diapirs is sensitive to the thermal structure of the mantle wedge,
which, in subduction zone thermal models, is largely controlled
by the depth of the transition from a mechanically decoupled slab
and mantle to full slab/mantle coupling at depth. In models with a
deeper decoupling/coupling transition, the advection of heat from
the back arc to the slab by mantle flow is suppressed, lowering
mantle wedge viscosities and slowing the growth of diapirs. This
effect is most pronounced in cold subduction zones where the con-
trast between the cold slab and hot ambient mantle is more extreme
and where cold quartz sediments are weaker with respect to man-
tle olivine. In both hot and cold subduction systems, we predict
that sediment diapirs detach from the slab at temperatures below
1050 "C, the temperature associated with depletions in key trace
elements in UHP rocks that endured subduction. This supports
a hypothesis in which sediments are transported into the mantle
wedge by viscous flow before they undergo significant degrees of
melting.
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Chapter 4:

Upper-mantle anisotropy and hydration at the Middle America Trench

Abstract

This chapter presents measurements of upper mantle anisotropy that constrain the
extent of bending-induced faulting and upper-mantle hydration at the outer rise of the
Middle America Trench. Water carried to depth by a hydrated, subducting oceanic
upper mantle is the primary source of mantle hydration, an essential component of
many arc- and global-scale processes. The upper mantle is often assumed to be
efficiently dehydrated by melting at ridges, but recent seismic-reflection images of
bending-induced normal faults extending into the upper mantle, and reduced upper-
mantle seismic velocities under the outer rise near trenches, have been interpreted as
evidence that the subducting mantle is pervasively hydrated via serpentinization by
seawater penetrating through the crust along plate-bending-induced faults. This
seawater may fill cracks in the upper mantle and react strongly with olivine in upper
mantle peridotite, filling cracks and fault zones with serpentinite; or it may diffuse
between fault zones, pervasively serpentinizing the upper mantle. The seismic velocity
of serpentinized rocks is much slower than that of unaltered mantle rocks, and much of
the support for the hypothesis that subducting mantle is hydrated near the outer-rise
comes from isotropic seismic velocity analyses that assume observed slow velocity
anomalies can be attributed entirely to the presence of serpentine. However, the outer-
rise normal faults themselves, as well as inherited crystal-preferred orientation of
mineral grains in the upper mantle can produce azimuthally dependent seismic wave
speeds that are up to ~O.5 km/s slower in one direction than in another, an effect
comparable to the change in velocity due to -20% pervasive serpentinization.

Wavespeed models fit to delay-times from wide-angle, active-source seismic data
indicate that the upper mantle is between -1.57 and 6.89% anisotropic beneath the
outer rise at the Middle America Trench. This anisotropy can be explained by
combining wavespeed variations in a relic mantle fabric with anisotropy from cracks
and/or joints aligned along the strike of bending-related normal faults. Measurements
made using rays that turn at different depths indicate that anisotropy varies with depth
in the mantle, with anisotropy from aligned cracks composing a larger portion of the
wavespeed variations in the upper-most mantle. Anisotropy in both the upper-most
mantle and over depths up to 24 km below the Moho appears to include a component
attributable to large joints aligned with the bending-induced faults, although it is
unclear how much of this signal can be explained by crustal, as opposed to mantle,
faulting. Wavespeeds along raypaths that are dominated by propagation through the
deeper mantle are up to 2.29% anisotropic. Accounting for this anisotropy in seismic-
velocity-based measurements of serpentinization reduces current estimates for the water
content of the upper mantle offshore of Nicaragua from -2.5 to 1.5 wt%, a significant
difference in the water input to the mantle at subduction zones.
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1. Introduction

Water in the mantle has a significant effect on rock rheology and geochemistry and

plays an important role in geodynamic and geochemical processes on Earth. At

subduction zones, water supplied to the mantle wedge from the subducting lithosphere

drives mantle melting and the production of arc crust (Davies and Stevenson, 1992;

Iwamori, 1998). Over-pressuring and weakening caused by the presence of water at the

slab interface enables the lower plate to subduct (Wang et al., 1995), and water fluxing

through the down-going slab may force the transition from gabbro to eclogite at depth

(John and Schenk, 2003), increasing slab density and promoting subduction. Globally,

rheologic weakening caused by widespread hydration of the upper mantle allows for the

movement of tectonic plates (Hirth and Kohlstedt, 1996). Without this weakening,

plate tectonics may be impossible, with mantle convection on Earth resembling the

"stagnant-lid" convection thought to occur on other terrestrial planets (Solomatov and

Moresi, 1996). Together, arc volcanism and mantle convection enable global

biogeochemical cycles, and thus sustaining these processes through rehydration of the

mantle is essential for life on Earth. Subduction zones are the primary location where

water is cycled into the mantle, and understanding the mechanisms for hydration of the

subducting oceanic lithosphere, along with quantitative estimates for the input flux of

water into arcs, are critical components in our understanding of the role of water in

subduction systems and in global-scale mantle dynamics.

Water carried to depth by subducting oceanic lithosphere is the primary source of

mantle hydration (Figure 1). Subducting sediments and oceanic crust can contain large

quantities of water (Staudigel et al., 1995; Plank and Langmuir, 1998; Kerrick and
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Connolly, 2001), however much of this crustal water may be expelled through the

forearc before reaching the mantle wedge in some subduction systems (Klaucke et al.,

2008; Ranero et al., 2008). Water bound in hydrous upper mantle minerals is more

likely to be released at depth during subduction (Hacker, 2008), driving processes

within the wedge and hydrating the deeper mantle. The upper mantle is a

volumetrically much larger component of the subducting lithosphere than the crust and

may account for a majority of water fluxing into arcs, yet there are few constraints on

the degree of hydration of subducting oceanic upper mantle (Riipke et al., 2004).

The mantle is generally assumed to be efficiently dehydrated by melting at ridges.

However, recent seismic-reflection images of bending-induced normal faults that extend

into the upper-mantle (Ranero et al., 2003; Nedimovid et al., 2009), as well as

significantly reduced upper-mantle seismic velocities under the outer-rise and trenches

of arcs (Ivandic et al., 2008; Contreras-Reyes and Grevemeyer, 2008; Van Avendonk et

al., 2011; Lefeldt et al., 2012), have been interpreted as evidence that the subducting

mantle is hydrated by seawater penetrating through the crust along plate-bending-

induced faults (Faccenda et al., 2009). This seawater may fill cracks in the upper mantle

with free water, react strongly with olivine in upper mantle peridotite, filling cracks and

fault zones with serpentinite, and/or diffuse between fault zones, pervasively

serpentinizing the upper mantle (Ranero and Sallares, 2004; Faccenda et al., 2009).

The hypothesis that seawater flowing along outer-rise faults commonly hydrates

the upper mantle is largely based on isotropic seismic velocity analyses that assume

observed slow velocity anomalies can be attributed entirely to serpentinization (Van

Avendonk et al., 2011). Seismic velocities in serpentinized rocks are much slower than
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in unaltered rocks (Christensen, 1966), enabling seismic-travel-time-based estimates of

mantle serpentinization and thus the flux of water carried into subduction zones by

serpentinite. However, the outer-rise normal faults themselves, as well as an inherited,

strain-induced alignment of mineral grains along a crystal-preferred orientation (CPO)

in the upper mantle can produce azimuthally dependent seismic wave speeds that are up

to -0.5 km/s slower in one direction than in another (Shearer and Orcutt, 1986;

Hudson, 1981), an effect comparable to the change in velocity due to -20% pervasive

serpentinization (Christensen, 1966) (Figure 2). To accurately estimate the degree of

serpentinization at the outer rise using seismic travel times, the azimuthal variation of

seismic wave speed must be determined. Separating the competing effects of CPO,

cracks, joints, and hydration, which each have their own azimuthal dependence, can also

provide an additional constraint on the depth extent of outer-rise faulting and the

degree and distribution of hydration in the mantle (Figure 3).

This chapter presents preliminary models of azimuthal anisotropy in the upper

mantle beneath the outer rise of the Middle America Trench offshore of Nicaragua

(Figure 4). The models come from delay-time inversions of active-source, marine-

seismic data. Solutions for rays bottoming within different depth ranges show a clear

progression in the phase and polarity of wavespeeds from the upper-most mantle to up

to 24 km into the mantle. In the upper 100 m of the mantle, wavespeeds appear to be

affected by anisotropy from cracks and joints aligned along bending-induced normal

faults. At greater depths, the contribution to effective anisotropy from cracks is

minimal, yet wavespeeds for these depths also appear to be affected by jointing.

Although the anisotropy from jointing is likely, at least in part, a crustal signal, the
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change in anisotropy with depth suggests that these data may help constrain the depth

extent of faulting and hydration in the upper mantle.

2. Geophysical properties of a hydrated, subducting upper mantle

Evidence that the upper mantle is serpentinized by seawater moving along outer-

rise faults comes largely from seismic reflection images and tomographic velocity

models, as well as heat flow surveys. Slow upper-mantle seismic velocities at the Peru-

Chile, Kuril, and Middle America trenches have been observed and interpreted as

evidence for a serpentinized mantle (Walther et al., 2000; Ranero and Sallares, 2004;

Grevemeyer et al., 2007; Ivandic et al., 2010; Van Avendonk et al., 2011; Ivandic et al.,

2008; Fujie et al., 2013; Lefeldt et al., 2012). Offshore Nicaragua where the outer rise is

densely faulted, measured velocities range from 7.8 km/s (Walther et al., 2000) and 7.5

km/s (Ivandic et al., 2010; Ivandic et al., 2008) to as low as 6.9 km/s (Van Avendonk et

al., 2011) (Figure 5). If this velocity reduction is due to serpentinization alone, these

values imply that the upper mantle subducting at the Middle America Trench is

between about 10 and 30% serpentinized (Christensen, 1966), giving an average water

content of up to -3.5 wt% (Carlson, 2003; Van Avendonk et al., 2011). To the south

and offshore of Costa Rica, outer-rise faulting is not as extreme and upper-mantle

velocities are ~8.0 km/s (Van Avendonk et al., 2011), closer to the ridge-parallel

wavespeed of the unaltered upper mantle in the Pacific (Kawasaki and Kon'no, 1984;

Shearer and Orcutt, 1986). The hypothesis that slow observed seismic wave speeds are

due to serpentinite is supported by heat flow data from Costa Rica and Nicaragua.

There, measured heat flow is lower than expected, suggesting that the crust is perhaps

cooled by hydrothermal circulation through newly opened fault zones (Grevemeyer et
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al., 2005). However, these heat-flow values could also be explained by efficient

hydrothermal circulation through permeable seamounts and basaltic outcrops (Fisher et

al., 2003). Similarly, decreased seismic velocities could be explained as due to

anisotropy from cracking or other effects unrelated to serpentinization.

At the outer rise, upper-mantle seismic velocities may be slowed by pervasive

serpentinization, but relic, strain-induced anisotropy and/or anisotropy created by

bending-related faulting may also significantly affect mantle wave speeds (Figure 2). In

the Pacific upper mantle, azimuth-dependent delay times of upper-mantle refractions

(Pn) indicate that compressional wave speeds vary from -7.9 km/s to as fast as 8.4

km/s (Kawasaki and Kon'no, 1984; Shearer and Orcutt, 1986). This -7% anisotropy

could result from a CPO in which -22% alignment of individually anisotropic olivine

grains creates a bulk anisotropy (Morris et al., 1969; Shearer and Orcutt, 1986). CPO

can result from strain-induced grain rotation and recrystallization (Kaminski and Ribe,

2001; Kaminski and Ribe, 2002) that occurs during, for example, flow at mid-ocean

ridges (Marquart et al., 2007). In the absence of continued strain, such an inherited

anisotropic fabric may be progressively erased by pervasive serpentinization at the outer

rise (Horen et al., 2012; Wallis et al., 2011).

Changes in seismic wave speed and corresponding delay times from both CPO in

the upper-mantle and cracking are on the order of the effect that a -10-20% change in

the degree of pervasive serpentinization has on isotropic upper mantle velocities (Figure

2), a value similar to isotropic-velocity-based estimates of upper-mantle serpentinization

at the Middle America Trench (Walther et al., 2000; Grevemeyer et al., 2007; Ivandic et

al., 2010; Van Avendonk et al., 2011; Ivandic et al., 2008). There, isotropic mantle
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velocities on two-dimensional tomograms are systematically slower in the trench-

parallel direction than in the trench-perpendicular direction (Figure 5). These velocities

suggest the presence of azimuthal anisotropy with a fast direction oriented in the relic

plate spreading direction, consistent with measured anisotropy in the Pacific upper

mantle (Kawasaki, 1986; Shearer and Orcutt, 1986).

In faulted rocks with aligned cracks or joints, anisotropy depends on the geometry

and spacing of the cracks/joints and the stiffness of the un-faulted rocks and any void-

filling materials (Anderson et al., 1974; Hudson, 1981; Crampin, 1984; Thomsen, 1995;

Hudson et al., 1996; Hudson et al., 2001; Gurevich, 2003). For example, effective media

theory (Hudson, 1981) predicts that dilation of closed, but wet, disk-shaped cracks in

dunite (Vr = 8.55 km/s) that have a radius of 10 m and an average spacing of 100 m

cause P-wave speeds to vary from a minimum of 8.24 km/s along azimuths oriented 450

with respect to the cracks to maxima of 8.55 km/s in crack-normal and crack-parallel

directions, a 3.6% difference. Expanding these same cracks with 10 cm of serpentinite

(Vp=5.5 km/s) would increase their stiffness and reduce the anisotropy to 1.5%

(Vp=8.42-8.55 km/s). Waves traveling 50 km through such rocks would show delay

times of up to ~100 to 200 ms. The geometrical effect of seismic waves crossing large

joints (i.e., joints with a width that is on the order of the seismic wavelength) filled with

slow, isotropic material-a model that could represent wide zones of serpentinization

along major fault zones-at variable azimuths would also produce anisotropy. For

example, 00-m-thick, serpentinite-filled joints spaced every 2 km would produce 1.8%

anisotropy with average P-wave velocities varying from 8.40 km/s in the joint-

perpendicular direction to 8.55 km/s in the joint-parallel direction. At 50 kin, delay
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times through this jointed media would be as large as 100 ms. (Equations for

wavespeeds in materials containing cracks and joints are given in Section 3.3.2.)

Controlled-source electromagnetic data collected offshore of Nicaragua suggest

that bending-induced faulting produces an anisotropy in the electrical resistivity of the

crust (Key et al., 2012). There, crustal resistivity decreases by up to a factor of five with

the onset of outer-rise faulting. Furthermore, resistivity in the incoming, un-faulted

crust is isotropic, while the crust at the outer rise is strongly anisotropic with a

conductive direction oriented parallel to the bending-induced faults. This observed

decrease in resistivity and corresponding increase in anisotropy can be explained by an

increase in porosity along parallel fault planes, supporting the hypothesis that these

faults provide pathways for seawater to penetrate into the lithosphere. This electrical

anisotropy and inferred fault-controlled-porosity structure corresponds to a seismic

anisotropy in which wavespeeds are slower in the fault-normal direction than in the

fault-parallel direction, opposite the orientation of anisotropy from a relic CPO in the

incoming upper mantle. Thus, a transition between these two modes of anisotropy is

expected to occur across the maximum depth extent of bending-induced faulting, and

isolating these effects provides to a means for testing models of mantle hydration.

Cracks, joints, and a relic CPO may all be present in the upper mantle beneath the

outer rise of subduction zones, and we expect that effective wavespeeds through such a

composite material would include wavespeed variations from the different sources of

anisotropy. Each of these potential sources of anisotropy has a unique azimuthal

dependence (Figure 2), and measurements of effective wavespeeds should help constrain
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the distribution and extent of jointing, cracking, and/or pervasive serpentinization in

the upper mantle (Figure 3).

3. Measurements of upper-mantle anisotropy

We measured upper mantle anisotropy under the outer rise of the Middle America

Trench using a delay-time approach (Morris et al., 1969; Shearer and Orcutt, 1986;

Gaherty et al., 2004). In this method, the difference (i.e., residual or delay-time)

between traveltimes for rays traced through a reference isotropic velocity model and

traveltimes picked on seismic data are calculated as a function of source/receiver

azimuth. The amplitude, orientation, and source of anisotropy (i.e., cracks/joints vs.

CPO) can be constrained by fitting these delay times with models of wavespeeds in

anisotropic media.

3.1. Seismic data and traveltime picking

We used active-source seismic data collected as part of the 2008 TICO-CAVA2

experiment (Van Avendonk et al., 2011) to develop isotropic models and calculate delay

times. We focused on ocean-bottom seismograph (OBS) data from 34 sites located every

~15 km along the spokes of a wheel-shaped array centered on the outer rise offshore of

central Nicaragua (Figure 4). The OBS were short-period instruments developed and

deployed by the Scripps Institution of Oceanography (SIO) and the Woods Hole

Oceanographic Institution (WHOI), which are part of the U.S. OBS Instrument Pool

(OBSIP), and they were deployed from aboard the R/V New Horizon. The R/V Marcus

G. Langseth's 36-element-, 108-L-airgun provided the sound source, and the array was
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towed at a depth of 6 m. The OBS recorded shots fired at intervals of -50 to 500 m

along the spoke lines and circular lines along portions of the array's circumference.

We processed the OBS data for traveltime picking on common-receiver gathers

(Figure 6). To minimize energy from previous shots at long source-receiver offsets, we

ignored traces for shots fired on time intervals of less than 43 seconds, a threshold

found to enable reliable identification of refraction phases at offsets up to - 175 km. To

further minimize the impact of low-energy shots on trace-to-trace coherency, we also

ignored traces for shots fired with less than 27 elements (i.e., 3 strings) of the airgun

array.

We solved for OBS locations using the traveltimes of direct arrivals through the

water (Pw). We picked Pw traveltimes on common-receiver gathers of traces from

shots fired along lines that cross instrument sites. In this case, we defined the arrival

time of the direct wave as the first break from zero amplitude in data filtered with a

minimum phase bandpass filter from 30 to 80 Hz. We assumed that instruments were

on the seafloor at depths known from multi-beam bathymetry data and found locations

that minimize the misfit between the picked Pw times and traveltimes calculated for a

constant 1500 m/s water velocity.

We picked traveltimes for the following crustal and upper-mantle phases:

refractions through sediments on the oceanic plate (i.e., abyssal sediments) or in the

upper forearc (P1), refractions through the lower forearc (P2), refractions through crust

(Pg), slab-surface reflections (PgP), Moho reflections (PmP), and upper-mantle

refractions (Pn). We made picks on common-receiver gathers with data grouped by

shot line, filtered with a minimum-phase bandpass filter from 3 to 15 Hz, and reduced at
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8.55 km/s. To maintain consistency in picks between crossing shot lines, we used the

open-source program OpendTect (dGB Earth Sciences, 2012) to visualize and pick

traveltimes in three dimensions, with traces plotted at shot locations (Figure 6 inset,

Figure 7).

The amplitude of delay times from anisotropy is expected to be at most -500 ms,

yet the period of the seismic wavelet for the lower crustal and upper mantle phases is

~150 ms in the data. It was thus necessary to consistently pick traveltimes at the same

phase (e.g., first-break, minimum, or maximum) of each wavelet. For data filtered with

minimum phase filters, the first break from zero amplitude is considered a reliable

reference for the arrival time of a wave (Scherbaum, 2007). The data are, however,

somewhat noisy, especially at long offsets (>50 km), and the first break is difficult to

identify. Thus, we defined the arrival time of lower crustal and upper mantle phases as

the first minimum or maximum amplitude. OpendTeds seeded-picking functionality was

used to shift picks made manually to the nearest minimum or maximum amplitude

within 30 ms of the pick, and, where permitted by trace-to-trace coherency,

automatically pick traveltimes between these manual seeds.

The Langseth also recorded multi-channel seismic (MCS) data along all the shot

lines using a 636-channel, -8-km-long hydrophone streamer, and we used these data to

pick traveltimes to the basement reflector (Figure 8). These basement picks constrained

sediment thickness in the isotropic models. We processed the MCS data using a

standard sequence of common-mid-point (CMP) gathering, minimum-phase bandpass

filtering from 21 to 120 Hz, normal-move out (NMO) correction using a one-

dimensional velocity function hung from the seafloor, spherical divergence correction,
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trace editing, stacking, and Kirchhoff time migration using velocities based on the

stacking velocities. Since this study is only interested in using basement structure to

account for variations in sediment thickness in Pn traveltimes, we did not process these

data beyond this brute stacking and time migration.

3.2. Reference isotropic model

We are interested in traveltime variations in the upper mantle beneath the outer

rise as a function of propagation direction. However, waves passing through this region

of the upper mantle must also pass through water, oceanic and/or forearc sediments,

and oceanic crust. At subduction zones, the thickness and velocity structure of these

layers varies in three dimensions (Moore et al., 2007; Walther et al., 2000; Van

Avendonk et al., 2011; Ivandic et al., 2008), producing path-dependent variations in

traveltimes that are unrelated to anisotropy. To account for these traveltime differences

between different pairs of sources and receivers, we developed a 3D isotropic velocity

model that includes these structures and calculated traveltimes through this model by

raytracing. We then subtracted these isotropic traveltimes from the observed

traveltimes to calculate delay times from anisotropy.

We calculated traveltimes through isotropic models using the shortest-path method

described by Moser (1991) and implemented by Van Avendonk (1998), Van Avendonk et al.

(1998; 2004), and A. Harding at SIO. This graph method approximates raypaths by

first connecting straight-line segments between all nodes in a grid and calculating

accumulated traveltime along this set of all possible paths. Raypaths are then found by

choosing routes that minimize traveltime between unique combinations of source and

receiver locations, which is consistent with Fermat's principle. Reflections or
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refractions in multi-layered media can be modeled by requiring that rays turn at or

within a prescribed boundary or layer.

We based velocities in the 3D model on velocities found by fitting traveltimes in a

2D, trench-perpendicular model along Line NorthEast (Figure 9). We defined the

overall slab geometry in the 2D model by fitting a polynomial to the seafloor from

seaward of the trench and modifying the slab-dip angle at depth beneath the forearc to

fit PgP and Pn. Seafloor depths in this model are from integrated multibeam and

satellite-altimetry derived bathymetry data (Ryan et al., 2009). The basement structure

came from converting two-way traveltimes for basement reflections in the MCS data to

depth using sediment velocities measured by a sonic log in DSDP Hole 67-495

(Shipboard Scientific Party, 1982), which is located on the outer rise to the northwest of

our experiment. Abyssal sediment velocities in the models also came from these

borehole data. We modeled the thickness of the oceanic plate by fitting Pg, PmP, and

Pn recorded by instruments deployed on the seaward end of the line. This crustal

thickness is constant in all models.

We developed two 2D isotropic models: (1) NorthEast_vid: a simple model in which

a one-dimensional velocity-depth function is hung from the slab surface and (2)

NorthEastv2d: a model in which mantle velocities from NorthEast_ vid are slowed

beneath the outer rise by a tomographic inversion. Velocities in NorthEast_vid are best-

fit solutions from a grid search over values for velocity at the top of each layer and

velocity gradients with depth in the layers. In this model, we solved for velocities in the

oceanic crust and mantle using Pg, PmP, and Pn from OBS instruments on the seaward

end of the line, where the seafloor is unaffected by outer-rise faulting. These velocities
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are too fast to fit phases passing through the crust and upper mantle under the outer

rise, but this model captures variations in sediment thickness and the overall shape of

the subducting slab.

NorthEastv2d is the result of a tomographic inversion that attempts to reduce the

misfit in NorthEast_vid along paths that cross through the crust and upper mantle

under the outer rise. Forearc velocities were also allowed to change to match

traveltimes for P1, P2, and PgP. For this inversion, we used a traveltime tomography

code developed by Van Avendonk (1998), Van Avendonk et al. (1998; 2004), and A.

Harding at SIO. This code uses a damped least squares minimization of traveltime

residuals with smoothness constraints to update an initial model along raypaths. These

traveltime residuals and raypaths are calculated using the shortest-path method

described above.

We created a 3D isotropic model for calculating delay times for all azimuths by

extruding velocities from NorthEastv2d along the orientation of magnetic reversals in

the oceanic crust (azimuth of 312.90), which is assumed to be normal to the relic

spreading direction, and then shifting these velocities up or down in depth to account

for changes in the 3D bathymetry and slab structure. The 3D slab geometry is based on

a combination of large-scale trends in the bathymetry data, basement structure from the

MCS lines, and, at depth, the slab dip in the 2D models. Extrusion of the slow velocities

under the outer rise in NorthEastv2d created a trench-parallel region of reduced

velocities that generally agrees with the shape of a slow velocity anomaly attributed to

upper mantle serpentinization in 3D isotropic tomography from the same region

(Lefeldt et al., 2012).
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3.3. Effective anisotropyfrom cracks, joints, and/or CPO

We constrained the orientation and amplitude of upper-mantle anisotropy by fitting

delay times calculated for Pn with models of wavespeeds (i.e., phase velocities) in

transversely isotropic media. Materials are considered "transversely isotropic" if they

have an axis of symmetry that is normal to a plane of isotropy. Although this form is

one of the simplest models of anisotropy, it is applicable for modeling wavespeeds in

mantle rocks. Olivine and pyroxene, the dominant minerals in the upper mantle, exhibit

this kind of symmetry and are strongly anisotropic to the propagation of seismic waves.

Since these minerals tend to align along a CPO in the presence of strain (Jung and

Karato, 2001; Zhang and Karato, 1995; Karato, 2008), horizontal flow at seafloor-

spreading centers causes the upper mantle to be transversely isotropic with fastest

wavespeeds in the direction of spreading (Ismail and Mainprice, 1998; Kaminski and

Ribe, 2001; Kaminski and Ribe, 2002). As the plate cools and moves off axis, this fabric

is retained (Backus, 1965; Shearer and Orcutt, 1986; Kawasaki and Kon'no, 1984), and

thus the upper mantle under the outer rise may also be transversely isotropic. At the

outer rise, faults slip along reactivated abyssal-hill fabric or break along new, trench-

parallel orientations if the abyssal-hill fabric is oriented at a sufficient angle (>25') to

the trench (Delescluse and Montesi, 2008; Billen et al., 2007; Masson, 1991), producing

sets of parallel fault planes with an axis of symmetry that is approximately aligned in

the trench-normal direction. This symmetry causes wavespeeds in rocks with cracks or

joints aligned along fault planes to also be transversely isotropic with the slowest

wavespeeds in the fault-normal direction (Anderson et al., 1974; Hudson, 1981). At the

Middle America Trench, the relic plate spreading direction is also roughly normal to
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the trench and the trend of the bending-induced faults, and thus the slow direction from

faulting is aligned with the fast direction from a relic, spreading-induced CPO fabric.

Characterizing the effective anisotropy from these competing effects was a principal

goal in this study.

3.3.1. Wavespeeds in transversely isotropic media

Expressions for seismic wavespeeds come from solutions to the equation of motion

(Crampin, 1981; Thomsen, 1986), which, for small displacement caused by seismic

waves traveling in anisotropic elastic media, is (Landau and Lifshiz, 1970):

a2U a2U k
a2 Cijkl

where p is density, u1 is a displacement, t is time, x is the right-handed Cartesian

coordinate, and C,,kI is the elastic stiffness tensor. Defining a plane wave as

u,=aexp io t- q (2)

where d is a vector defining the direction of the displacement and 4 is a slowness

vector, and substituting Equation (2) into (1), yields (Karato, 2008)

pa,= 1 C jq qa(
j,k J

Then, by defining slowness as

I

q= i7nj (4)

where V is the phase velocity of the seismic wave and ii is a unit vector in the

propagation direction, we have the Christoffel Equation (Crampin, 1981; Karato, 2008)
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XTk- pV2ik)a, =0 (5)
k

where

Tk XCklnnlI (6)
ij

For the case of azimuthal anisotropy, we are interested in solving for phase velocity

as function of angle in the horizontal plane, defined here as x3 =0. If X 3 =0 is a plane of

symmetry, and 6 is the angle between the x, direction and the displacement direction,

Equation (5) can be solved for V(9) by rotating the stiffness tensor Cijk, into (Crampin,

1981; Karato, 2008)

3

C Iikl I~ aaIakau rStuC',,= aiTaJ~ak~a, C, (7 )
r,sJ,u=1

where aii is the rotation matrix

cosO sin6 0 1
as -sin9 cos9 0 (8)

L 0 0 1

This rotation is a multiplication of the fourth rank stiffness tensor with four matrices

that each contain sin6 and cos9 terms, and thus exact solutions for V(6) are a

combination of sin and cos functions of up to 40 (Karato, 2008).

The stiffness tensor is symmetric such that Cik, = Cjik and CJk, = C ijk , and the

number of indices can be reduced from four to two using the Voigt notation where

subscripts I1 -> , 22- 2 , 33-+ 3, 23 ->4, 32-+4 , 13->5 , 31->5, 12--+6, and

21 -+ 6. Then,
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C11 C12  C13  C14  C15  C16

C12 C 22 C 23 C 24 C 25  C 26

C13 C23 C33 C34 C35  C36

'' C1 C24 C34  C44 C45  C(9
C15  C25  C35  C45 C55  C56

C16 C26  C36  C46  C56  C66

Phases in general anisotropic media propagate at an angle to the displacement front

(i.e., wavefront). In weakly anisotropic media, however, such as a deformed and/or

faulted upper mantle (Thomsen, 1986; Thomsen, 1987), the phase direction is

approximately normal to the wavefront. Waves traveling in this quassi-normal

direction are referred to as quassi-P waves (qP), and we define the phase velocity of this

wave as c=V2 =V(n2). In transversely isotropic media with x 3 =0 as the plane of

symmetry, C15 = C 5 6 =0 , and the assumption of weak anisotropy implies that

C16 < ,C66 (Thomsen, 1986). Then, rotating Cij = Cij, about the x3 axis, inserting

the result into Equation (5), and solving for phase velocity yields (Crampin, 1981;

Thomsen, 1986)

c2 =A+Bcos20+Csin2O+Dcos4O+Esin4O (10)

Here, the coefficients depend on five independent elastic constants and are defined by
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A= 3(C1 +C 22)+2(C, 2 +2C6)
8 p

B= (C, -C 22 )
2p

C=(C16 + )C26),p (11)

D= C+C 2 2 -2(C 12 +2C66)
8p

E = C16 -C26

2p

Increasing levels of symmetry reduces the azimuthal dependence in wavespeed. If

x2= 0 is also a plane of symmetry, C,6 = -C 26 , wavespeed only varies with angle in the

horizontal plane, and Equation (10) can be reduced to (Crampin, 1981)

c2 =A+Bcos2O+Dcos46 (12)

In isotropic media, C11 = C22 , and Equation (12) becomes simply

c2 =A= C11 A+2p)

p p

where A= -5C 12 /3 is the Lame parameter andg = C4= (C11 -C 1 2 )/2 is the shear

modulus.

3.3.2. Transverse isotropyfrom aligned cracks and joints

Hudson (1981) showed that isotropic solids containing a random distribution of

aligned, ellipsoidal-shaped cracks (Figure 2) can be characterized as an effective

transversely isotropic media. In this theory, the minor axis of the cracks c is assumed to

be much shorter than the seismic wavelength, and wavespeeds are calculated by

deriving effective elastic constants for waves propagating through a set of randomly
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distributed, yet aligned, cracks. For a material with cracks with uniform major axes of

radius a and V cracks per unit volume, a crack number density can be defined as

e = va 3  (14)

The equations below are first-order solutions that assume a small crack density (i.e.,

e<l).

Cracks in the crust and upper mantle are likely to be filled with water and/or

serpentinite (Faccenda et al., 2009). For cracks filled with a weak material such as

serpentinite, wavespeed is given by (Hudson, 1981)

c2 ~ A, + B, cos20 + D, cos46 (15)

where 0 is the angle of propagation measure from the symmetry axis and

A,= (< 2_j) ,a2e(j7 + 2 __+ _2y__

p 3 2p(A +p)(1 +K) p(A1+p)(1+K) (3Ak+4p)(1+M )

B =-a2e 2 +16/8216)
3 p(A +p)(1 +K)

D 4 a2, P _ 2p
3  e2(A+p)(1+K) (3A+4p)((+M))

A and y is the Lame parameter and shear modulus, respectively, of the un-cracked

solid. K and M are constants that describe the relative elastic stiffness of the rock

matrix and the crack-filling material. These terms are given by

K= 1 a(IC'+(4/3)p') A +2p
Ir C/I ()+1 (17)

M= 4 (ap' k)+2p
7 cp 3A+4p
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where p' and K'= A'+2/ 3p' are the shear and bulk moduli of the crack-filling

material, respectively.

If the cracks are closed and not wetted by a fluid, K'= P'=0 and K = M =0. If

the cracks are filled with a fluid, p'=0 , and

1 a ( A +2puK, = K,,_=0 =Ia c
c7rcp A+ ) (18)

MW=M o

Then, the coefficients in Equation (15) become

, A2p 2 4,2 7 + A2 2p

BA = a~ +68 2e (19)
p 3 2p(A+py)( + K) p(+py) (1+K) (3A + 4p)

B, 4 a2 e2Ap +16/ 8p12

3 p(A+p1)(I1+ K)

4 2 (2 2p
3 2p(A+p)(1+K) (3A+4p)

Zones of damage and/or alteration along planar faults zones can be

characterized as cracks in which a >>c , and we refer to this geometry as "jointing." In

materials with regularly spaced, parallel joints, the crack area per unit volume is 1/ d,

where d is the spacing between the joints, and this area is equivalent to vra2 for

circular cracks. Thus, Equation (15) is also valid for jointed materials, provided that the

crack thickness c in Equation (17) is replaced with 4c /3. In general, for crustal and

mantle rheologies, this factor of 4 /3 causes B, > D,, and anisotropy from jointing is

dominated by the 20 term. For cracks, O(B,) = O(D,) and anisotropy is periodic to

40. If the cracks are closed, but lubricated by a fluid, wavespeed variations are only a

function of 49 , and Equation (15) becomes (Hudson, 1981)
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c2 A, + D, cos 40

where

1 56 p

P( 3 A+p 21

* 8 p 3A1+ 4p121

3.3.3. Effective wavespeeds in compositefabrics

At the outer rise, conjugate sets of trenchward- and seaward-dipping faults create

two sets of cracks and/or joints with symmetry axes aligned in the dip direction.

Hudson (1981) showed that wavespeeds in materials with sets of cracks aligned in

different orientations can be found by rotating C1k for each set such that the x3 axis is

the axis of symmetry and summing the results to find the effective elastic stiffness

tensor. If the different orientations are aligned at right angles to one another,

wavespeeds are transversely isotropic with wavespeed given by Equation (10), but with

the effective stiffness constants substituted for C in Equation (11). Aligned cracks are

a particular case of transverse isotropy, and wavespeeds in rocks with an arbitrary

combination of various sources (i.e., CPO, cracking, and jointing) of transverse isotropy

oriented at right angles to one another would also yield effective wavespeeds in the

form of Equation (10). At the outer rise offshore of Nicaragua, the relic spreading

direction is approximately normal to the orientation of bending-induced faults, and we

assume that the combination of a relic CPO fabric, aligned cracking and/or parallel

jointing produces effective wavespeeds that are transversely isotropic.
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3.4. Delay-time inversionfor anisotropy

We solved for parameters in models of transverse isotropy via least-squares

inversions of delay-time data. Delay-time variations with azimuth are given by

r r
r (r,6)= - __ (22)

co +6c(6) co

where r is the propagation distance in the symmetry plane and co = c - 3c is a

reference wavespeed. Delay time is thus a function of both wavespeed and propagation

distance, which is different for each raypath, and including r in inversions for

wavespeed provides an additional constraint on anisotropy.

If we define a = ao+ al and co = (a0)" 2 , Sc is

(Sc) 2 = a +a cos20+a 2 sin 20+a cos46+a sin 40. (23)

Then, we define r for each unique raypath as

ri=tt -to-Ri-Sj - (24)

where the subscripts i=[1,2,...,N] and j=[1,2,...,M] refer to N and M receiver and

source locations, respectively, tj is the observed (picked) travel time, and

T = r /(ao) 1 is the travel time through the isotropic reference model. R, and S are

static corrections that account for errors in the isotropic model near individual receivers

and sources, respectively, and ey is the error from picking and remaining path-

dependent misfit in the isotropic model. Then, setting Equation (22) equal to (24) yields

r-
tI -to i + +S +ej (25)Sc(0,) J
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To measure anisotropy, we seek solutions to Equation (25) that minimize e.j. By

setting cj = 0 and defining

Ty=ty1-t~

F (r-,1,64,8c(6j),Ri,Sj)= c()+ R, + SJ

Equation (25) becomes the objective function

T = f (r,,6c(6j),R,,S)

(26)

(27)

or

where A is a Jacobian

given by

T = Am, (28)

matrix that relates model parameters in m to delay times. A is

af I
dmo

dmo

afNM

dmo

af I
dmi

dm,

afNM

dmi

af I
dmL

dmL

afNM

dmL

(29)

where L = 5+ N + M is the total number of parameters. The quotient r / 6c in

Equation (26) causes derivatives in the Jacobian to be functions of wavespeed

coefficients, and a joint inversion for wavespeeds and static corrections is thus non-

linear.

The Jacobian becomes linear if the problem is formulated in terms of slowness

q= C' . To order 40 , slowness variations have the form
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Sq(6)~ bo +b, cos 29+b 2 sin26+b 3 cos4O+b 4 sin46,

and we rewrite Equation (27) as Ti = f, where

f= (bo+b cos26 + b2sin26+b3cos46+b4sin 46) + R,+ S.

Then,

T = A'm'.

Non-zero terms in the Jacobian A' are

r = ij os (20j)
ijm a3m'" 2= r sin(20 )

(33)

and =1.
m'+N+j

The model parameter vector m' includes both the slowness coefficients and static

corrections, arranged as

~ , ~bo0 F

m 
b L

R1

and

RN

m5+N+l S

M5+N+M N

(34)

Solving Equation (32) for [m',m',m',m'] = [bb2,b 3 ,b4 ] yields a best-fit solution for

slowness variations as a function of azimuth, which can in turn be used to solve for

effective elastic stiffness constants via the anisotropic wavespeed parameters in

Equation (10).

In practice, delay times are irregularly distributed as a function of azimuth,

causing the inversion to preferentially fit data clumped, for example, along line
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(3o)

_fi =r jcos(46gj), 2L=r sin(406j),

af' "
am" = 1,

5mi,

m7 1+N



azimuths. The data can be regularized by applying a linear smoothing operator A in

Equation (32), giving

TA = A'm'A. (35)

In this study, A takes moving averages within overlapping azimuth bins that range in

width from 5 to 200.

Receivers, and especially sources, are also irregularly distributed with azimuth.

Consequently, the inversion is able to reduce misfit by applying statics that vary with

azimuth, distorting measurements of anisotropy. Introducing a weighting scheme that

penalizes large statics would mitigate this problem; however, in this study, we choose to

ignore the static corrections and attempt to minimize error via the anisotropic

parameters alone.

3.5. Data binning and wavespeed solutions

We solved for upper mantle anisotropy at the outer rise using delay times from

rays that reached maximal depth (i.e., "bottomed") within an 80-km-wide, circular

region centered on the outer rise (Figure 11). This bin is roughly centered within the

array of sources and receivers and includes paths with source-receiver azimuths that

range from 0 to 3600 (Figure 10). We grouped these data by depth of the ray-

bottoming point beneath the Moho (Figure 12) and inverted the data for anisotropic

slowness parameters in each depth bin (Figures 13-15). To regularize the distribution

of data with azimuth, we used a smoothing operator in the inversion to take moving

averages within overlapping azimuth bins. Results for different bin widths are shown in
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Table 1. We then used slowness parameters from these inversions to solve for the

equivalent wavespeed parameters in Equation (10) (Figure 16).

4. Results and discussion

4.1. Depth-dependent upper-mantle anisotropy

Wavespeed models for data grouped by depth of ray-bottoming points indicate that

anisotropy varies with depth in the mantle beneath the outer rise of the Middle America

Trench (Figure 16 and Table 1). Within 0.1 km of the Moho, the fastest and slowest

wavespeeds differ by +.40 to 6.90%, with the slow direction oriented along azimuths

between 82 and 840. Over depths of 0.1 to 1 km, this direction is the fast direction, but

anisotropy is weak, and wavespeeds only vary by up to 1.57 to 2.27%. Over deeper

depth ranges (1 to 2 and 1 to 24 km), the fast direction is oriented at ~84* and

wavespeeds vary by 1.97 to 2.29%, similar to the anisotropy from depths of 0.1 to 1 km.

Over all depth ranges, the largest amplitude variations in wavespeed have a 29

periodicity, and larger 46 terms are required to fit data from depths just below the

Moho.

The phase of wavespeed variations over depths from 0 to 24 km into the mantle

suggests that outer-rise faulting strongly affects upper-mantle anisotropy.

Measurements of anisotropy attributed to a CPO of olivine grains in the Pacific upper

mantle (Shearer and Orcutt, 1986; Kawasaki, 1986) suggest that the incoming,

unaltered mantle at the Middle America Trench is anisotropic with a fast direction

aligned with the ~470 fossil spreading direction. In models of data from within 0.1 km

of the Moho, the slow-wavespeed direction is orientated at ~450 to the east of the ~47*
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fossil spreading direction, which is also roughly the average dip direction for bending-

related normal faults at the outer rise (Figure 16). Over 1 to 24 km below the Moho,

the fast direction is orientated at ~450 to the east of the fossil spreading direction,

opposite in polarity from the measurement made just below the Moho.

The -45' phase shift and polarity reversal may be produced by a combination of

jointing and cracking in a relic mantle fabric. Figure 17 shows possible models of

transverse isotropy that, when combined with a model of the unaltered Pacific upper

mantle, reproduce the measured wavespeed variations. These decompositions were

found by a least-squares inversion that solved for effective wavespeed variations from up

to three transversely isotropic medias, and the orientation of the symmetry axis in each

fabric is independent of the orientation of the other fabrics.

Over 0 to 0.1 km below the Moho, measured wavespeeds can be generally explained

by combining Pacific anisotropy with a model that has a dominate period of 26 and a

slow direction ~25* to the east of the relic spreading direction (Figure 17a). This

second component is suggestive of wavespeed variations in media with large joints

oriented perpendicular to the spreading direction (Figure 2),- which is the strike

direction of outer-rise faults (Figure 4), but with non-zero 46 terms that skew the slow

direction by ~150 to the east. Wavespeeds for rays bottoming within 100 m of the

Moho can be better modeled by introducing a third component that is periodic in 46

(Figure 17b), suggestive of wavespeeds in media with aligned cracks (Figure 2). In this

three-component media, the slow directions for both the 26 and 46 components are

aligned in the spreading-parallel/fault-normal direction, consistent with a model of both

cracks and joints aligned along the fault zones and with the electrical anisotropy
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observed by Key et al (2012). Rays used to solve for anisotropy over this shallow depth

range travel ~50 to almost 100% of total propagation distance in the crust, and a

significant portion of the signal from faulting is likely associated with propagation in

the crust.

Over depths of 1 to 24 km below the Moho, the 40 component attributed to

cracking is not required to explain wavespeed measurements (Figure 17), implying that,

at these depths, cracking may be less intense. A 26 component consistent with joints

aligned with outer-rise faults is, however, needed to reproduce the measured effective

wavespeeds, suggesting that joints may be solely responsible for the change in effective

wavespeeds with respect to the unaltered Pacific upper mantle. Rays bottoming at these

depths travel -90% of total propagation distance in the mantle, and this apparent

change in the contribution to anisotropy from cracking, which is a small signal in the

upper-most mantle, may result from preferential sampling of mantle versus crustal

anisotropy. Both the upper-most and deeper mantle appear to include a significant 26

component attributable to joints (Figure 17), suggesting that joints are present in both

regions of the mantle and/or both measurements include a signal from joints in the

crust, although we have not yet isolated the crustal contribution to total anisotropy.

4.2. Implicationsfor mantle hydration

Constraining the extent of serpentinization in the upper mantle will require fully

separating the wavespeed effects from faulting in the overlying crust and mantle from

wavespeeds at a depth of interest. However, the preliminary models presented here

have potential implications for estimates of uppermost mantle hydration. The change in

the polarity of anisotropy between depths just below the Moho and deeper depths in the
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mantle indicates that the strength of anisotropy from crustal faulting decreases with

respect to the strength of anisotropy from an inherited mantle fabric. While this change

may come from changes in relative propagation distance in the mantle versus the crust,

this measurement indicates that anisotropy inherited from the incoming Pacific upper

mantle is, at least partially, preserved under the outer rise. In the absence of mantle

shear, serpentinization is likely to progressively destroy relic anisotropy from a CPO of

mantle minerals (Horen et al., 2012; Wallis et al., 2011). This effect is small for small

degrees of serpentinization (Horen et al., 2012; Wallis et al., 2011), and this evidence for

preservation of mantle fabric does not necessarily preclude estimates that the

subducting upper mantle at the Middle America Trench is up to -30% serpentinized

(Van Avendonk et al., 2011).

Our results indicate that the upper mantle (1 to 24 below the Moho) is anisotropic,

with azimuthal wavespeed variations of up to 2.29%. These azimuthal variations with

must be accounted for when inferring the degree of mantle serpentinization from

isotropic velocities found by tomography. In the deeper mantle, measured wavespeeds

at the azimuths of both Lines NorthEast and SERP are near mean values (Figure 18).

Thus, these values could be compared directly to average wavespeeds measured in

mantle rocks with varying degrees of serpentinization, leading to a conclusion that the

upper mantle is, on average, -14% serpentinized (Figure 19). (Velocity-based estimates

by Van Avendonk et al. (2011) range from -40% in the upper-most mantle to 0% at 24

km below the Moho.) However, residuals for our models of anisotropy suggest that

these wavespeeds fail to account for a significant component of anisotropy from a relic

mantle fabric (Figure 18). Assuming that the residuals resemble true wavespeeds in the
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mantle places Line SERP inline with the slow-wavespeed direction, reducing the

estimate of upper mantle serpentinization to -10% (Figure 19). This ~4% decrease in

the estimate of serpentinization is equivalent to reducing the weight fraction of water in

the subducting upper mantle from -2.5 to 1.5 wt% (Carlson, 2003), a significant change

in the water input to the mantle at subduction zones (Ripke et al., 2004).

4.3. Toward better models of effective anisotropy

Error in our models of transverse isotropy is on the order of the amplitude of

wavespeed variations (Figure 18). These residuals are strongly correlated with

azimuth, indicating that transverse isotropy is unable to fully explain azimuthal

anisotropy in the delay-time measurements and that a model with a lower degree of

symmetry (i.e., higher-order in 9) is required. Furthermore, these misfits are polarized

in the "fast" direction expected for anisotropy in the incoming Pacific upper mantle,

implying that at least some component of the residuals comes from an inability to fit

relic mantle anisotropy.

There are at least two potential explanations for this misfit and the need for higher-

order symmetry. First, our assumption that a cracked and/or jointed upper mantle is

transversely isotropic requires that cracks and/or joints be oriented at right angles to

the symmetry axis in the unaltered mantle. If these fabrics are oriented at oblique

angles, effective wavespeeds are characterized by a lower degree of symmetry (Hudson,

1981). Effective wavespeed variations from a combination of different orientations of

transversely isotropic media would have the form

Sc2 =8co()+ 5c,(O+pi) (36)
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where 3c0(6) are wavespeed variations with azimuth in a reference frame defined by 6

and 3c, (9+#) are wavespeed variations in the ith additional fabric, which is rotated at

angle of #, from the reference. In this parameterization, the contribution to anisotropy

from multiple sources can be found by including an additional 6 parameters (0 plus the

5 anisotropic parameters) for each fabric in the inversion outlined above. (As a test of

this concept, we used this parameterization in the decomposition of the wavespeed

models into component sources shown in Figure 17.)

A second explanation for misfit is that, although our models account for delay-time

variations due to differences in propagation distance in the mantle, they do not account

for variations from differences in the length of crustal paths. In flat-lying crust, Pn

paths travel a similar distance through the crust, regardless of the distance traveled in

the mantle, and the effect on delay times is negligible. At the outer rise, plate bending

causes raypaths from the forearc side of the trench to penetrate the crust at a lower

angle, and these crustal paths are longer than those from seaward of the outer rise.

Delay times from anisotropy in the faulted crust thus depend on raypaths, and distance

through the crust should be accounted for in solutions for anisotropy. Differences in

crustal path lengths could be included in an inversion for multi-component anisotropy

using Equation (36) by scaling wavespeeds in different layers by distance traveled

through each layer, bringing the total number of model parameters to 6 X Niayers X

Nfabrics. This scheme would also enable anisotropy in the crust to be isolated from

anisotropy in the mantle, which should help to better constrain the distribution of upper

mantle faulting and hydration.
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Receiver and source statics also contribute to misfit (Figure 20). This source of

error can be reduced by improving the isotropic reference model, and/or by including

static correction terms in the inversion for anisotropic models. However, receivers and

sources are irregularly distributed as a function of azimuth, and including static terms

in the inversion introduces a trade-off between fitting the data via changes to the

anisotropic parameters and changes to the static terms. Thus, while the static terms

may prove useful in producing better fits to the data, their influence on anisotropy

models must be carefully balanced via additional weighting terms.

The region of low velocities extending along the outer rise in tomographic models

(Van Avendonk et al., 2011) likely introduces azimuthal variations in wavespeeds that

are unrelated to intrinsic anisotropy from crustal or mantle fabrics. This effect could be

constrained and removed from wavespeed models by measuring the azimuthal variation

in the difference in traveltimes calculated through models with and without a slow

velocity region in the mantle under the outer rise (e.g., NorthEastvid and

NorthEastv2d).

5. Conclusions

Measurements of azimuthal variations in seismic wavespeed indicate that the upper

mantle is between ~1.6 and 4.4% anisotropic beneath the outer rise of the Middle

America Trench. This anisotropy can be explained by combining wavespeed variations

from an alignment of olivine grains in a relic mantle fabric with anisotropy from cracks

and/or joints aligned along the strike of bending-related normal faults. Measurements

made using rays that turn at different depths indicate that anisotropy varies with depth

in the mantle, with anisotropy attributable to aligned cracks composing a larger portion
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of the wavespeed variations in the upper-most mantle. Anisotropy in both the upper-

most mantle and over depths up to 24 km below the Moho appears to include a

component attributable to large joints aligned with the bending-induced faults. It is

unclear, however, how much of this apparent signal from jointing is accumulated along

crustal paths, and determining the true depth extent of jointing will require isolating

crustal anisotropy.

Accounting for up to -2.29% upper-mantle anisotropy reduces current seismic-

velocity-based estimates of upper mantle serpentinization at the Middle America

Trench by -4%, or ~1 wt% in estimates of water stored in the subducting upper mantle.

This anisotropy cannot, however, fully explain the up to 10% slow velocity anomaly

imaged by tomography (Van Avendonk et al., 2011), indicating that the upper mantle is

significantly serpentinized under the outer rise. These slow velocities, along with

measured wavespeed polarizations in the upper mantle, are consistent with the

hypothesis that the upper mantle is hydrated by seawater flowing along bending-

induced normal faults at the outer rise.
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Bin Anisotropy parameters (km2/s2)
Width Az rxy Ofast slow Cfast csIo, AC CNorthast 2 CSERP

2 RMS(e)
(0) (km) (km) ao al a2 a3 a4 (0) (0) (km/s) (km/s) (%) (km/s) (km/s) (s)

[0.007,
- [0, 0.1] 20.998] 47.3487 1.2672 -0.9070 0.7631 -0.5195 122 82 7.029 6.619 6.010 6.899 6.962 0.126

[50.029,
[0.1, 1] 91.747] 48.4435 -0.7587 -0.0934 0.0835 0.0312 112 172 7.012 6.903 1.568 6.970 6.970 0.149

[69.856,
[1, 2] 124.59] 49.6436 -0.5305 0.3766 0.0054 0.0812 82 147 7.116 6.989 1.792 7.050 6.995 0.176

[69.856,
[1, 24] 199.875] 59.1575 -0.6758 0.5052 0.0275 0.0197 84 144 7.769 7.618 1.969 7.701 7.623 0.206

[0.007,
5 [0, 0.11 20.998] 47.9967 2.0033 -0.2251 -0.2619 -0.2065 161 82 7.086 6.781 4.400 6.907 6.962 0.105

[50.029,
[0.1, 1] 91.747] 48.2361 -0.9910 -0.2072 -0.0735 -0.0266 95 5 7.008 6.850 2.268 6.959 6.970 0.173

[69.856,
[1, 2] 124.59] 49.5912 -0.6918 0.3405 -0.1456 0.0199 84 134 7.130 6.995 1.913 7.050 6.995 0.147

[69.856,
[1, 24] 199.875] 59.1265 -0.9172 0.4633 0.0098 -0.0228 86 146 7.780 7.615 2.134 7.704 7.623 0.158

[0.007,
20 [0, 0.1] 20.998] 47.6208 2.3746 -0.5625 0.7117 -0.1935 1 84 7.082 6.610 6.895 6.884 6.962 0.087

[50.029,
[0.1, 1] 91.747] 48.3373 -0.9273 -0.1833 -0.0879 -0.0909 97 7 7.015 6.860 2.224 6.969 6.970 0.100

[69.856,
[1, 2] 124.59] 49.5197 -0.8082 0.3510 -0.1519 0.1204 83 168 7.139 6.988 2.144 7.041 6.995 0.121

[69.856,
[1, 24] 199.875] 59.0442 -0.9902 0.4900 -0.0444 0.1017 83 151 7.790 7.613 2.289 7.693 7.623 0.129

Ac= 2 0 0 (c- )/(c +c )

1CNorthEast and CSERp are wavespeeds in the orientation of Lines NorthEast and SERP, respectively.
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8. Figures

hydration
at outer-rise

IV

Figure 1. Schematic diagram of the subduction zone water cycle. The subducting lithosphere is
thought to deliver 3.0 to 4.4 x 10s kg of water per m2 of seafloor to the mantle Idge and 0.2-2.4 x 105
kg/m 2 to the deep mantle. Of this, sediments and oceanic crust account for -1.2x10 5 kg/m 2

(Staudigel et al., 1996; Plank and Langmuir, 1998; Kerrick, 2002). Flow of seawater along bending-
induced faults at the outer-rise may serpentinize the oceanic upper mantle, however estimates of
this potentially significant component of the input water flux are poorly constrained and vary from
0.6 to 4.6 kg/m 2 (Schmidt and Poli, 1998; Kerrick, 2002; Ranero et al., 2003). After Rupke et al.
(2004) with instability models of Gerya et al. (2006).
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Figure 2. Comparison of the wave speed and delay time (x=50 km) effects of anisotropic fabric and
pervasive serpentinization on (quassi-)compressional waves (qP) travels through the upper mantle
(dunite): (a) Best-fit azimuthal qP-wavespeed models for the uppermost mantle in the Pacific
(Kawasaki and Konno, 1984), the south Pacific upper mantle (Shearer and Orcutt, 1986), and
calculated velocities predicted for an olivine matrix with 22% LPO (Shearer and Orcutt, 1986). (b)
Effective media theory (Hudson, 1981) calculations for qP in dunite with aligned, water- and
serpentinite-filled cracks. (c) Geometrical effect of large, serpentinite-filled, planar joints. (d) Effect
of pervasive serpentinization (Christensen, 1966). Olivine crystal drawing is from Lev and Hager
(2008).
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(a) Cracks and joints in crust, relic CPO in mantle
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(c) Cracks and joints in crust, serpentinized joints and relic CPO in mantle
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Figure 3. Theoretical wavespeeds through an upper mantle with multiple sources of azimuthal
anisotropy. Effective wavespeeds are shown for rays bottoming just below the Moho (blue) and at
deeper depths in the mantle (red), and wavespeeds in the Pacific upper mantle are shown in grey
(Kawasaki and Kon'no, 1984). In all cases, the crust and upper-most mantle includes cracks and
joints. In (a), the deeper mantle fabric consists of an inherited CPO of mineral grains. In (b), the
inherited CPO in the deeper mantle is partially erased by pervasive serpentinization. In (c), large
serpentinized joints are superimposed over the inherited CPO in deeper mantle.
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Figure 4. Map of the Middle America Trench offshore of Nicaragua showing the location of ocean-
bottom seismometers (white circles) and air-gun shots (orange lines) for the TICO-CAVA2
experiment. Also shown are the locations of two-dimensional, isotropic velocity models (W2000:
Walther et al., 2000; p50: Ivandic et al., 2008; SERP: Van Avendonk et al., 2011). Negative magnetic
anomalies (blue) mark the orientation of relic crustal fabric from formation at mid-ocean ridge
(Maus et al., 2009). Bending-related faults can be seen in the illuminated bathymetry data (grey), and
topography is shown in green and brown colors (Ryan et al., 2009).
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Figure 5. Velocity as a function of depth in
two-dimensional isotropic velocity models.
Line locations are shown in Figure 4. The
NorthEast lines are from this work. Other
profiles shown for comparison are: W2000:
Walther et al. (2000); p50: Ivandic et al.
(2008); and SERP: Van Avendonk et al. (2011).
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Figure 6. Example of OBS data used to pick traveltimes. Data shown are from site ANE06. The inset
is a southeast perspective view showing the relative orientation of the lines with traces plotted at the
source location. All data were filtered using a minimum-phase bandpass filter from 3 to 15 Hz and
reduced at 8.55 km/s.
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Figure 7. Perspective view of traveltime picks for all instruments looking southeast. Phase shown
are Pg (purple), PmP (green), and Pn (blue).
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Figure 8. Example of MCS data and basement picks (blue line) from Line AnNE2. The stacks were
made with a standard sequence of common-mid-point (CMP) gathering, minimum-phase bandpass
filtering from 21 to 120 Hz, normal-move out (NMO) correction using a one-dimensional velocity
function hung from the seafloor, spherical divergence correction, trace editing, stacking, and
Kirchhoff time migration using velocities based on the stacking velocities.
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Figure 9. Two-dimensional isotropic velocity models and travel-time residuals for Line
NorthEast. In (a), a one-dimensional velocity-depth function that fits Pg and Pn traveltimes
from raypaths that bottom seaward of the outer rise (left-hand side) is hung from the slab
surface. (b) is the result of a tomographic inversion using (a) as a starting model. The vertical
line at the outer rise marks the crossing with Line SERP, as well as the location of velocity
profiles shown in Figure 5.
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Figure 10. Raypaths for Pn. Paths used in the delay-time analysis for anisotropy under the outer rise
are highlighted in yellow.
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Figure 11. Ray-bottoming points (dots) for Pn. Points for paths used in the delay-time analysis for
anisotropy under the outer rise are highlighted in yellow.
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Figure 12. Parameterization of Pn raypaths by the length in the horizontal plane of the

that is in the mantle r and the depth below the Moho of the bottoming point Az.
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Figure 13. Fits to delay times for rays bottoming at 0 to 0.1 km below the Moho. (a) Delay
times calculated as the difference between observed traveltimes and traveltimes calculated
through a reference isotropic model. Points are colored by horizontal propagation distance
in the mantle. (b) Data (colored dots) corrected to a common offset of 5km using an
anisotropy model (black line) found by inversion of delay time data using a 20*-wide moving
average smoothing operator. Error bars are one standard deviation of data within each
moving-average bin. (c) Misfit between smoothed, offset-corrected data and the model. RMS
error for this and other models are listed in Table 1.
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Figure 14. Fits to delay times for rays bottoming at 0.1 to 1 km below the Moho. Symbols are the
same as in Figure 13.
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Figure 15. Fits to delay times for rays bottoming at 1 to 24 km below the Moho. Symbols are the
same as in Figure 13.
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Figure 16. Wavespeed models for different depths below the Moho (colors)
the smoothing operator (line styles).
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(a) Pacific + 1 fabric
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Figure 17. Solutions for wavespeed models that, when summed with measured anisotropy in the
unaltered Pacific upper mantle, reproduce best fit models for anisotropy between 0-0.1 and 1-24 km
below the Moho. The Pacific model shown here is Shearer and Orcutt's (1986) best-fit solution for
the upper mantle using data from the 1983 Ngendiei experiment in the South Pacific.
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Figure 18. Absolute wavespeeds (a) and wavespeed variations (b) compared to models of Pacific
models of wavespeeds in the Pacific upper mantle (Kawasaki, 1986; Shearer and Orcutt, 1986) (grey)
and model residuals (dashed lines). In (a), wavespeeds are calibrated to mean velocities (dots) over
each depth range in the model along Line SERP (Van Avendonk et al., 2011). The vertical lines show
the full range of velocities over each depth range in both the NorthEastv2d and SERP models. In (b),
mean values have been removed from each wavespeed curve to show relative amplitude and phase.
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Figure 19. Change in mean wavespeeds with respect to wavespeeds in the unaltered Pacific
upper mantle as measured by Shearer and Orcutt (1986). Change in mean values measured
for rays bottoming at 0 to 0.1 (blue line) and 1 to 24 km (red line) below the Moho are
compared to a linear fit to mean wavespeeds measured at 1 GPa in mantle rocks with
different degrees of serpentinization (black dashed line) (Christensen, 1966). The black line
is the change in mean wavespeed if a model of Pacific upper mantle wavespeeds (Shearer
and Orcutt, 1986) is slowed to match velocities along the azimuth of Line SERP.
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Figure 20. Example of RMS error for each receiver (colors).
Data shown are from rays bottoming between 1 and 24 km
below the Moho, and a 20*-wide smoothing operator is used
in an inversion for the model shown by the black line.
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