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Abstract

Using models to simulate and analyze biological networks requires principled ap-
proaches to parameter estimation and model discrimination. We use Bayesian and
Monte Carlo methods to recover the full probability distributions of free parame-
ters (initial protein concentrations and rate constants) for mass action models of
receptor-mediated cell death. The width of the individual parameter distributions
is largely determined by non-identifiability but co-variation among parameters, even
those that are poorly determined, encodes essential information. Knowledge of joint
parameter distributions makes it possible to compute the uncertainty of model-based
predictions whereas ignoring it (e.g. by treating parameters as a simple list of values
and variances) yields nonsensical predictions. Computing the Bayes factor from joint
distributions yields the odds ratio (-20-fold) for competing "direct" and "indirect"
apoptosis models having different numbers of parameters. The methods presented in
this thesis were then extended to make predictions in eight apoptosis mini-models.
Despite topological uncertainty, the simulated predictions can be used to drive exper-
imental design. Our results illustrate how Bayesian approaches to model calibration
and discrimination combined with single-cell data represent a generally useful and
rigorous approach to discriminating between competing hypotheses in the face of
parametric and topological uncertainty.
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Chapter 1

Introduction

Signaling networks are the fundamental means by which cells transmit information

used to regulate a wide range of cellular functions, such as proliferation, migration,

differentiation, survival, and death [69]. Signaling networks therefore play an impor-

tant role in the development and maintenance of multicellular organisms. Information

is transmitted through the cell through a series of protein modifications and conforma-

tional changes. Causality in the network is particularly important since the sequence

of the events forms the basis of the signal which leads to a particular response in the

cell. The identity of many individual components within these signaling networks has

been known for some time and recent advances in experimental methods have un-

covered inhibitory or activating relationships among specific biochemical components

within the network. Traditionally, experimentalists think about network dynamics

in an intuitive way based on experiments that target specific proteins one at a time.

While this methodology works on a small scale, it becomes more difficult to imple-

ment on a larger scale. Due to the large, nonlinear behavior of signaling networks,

it is difficult to use intuition alone to extend knowledge of individual proteins into a

thorough understanding of the entire network [85].

Mathematical models have the potential to combine information about each pro-

tein and interactions with other proteins to generate testable predictions and lead to

new insights about the system as a whole. Mathematical models also make it possible

to study the system under experimental conditions that are impossible to reproduce
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at the bench. For instance, by analyzing the probability distributions of rate con-

stants, most of which can not be measured, one can obtain a better temporal and

mechanistic understanding of the whole system. Furthermore, mathematical models

help explain experimental observations and develop hypotheses about the underlying

structure and connectivity of the signaling network [69]. In this thesis, we demon-

strate how mathematical models can abate ambiguities about the underlying bio-

chemistry. Specifically, we present a quantitative framework for using mathematical

models to calibrate models, estimate parameter values, make predictions, determine

model structure, and guide experimental design.

1.1 Previous Modeling Methods

A wide variety of graphical and mathematical methods currently exist for modeling

biological networks to better understand the relationship between input signals and

phenotypic outputs, each of which varies with respect to its level of specificity. A

particular method can be selected based on a few metrics:

Data: Is it quantitative or qualitative?

- Research question: Is it mechanistic or phenotypic?

- Prior knowledge: To what detail do we have information about network struc-

ture and network components?

Graphical Methods

On the most abstract end of the spectrum lie graphical methods which help visualize

large numbers of proteins and the interactions between them as means of presenting

the network topology in a compact manner. The first of these graphical methods is a

protein interaction network (PIN), which uses nodes to represent proteins; undirected

edges are used to represent the binding interactions between two proteins, whether it

be correlated expression, direct binding, or probabilistic interactions occurring with

some minimal level of confidence [73, 84, 97]. Edges do not contain any information
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regarding the flow of information or mass between nodes [90]. Similar to PINs, pro-

tein signaling networks (PSNs) also use nodes to represent proteins; however, edges

are signed and directional. Edges represent direct causal effects: signed edges indi-

cate activator or inhibitory relationships; directed edges indicate enzyme-substrate

relationships [90, 101]. Unfortunately, since PINs and PSNs do not take into consid-

eration network dynamics, input-output relationships can not be predicted.

Logic-Based Methods

Similar to PINs and PSNs, logic-based models are also typically depicted as edge-

node graphs. Logic-based methods, however, are a more specific modeling method

than PINs and PSNs and are particularly useful when modeling networks for which

there only exists limited or incomplete information on network dynamics. In this

case, limited information refers to networks for which the concentration is not known

for each species, but causality can be assigned to the system. For instance, if protein

A is activated, then protein B binds protein C to form a complex. These models are

capable of encapsulating the basic interactions between a large number of proteins,

whether it be in a model describing signaling pathways [8, 52, 57, 58, 82] or gene

regulation [65]. Logic-based models use a discrete approach in that there is only a

finite set of states (i.e., number of molecules for a particular protein) that the model's

components can assume at each node. The regulatory interactions between nodes is

governed through gates that have logical functions, which are typically either Boolean

[52, 57, 66, 82] or fuzzy [8, 58] in nature. Prior knowledge about the network along

with experimental data typically dictates the type of gate used to connect a specific

set of nodes.

Differential Equation Models

At the most specific end of the spectrum of modeling methods lies the continuous-state

approach of differential equations, which relies heavily on prior knowledge about the

network topology and its components. Ordinary differential equation (ODE) mod-

els describe the kinetics and dynamics of key molecular interactions in a continuum
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approximation, in which protein concentrations are represented in a continuous, deter-

ministic fashion [4, 17, 25, 27]. This level of specificity enables these models to capture

temporal and spatial dynamics for individual biochemical reactions in considerable

detail. The underlying biochemistry can be accurately captured when mass-action

kinetics hold and the number of molecules in the system is large. Partial differen-

tial equation (PDE) models are used to account for spatial gradients when the two

compartmentalization assumptions of ODEs are violated. That is, the compartment

is well-mixed and that between two compartments, the transfer of species has an ob-

servable rate [6]. Since differential equation models take into consideration network

dynamics and kinetics, model-based predictions and input-output relationships can

be accurately captured. Nevertheless, as the size of the network and the number of

components increases, modeling it with a system of differential equations becomes

more challenging. This difficulty is twofold: first, there is an increase in the number

of free parameters, which are typically initial protein concentrations and rate con-

stants; and second, the model output is heavily dependent on the values of these free

parameters, which are typically estimated.

1.2 ODE Modeling of Extrinsic Recepter-Mediated

Apoptosis

The specific signaling pathway for which we want to create a mathematical model is

extrinsic receptor-mediated apoptosis. Apoptosis, or programmed cell death, plays a

central role in the development of multicellular organisms, but mutations and other

lesions in the signaling networks regulating apoptosis result in cancer and autoimmune

diseases [51, 113]. During our life span, over 99.9% of our cells undergo apoptosis

[111]. Many of the proteins that mediate receptor-mediated apoptosis have been

identified but the dynamics and regulation of cell death in diverse cell types is poorly

understood. Mathematical models of the biochemistry of apoptosis can lead to a

better mechanistic and quantitative understanding of apoptosis regulators, which, in
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turn, can potentially be used for designing a new generation of drugs to regulate

programmed cell death [10, 115].

Apoptosis can be triggered via two independent mechanisms: the intrinsic path-

way which is initiated by intracellular events such as DNA damage and oxidative

stress; and the extrinsic pathway, which is initiated by the binding of death ligands

such as Tumor necrosis factor-Related Apoptosis Inducing Ligand (TRAIL), Fas, or

Tumor Necrosis Factor (TNF) to transmembrane receptors. This binding triggers a

series of downstream reactions that activate effector caspases leading to proteolysis

of essential cellular substrates and activation of CAD nucleases, which ultimately kill

cells [49, 67]. In most cell types, activation of effector caspases requires mitochondrial

outer membrane permeabilization (MOMP) but a MOMP-independent cascade is suf-

ficient to trigger apoptosis in some immune cells [40, 102]. Multiple steps in both the

MOMP-independent (Type I) and MOMP-dependent (Type II) cascades are subject

to positive and negative regulation by factors whose abundance and activities vary

with cell state and type [50].

Since the identity of the biochemical components underlying apoptosis is rela-

tively well known, to date, apoptosis has been modeled primarily using networks of

compartmental ODEs. The topology of these ODE networks is obtained from litera-

ture data and is reasonably well established. In the model being studied, apoptosis

in response to TRAIL has been modeled with a network of 69 stiff nonlinear ODEs

assuming the law of mass action [4, 5, 108].

Modeling the biology of extrinsic cell death using ODE networks has several justi-

fications. EARM1.3 and similar models have been validated in multiple publications

and have been shown to describe the dynamics of apoptosis at a single cell level

under a range of conditions involving RNAi-mediated protein depletion or protein

over-expression [5, 6, 7, 11, 23, 41, 56, 75, 93, 108, 109]. The use of mass action

kinetics appears justified since the relatively high abundance of most species will

result in a well-mixed system. Mass-action models also make it straightforward to

translate findings obtained with purified components to the context of multi-protein

networks in living cells [29, 80]. Finally, deterministic ODE networks have proven
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surprisingly effective at modeling cell-to-cell variability in apoptosis [94, 108]. When

a uniform population of cells is exposed to death ligands such as TRAIL, substantial

differences in the timing of death are observed from one cell to the next: some cells

die soon after ligand exposure (< lhr) while others wait 12 hr or more and some cells

survive indefinitely [92]. ODE networks can model this variability because it arises

from transiently heritable differences in protein concentrations (extrinsic noise) rather

than inherently stochastic reaction kinetics (intrinsic noise). Modeling variability with

ODEs involves sampling initial protein concentrations from experimentally measured

distributions [42], although understanding the origins rather than the consequences

of extrinsic noise still requires stochastic simulation [48, 54, 116].

1.3 Overview

The remainder of this thesis is organized in the following manner:

" Chapter Two addresses the problem of parameter estimation for a mass-action

model of receptor-mediated apoptosis calibrated to dynamic, live-cell data. A

Bayesian framework is introduced and used to obtain statistically complete joint

parameter distributions. Despite non-identifiablility and model sloppiness, the

approach described returns probabilistic predictions for cell death dynamics

that have tight confidence intervals and match experimental data.

" Chapter Three addresses the problem of model discrimination when two or

more models are indistinguishable using maximum likelihood approaches. Ther-

modyanmic integration is used to calculate the Bayes Factor, thereby enabling

model comparison within a Bayesian framework. The method was applied to

two competing mechanisms of MOMP, the direct and the indirect methods. It

was determined that, given the available data, the direct method is approxi-

mately twenty times more plausible than the indirect.

e Chapter Four extends the methodology presented in previous chapters to the

comparison of eight models describing the MOMP control mechanism. We
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demonstrate how despite the uncertainty in the topology of these eight models,

we can use predictions to guide experimental design. Furthermore, we propose

that by generating thousands or tens of thousands of models topologies, ac-

curate probability distributions for model predictions can be obtained through

ensemble modeling.

* Chapter Five summarizes the work in this thesis and discusses suggestions for

future work in the field.

* Finally, Appendix A illustrates Monte Carlo Markov Chain Bayesian param-

eter estimation using synthetic data generated from the simple three species

Robertson model.
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Chapter 2

A Bayesian Framework For

Parameter Estimation

Dynamical models that capture the biochemistry of cell signaling processes are an

effective means to investigate the operation of networks involving many interacting

components and concurrent reactions [34]. However, even the best characterized net-

works are ambiguous with respect to the sequence of reactions and the ways in which

molecules interact (i.e. reaction topology). Determining parameter values for dynam-

ical models is also problematic: parameter estimates are required for simulation and

hypothesis testing but quantitative data on the rates of most biochemical reactions

are sparse and data from in vitro studies are of unknown relevance to rates in cells.

In this chapter we focus on the problem of parameter estimation for a previously

validated ordinary differential equation (ODE) model of receptor-mediated (extrin-

sic) apoptosis in human cells (the extrinsic apoptosis reaction model, EARM1.3)

[5, 23, 41, 55, 88, 108]. We address the problem of parameter estimation by imple-

menting a Bayesian MCMC random walk rather than the typical maximum likelihood

approach. Using the joint and marginal parameter distributions obtained from the

random walk, we make high-confidence predictions on two hallmark characteristics

of the EARM1.3 model. We then demonstrate that the joint parameter distribution

captures important information about the nonlinear relationship between parameters

that should not ignored. To preserve this information, we suggest calibrating models
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and reporting all of the parameter vectors obtained in the random walk in matrix

format instead of merely reporting the maximum a posteriori estimates of parameter

values in a table format. EARM1.3 has undergone sufficient literature validation, and

is sufficiently similar to extant models of other signaling pathways with respect to the

numbers of parameters and amount of training data [68, 87, 103] that it serves as an

effective test case in which to explore parameter estimation strategies.

2.1 Background

2.1.1 Structure of The Model and The Data

EARM1.3 models the biochemistry of apoptosis in a continuum approximation as a

series of mass-action reactions represented by ODEs. All biochemical transformations

are depicted as unimolecular or bimolecular reactions and rate laws are therefore

expressed as r = k[A], for a reaction involving one copy of protein A, r = k[A][B],

for a bimolecular reaction of A and B, or r = k[A][A], for dimerization of A. No

complex algebraic forms such as Hill functions are used. Transport between cellular

compartments is modeled as an elementary unimolecular reaction, and the assembly

of multiprotein complexes as a series of bimolecular reactions. However, the model

also combines proteins with related activities into a single species as a means to

reduce the number of free parameters. For example, both caspase-3 and caspase-8

are represented in EARM1.3 by C3, Bax and Bak are represented by Bax, and Bcl2

and BclX are represented by Bcl2.

The EARM1.3 ODE network has 69 dynamical variables representing the concen-

trations of proteins and protein complexes. In this chapter we focus on estimating

the 78 free parameters that control these variables. These free parameters consist

of on- and off-rates and catalytic constants as well as lumped parameters used to

model protein synthesis or degradation in a coarse-grained approximation. The 16

nonzero initial protein concentrations in the model were assumed to be identical to

previously reported values, many of which have been measured experimentally [108]
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Figure 2-1: Schematic representation of the extrinsic apoptosis model EARM1.3.
Binding of death ligand TRAIL, formation of Death-Inducing Signaling Complex
(DISC), cleavage of caspases 3, 6 and 8 (C3, C6 and C8), formation of mitochon-
drial pores, assembly of the apoptosome, and cPARP cleavage are shown. Activating
interactions such as caspase cleavage and induction of conformational changes are
shown as sharp-tipped arrows; inhibitory interactions by competitive binding of pro-
teins such as FLIP, BCL2 and XIAP are shown as flat-tipped arrows. The three
fluorescent reporters IC-RP, EC-RP, and IMS-RP used in experiment are denoted as
yellow lozenges. Specific sets of reactions are called out in red boxes and are keyed
to features discussed in subsequent figures.

(initial protein concentrations can also be estimated, but adding parameters to the

procedure makes the calculation more time-consuming; Figure 2-1)

In EARM1.3 apoptosis is triggered by the binding of death ligands such as TNF

and TRAIL to transmembrane receptors (Figure 2-1). This leads to activation of

initiator pro-caspases-8/10 (C8 in the model) causing cleavage and activation of ef-

fector pro-caspases 3/7 (C3). In HeLa cells, the line in which experimental data for

this paper were collected, activation of C3 requires mitochontrial outer membrane

permeabilization (MOMP), which is positively regulated by the Bcl2-family member

tBid (a cleavage product of Bid generated by active C8) and negatively regulated

by Bcl2. tBid binds to and activates the pore forming protein Bax but active Bax

(Bax*) is unable to form pores due the presence of the Bcl2 protein. Only when

Bax* reaches a threshold level is negative regulation by Bcl2 overcome, leading to

rapid pore formation and sudden translocation of Smac and cytochrome c from mi-
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tochondria into the cytosol. In HeLa cells, Smac is particularly important because it

binds to and inactivates XIAP (the X-linked inhibitor of apoptosis protein), thereby

relieving negative regulation of C3 activity and releasing active caspases, causing cell

death.

Calibration data on initiator and effector caspase activities were collected from

single cells using two cleavage-sensitive reporter proteins, as described previously [4].

Initiator caspase report protein (IC-RP) measures the activity of initiator caspases-

8/10 and is a good metric for formation of tBid; effector caspase reporter protein

(EC-RP) measures the activity of caspases-3/7 and is a good metric for cleavage of

proteins such as PARP [4, 31]. The amount of time between the addition of TRAIL

and the activation of caspases varies from one cell to the next [108], and the 40 single

cell trajectories used in this thesis were therefore aligned by the time of MOMP to

eliminate most cell-to-cell variability [4]. Thus, training data effectively represent the

behavior of a typical single cell. A time-dependent value for the variance of the data

(ata) was obtained by comparing 40 single-cell trajectories for each reporter protein.

2.1.2 Optimization vs Sampling

Free parameters in mass-action ODE models such as EARM1.3 include initial protein

concentrations and forward, reverse, and catalytic rate constants (or in some models,

composite constants such as Hill coefficients, Michaelis-Menten constants, or lumped

rates that consolidate many elementary reactions into a single number). Initial protein

concentrations can often be measured, with reasonable precision, using quantitative

Western blotting and mass spectrometry and in the current work we set them at

previously determined values [5]. Some information on kinetic parameters can be

gleaned from in vitro experiments or the literature, but rate constants are generally

much less certain than protein concentrations either because no in vitro data are

available or because the peptidyl substrates used in vitro are poor mimics of the

large protein complexes found in vivo. It is therefore necessary to estimate parameter

values [83].

Parameter estimation conventionally relies on minimization of the sum of squared
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differences between model and data (using a least squares difference or chi-squared

objective function) [83] which, at first glance, may seem like a simple optimization

problem. If that were the case, one might contemplate using a variety of uncon-

strained optimization approaches, such as Steepest Descent, Newton, and Conjugate

Direction method [14]. All the of the aforementioned algorithms are classic uncon-

strained optimization methods that terminate when they reach a stationary point. It

is important to note that the goal of parameter estimation in our work is not to op-

timize a single parameter set but to address the issue of nonidentifiability by finding

all the parameter sets that fit the model within experimental error.

2.1.3 The Problem of Parameter Estimation And Model Non-

identifiability

ODE-based models of complex biochemical processes such as EARM1.3 are usually

nonidentifiable, given available data, so estimation returns many parameter sets hav-

ing equally good fits to experimental data [26, 77]. Sethna and colleagues have pointed

out that even a complete set of time-course data on the concentrations and states of

all species in a biochemical model is usually insufficient to constrain the majority of

the free parameters in such models, a property known as sloppiness [21, 19, 38, 53].

The problem of parameter identifiability has been tackled in four conceptually

distinct ways (leaving aside algorithmic specifics). The first is to consider only simple

processes or small reaction networks for which identifiable models can be constructed

[12, 70]. Alternatively, for non-identifiable models, a single set of best-fit parameter

values can be used [5, 99, 106, 114]. A third approach is to identify a large (~

102 - 103) family of fits whose discrepancy from a best fit is less than or equal to

estimated experimental error. Properties of the model that are invariant across sets

of parameters are assumed to be of the greatest interest [27, 33, 60]. A fourth and

more rigorous approach involves sampling the complete probability distribution of

parameters, accounting for both experimental error and model non-identifiability,

and then using the distribution in model-based prediction or model discrimination
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[36, 96].

We next describe a Bayesian approach to parameter estimation (the fourth ap-

proach) that moves through parameter space in a manner that assembles a large

collection of parameter vectors for EARM1.3 calibrated against time-course and

weighted by likelihood; this collection serves as a representation of an uncertain pos-

terior parameter distribution. We approach sampling from a Bayesian rather than a

maximum-likelihood perspective to incorporate available prior knowledge (e.g., rates

from in vitro studies). Bayesian estimation is well-established in fields ranging from

climate control to economics [16, 30] and its use has also been explored for dynami-

cal modeling of biochemical pathways particularly by Klinke and colleagues [13, 71].

However, convergent Bayesian estimation of large, nonidentifiable biochemical mod-

els is rare and the properties of the resulting parameter distributions have not been

explored in any detail.

2.2 Methods

2.2.1 Experimental Data

All data were obtained by live-cell fluorescence microscopy of HeLa cells stably trans-

fected with vectors expressing IC-RP and EC-RP as reported previously [4]. Apop-

tosis was initiated by adding media containing 50 ng/ml TRAIL and 2.5 g/ml cyclo-

heximide. All experiments were performed by John Albeck and Sabrina Spencer.

2.2.2 Model Calibration

Since IC-RP and EC-RP currently cannot be measured from the same cell, the IC-

RP and EC-RP trajectories obtained from two different cells having the same time

of death (80 min) using existing experimental data were chosen for model calibra-

tion. Measurement error was accounted for by inserting a variance oa in likelihood

function of the Bayesian formulation. For each of the trajectories, this variance was

obtained by aligning 40 single-cells trajectories according to the time of death and
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measuring the variance at each time point.

2.2.3 The Model

The model in this paper, EARM1.3, was first described by Albeck et al [4, 5].

EARM1.3 as used in the current work differs from the original model in its inclu-

sion of synthesis and degradation reactions for all species and its use of different

nominal parameter values [108]. A summary of the algorithm is found in Figure 2-2

and is explained in detail below.

2.2.4 The Algorithm

Parameter estimation using a Bayesian Markov Chain Monte Carlo walk

In this chapter we confine ourselves to estimating 78 free parameters corresponding

to rate constants in EARM1.3; the 16-nonzero initial protein concentrations in the

model were assumed to be identical to previously reported values, many of which

have been measured experimentally [108]. All calculations are performed in log space

and we define the following variables:

; logio(ki)

E (01, ...078)

where E denotes a parameter vector in log space and (k1 ,--- , k7 s) are the rate con-

stants in the model. The deviation between data and model for a particular E is

computed using the sum of squared differences as follows:

2 2Xo2i (t; E) - X, (t)]2  (2.1)
t i data(t)

The index i runs over all experiments and the index t runs over all times at which

measurements are made. The x2 function is a conventional objective function and

also the negative log of the likelihood that the data will be observed for a given
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set of parameters if measurement error (with variance o-at ) is assumed to have

a Gaussian distribution. In the current case, a time-dependent value for ojat2 was

estimated by comparing 40 single-cell trajectories for each of the EC-RP and IC-RP

reporter proteins (o.2 -0.03 to 0.12). According to Bayes' rule, given a set of data

the conditional distribution of a parameter vector ) is given by:

P (81data) - P (data 8) P (6) (2.2)
P (data)

where the symbol P indicates probability density functions rather than probabilities

since parameters are treated as continuous variables. The term P(8|data) is com-

monly known as the posterior or post(8), P(data|8) the likelihood(9), and P(O) the

prior(9). The term P(data) on the right hand side of Equation (2.2) (also known as

the evidence for the model) is usually difficult to compute (in the current work we

tackle this issue using thermodynamic integration in the next chapter) but in Markov

Chain Monte Carlo (MCMC) sampling only the ratios of posterior values are needed,

not posterior values themselves. We therefore treated P(data) as a normalization

constant yielding:

P (9|data) oc P (data|8) P (8) (2.3)

We have explored several priors but the most effective (see below) is one in which

rate constants ki are independent log-normal random variables, so that the 64 are

independent and normal, and

78

- In (prior (8)) = [2 (Oi_ )]2 (2.4)
i=

where (O6) and of are the mean and variance, respectively, of the log of the distribution

of 64 . The value of the log posterior for a particular parameter vector is then obtained

by combining the log likelihood and the log prior Equation (2.3):

- In (post (6)) oc - In (likelihood (8)) - In (prior (9)) (2.5)
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This framework is commonly used to return single good fit vectors E that are max-

imum a posteriori (MAP) probability estimates for parameters. Instead, we seek to

generate a rich set of vectors that sample the posterior distribution of e. To accom-

plish this, we implemented a random walk in 78-dimesional parameter space using

a multi-start Markov Chain Monte Carlo algorithm (MCMC). Such a walk has the

important property that the number of steps at a particular position in parameter

space is proportional to the posterior probability, allowing parameter vectors E to be

sampled with the correct statistical weight [28]. At the jth step of each MCMC walk,

a Metropolis-Hastings (M-H) criterion was employed as follows:

Ej+l = {Etest with probability a (2.6)
E with probability 1-a

{ post (etest) (7a~min japs ~ (2.7)
post (8E)

Here, E8 is the current position in parameter space and Oet, is the putative next

position, generated according to a distribution that is guided by certain Hessian

calculations. A test position is accepted based on whether a randomly and uniformly

chosen number between 0 and 1 is less than a (a < 1).

Initiating MCMC Chains

3-5 independent MCMC chains were run simultaneously on a cluster computer. Each

chain started at a random initial position in parameter space. These initial positions

were obtained by multiplying the log of the nominal parameter values by a random

number drawn from a uniform distribution between -1 and 1, in effect yielding a

set of parameters 10-fold lower or higher than the nominal values. In log parameter

space, the starting position is a point randomly chosen within a box of dimension 78

and sides of length 2. The box is centered at the nominal values, which are those

reported in work on the original EARM model [4]. The acceptance rate averaged

over all chains was approximately ~0.15-0.19. Prior work on optimal jumping rates

suggests the optimal rate is -0.2 for certain asymptotic conditions and assumptions

36



of the target distribution [45]. However the same work noted that 0.5 is "reasonable"

and achieves 75% maximal efficiency. We have not determined the degree to which

our system and procedures satisfy the various conditions of the theoretical optimum.

Improvement in this aspect of the algorithm is therefore possible.

Simulated Annealing

For the first 10% of the MCMC algorithm, simulated annealing (SA) was used to bring

the chains from random initial starting points to points having high posterior values.

The temperature of annealing was lowered according to the exponential function

T = T e(DecayRate*StepNumber), where To is the initial temperature (set to a value

of 10), StepNumber refers to the MCMC step number, and DecayRate is the rate

of exponential decay, chosen so that the time constant of the decay is 30% of the

number of steps between Hessian calculations, which are used to guide the random

walk (25,000 steps; see below). The temperature is reduced until it reaches a value of

1. During SA, new parameter vectors are chosen by taking a step lying on the unit

sphere with radius of size 0.75, centered on the current position. The radius size was

heuristically determined by systematic exploration of different sizes and choosing the

one that showed the most rapid and greatest success in posterior maximization. After

SA is complete, the Hessian guides the determination of new parameter vectors.

Adaptive MCMC walks

Among the adaptive approaches we tried, the one that showed the greatest improve-

ment with EARM1.3 involved taking large steps in flat directions and small steps

in steep directions based on calculating the curvature of the local landscape using

the Hessian matrix of the log-posterior function (represented by yellow ellipses in

Figure 2-3); see Table 2.1.

Hessian Directed Search

To improve the performance of the MCMC search algorithm, we developed a proce-

dure for taking large steps in directions in which the local landscape is flat and small
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steps in directions in which the landscape has large curvature as determined by a

Hessian decomposition at selected positions in parameter space. These positions are

defined by the parameter vector e = (01, - - - , 078) (we performed all calculations in

log1 o space). The Taylor series expansion around a position ehess is the following:

In (post (6)) = In (post (Ohess)) + (8 - Oeh.S) A In (post (6))

+ I (E - Ohess) H (8 - Ohess) + 0 (63) (2.8)2

Here, E is a position in parameter space close to Ohess; A ln (post (6)) and H are the

gradient vector and the Hessian matrix respectively, evaluated at Ohess; and 6 is the

magnitude of 0- 8hes. To determine whether this expansion is a good approximation

A B

Hessian-guided
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Non-guided

log(kj)
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Figure 2-3: Two-dimensional slices of the ln(posterior) landscape computed by nu-
merically evaluating the posterior over a dense set of grid points on a two-dimensional
space. A comparison of MCMC random walks with varying step numbers and per-
formed with and without Hessian-guidance. (A) With Hessian-guidance, the longer
chains of 5,000 and 10,000 steps respectively (red and green,) converged by the
Gelman-Rubin criterion. (B) Without Hessian-guidance, none of the three chains
converged. The other 76 parameter values were kept constant for this analysis.
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Table 2.1: Improved chain convergence using Hessian-guided MCMC searches

Fraction of parameters that convergeda

MCMC Stepsb 1,150,000 1,000,000 750,000 500,000 100,000 50,000

Hessian-guidedc 78/78 77/78 73/78 70/78 40/78 21/78

Non-guidedd 65/78 62/78 55/78 50/78 24/78 12/78

a Average number of parameters for which convergence was achieved for a series of
ten MCMC walks after the indicated number of steps
b Number of MCMC steps in a chain.
c MCMC chains guided by the Hessian.
d MCMC chains not guided by the Hessian.

to in (post (8)), we calculated the correlation coefficient between Atrue and Apredicted,

where these quantities are defined by

Atrue = in (post (E)) - In (post (9 hess))

T 1
Apredicted = (E - 9 hess)T A In (post (E)) + I (9 - Ohess)T H (9 - Oess)2

The Hessian at the position 9 hess is decomposed into the form H = UAUT, where

A is a diagonal eigenvalue matrix and U is a corresponding orthonormal eigenvector

matrix. By sampling points on an ellipsoid with major axes that are the eigenvectors

of the Hessian and with length 10% of the corresponding inverse square root of the

eigenvalues around the central point, we observed a Pearson correlation coefficient of

0.887. This suggests that the Hessian and gradient matrices represent a good estimate

of the true posterior, justifying our expansion of the objective function only to second

order Figure 2-4.

While simulated annealing is running, the Hessian matrix is not calculated and

test positions are generated as follows:

Otest = Oi + A0 , where AE = {T1, r78} and qi : N (0, 1)
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Correlation Coefficient = 0.8874
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Figure 2-4: Approximating parameter space using the Hessian, which is obtained from
a second-order Taylor Series expansion, is justified by a high correlation coefficient
value of 0.8874 between the true value of the posterior landscape, At,,e, and the
Hessian-based prediction Apredicted.

Here AE, is a 78-dimensional vector with independent and normally distributed com-

ponents, /i, normalized so that the magnitude of the step size in log space is one.

Once the periodic calculation of the Hessian matrix is initiated during the MCMC

walk, we use its eigenvectors to direct the walk onto a new set of orthogonal axes by

repeatedly obtaining new test positions of the following form:

78

Etest = E9 + N 0, > i

where ui and A2 are the ith eigenvector and eigenvalue respectively, and N (0, -) is a

random value drawn from a normal distribution with mean 0 and variance -. Since

the landscape is fiat in most directions, many of the eigenvalues are much less than

one. To prevent the algorithm from taking steps that are too large in any particular

direction, all eigenvalues less than 0.25 were set to 0.25, so that the variance of the

Gaussian distribution from which the new step size was chosen was limited to a value

of 2 in log space.

The entries of the transition matrix T(x-,) in our MCMC algorithm are composed

of a product of two terms: the probability of selecting a particular transition between
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two states: m(x-,) and the probability A(x-y) of accepting it (the Metropolis-Hasting

criterion):

T(X-Y) = m(x_+y)Atxo4yy

The move is symmetric in that m(xsy) = m(yox) since it is guided by a Hessian

(kept constant for a window of 25,000 moves) centered on the current position. These

qualities ensure that (as long as the Hessian is kept constant) the posterior distribution

is the stationary distribution of the MCMC chain. To test for convergence of chains,

we rely on the Gelman-Rubin criterion.

Gelman-Rubin Convergence Criterion

To obtain accurate probabilistic distributions, independent MCMC chains must reach

convergence, which can be assessed by a Gelman-Rubin test [18, 46]. The Gelman-

Rubin test is conducted by calculating the potential scale reduction factor (PSRF)

for two chains. The PSRF value is given by the following expression:

n-1W + M+1B
PSRF= " nM

W

Here B is the inter-chain variance, W is the intra-chain variance, and M is the number

of parallel MCMC chains each of which have run for n steps. In other studies, typically

a PSRF value of less than 1.2 was used to indicate convergence. In this work we

defined convergence as attaining a PSRF value of 1.1 or less. Table 2.1 shows that

the parameters in three parallel Hessian-guided MCMC random walks consistently

reach convergence before those in the classical MCMC random walk.

2.3 Results

2.3.1 Sampling Parameter Values Using MCMC Walks

To sample the posterior distribution of the EARM1.3 parameter space we imple-

mented a multi-start MCMC walk, using non-uniform priors and imposing a Metropolis-
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Hastings (M-H) criterion at each step. Such a walk has the important property that

the number of visits to a particular position in parameter space is proportional to

the posterior probability, allowing parameter vectors to be sampled with the correct

statistical weight [28]. In Appendix A we illustrate how parameter distributions can

be recovered from an MCMC walk in the auto-catalytic three-parameter chemical

kinetic system of Robertson, a classic example from the CVODES/Sundials suite [98]
and by examining 2-dimensional slices of the complex landscape of EARM1.3. In

both cases, axes for the landscapes correspond to parameters and elevation corre-

sponds to the negative log of the posterior probability (the posterior is simply the

likelihood weighted by the prior). For example, for parameters ki and k2, which de-

scribe the binding of receptor R to ligand (to form active receptor R*) and binding

of the anti-apoptotic FLIP protein to R*:

L+R 0L:R R*
k

3 2

k2

R* + FLIP -- R* : FLIP
k 3 3

we observed an L-shaped valley in the objective function with a nearly flat bottom

bounded by steep walls (Figure 2-3).

The MCMC walk samples this landscape by making a random series of move-

ments along the valley floor and then estimating the posterior probability of each

position based on a sum of squares error criterion. Estimated marginal distributions

for the parameters ki and k2 can be recovered from the walk by integrating out

all other dimensions. We observe ki and k2 to be well-constrained relative to many

other parameters in the model, probably because the IC-RP reporter lies immediately

downstream of reactions controlled by ki and k2 (Figure 2-1). The two parameters

balance each other out in a subtle way: ki is the forward rate of the ligand-binding

reaction (which promotes cell death) and k2 is the forward rate of the FLIP-binding

reaction (which inhibits cell death). As a consequence, the individual parameter dis-

tributions (marginal distributions) do not capture all of the information from the
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walk: when the value of ki is high, activated receptor R* is produced more rapidly

and this can be balanced by having k2 at a high value so -that formation of inactive

R* : FLIP complexes is rapid. Thus, a good fit to the IC-RP trajectory can be

achieved for a range of ki and k2 values as long as their ratio is roughly constant.

In general we observed that ratios of parameters (or sums of the logs of parameters)

were better constrained than single paraneters.. This-was. particularly obvious in the

case of Robertson's system, in which the k1 to k3 ratio is well estimaied but individ-

ual parameters are not (Appendix A). The phenomenon is also related to the fact

that in simple catalytic systems such as those studied by Michaelis-Menten, it is the

ratio of kf and kr, (i.e. KM ) that is well-estimated under standard conditions, not

forward and reverse rates themselves [26]. Examining other 2D slices of the posterior

landscape revealed a wide range of topographies and different degrees of parameter

constraint. True ellipsoidal minima were relatively rare but they gave rise to the ex-

pected Gaussian marginal parameter distributions; more common were distributions

in which one parameter was constrained and the other not (in Figure 2-5 we have

assembled a gallery of typical 2-D landscapes and the reactions they represent, along

with marginal distributions for all estimated parameters). Many marginal posterior

distributions were narrower than the prior and were therefore well estimated (k8 to

k1 2 for example) but others resembled the prior, a phenomenon we analyze in greater

detail below. Relative to values previously used for EARM1.3 [5]. Bayesian sampling

yielded 33 parameters with modal values differing by -10-fold and 11 by -100-fold

from previous estimates.

Boot-strapping [91] is a more conventional and widely-used method for putting

confidence intervals on individual model parameters. In boot-strapping, statistical

properties of the data are computed and "re-sampling" to generate additional sets

of synthetic data with similar statistical properties. Deterministic fits are performed

against the resampled data to give rise to a family of best fits. Bootstrapping there-

fore returns a vector of optimum fits, together with confidence intervals, consistent

with error in the data whereas MCMC walks used in Bayesian estimation return the

family of all possible parameter values that lie within the error manifold of the data.
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Figure 2-5: A selection of 2D slices of the -ln(posterior) landscape for pairs of pa-
rameters with marginal posteriors. (A) A landscape of k38 vs k5 8 shows a minimum

(corresponding to a maximum in the posterior) with both parameters described by
approximately Gaussian distributions. (B) A landscape of k 20 vs k3 5 shows two min-
ima separated by a hump. The marginal of one parameter is bounded on only one
side and the other parameter is largely non-identifiable. (C) A landscape of k33 vs k42
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k42 axis. Marginal distributions show how the individual parameters are bounded on
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It is possible that the family of fits obtained through bootstrapping will identify some

non-identifiable parameters but in contrast to Bayesian estimation, there is no guar-

antee that parameter distributions or their point-by-point covariation are completely

sampled.

2.3.2 Properties of MCMC Walks

Performing MCMC walks across many parameters is computationally intensive and

we observed that walks through the landscape of EARM1.3 proceeded slowly for

either of two reasons: at the start of most walks, the landscape was fiat in many

directions, making it difficult to detect gradients pointing toward minima. Later in

the walk, when minima were found, they were often valley-like with many flat and few

steep directions. In this case, the MCMC walk was inefficient, because many steps

were attempted in directions of lower probability (this is represented by a circle of

proposed moves in Figure 2-3). MCMC sampling adequately captures an unknown

distribution only if independent chains starting from random points converge to the

same distribution. Convergence was assessed using the Gelman-Rubin test, which

compares inter-chain to intra-chain variance: failing the test proves non-convergence,

although passing the test does not necessarily guarantee it [18, 46]. The importance

of convergence is illustrated by the difference in parameter distributions recovered by

convergent and non-convergent walks (Figure 2-6).

To improve convergence, a wide variety of "adaptive" methods have been de-

veloped based on varying step size and biasing walks in certain directions [47]. A

drawback of some adaptive MCMC approaches is that they alter the proposal dis-

tribution (which determines how the next step is taken) over the course of a walk

and therefore have the potential to violate the stationarity requirement of Metropolis

Hastings sampling. We sought a middle ground between stationarity and efficiency

by performing MCMC walks in which "Hessian-guided" adaptive moves were per-

formed once every 25,000 steps. Under these conditions all parameters in EARM1.3

reached convergence by Gelman-Rubin criteria. We also attempted to reach conver-

gence without Hessian guidance by increasing the number of steps in a conventional
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Figure 2-6: Time-series of two chains that converge for parameter ki (top right) and
two chains that do not converge for parameter k2 (top left). Marginal distributions for
convergent chains are much more similar (bottom right) than those for non-convergent
chains (bottom left).

MCMC walk to > 1.5 x 106; in this case 70/78 parameters converged (Table 2.1). We

discuss the technical but very important issues associated with normal and adaptive

walks in the materials and methods. Future users of our methods should note that

approaches for achieving and demonstrating convergent sampling in MCMC walks

remains an active area of research and improvements are likely.

2.3.3 Choosing Priors

Pre-existing knowledge about parameters is incorporated in prior distributions that

bias sampling of posterior landscapes to values observed in earlier work or otherwise

thought to be reasonable. With a biochemical system that is well-studied, relatively

narrow priors derived from in vitro data might make sense. However, in the current

work we took a more conservative approach and used broad priors derived from
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Forward, Forward, Reverse, .
First Order Second Order First Order _1

(s-1) (M-1 s-1) (s-1) (s )

Mean -1.53 -5.99 -1.77 0.02

Variance 1.44 1.32 1.17 1.24

Table 2.2: Prior of log of parameter values derived from literature

physiochemical constraints likely to pertain to most biochemical reactions (use of

narrower, specific priors would only serve to make calculations easier). In general

we favor soft constraints involving Gaussian priors over hard constraints. Although

rate constants in a biochemical model pertain to physical process, many are actually

"lumped" or "effective" rates in the physicochemical sense: the reactions they describe

are comprised of a series of elementary association-dissociation reactions that cannot

be distinguished. For an effective rate, a hard constraint is overly restrictive. We

picked a prior for the on-rate of protein-protein binding centered at ~ 107M-sec-1,

which does not violate diffusion limits and is ~10-fold higher than theoretical values

estimated by discrete simulation of linearly and rotationally diffusing bodies [89].

Other plausible priors, corresponding to the mean values and variance for on-rates

and off-rates, protein-protein binding constants and catalytic rate constants were

obtained from a literature search (Table 2.2). Because these include a mix of in vitro

and in vivo values, they represent conservative estimates for possible parameter values

(standard deviations were ~102) and should be generally useful for other models in

the absence of more specific prior information.

To evaluate the impact of priors on parameter estimation, we compared five in-

dependent Hessian-guided MCMC searches that incorporated either of two priors.

The first was a uniform prior in which log(prior) was a constant (the actual value is

not significant); this is equivalent to sampling in proportion to the likelihood. The

second was a prior involving 78 independent Gaussian distributions, each having a
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mean and standard deviation based on a literature value appropriate for that type

of parameter. With a uniform prior we observed that only a subset of parameters

converged whereas all converged with the literature-based prior. The literature-based

prior had the added benefit of minimizing the frequency with which EARM1.3 ODEs

failed to integrate. MCMC walks with a uniform prior often ventured into regions of

parameter space where numerical integration was not possible, presumably because

the system of equations was too stiff. Conversely, we speculate that integration prob-

lems are minimized when parameter values at the extremes of the distribution are

de-emphasized via the use of a log-normal prior, a potentially significant benefit.

2.3.4 Properties of the Posterior Landscape

It is a basic property of Bayesian estimation that when posterior distributions are un-

changed relative to prior distributions, little information is added by data. Inspection

of individual (marginal) posterior distributions for EARM1.3 revealed that many were

similar to the prior, implying that model calibration did not add significant new in-

formation. However, calibrated parameters exhibited significant covariation whereas

distributions in the prior were independent. How much information is contained in

this pattern of co-variation?

To begin to address this question, we selected a parameter vector (ki,. -, k78 ) from

the set of best fits arising from the joint posterior distribution and then projected the

values of the individual component parameters to form the corresponding marginal

distributions. In Figure 2-7 we see that the first parameter (indicated in red) from a

typical best fit vector has a value near the mean of the marginal posterior distribution

for ki (green; this must be true because the (ki, -- -, k7 8 ) vector was selected based

on this property) but other well-constrained parameter values such as k36 , k6 4 and

k73 lie well away from the means of their marginal distributions This makes clear

that the peak of the 78-dimensional joint posterior distribution does not project onto

the peaks of the marginal distributions. This is also true of the mean of the joint

posterior and the means of the marginal distributions. The key point is that the best

parameter estimates lie at the peak of the joint distribution and we cannot tell where
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Figure 2-7: Parameter co-variation is an important type of information recovered
by model calibration. A parameter vector drawn from the peak of the joint poste-

rior distribution (corresponding to a best-fit parameter vector) does not always have
components whose values correspond to the peaks of the corresponding marginal dis-
tributions (as illustrated for relatively identifiable parameters k1 , k3 6 , k64 and k73 ).
In this case the ki component of the best-fit vector matches the mean value of the
marginal distribution for k1 , but this is not true of k3 6 , k6 4 and k73 or in general.

this lies based on looking at marginal distributions individually.

To investigate the impact of parameter covariation on model-based prediction,

EC-RP trajectories were simulated using parameter vectors derived from the pos-

terior distribution using different sampling procedures. Vectors sampled from the

manifold of the joint posterior distribution yielded a good match to experimental

data as expected ("manifold sampling"; Figure 2-8). However, parameters sampled

independently from marginal distributions (i.e. ignoring covariation) yielded a poor

fit to experimental data ("independent sampling"; Figure 2-8). To assess whether the

observed co-variation could be captured in a compact manner, we computed a 78 x78

covariance matrix for pairs of EARM1.3 parameters and generated a corresponding

multivariate Gaussian distribution [71] ("covariance matrix sampling"; Figure 2-8).

In this case, simulated EC-RP trajectories had as poor a fit to data as trajectories

generated by independent sampling.

These findings imply that a significant fraction of the information added to the

posterior by calibration against data involves the discovery of non-linear co-variation
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Figure 2-9: - ln(posterior) values for trajectories generated from independent sam-
pling of 10 most insensitive parameters: 5 for which the means of the marginal pos-
terior deviated the least from the prior (ascertained by a t-test), and 5 for which the
variance deviated the least (ascertained by a chi-squared variance test).

among parameters and this cannot be captured by a covariance matrix. To further

illustrate that this information is important, we selected 10 parameters for which the

difference between prior and posterior marginal distributions was the least significant

(based on a t-test for the means and variances). The 10 selected parameters would

conventionally be flagged as ones in which calibration had added little or no informa-

tion. We then fixed the other 68 parameters at their MAP values and generated 103

vectors by sampling the 10 selected parameters from independent marginal distribu-

tions. EC-RP trajectories were simulated and the -ln(posterior) of values computed.

The resulting values for the posterior were dramatically lower than the values of the

posterior resulting from parameter vectors obtained by sampling from the complete

78-dimensional posterior (Figure 2-8 and Figure 2-9). This demonstrates that even

when the prior and posterior distributions appear nearly identical, calibration adds

essential information on the relationships among parameters.

From these observations we conclude that: (i) non-linear covariation in param-

eters, as captured in the joint posterior distribution, contains critical information,

(ii) the most probable values for individual parameters do not correspond to values

in best-fit vectors, and (iii) treating parameters as independent values, as in a ta-
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ble, or approximating their relationships linearly, as in a covariance matrix, destroys

information necessary for accurate model-based prediction. We can understand this

conceptually by referring to the landscape of ki and k2 (Figure 2-3): it is evident

that the true relationship between the parameters varies across the landscape in a

complex non-linear manner. These considerations seem rather technical at first, but

they have profound implications for the ways in which model parameters are recorded

and used.

2.3.5 Using Parameter Distributions In Simulation And Pre-

diction

Estimation of parameter distributions makes it possible to account for both measure-

ment error and parameter non-identifiability when making model-based predictions.

For cells exposed to a range of TRAIL concentrations we computed two descriptors

of apoptosis known to be physiologically significant for many cell types [5, 7]: (i)

the time interval between the addition of TRAIL and half-maximal cleavage of the

caspases substrates whose proteolysis accompanies cell death (that is, the mean and

variance in Td ) and (ii) the interval between initial and final cleavage of effector cas-

pases (C3*), which captures the rapidity of death (the mean and variance in T, [5]).
EC-RP trajectories for cells treated with 50 ng/ml TRAIL were used for model cali-

bration and T, and Td values were then predicted for 10, 250 and 1000 ng/ml TRAIL.

Simulations were performed by sampling 1000 parameter vectors a from the posterior

distributions arising from two independent MCMC chains and computing trajecto-

ries for each E. These predictions comprised probability density functions rather

than single values and we therefore calculated 60% and 90% confidence intervals. We

observed that the mean value of Td fell with increasing TRAIL concentrations while

T, remained essentially constant, in line with experimental data (Figure 2-10A).

Moreover, distributions had the satisfying behavior of having narrow confidence

intervals at the training dose and progressively wider intervals at higher and lower

doses. This illustrates two closely related points: first, quite precise predictions can be
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Figure 2-10: Using parameter vectors obtained by three different sampling methods
to make model-based predictions of the time between ligand exposure and caspase
activation (Td) or between initial and complete PARP cleavage (T,;) computed using
parameter vectors sampled from (A) the joint posterior distributions obtained from
the MCMC walk; (B) a multivariate log normal distribution with mean and covari-
ance computed from the MCMC walk; (C) independent log normal distributions with
means computed from the MCMC walk. Mean values (blue dotted line) and esti-
mated 90% (black dotted lines, gray area), and 60% confidence intervals are shown
(green dotted lines, light green area along with experimental data (red). PSRF values
obtained via the Gelman-Rubin convergence test for these predicted model features
ranged between 1.0001 and 1.0442 for Td and 1.0015 to 1.0343 for T,.
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made from models despite parameter non-identifiability [53, 71] and second, Bayesian

sampling makes it possible to compute rigorous confidence intervals for predictions

that account for experimental error and our lack of knowledge about parameters.

However, this requires that we correctly account for co-variation in parameter esti-

mates: independent and covariance matrix sampling of parameters dramatically im-

paired our ability of EARM1.3 to predict accurate values for T, and Td (Figure 2-10B,

C).

2.4 Discussion

In this chapter we described a Bayesian framework for estimating free parameters

in ODE-based biochemical models, making probabilistic predictions about dynami-

cal variables and discriminating between competing models having different topolo-

gies. We illustrated the use of this approach with a previously validated and non-

identifiable model of receptor-mediated apoptosis in human cells (EARM1.3). Rather

than return a single set of best fit parameters, Bayesian estimation provides a sta-

tistically complete set of parameter vectors k that samples the posterior parameter

distribution given a set of experimental observations (time-lapse data from live cells in

the current case) and a value for experimental error. Estimation starts with a best-

guess initial distribution (the prior) which is then modulated by a sum of squares

log-likelihood function that scores the difference between model and data. Recovery

of the posterior parameter distribution makes it possible to compute confidence inter-

vals for biologically interesting properties of the model (time and rapidity of apoptosis

in the current case). These confidence intervals correctly accounting for measurement

noise and parametric uncertainty and can be remarkably precise in the face of substan-

tial non-identifiablility [71]. Simulations that include confidence intervals represent

an advance on the prevailing practice of relying on error-free trajectories computed

using a single set of maximum likelihood parameter values.
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2.4.1 Properties of the posterior distribution and implica-

tions for reporting parameter values

With EARM1.3, Bayesian estimation reveals substantial differences from one param-

eter to the next in the degree of identifiability (as reflected in the widths of the param-

eter distributions). This is expected given previous work showing that biochemical

models are sloppy [53 even when calibrated against complete data on all dynamic

variables (which is not the case in the current work). A basic property of Bayesian

estimation is that the posterior will resemble the prior when data provides little or

no additional information. Conversely, when the data are informative, the shape of

the posterior will differ substantially from that of the prior. In the case of EARM1.3,

modal values for posterior distributions differed from the priors for about one-third

of all parameters while still falling within a biophysically plausible range (with rate

constants below the diffusion limit, for example). The exact shape of the prior did

not appear to be critical in achieving convergent sampling, a fortunate outcome since

we used general-purpose priors applicable to all cellular functions rather than priors

derived from specific analysis of apoptosis proteins. One mistake we learned to avoid

was constraining the MCMC walk to a fixed interval around nominal parameter val-

ues; such hard limits result in artificially truncated marginal distributions. Gaussian

priors also had the benefit of improving the fraction of parameter sets for which the

EARM1.3 ODE system could be integrated.

It is incorrect to judge the impact of parameter estimation (i.e., what we learn by

comparing models to data) simply by examining the shapes of individual parameter

distributions: several lines of evidence show that marginal distributions contain only

part of the information. Non-linear covariation among parameters accounts for the

rest; it is necessary for accurate model-based simulation and cannot be approximated

by a covariance matrix. The reasons for this are evident from inspection of the

landscape of the objective function. The landscape is steep (the eigenvalues of the

Hessian matrix are high) in directions that do not point directly along raw parameter

axes (Gutenkunst et al, 2007). Thus, identifiable features of the systems correspond
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to ratios of rate constants (this is the basis of parameter co-variation) but the value of

the ratio varies through parameter space (this gives raise to curved high-probability

valleys that are not well approximated by lines). By direct analogy, the identifiable

parameter in a Michaelis-Menten treatment of a simple catalytic reaction is Km, a

ratio of rate constants, rather than kf or k, themselves ([26] see also Appendix A).

When parameters in a model are highly covariant, it is almost always the case that

the system can be described with a simpler model involving a smaller set of more

identifiable parameters. In many applications it is desirable to use such reduced

models but in the case of biochemistry, parameter non-identifiability and high co-

variance appear to be the cost of representing systems as sets of reversible mass-

action reactions. Under the assumption that mass-action kinetics (and also stochastic

kinetics obtained by solving the chemical master equation) are uniquely appropriate

as a means to describe the physics of biochemical systems, we are forced to use models

such as EARM1.3. However, there is no reason, from a physical perspective, to believe

that proteins in a network that do not actually bind to each other alter each others

rate constants: the presence of highly co-variant parameters in best-fit vectors is not

a property of the underlying biochemistry. Instead, it represents a limitation on our

ability to infer the properties of complex reaction networks based on the time-course

data we typically acquire.

One consequence of parameter co-variation in EARM1.3 is that parameter values

in best-fit vectors do not correspond to the means of marginal parameter distributions

and sampling the means of marginal distributions does not result in a good fit. It is

common practice in biochemical modeling to report parameters as a table of single

values (with no allowance for non-identifiablility) or as a list of means and ranges. If

these parameters are derived from calibration, critical information on co-variation is

lost. It is therefore necessary to report the actual vectors recovered by sampling the

posterior parameter distribution. In principle, this is an array of size CM (N + 1)

where C is the number of MCMC chains, M the number of steps, and N the number of

parameters (N+1 appears because we record a posterior value for each N-dimensional

vector) corresponding to -1.5x10 8 entries for EARM1.3. However, steps in MCMC
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chains have characteristic "decorrelation lengths" over which parameter values vary

relatively little (~102-104 steps, depending on the parameter). Thinning by this

amount yields an array of ~104_106 entries, still a much more complex representa-

tion of parameters than the simple tabular summary assumed by current standards

such as SBML. It is also important to note that the posterior landscape needs to

be revisited repeatedly when adding new data or extracting new hypotheses. In this

sense, parameter estimates are best viewed as computational procedures and sets of

possible values rather than fixed information.

2.4.2 Limitations of the approach

A conceptual concern with the current work involves the way in which MCMC walks

sample the posterior landscape. To establish that sampling is correct it is necessary to

show that chains starting at independent positions converge. Convergent sampling is

not an abstruse point because probability distributions can differ in shape and modal

value when sampling is convergent as opposed to non-convergent. With EARM1.3 we

observed that convergence was not possible in a reasonable amount of time (e.g., a

week-long cluster-based calculation) using a conventional MCMC walk. We therefore

used an adaptive walk involving periodic re-calculation of the local landscape as a

means to guide MCMC walks and improve convergence. However, this approach may

violate the detailed balance requirement of Metropolis-Hastings sampling. With large

models and existing methods we are therefore in the position of having to choose be-

tween convergent Hessian-guided chains and partially non-convergent, conventional

chains ([71] chose the latter alternative). Moreover, using the Gelman-Rubin test to

judge convergence has the weakness that it is one-sided: failing the test demonstrates

non-convergence but passing the test does not guarantee it. Analysis of posterior

distributions for EARM1.3 computed in different ways suggests that we are on rela-

tively solid ground in the current work (we did not observe significant differences in

posterior distributions using different sampling approaches) but the development of

methods for analyzing MCMC walks represents an active area of research in applied

mathematics and it is necessary to be aware of future developments.
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For reliable, probabilistic model-based simulation we also need to consider the fact

that the sufficiency of sampling is contingent not only on the model structure and

available training data, but also on the types of predictions being sought. Assuming

convergence, the posterior landscape sampled by multi-start MCMC walks represents

a reasonable approximation to the true but unknown posterior distribution of the

parameters, but the same is not necessarily true for predictions or simulated trajec-

tories based on these parameters: the posterior landscape may be poorly sampled

in regions of parameter space that have a significant impact on certain simulations.

In the current work we show that MCMC chains used to predict T, and Td satisfy

the Gelman-Rubin test, but this is a weak criterion and importance sampling using

umbrella, non-Boltzmann or other methods [9] will generally be necessary to revisit

regions of the landscape that have low posterior values but contribute strongly to the

distribution of a prediction. This suggests a workflow in which MCMC walks based

on calibration data (as described here) are only the first step in model calibration.

Inclusion of any new training data mandates a new round of estimation. Additional

sampling should also be performed as required by importance sampling to reliably in-

form predictions. Finally, the use of formal methods for modeling experimental error

[61] should make it possible to distinguish errors arising from photon noise, infrequent

sampling, incorrect normalization, etc., thereby improving the comparison between

data and simulation.
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Chapter 3

Application of Thermodynamic

Integration To Network Topology

Discrimination

In principle, ambiguities in biochemical network reaction topologies can be resolved

by constructing alternative models and then determining which ones exhibit the best

fit to data. Such comparisons are usually performed using a set of parameters thought

to fall near the global optimum for the original model (based on goodness-of-fit to

data). However, given the kinds of data that can be collected from cells, parameters

in realistic biochemical models are often non-identifiable and re-fitting alternative

models often uncovers a new set of parameters having an indistinguishably good fit.

In this case, it is not clear whether the models being compared are equally valid.

Uncertainty about parameters arises from non-identifiablility, whose ultimate origins

are a dearth of quantitative data on the rates of biochemical reactions. Sethna and

colleagues have pointed out that even a complete set of time-course data on the

concentrations and states of all species in a biochemical model is usually insufficient

to constrain the majority of rate constants, a property known as sloppiness [19, 21,

38, 53]. In addition, models with different reaction topologies often differ in the

numbers of free parameters. Therefore, a scheme for rigorously comparing competing

biochemical models must account for parametric uncertainty and potential differences
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in parameter numbers.

3.1 Background

One area in which the existing EARM1.3 model is particularly simplistic is in its

treatment of MOMP regulators. The Blc2 proteins that regulate MOMP can be

divided into three families: (1) pro-apoptotic BH3-only proteins, such as Noxa, tBid,

and Bad that promote pore formation, (2) effectors proteins such as Bax and Bak

that form trans-membrane pores, and (3) anti-apoptotic proteins, such as Bcl2, Mcli

and BclXl which inhibit pore formation. Conflicting hypotheses exist in the literature

about whether MOMP is controlled in a "direct" or "indirect" fashion [29, 80]. The

direct model postulates that BH3-only "activators," such as tBid and Bim, bind to

Bax and Bak and induce pore-promoting conformational changes (a second class of

BH3-only "sensitizers," such as Bad, are postulated to function by binding to and

neutralizing anti-apoptotic proteins such as Bcl2). The indirect activation model

postulates that Bax and Bak have an intrinsic ability to form pores but are prevented

from doing so by association with anti-apoptotic proteins; the sole role of BH3-only

proteins in this model is to antagonize anti-apoptotic proteins, thereby freeing up

Bax and Bak to assemble into pores. Considerable subtlety exists with respect to

the specifics of indirect and direct mechanisms implying that it will ultimately be

necessary to compare multiple versions of each model.

We compute the Bayes factors for MOMP models that have different topologies

(competing indirect and direct models EARM1.31 and EARM1.3D) thereby estimat-

ing their relative likelihood while accounting for different numbers of non-identifiable

parameters. The fact that Bayesian methods developed for relatively small models

in the physical sciences [22] are effective with large biochemical models opens the

door to rigorous reasoning about cellular mechanisms in the face of complexity and

uncertainty.
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3.2 Methods

3.2.1 Comparing two EARM1.3 models using Bayes factors

Although the scheme presented in the previous chapter represents a principled way to

manage parametric uncertainty, it does not account for uncertainty in the structures

of reaction networks. We focus on uncertainty involving pore formation by Bcl2-

family proteins during MOMP [29, 76, 80]. EARM1.3D instantiates a "direct" model

in which MOMP activators such as tBid (Figure 3-1, red lozenges) positively regulate

Bak/Bax pore-forming proteins (green), and Bcl2, BclXl and Mcli inhibitors (yellow)

block this activation (these proteins are themselves antagonized by the sensitizers

Bad and NOXA). EARM1.31 instantiates an "indirect" model in which Bak/Bax are

always active but are held in check by Bcl2-like inhibitors, whose activity in turn is

antagonized by tBid, Bad and NOXA (Figure 3-1). These models represent only two

of several possibilities for direct and indirect regulation of MOMP, but the important

point for the current work is that they have distinct topologies and different numbers

of parameters (88 for EARM1.31 and 95 for EARM1.3D).

When we compared simulated EC-RP trajectories using EARM1.31 or EARM1.3D

to experimental data, we observed equally good fits, meaning that the models cannot

be discriminated based on a maximum likelihood approach (Figure 3-2). To compare

Indirect Model Direct Model

BaxBax

Bak Bak
Bad Bcl2

-- d4 Baxk
NOXA Mcl1 M Bax a Bcl2

--- LNOXA 
Mcl

BclxL

Figure 3-1: Graphical depictions of potential indirect and direct mechanisms control-
ling pore formation by Bax and Bak. See text for details.

61



Fit to data

e Data
-0.8 - Indirect

- Direct
U 0.6

4--

00.

0 0.5 1 1.5 2
Time (sec x 104)

Figure 3-2: Both EARM1.3I indirect (red) and EARM1.3D direct (blue) models ex-
hibited an excellent fit to experimental EC-RP trajectories. Thus, the models cannot
be distinguished by simple maximum likelihood criteria. For simplicity, simulations
were based on a single best-fit parameter vector.

the models in a Bayesian framework, we applied Bayes theorem at the level of models:

P (Mildata) = Pwhere i = 1, 2 (31)
P (data|M) P (Mi) + P (data|M2) P (M2 )

where "data" refers to experimental measurements against which the objective func-

tion was scored (EC-RP trajectories in the current case). MI refers to the direct model

and M2 to the indirect model and since both have literature support we assumed that

the models are a priori equally plausible (this represents the most conservative as-

sumption). Then, Eq. (3.1) simplifies to:

P (Mildata) _ P (data|MI) _ fdE1 L1 (data|81 ) 7 (E1 |M1 ) (3.2)
P (M 2|data) P (data|M 2) f d 2 L2 (data|E2) 7r (6 2 M2 )

where 6 1 = (61, - - - , 95) and 6 2 = (01,--- , 088) are respectively the parameter vectors

for models M1 and M2, O6 -- logio (ki) where ki is the the ith parameter of a particular

model (all calculations are performed in log space), Li (data|8i) is the likelihood

function, and 7r (E8|Mi) is the prior for the parameters of model Mi. This ratio is

known as the Bayes factor and represents the odds ratio of one model being correct
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over another [44, 63], and has been used for discriminating alternate models of cross-

talk in ERK and cAMP signaling [62]. Both the numerator and the denominator

comprise two high-dimensional integrals that represent the overlap volume between a

likelihood (L (data|8))) and the prior for each model is -r (6|M). This overlap integral

is also known as the evidence. The Bayes factor not only accounts for all plausible

parameters based on their likelihood, it also has a built-in "Occam's razor" that

implicitly accounts for the possibility that the two models have different numbers of

parameters [81].

3.2.2 Computing the Bayes factor by thermodynamic inte-

gration

Models were compared using the Bayes factor, a ratio of integrals that can be com-

puted in low dimensions fairly easily, for example using Gauss-Hermite quadrature

[43, 64]. However, in high dimensions, quadrature is expensive and we therefore

turned to thermodynamic integration [22, 39, 44, 74]. Thermodynamic integration

relies on a constructed relation known as the power posterior, which resembles the

overlap integral in the numerator or denominator in Eq. (3.2) except for the introduc-

tion of a fictious "temperature" t, a variable power to which the likelihood function

is raised. Let us define z(t) by

z (t) = d8 Lt (data|8)) -r (8) (3.3)

At t = 1, we recover the evidence (numerator or denominator in Eq. (3.2)) whereas

at t 0 we obtain a value of 1 because the prior distribution integrates to 1. The

temperature factor serves to flatten the likelihood function so that it resembles the

likelihood and prior at t = 1 and 0, respectively. Then, by the fundamental theorem

of calculus, we obtain:

ln P (data|M) = ln[z (1)] - In[z (0)] = j dr+ ln[z (T)] (3.4)
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The integrand has an explicit derivative with respect to the temperature variable:

d 1 d
-ln[z (T)]= -z ()
dT z(T) dT

Ii 1 d [f dO Lt (data19) r (6)f dO Ll (data|E)7 (8) dT

f di In (L (data|E)) LT (data |) -r (6)
f de LT (data|1) r (6)

(ln (L (data|E)))T

The derivative is therefore a weighted average of the log-likelihood function. The

bracket average is obtained by sampling from a temperature-dependent distribution

(a normalized distribution which we denote as Q), which can be simulated, in the

same way as the posterior, via convergent MCMC sampling. In particular, for any

function f, we let:

(f (E)))= dE Q(E; T) f (6)

where Q (0; T) = LT (dataI0) - (8)
fiLT (data|8) 7r (6) d

In this way, calculation of a high dimensional volume is converted into a one di-

mensional integral of bracket averages over a fictitious temperature. The integrand

must be estimated at each temperature via MCMC sampling. There is an appeal-

ing physical interpretation to this integral: the temperature factor "flattens" the

likelihood function while the bracket averaging calculates the likelihood function at

different values of the "flatness." When the temperature-based likelihood function is

flattened, the sampled likelihoods will be poor (low), whereas when it is sharp and

similar to the original posterior, the sampled likelihoods will be good (high). If the

overlap volume is large, then the switch from poor to good will occur at low temper-

ature (higher flatness). Conversely if the overlap volume is small, then comparatively

the switch will occur at higher temperature (lower flatness). The evidence term is

simply the exponential of the one-dimensional integral:

P (data|M) = e(fO d,(1nL(data|E)))
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The value of the bracket average (ln L (data 8)), was estimated by running three

independent MCMC chains for 1,000,000 steps at each temperature T. All chains

achieved convergence as per the Gelman-Rubin criterion (although only the latter

half of the chains were used, to allow a burn-in period for the MCMC algorithm).

The integral necessary to calculate the value of In P (data|M) in Eq. (3.2.2) was

then discretized over the interval T E [0, 1]. The temperatures used to evaluate

(ln L (data|8)), were divided into three segments: T C [0,0.01], T E (0.01, 0.1], and

T C (0.1, 1] comprising 11, 9, and 9, evenly spaced points respectively. These values

for the temperatures were chosen so that the smooth transition from poor likelihood

values to good ones was accurately captured. The trapezoidal rule was applied to

evaluate the integral:

In P (data|M) (ri1 - T) [(In L (data 8)) , + (ln L (data E)))]
i=1

3.3 Results

3.3.1 Model discrimination based on computing the Bayes

Factor

We used Bayesian procedures to discriminate between competing direct and indirect

models of mitochondrial outer membrane permeabilization, a key step in apoptosis.

Both models fit experimental data equally well and thus, cannot be distinguished on

a maximum likelihood basis. Discrimination involves estimating the evidence for the

indirect model P (MI data) divided by the evidence for the direct model P (MD data),

a ratio known as the Bayes factor [62, 63, 64]. We computed the integrals in Eq. (3.2)

using the thermodynamic integration method that we just described. This transforms

the problem of evaluating high-dimensional integrals into a problem involving a one-

dimensional sum over quantities sampled from a series of MCMC walks. Sampling is

weighted by a power posterior that depends on a fictitious temperature factor ranging

from a value of 0 to 1 [39, 44, 74]. For each model, three MCMC chains were run
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at 29 temperatures between 0 and 1. The quantity ln(likelihood) was averaged with

respect to the power posterior at each temperature and over three chains, resulting in

two curves, one for each model (Figure 3-3). The ratio of the areas under each curve

converges to the logarithm of the Bayes factor. Because thermodynamic integration

is a sampling method, the computed Bayes factor is subject to sampling error and

must be expressed as a confidence interval. We computed the uncertainty on the areas

returned by thermodynamic integration by estimating the variance at each point of

the curve to generate a two-sided confidence interval.

Computation of the Bayes factor revealed the direct model to be - 16 - 24 times

more probable than the indirect model with 90% confidence, reflecting the greater

range of parameter values compatible with the direct model (Figure 3-4). This for-

malization of a "robustness" criterion for preferring the direct model is consistent

with recent experiments obtained from engineered cell lines [29]. With respect to the

biological significance of this finding, however, it is important to note that published

indirect and direct "word models" are compatible with many different ODE networks.

Thus, it will ultimately be necessary to distinguish among extended sets of compet-

ing models, not just the two presented here. With improvements in computational

speed, methods for calculating the Bayes factor using thermodynamic integration is

Thermodynamic integration
0 , OOOom

-50 o Indirect
0 Direct 0

0o -1000

-150 me

i'-200

-250 [
-3 -2 -1 0

log1 (temperature)

Figure 3-3: Thermodynamic integration curves for the direct and indirect model.
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Figure 3-4: Exponentiation of the differential area in the two thermodynamic curves
from Figure 3-3 provides an estimate of the Bayes factor for direct and indirect models
along with the uncertainty in the estimate. Based on the distribution of the Bayes
factor estimate (reflected in the error bars in Figure 3-3) the direct model is preferred
to the indirect by a weight of 20, with the 90% confidence interval spanning a range
from 16 to 24.

well suited to this task.

Bayesian approaches to model discrimination account not only for uncertainty

in parameters values but also for differences in the numbers of parameters. This is

important because models that instantiate different hypotheses about biochemical

mechanism usually have different numbers of parameters even when the number of

unique model species is the same. The complexity penalty embedded in the Bayes

factor represents a generalization of the Akaike or Bayesian Information Criteria (AIC

and BIC) commonly used to score model likelihoods [64].

We can better understand how the Bayes factor scores models by examining

the landscape of the objective function. We approximated the landscape as an n-

dimensional ellipsoid (where n refers to the number of parameters in each model)

by using a Taylor series at a best-fit position in parameter space. This makes it

possible to describe the landscape in terms of an ellipsoid the length of whose axes

are inversely proportional to the square roots of the eigenvalues of the second order

term of the Taylor expansion (i.e. the Hessian). The direct model had more small
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Figure 3-5: Eigenvalue analysis of the landscape around the respective maximum
posterior fits shows the direct model (blue) has multiple smaller eigenvalues, suggest-
ing that it is consistent with the data over a larger volume of parameter space and
therefore exhibits greater statistical weight.

eigenvalues than the indirect model (i.e., longer axes) and thus a greater volume of

equally good parameters (Figure 3-5). The notion that a model is more probable if

more parameters give a good fit is frequently if informally applied when models are

ranked based on their robustness with respect to parameter variation [24]. It is also

intuitively appealing: a model that performs well only over a narrow range of param-

eter values which are otherwise unknown is less probable than one that is tolerant

of variation. Such reasoning is also related, conceptually, to maximum entropy and

minimum information approaches.

3.3.2 Validation of thermodynamic integration

We compared six very simple models thought to simulate in vitro experiments describ-

ing membrane permeabilization. In the experiment, liposomes were used to mimic mi-

tochondria; ANTS dye was placed inside the liposome along with a quencher molecule

DPX (liposomes will not fluoresce in the presence of the quencher protein). Measur-

ing fluorescence is indicative of whether permeabilization has occurred or not. If

the liposome is intact, no fluorescence occurs; when the liposome is permeabilized,
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because the effective volume of the solution is considerably larger, DPX no longer

represses ANTS, and fluorescence is observed. Purified Bax and tBid were added to

a liposome solution as means of understanding the mechanics of MOMP in a purified

setting without any of the complexity that occurs in a natural state.

These models consist of only two proteins, Bid and Bax, and have incremental

complexity so that we can determine the most plausible relationship between these

two proteins. Six different scenarios were considered:

Translocate Bax:

Bax, + Vesiclesf + Baxf + Vesiclesf

Baxf -> Bax,

Baxs + Vesiclese -4 Baxe + Vesiclese

Baxe - Baxes

Translocate Bid:

Bids + Vesiclesf -> Bidf + Vesiclesf

Bidf -+ Bids (3.6)

Bid, + Vesiclese Bide + Vesiclese

Bide - Bids

tBid activates Bax

tBid + Bax ' tBid: Bax -+ tBid: Bat* -+ tBid + Bax* (3.7)

This equation can also be depicted as a simple enzyme-substrate reaction:

E + S 1 E: S -+E: P -+ E + P

Bax inhibits tBid

tBid + Bax* 4 tBid: Bax* (3.8)
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Continuing with the enzyme-substrate reaction comparison:

E + P -E : P

tBid reverses Bax

tBid: Bax* + tBid: Bax (3.9)

Continuing with the enzyme-substrate reaction comparison:

E:P-+E:S

Dimerization

Bax* + Bax* * Bax2 (3.10)

Dye Release

Baxf 2 + Vesiclesf P!L 4lx Baxf 2 + Vesiclese (3.11)

Baxf2 x Baxe2 (3.12)

Dimer Dissociation

Bax2 - Bax* + Bax* (3.13)

Here, s represents the reaction occurring in solution, e and f indicate empty and

full liposomes, respectively. No subscripts imply that the reaction occurs for both e

and f liposomes, but that it does not occur in solution.

In order for MOMP to occur, an equilibrium between Bax in solution and Bax on

the liposome's membrane needs to be established (Eq. (3.5)). The same equilibrium

also needs to occur for tBid (Eq. (3.6)). Once the equilibriums are established, tBid

acts as an enzyme and activates Bax (Eq. (3.7)). To accurately mimic a solution

of billions of liposomes, the liposomes were divided into two categories: those that

contain dye (f), and those that don't (e). The activation of Bax by tBid (Eq. (3.7))

occurs on both empty and full liposomes since the proteins should not selectively
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Increasing Complexity

ml m1r m2 m2r m3 m3r

Translocate Bax V

Translocate Bid V

tBid activates Bax V/ / /

Bax inhibits tBid

tBid reverses Bax

Reversible dye release pores

Table 3.1: Six models describing the basic interactions between Bid and Bax

migrate to full liposomes to permeate them. As the number of empty liposomes

accumulate, many reactions serve to be unproductive and do not contribute to the

observed fluorescence signal. Once Bax is activated, it forms a dimer (Eq. (3.10)). If

the dimer is formed on a full liposome, then two reactions should be accounted for:

first, the dimer goes from being bound to a full liposome to an empty one (Eq. (3.11)).

The rate of this reaction, lipoefflux, is mediated by the amount of full vesicles. The

half-life of the enzyme Baxf is determined by kefflux. If kefflux is very fast, then

lipOefflux will occur more slowly as there will be less Baxf2 present in the system.

Second, the dimer can now disassociate and bind to other liposomes (accounted only

in "r" models, Eq. (3.13)).

If Bax inhibits tBid, then the third reaction describing the activation of Bax by

tBid becomes reversible (Eq. (3.7)); otherwise, it is irreversible. Similarly, if tBid

reverses Bax, then then the second reaction describing the activation of Bax by tBid

becomes reversible (Eq. (3.7)); otherwise, it is reversible. Table 4.1 summarizes the

differences between the six model topologies.

In this case, the purpose of model comparison was mainly validation: all models

were calibrated to synthetic data generated from ml. The model ml can be recap-
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Figure 3-6: Comparison of six simple models describing membrane permeabilization.

Synthetic data was generated from the simplest model, ml. Bayes Factor not only

determines ml as the most plausible model, but also segregates the models into two
groups: those with reversible dye release pores and those with irreversible ones.

tured from any of the other models by setting all the extra parameters in the other

models to zero. We expect that thermodynamic integration would choose ml as the

most likely model since it is set as "ground truth." As illustrated in Figure 3-6, our

algorithm does indeed choose ml as the most likely method. Interestingly, it also

divides the networks into two groups: those with reversible dye release pores and

those without. These results are a first step in a more subtle and interesting point:

model discrimination is seemingly insensitive to most variations in network topolo-

gies; certain changes in topology space, such as the existence of reversible dye release

pores, significantly change the plausibility of models. Experimental design should be

used to further study these particular network connectivities.

3.4 Discussion

3.4.1 Model discrimination in the Bayesian framework

A solid theoretical foundation and large body of literature speaks to the value of

Bayesian frameworks for analyzing models having different numbers of uncertain pa-
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rameters [62, 64, 81]. The Bayes factor described here, the odds ratio for competing

models (i.e. the ratio of the evidence), is computed from an overlap integral between

a likelihood and a prior (that is L (data |) and r (0|M)). At first glance it might

seem that making a model more complex would increase the number of dimensions

and always increase the evidence, but a simple example shows that this is not the

case.

Consider a pair of 1- and 2-parameter models of the same hypothetical physical

process and a function f that is the ratio of relevant likelihoods: f (ki, k2) = L(ki)

The evidence for the 1-parameter model is the overlap integral between its likeli-

hood and a normalized prior f dki L (ki) 7 (ki) and for the 2-parameter model it is

f dki dk 2 L (ki, k2 ) ? (ki) 7 (k2 ). In the case where f (ki, k2 ) < 1 for all ki, k2 the

likelihood of the 2-parameter model is no better than that of the simpler 1-parameter

model (note that the evidence for the 2-parameter model is f dkiL (ki) - (ki) g (ki)

where the function g (ki) = f dk 2 7 (k2) f (ki, k2) must be less than 1 everywhere, as

the priors are normalized to 1). The evidence for the 2-parameter model will therefore

be less than the evidence for the 1-parameter model, meaning that it will lose out in a

Bayes factor comparison, as it should. When the function f (ki, k2 ) > 1 then it must

be true that introduction of a second parameter "rescues" or "lifts" the likelihood

function by improving the fit to data. In this case, the more complex model will have

greater evidence. In the special but interesting case where f (ki, k2 ) = 1 for all ki, k2 ,

model 2 is completely insensitive to the new parameter. The presence of a parame-

ter with respect to which a model is completely insensitive has no impact in model

assessment (the Bayes factor is one). Finally, in the general case where f (ki, k2)

has values both above and below 1, explicit integration is needed to determine which

model is favored, precisely what we do in this paper.

In the simple example presented in Section 3.3.2, the Bayes Factor recovered ml as

the most plausible model since it is simple and sufficient. The Bayes factor, however,

is not unique as a means to balance goodness-of-fit and model complexity. The most

commonly used metrics are the Akaike information criterion (AIC) and the Bayes

information criterion (BIC) [1, 104]:

73



BIC = -2 log (ML) +nlog (N)

where n is the number of parameters, ML is the maximum likelihood value, and

N is the number of data points (ML is simply the highest value achieved by the

likelihood function). AIC and BIC do not explicitly account for parameter non-

identifiability and the two metrics are therefore good for comparing models only

in the "asymptotic" limit where the number of experimental data points becomes

"large" and identifiability is "greater" [2, 3, 64]. It is rare in the field of biochemical

modeling to explicitly check whether the conditions for computing the AIC and BIC

are valid and, in our experience, they are frequently violated. In contrast, the Bayes

factor is applicable even with limited data and reduces to the BIC and, under some

conditions, to the AIC in the asymptotic limit [2, 3, 64]. Moreover, whereas the

AIC or BIC compare models solely on the basis of goodness-of-fit, Bayesian methods

allows formal introduction of a prior degree of belief in each model. An arbitrary

model (i.e. a physically impossible model) exhibiting a better fit to data might get a

better AIC or BIC score than a more realistic mechanistic model, but in a Bayesian

approach it would receive a low prior value. We therefore consider evaluation of the

Bayes factor to be a better way than AIC or BIC to compare models when models

have different numbers of non-identifiable parameters and data are limited.

3.4.2 Limitations of the approach

The computational approach described here has several practical and algorithmic lim-

itations, albeit ones that can be mitigated with further work. A practical concern is

that current methods for computing the Bayes factor are too slow to incorporate the

full range of data we have collected from cells exposed to drugs, siRNA-mediated pro-

tein knock-down and ligand treatment. Using only a subset of available training data,

computing the Bayes factor for EARM1.3 required - 6 x 104 CPU-hr (four weeks on

a 100 core general-purpose computer cluster). It should be possible to improve this

by optimizing the code (e.g., porting it from MatLab to C/C++;) and performing
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multiple analyses in parallel. It also remains to be determined how inclusion of more

calibration data will alter the topology of the posterior landscape. It may become

more rugged, decreasing the requirement for Hessian-guidance during MCMC walks

but increasing the need for simulated annealing to move out of local minima.

3.5 Conclusions

The ubiquity of Bayesian methods in other scientific fields has motivated multiple,

parallel efforts to apply the approach to biochemical models [22, 37, 62, 71], but sig-

nificant challenges remain with respect to development of widely available methods

for discriminating between competing models. The algorithm described in this chap-

ter uses the Bayes factor to distinguish between models with different topologies and

numbers of parameters in a rigorous manner.

It is our opinion that application of rigorous probabilistic analysis of biochem-

ical models will advance the long-term goal of understanding complex biochemical

networks in diverse cell types and disease states [62, 71]. Preliminary application of

Bayesian reasoning suggests that some long-standing disputes about cell signaling can

be laid to rest, (e.g., direct versus indirect control of MOMP), whereas others cannot

be truly discriminated based on available data.
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Chapter 4

An Extension To Multiple Models

At A Different Scale

Although mathematical models are a useful tool for studying biochemical signaling

pathways, they are also ever changing due to new discoveries or new hypotheses

(that are constantly formed due to the uncertainty involved with the sheer size of the

models and relatively small amount of data). These changes, which typically consist

of model species and biochemical reactions being inserted, removed, or modified, are

simply part of an ongoing, iterative model improvement process. In this chapter, we

show that, despite uncertainty in both model topologies and model parameters, the

methodology presented in previous chapters can be leveraged to make predictions on

hallmark characteristics of the apoptosis signaling pathway.

4.1 Mini-models Analyzed

The receptor-mediated apoptosis signaling pathway can be divided into three general

modules [79]:

1. The DISC module, which begins with the binding of TRAIL to receptor and

ends with the assembly of DISC components

2. The MOMP module, which begins with caspase-8 cleaving Bid and ends with
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mitochondrial pore formation; and

3. The PARP module, which consists of all the biochemical reactions involving the

series of caspase-8 and caspase-3 regulators. Activation of caspase-3 leads to

cleavage of PARP and other cellular substrates typically leading to cell death.

In this chapter, we focus on exploring eight previously published models [5, 24,

32, 79] describing alternative hypotheses for the MOMP module. Each of these mini-

models proposes a slightly different control mechanism for MOMP regulation by the

Bcl2 family of proteins in apoptosis. These simple models are variations on three con-

flicting hypotheses: the direct, indirect and embedded mechanisms [105]. The direct

and indirect mechanisms were described in Chapter Three; the embedded mechanism

[79], which incorporates a combination of elements from the direct and the indirect

mechanisms, is based on recent experimental findings from various research groups

[15, 76, 78]. In the embedded method of MOMP regulation, tBid activates Bax both

by direct binding and by inhibiting Bcl2, the inhibitor of activated Bax. Similarly,

Bcl2 inhibits apoptosis by binding to both tBid, an activator, and to activated Bax.

Mitochondrial
Outer m m m
Membrane

rn

W M Mm

Figure 4-1: An illustration of Smac and CytoC translocation from the mitochondria
to the cytosol upon pore formation on the mitochondrial outer membrane.
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Table 4.1: Eight mini-models describing the control mechanism behind

Bax auto-activation is also permitted in the embedded model. Last, all of the reac-

tions involving the Bcl2 family of proteins occur at the mitochondrial membrane and

not in the cytosol [80].

The eight mini-models incorporate a varying number of ODEs and parameters to

describe the underlying biochemistry as evident in Table 4.1; model topologies are

illustrated in Figures 4-2 and 4-3. Pore formation results in the translocation of Smac

and CytoC from the mitochondria to the cytosol in all of the models as depicted in

Figure 4-1.

4.1.1 Chen and Cui Models

The Chen Indirect model [24] proposes an indirect mechanism in which tBid does not

activate Bax; rather, Bax is naturally active and able to form oligomers. Additionally,

Bcl2 can bind both tBid and Bax. The Chen Direct model is suggested by the same

researchers [24] but involves a direct activation method in which tBid activates Bax

through a reversible, one-step mechanism. In this model, Bcl2 can bind tBid, but not

Bax. The topology of the Cui Direct and Cui Direct II models are both derived from

the Chen Direct model; each of these models is incrementally more complex. All of

79

Model Name Number of ODEs Number of parameters Reference

Albeck 1le 23 34 [5]

Chen Direct 15 23 [24]

Chen Indirect 15 21 [24]

Cui Direct 19 38 [32]

Cui Direct II 20 46 [32]

Lopez Direct 35 62 [79]

Lopez Embedded 43 82 [79]

Lopez Indirect 37 68 [79]
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Figure 4-2: Model topologies for the (A) Cui Direct , (B) Cui Direct II, (C) Chen
Direct, and (D) Chen Indirect mini-models. The Cui Direct and Cui Direct II models
are incrementally more complex models that are both derived from the Chen Direct
model.

these models incorporate a pseudo-first-order interpretation of the enzyme-substrate

reaction, in which the formation of a complex is completely bypassed, so that the

reaction is simplified from E + S ) E : S -- E + P to E + S -- + E + P. This

simplified view of the kinetics reduces the number of parameters needed to describe

the underlying biochemistry. It also implies a strict assumption: that the enzyme only

operates within a linear range and is never saturated [79]. Though largely derived from

Chen Direct, the Cui models differ in that they incorporate displacement, synthesis,

and degradation reactions; in addition, mitochondrial pores are formed by Bax dimers

and not Bax tetramers. As the name suggests, the Cui Direct model proposes a direct

mechanism for MOMP regulation while Cui Direct II proposes an embedded one. In

addition to all the reactions present in Cui Direct, Cui Direct II also accounts for Bax

auto-activation and the inhibition of activated Bax by Bcl2.
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Figure 4-3: Model topologies for the (A) Albeck, (B) Lopez Embedded, (C) Lopez
Indirect, and (D) Lopez Direct mini-models. The Lopez Embedded model is a com-
bination of the Lopez Indirect and Lopez Direct models.

4.1.2 Albeck and Lopez Models

Instead of the pseudo-first-order interpretation in the Chen and Cui models, the

Albeck and Lopez models incorporate the typical two-step approach to the enzyme-

substrate reaction: E + S +-+ E : S -- + E + P. The Albeck model [5] is a hybrid

of the direct and indirect mechanisms. This model postulates that Bid activates

Bax, Bax dimerizes and its dimers dimerize again to form tetramers; Bcl2, in turn, is

capable of binding to all forms of Bax: monomers, dimers, and tetramers. Pores on

the mitochondrial membrane are formed by Bax tetramers only.

Relative to other models, the Lopez models [79] describe MOMP regulation in

more detail and as a result have a higher number of both species and parameters.

The Lopez models account for one activator (Bid), two sensitizers (Bad and Noxa),

two effectors (Bax and Bak) and three anti-apoptotics (Bcl2, Bcl-xL, and Mel-1);
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the Albeck, Chen, and Cui models only account for one protein from each of the

aforementioned categories. The Lopez Embedded model describes MOMP regulation

by allowing tBid to activate both effector proteins, which can also auto-activate.

The anti-apoptotic proteins can bind tBid, effectors, and sensitizers. A detailed

description of the Lopez Direct and Indirect models can be found in Chapter Three.

4.2 Methods

4.2.1 Using PySB to generate model ODEs

Creating mathematical models using the traditional method of writing ODEs to de-

scribe biochemical reactions is a major barrier to model creation and modification.

To generate the ODE models of the eight mini-models, we used PySB [79], which

allows for modularization and quick generation of model variants. Pre-MOMP events

were written in the form of a program and common elements between the models

were written as macros to prevent repetition and simplify model construction. As

an example, Figure 4-4 displays the addcaspase8 macro written to add the ODEs

corresponding to Bid translocation by C8 to the models; this macro was common to

all the mini-models as it was used to drive them with the same IC-RP trajectory.

4.2.2 Driving the models with an IC-RP trajectory

The full models, which represent the EARM model in its entirety, constrain the tBid

trajectory to match IC-RP. In order for the mini-models, which represent only the

MOMP module, to accurately mimic the dynamics of the full models, the same tBid

trajectory to which the full models were calibrated was used as the input stimulus

to the mini-models. As a result, the mini-models see tBid as an input that has been

forced to match the IC-RP trajectory. Since Bid participates in other reactions in

the mini-models (i.e. it forms complexes with Bax and Bcl2), we cannot control its

dynamics with only one ODE. Instead, we calculated the derivative of the IC-RP

trajectory and used it to fit the C8 trajectory using a function that consisted of
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jfrom pysb import *
from pysb.util import aliasmodelcomponents

def addcaspase8():

# Add caspase 8
Monomer('C8', ['state', 'bf'}, ('state': ['pro', 'A']))

alias model components()

# Add caspase 8 initial condition (with placeholder value 1)
Initial (C8 (state='A', bf=None), Parameter('C8_0', 1))

# Add rules C8 + Bid <-> C8:Bid -> Bid + C8*
kf = Parameter('bind C8A BidUtoC8ABidU_kf', le-7)
kr = Parameter('bind C8A BidU_to_C8ABidU_kr', le-3)

kc = Parameter('catalyze_C8ABidUto_C8A_BidT_kc', 1)

Rule('bind C8A BidU to_C8ABidU',

C8(state='A', bf=None) + Bid(state='U', bf=None) <>
C8(state='A', bf=l) % Bid(state='U', bf=1),

kf, kr)

Rule('catalyze C8ABidU to C8A BidT',

C8(state='A', bf=l) % Bid(state='U', bf=1) >>
C8(state='A', bf='None) + Bid(state='T', bf=None),

kc)

Figure 4-4: The PySB macro describing Bid translocation by C8.

the sum of five Gaussian distributions. The function was then added to the ODE

corresponding to the C8 dynamic trajectory in the mini-models. Since C8 is solely

responsible for converting all of Bid to tBid in the mini-models, the addition of the

ODE describing C8 kinetics to the model controlled the kinetics of tBid such that it

matched the IC-RP trajectory.

4.2.3 Calibrating mini-models

The mitochondrial intermembrane space reporter protein (IMS-RP) trajectories for

cells treated with 50 ng/ml TRAIL were obtained from experiments performed by

John Albeck. The IMS-RP trajectory obtained from a single cell was used for model

calibration under both normal conditions (Bcl2 concentration of 20 nM) and Bcl2 20-

fold over expression, a condition under which cell death is typically blocked, using the

Bayesian MCMC random walk approach introduced in Chapter Two. The Gelman-

Rubin criterion was used to check for the convergence of the MCMC chains. In the

interest of computational efficiency, instead of using the Hessian matrix, we used the

inverse of the covariance matrix. That is, at every (user-defined) m steps, the inverse
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of the covariance matrix obtained from the last m steps in the random walk was used

to guide the selection of the new proposal position in parameter space:

C-_. = UAUT

82t+ = 8' +YN 0, 1test e~±Z O~ ~ i

As before, Et is the tth position in parameter space, 82, is the putative next position,

n is the number of parameters being estimated, C is the covariance matrix of the last

m positions in parameter space, ui and Ai are the ith eigenvector and eigenvalue,

respectively, of the inverse covariance matrix, C 1 , and N (0, o-) is a random value

drawn from a normal distribution with mean zero and variance o.

4.3 Results

We calibrated eight mini-models to the IMS-RP trajectory of a single cell treated

with 50 ng/ml TRAIL. In the IC-RP trajectory used for calibration, Td occurs on

average 177 minutes after the addition of TRAIL. We then perturbed each network

and predicted how Td (see Chapter Two) changes relative to its original value under

the following conditions: (i) Bax and Bak knockout, (ii) Bcl2 knockdown, and (iii)

Bid dose response. As before, these conditions were simulated by sampling 1000

parameter vectors 8 from the posterior distributions arising from three independent

and convergent MCMC chains and computing IMS-RP trajectories for each E. Td was

calculated as the time at which the IMS-RP trajectory reaches its half-maximal point.

The IMS-RP data is a time-series beginning at time 0 and ending at 267 minutes.

In making predictions, if cell death did not occur within this time frame, Td was set

as occurring at the last point in the time series, i.e. 267 minutes. We calculated

90% confidence intervals for the Td predictions since they comprise samples from

probability density functions rather than single values.
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Figure 4-5: Effect of a Bax and Bak knockout on Td predictions in eight mini-models
describing MOMP: none of the mini-models exhibit cell death

4.3.1 Predictions: Bax and Bak Knockout

We first predicted Td while removing all effector proteins, i.e. Bax and Bak, from

the model. Without the effectors, transmembrane pores cannot be formed on the

mitochondrial membrane and MOMP should not occur. As illustrated in Figure 4-5,

all of the models accurately predict that the cells do not die.

4.3.2 Predictions: Bcl2 knockdown

Next, we knocked down Bcl2's concentration 10-fold, from 20 nM to 2 nM. Bcl2

is an anti-apoptotic protein which, depending on the model topology, inhibits the

activation of the pore-forming effector proteins either by binding to the effectors or

by inhibiting tBid. A Bcl2 knockdown implies that Td should occur sooner than under

normal conditions. Although we do not have experimental data to predict the exact

time that Td should occur under these knockdown conditions, all the of the models

accurately predict the earlier occurrence of Td; see Figure 4-6.
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Figure 4-6: Effect of a Bcl2 10-fold knockdown on Td predictions in eight mini-models
describing MOMP: all models predict that cell death should occur more quickly.

4.3.3 Predictions: Bid dose response

Last, we were interested in predicting how the cells would behave under a Bid dose

response. The models were calibrated to a Bid concentration of 40nM; Td was pre-

dicted for Bid concentrations of 0 nM, 0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 nM, 30 nM,

and 100 nM. As evident in Figure 4-7, the difference in the dynamics of the indi-

rect mechanism from the direct and embedded mechanisms becomes apparent. The

indirect method suggests that the effector proteins are naturally in an active, pore-

forming state. The role of Bid in the model is to inhibit pore formation by directly

binding to Bid. It is therefore not surprising that the Chen Indirect model illustrates

that the occurrence of MOMP in all of the cells is independent of the presence of

Bid in the system. The Lopez Indirect methods illustrates this independence for only

some of the cells in the population, which could be as a result of a having the extra

biochemical components present in the system. Td predictions made by the Albeck,

Chen Direct, Lopez Embedded, and Lopez Direct, which propose a form of either an

embedded or a direct mechanism, exhibit the same trend: at low Bid concentrations

the cells never undergo MOMP since without enough Bid in the cell, the effectors are

86



MINI model, Bid Dose Response
300 1 o Albeck

--e o Chen Direct
250- Chen Indirect

T -Lopez Embedded
200- 7 o Lopez Direct

-- o Lopez Indirect

1- ..Normal Td
E

100-

50-

0
A ChD Chl LE LD LI

Model Name

Figure 4-7: Effect of a Bid dose response (0 nM, 0.1 nM, 0.3 nM, 1 nM, 3 nM, 10
nM, 30 nM, and 100 nM) on Td predictions in eight mini-models describing MOMP.

never activated; as Bid concentrations surpass 10 nM, the average Td decreases such

that at the final Bid concentration of 100 nM, Td consistently occurs sooner than at

the calibrated 40 nM.

The predictions made by the Cui models are different than the remainder of the

models mainly due to the presence of synthesis and degradation rate constants in

the models. We calibrated the Cui models with nonzero synthesis and degradation

rate constants and proceeded to predict Td under a Bid dose response both with zero

and nonzero synthesis and degradations. The effect of the synthesis and degradation

rates can be observed by the difference in the predictions made in Figure 4-8. We are

currently not certain about the exact biochemical reasoning as to why the presence or

absence of these rate constants produces these particular predictions, but feel that it

merits further study from the experimental side to better understand the underlying

biochemistry.
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Figure 4-8: Effect of a Bid dose response (0 nM, 0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 nM,
30 nM, and 100 nM) on Td predictions in the Cui Direct and Cui Direct II models. We
calibrated the models while accounting for synthesis and degradation rate constants
and then made the Td predictions while removing all synthesis and degradation rate
constants (left panel) and keeping them at their original, nonzero values (right panel).

4.4 Discussion

4.4.1 Experimental Design

We calibrated eight mini-models describing the control mechanism behind MOMP

and predicted Td under various conditions: Bax and Bak knockout, Bcl2 knockdown,

and Bid dose response. Although we did not have experimental data to validate

said predictions, the results can be used to guide experimental design. These specific

perturbations were chosen precisely because they represent cellular conditions that

can be replicated as part of an experiment in a feasible manner. The results of the

experiments could, in turn, aid in resolving competing hypotheses. For instance, if the

results of an Bcl2 10-fold knockdown experiment indicate that Td consistently occurs

at after approximately 140 minutes, we could then claim that the correct topology is

either the Chen Indirect, Cui Direct II, Lopez Embedded, or Lopez Indirect model. A

Bid dose response experiment could then determine the correct topology depending

on the values obtained for Td.
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4.4.2 Ensemble Modeling

Due to model nonidentifiability, we used the MCMC Bayesian framework introduced

in Chapter Two to calibrate a biochemical model of apoptosis and generate marginal

parameter distributions, which captured the uncertainty in parameter values. The

variance in parameter values led to a variance in model output as each parameter

vector E generated a different trajectory describing protein dynamics. The variance in

the dynamical trajectories generated by the model, in turn led to a variance in model

predictions for conditions to which the model was not calibrated. As summarized in

Figure 4-9, despite only having general prior knowledge about the plausible ranges

in which parameter values could fall, the Bayesian framework transformed parameter

uncertainty into accurate Td and T, predictions; the uncertainty in parameter values

is translated into confidence intervals on the predictions. In this case, the values of

the parameters are not of interest per se; rather, the information that we can obtain

about the system is of interest.

The same idea can be applied on a topological level, to deal with uncertainty in

the underlying dynamics. In this chapter we presented eight competing hypotheses

for MOMP regulation by the Bcl2 family of proteins. The uncertainty in network

topology led to variance in the model output, as each one of the models had a dif-

ferent prediction for the various perturbations in protein concentration. Aggregating

these predictions generates a probability distribution for model predictions as before

(Figure 4-9)

This idea of aggregating mathematical models despite the presence of large un-

certainties in both parameter values and model topology and leveraging it to learn

something about model dynamics is typically referred to as ensemble modeling. En-

semble modeling has proven to be quite useful in systems biology [20, 72, 110, 112]

due to limited quantitative data, insufficient mechanistic knowledge, and conflicting

topological hypotheses [72]. Ensembling modeling has also been used in applications

for gas emissions[95], protein folding [59], public health [107], climate change [86], and

weather forecast predictions [100]. Applying ensemble modeling to the apoptosis sig-
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naling pathway could serve as a method from which reliable model-based prediction

can be obtained despite uncertainty in both parameter values and model topology.

4.4.3 Comparison of full models and mini-models

It would be interesting to explore whether mathematical models capturing the bio-

chemistry of the apoptosis signaling pathway can be replaced by the models describing

modules in the system. One approach would be to determine whether the full model

or the modules is probabilistically more likely, using the methodology introduced in

Chapter Three. Comparing the full and mini-models using the Bayes Factor method is

incorrect for two reasons. First, prior knowledge dictates that P (Mf ul) > P (Mmini).

The full models are a more realistic mechanistic model as they capturee more of the

underlying biochemistry. Second, the experimental data to which model output is

compared is not the same in the two models. The mini-models are driven by tBid

trajectory and are calibrated to IMS-RP data whereas the full models are not driven

by any reporter protein and are calibrated to IMS-RP as well IC-RP and EC-RP.

Since the full and mini-models cannot be compared on the basis of probabilistic

likelihoods, it is helpful to address the question of whether the full models can be

replaced by the modules from a different angle: to determine whether both sets of

models produce the same model predictions. This verification is particularly impor-

tant since modules do not necessarily generate the same dynamics in isolation as when

they are integrated into a larger network [27, 35, 79]. This exercise will remain for

future work.

4.5 Conclusion

Systems biology is an iteratively evolving field in that the collection of experimen-

tal data help create mathematical models that describe the dynamics and kinetics

of the biochemistry. These mathematical models, in turn, drive experimental de-

sign and further data collection. Due to limitations in both quantitative data and

biological experiments that can be performed in a feasible manner, there exist con-
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flicting hypotheses on the structure of these models, which are also nonidentifiable.

As demonstrated in this chapter, despite uncertainty in both parameter values and

model topology, the methods we have introduced in previous chapters can be used to

make predictions both for individual models and for ensembles. These mechanistic

predictions can shed light on the effects of different topologies on model output (such

as the indirect mechanism of MOMP control and its predictions for the Bid dose

response in comparison to that of the direct and embedded mechanism or the role

of synthesis and degradation rate constants). By driving experimental design, these

methods have the potential to reduce ambiguities in the mechanisms of the apoptosis

signaling pathway and in other systems biology problems with a similar flavor.
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Chapter 5

Conclusion

In this chapter, we summarize the contributions of this thesis and point to directions

that could be further explored.

5.1 Concluding remarks

In this thesis, we have introduced a quantitative approach to analyzing large-scale

biochemical signaling pathways in systems biology. We focus on the TRAIL-mediated

extrinsic apoptosis pathway and model it with a system of ODEs. A typical problem

with ODE models of biochemistry is that they are nonidentifiable, meaning that

many different parameter values fit the model equally well. Despite the issue of

nonidentifiability, in modeling these biochemical systems, it is typical that only a

single set of parameter values, based on literature values or in vitro experiments,

are chosen to fit the model. These parameters can only describe the dynamics and

kinetics of the underlying system under a limited number of conditions-those for

which either experimental data or some prior intuition exists. In order to accurate

capture the full dynamics of the model, we introduce a Bayesian approach to replace

the current maximum likelihood approach used to select parameter values.
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5.1.1 Model calibration and prediction

We use a Hessian-guided Bayesian MCMC random walk to characterize the region

of nonidentifiability in parameter space. The periodic calculation of the Hessian ma-

trix enables the random walk to efficiently explore parameters space as it adjusts

step size in parameter space according to the curvature in the posterior landscape

so that step size is inversely proportional to the square root of the matrix eigenval-

ues. From the random walk, we can obtain both the marginal and joint parameter

distributions. The marginal parameter distributions were used to demonstrate that

the nonlinear co-variation in the parameters contains important information. Two

different hallmark characteristics of the apoptosis signaling pathway, Td and T, were

predicted under different death-inducing drug doses using parameters obtained from

the marginal distributions via three different sampling methods: independent sam-

pling, covariance sampling, and manifold sampling. Independent sampling was used

to mimic the current method of reporting parameter values: summarized in a table

with a list of parameter mean and standard deviation values. Covariance sampling

took into account a linear co-varying relationship between parameter values. Mani-

fold sampling represented the MCMC walk and took into consideration the nonlinear

relationship between the parameters. Manifold sampling was the only method that

produced accurate, high-confidence predictions, indicating that although many pa-

rameters' marginal distributions are typically highly unconstrained and do not sig-

nificantly change from their imposed prior distribution, important information lies

in the nonlinear relationship between parameters that cannot be captured in table

format. For the purposes of model calibration and prediction, we suggest storing the

parameter vectors sampled throughout the random walk in their entirety in matrix

format.

5.1.2 Model discrimination

Due to limited data, there exists relatively high degrees of freedom in biochemical

models of signaling pathways. During model calibration, parameter values can be
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selected so that model output fits experimental data quite well. This parameter non-

identifiability often results in two or more models fitting the same set of experimental

data equally well. Even though the models become indistinguishable using simple

maximum likelihood methods, they are not equally probable. In order to quantify

the plausibility of one model topology compared to another, we calculate the Bayes

factor, which is merely an extension of the Bayesian framework proposed for model

calibration. The Bayes factor approach encodes three qualities. First, good-ness of

fit: models are ranked based on how well model output fits experimental data. Sec-

ond, robustness: models are ranked based on their robustness to parameter variation.

Finally, complexity: the approach has a natural Occam's razor, which reduces to

BIC in the asymptotic limit, that penalizes models by their number of parameters.

Calculating the Bayes factor is challenging due the high-dimensional integral that

is the evidence in Bayes' equation. We used thermodynamic integration, which is

a path sampling method, to approximate the log of the evidence. Thermodynamic

integration requires minimal additional calculation as it only requires tracking the

ln(likelihood) values in the Bayesian MCMC random walk.

This method was applied to the discrimination of two conflicting hypotheses, the

"direct" mechanism and the "indirect" mechanisms, which describe how the Bcl-2

family of proteins control MOMP. The Bayes factor enabled the discrimination of

the two model topologies in a quantitative manner: with 90% confidence, the direct

model was deemed to be approximately 16-24 times more plausible than the indirect

one.

5.1.3 Overview

Systems biology is an iterative field in which the creation and modification of mathe-

matical models and the collection of experimental data occur continuously and propel

the field forward. There exist many competing hypotheses about model topologies

due to limited data sets and insufficient knowledge about network components and

their relationships with one another. We chose to analyze eight competing models,

two of which are a simple expansion of another, that describe the MOMP module
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in the apoptosis pathway. These models also represented three different schools of

thought about the mechanism by which the Bcl-2 family of proteins control MOMP:

the direct mechanism, the indirect mechanism, and the embedded mechanism. Us-

ing the methodology introduced in this thesis, we make predictions the time of cell

death while varying initial protein concentrations. Even without experimental data,

the results of these predictions can be used to drive experimental design and narrow

down the number of plausible model topologies. Despite topology uncertainty, en-

semble modeling can be applied to the aggregate of these models in order to make

predictions. In this thesis we illustrate that using the proposed Bayesian framework,

we can leverage uncertainty in both model parameter values and model structure to

calibrate models and make accurate predictions, discriminate topologies, and drive

experimental design.

5.2 Future work

5.2.1 Calibration and ensemble of ~ 103 models

In Chapter Four we calibrated eight different models describing the series of biochem-

ical reactions in the apoptosis pathway's MOMP module. It could be interesting to

generate on the order of ~ 103 models and to form an ensemble of models. Finding the

computational resources to calibrate all of the models could prove to be difficult. Per-

haps it would be useful if calibration was performed using cloud computing resources.

While we did not have experimental data to validate our Td predictions, those specific

perturbations were chosen because they are conditions that can be replicated in vitro

in a feasible manner. The results of experiments could be interesting for analysis,

validation of predictions, and for guiding experimental design.

5.2.2 Calibration of a population of cells

In this thesis, all the models were calibrated to a single cell's time-series trajectories;

whether it be EC-RP, IC-RP, or IMS-RP, all the trajectories were obtained from

96



a cell with a particular MOMP time. In performing model calibration, we also re-

stricted the algorithm to only estimating rate constants while holding initial protein

concentrations constant. Rate constants are typically assumed to be the same across

various cells while initial protein constants vary. It is this variation in initial protein

concentrations that leads to the variation in cell death time in a population of cells.

Instead of calibrating the models to only time-series data obtained from a single cell,

it would be interesting to calibrate them to time-series data obtained from the entire

population of cells. The biggest challenge in this task would yet again be the com-

putation complexity of the entire MCMC walk. At each step in the random walk,

the system of ODEs describing the model would need to be solved nm times, where

n is the number of cells in the populations and m is number of perturbations, such

as knock outs, knock downs, and over expressions, to which we are calibrating. Since

solving the ODE system is the rate-limiting step in the algorithm, this approach could

prove quite computationally expensive.
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Appendix A

A Simple Example of Bayesian

Estimation

To illustrate how MCMC-dependent Bayesian parameter estimation works, consider

an ODE model of three species (A - C) that interact via three reactions (with rates

ki to k3) corresponding to a classical example of an autocatalysis developed half a

century ago by Robertson [98]:

AMB 2B-%B+C B+C-%A+C (A.1)

First we generate a set of synthetic data corresponding to the time-dependent

concentrations of species A to C by choosing reaction rates and setting the initial

concentration of reactant A to Ao=1.0 (in non-dimensional units). The resulting

trajectory is sampled periodically assuming a theoretical measurement error of 10%

which enters into the term of objective function (red bars, Figure A-1A). We then

hide knowledge of the parameter values and attempt to infer them from the synthetic

measurements on all three species. In the treatment of Sethna [53] this would cor-

respond to a situation with "complete" knowledge. We perform an MCMC search

giving rise to a joint posterior distribution whose marginal values and point by point

co-variation is shown in Figure A-1B. We see that the parameters of the system are

non-identifiable despite complete data and that ki and k3 co-vary: neither parameter
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Figure A-1: A) Synthetic data generated from an ODEs corresponding to the Robert-
son system in A. 1 with the parameter values shown immediately below. B) Results of
Bayesian parameter estimation using data on species A and B, independent Gaussian
priors and showing marginal distributions above and to the right of correlation plots
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Figure A-2: Predicting the trajectory of species C given the posterior distribution in
Figure A-1B. Red error bars denote one standard deviation around the mean of the

data (assuming 10% error; data on C was withheld from the estimation) and the 60%
and 90% confidence intervals of the prediction.

is particularly well estimated but their ratio is well determined. This ratio plays an

important role in determining the trajectory of reactant C whose value can be pre-

dicted with good accuracy. Reflecting the non-identifiability of the system and the

presence of experimental error, the prediction has a manifold of uncertainty, depicted

in Figure A-2D) as 60% and 90% confidence limits (in the case of this prediction,

we trained the model on measurement of species A and B only). The inability of

estimation to recover the parameter values used to generate synthetic data is not due

to problems with the computational procedures. Instead, it represents a fundamental

limit on our ability to understand biochemical systems based on time-course data

alone.
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