
Domain Knowledge Acquisition via Language

Grounding

by

Tao Lei

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

2
R 0

RAiES K

June 2013

@ Massachusetts Institute of Technology 2013. All rights reserved.

A u th or
Department of Electrical Engineering and Computer Science

May 22, 2013

Certified by...........
Regina Barzilay

Professor
Thesis Supervisor

Accepted by.......
............... .7 7A Kolodziejski

Chairman, Department Committee on Graduate Students

Domain Knowledge Acquisition via Language Grounding

by

Tao Lei

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2013, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

This thesis addresses the language grounding problem at the level of word relation
extraction. We propose methods to acquire knowledge represented in the form of
relations and utilize them in two domain applications, high-level planning in a complex
virtual world and input parser generation from input format specifications.

In the first application, we propose a reinforcement learning framework to jointly
learn to predict precondition relations from text and to perform high-level planning
guided by those relations. When applied to a complex virtual world and text describ-
ing that world, our relation extraction technique performs on par with a supervised
baseline, and we show that a high-level planner utilizing these extracted relations sig-
nificantly outperforms a strong, text unaware baseline.

In the second application, we use a sampling framework to predict relation trees
and to generate input parser code from those trees. Our results show that our ap-
proach outperforms a state-of-the-art semantic parser on a dataset of input format
specifications from the ACM International Collegiate Programming Contest, which
were written in English for humans with no intention of providing support for auto-
mated processing.

Thesis Supervisor: Regina Barzilay
Title: Professor

2

Acknowledgments

I am grateful to my advisor Regina Barzilay for her contant support and advice in

my research. Her energy and enthusiasm contributed to this work were the key to

the success.

I have been very fortunate to work with many fantastic people at MIT. This work

would not have been possible without the collaborations with S.R.K. Branavan, Nate

Kushman, Fan Long, Martin Rinard and my advisor Regina Barzilay. I would like to

thank Yuan Zhang, Yevgeni Berzak, Yoong Keok Lee, Tahira Naseem, Zach Hynes,

Yonathan Belinkov, Karthik Rajagopal and Rusmin Soetjipto for their support on my

research and life in general. I would also like to acknowledge the support of Battelle

Memorial Institute (PO #300662) and the NFS (Grant IIS-0835652).

I dedicate this thesis to my wonderful family: my parents, Jianjun and Yueming,

from whom I have learnt many things about life; my grandfather Keqiu who taught

me Chinese poems, the art of language; and my grandmother, uncles, aunts and

cousins.

3

Bibliographic Note

Portions of this thesis are based on the following papers:

"Learning High-Level Planning from Text" by S.R.K Branavan, Nate

Kushman, Tao Lei and Regina Barzilay. In the Proceedings of of the

50th Annual Meeting of the Association for Computational Linguistics

(ACL)

"From Natural Language Specifications to Program Input Parsers" by Tao

Lei, Fan Long, Regina Barzilay and Martin Rinard. To appear in the Pro-

ceedings of the 51th Annual Meeting of the Association for Computational

Linguistics (ACL)

The code and data for methods presented in this thesis are available at:

http://groups.csail.mit.edu/rbg/code/planning

http://groups.csail.mit.edu/rbg/code/nl2p

4

Contents

1 Introduction

1.1 Learning High-Level Planning from Text

1.2 Generating Input Parsers from Natural Language Specifications . . .

1.3 Thesis Overview .

2 Learning High-Level Planning from Text

2.1 Introduction

2.2 Related Work

2.3 The Approach

2.3.1 Problem Formulation

2.3.2 Model

2.3.3 Applying the Model

2.4 Experiments

2.4.1 Experimental Setup

2.4.2 Results

3 Generating Program Input Parsers

cations

3.1 Introduction

3.2 Related Work

3.3 The Approach

3.3.1 Problem Formulation . . .

3.3.2 M odel

from Natural Language Specifi-

33

33

37

38

38

40

5

10

11

12

12

14

14

17

19

19

21

25

27

27

30

.

.

3.4 Experiments . 46

3.4.1 Experimental Setup . 46

3.4.2 Experimental Results . 49

4 Conclusions and Future Work 52

6

List of Figures

2-1 Text description of preconditions and effects (a), and the low-level

actions connecting them (b). 15

2-2 A high-level plan showing two subgoals in a precondition relation. The

corresponding sentence is shown above. 19

2-3 Example of the precondition dependencies present in the Minecraft

dom ain. 25

2-4 The performance of our model and a supervised SVM baseline on the

precondition prediction task. Also shown is the F-Score of the full set

of Candidate Relations which is used unmodified by All Text, and is

given as input to our model. Our model's F-score, averaged over 200

trials, is shown with respect to learning iterations. 30

2-5 Examples of precondition relations predicted by our model from text.

Check marks (/) indicate correct predictions, while a cross (X) marks

the incorrect one - in this case, a valid relation that was predicted as

invalid by our model. Note that each pair of highlighted noun phrases

in a sentence is a Candidate Relation, and pairs that are not connected

by an arrow were correctly predicted to be invalid by our model. . . . 30

2-6 Percentage of problems solved by various models on Easy and Hard

problem sets. 31

2-7 The top five positive features on words and dependency types learned

by our model (above) and by SVM (below) for precondition prediction. 32

7

3-1 An example of (a) one natural language specification describing pro-

gram input data; (b) the corresponding specification tree representing

the program input structure; and (c) two input examples 34

3-2 Input parser code for reading input files specified in Figure 3-1. . . . 36

3-3 An example of generating input parser code from text: (a) a natural

language input specification; (b) a specification tree representing the

input format structure (we omit the background phrases in this tree

in order to give a clear view of the input format structure); and (c)

formal definition of the input format constructed from the specification

tree, represented as a context-free grammar in Backus-Naur Form with

additional size constraints. 39

3-4 Precision and Recall of our model by varying the percentage of weak

supervision. The green lines are the performance of Aggressive baseline

trained with full weak supervision. 49

3-5 Precision and Recall of our model by varying the number of available

input examples per text specification. 50

3-6 Examples of dependencies and key phrases predicted by our model.

Green marks correct key phrases and dependencies and red marks in-

correct ones. The missing key phrases are marked in gray. 51

8

List of Tables

2.1 A comparison of complexity between Minecraft and some domains used

in the IPC-2011 sequential satisficing track. In the Minecraft domain,

the number of objects, predicate types, and actions is significantly

larger. 26

2.2 Example text features. A subgoal pair (Xi, xj) is first mapped to word

tokens using a small grounding table. Words and dependencies are

extracted along paths between mapped target words. These are com-

bined with path directions to generate the text features. 26

2.3 Examples in our seed grounding table. Each predicate is mapped to

one or more noun phrases that describe it in the text. 27

2.4 Percentage of tasks solved successfully by our model and the baselines.

All performance differences between methods are statistically signifi-

cant at p ; .01. 31

3.1 Example of feature types and values. To deal with sparsity, we map

variable names such as "N" and "X" into a category word "VAR" in

word features. 45

3.2 Statistics for 106 ICPC specifications. 46

3.3 Average % Recall and % Precision of our model and all baselines over

20 independent runs. 48

9

Chapter 1

Introduction

Natural languages are the medium in which human knowledge is recorded and com-

municated. Today, the traditional way to infuse human knowledge into computer

systems is to manually encode knowledge into heuristics, or into the model structure

itself. However, with the knowledge often comes in the form of text documents in

natural language, it would be both possible and important for machines to automati-

cally access and leverage the information from the text, and effectively perform tasks

that require human knowledge. For example, computers could solve traditional hard

planning tasks by acquiring domain knowledge from text or generate program code

by reading code specifications. Our goal is to automate machines to acquire domain

knowledge from text and therefore improve their performance in various applications.

Today much research in natural language processing have focused on developing

various methods for learning language semantics from text effectively [23, 10, 43, 44].

Commonly used semantic annotation schemes in these work are drived from linguistic

formalism of semantics. However, these is no empirical evidence indicating which

scheme'is good in terms of real-world applicability - the correctness of the methods

is evaluated in terms of the extraction and classification of textual entities (e.g. pairs

of words/phrases) that realize the semantic relations, rather than the performance

and correctness of an application system that uses such knowledge. The grounding

of language in real applications, however, allows us to define, predict and evaluate

semantic representations with respect to the performance of the application, and

10

therefore provides us a natural notion of language semantics. In fact, some recent

work have had success grounding linguistic analysis in various applications [51, 12,

55, 34, 14, 33], making it possible to automatically execute Windows commands [6, 9]

and to better play PC games [7] by reading text.

In this thesis, we investigate statistical models for acquiring domain knowledge

(in the form of relations) and its applications in two new domains, high-level planning

and input parser code generation. In contrast to traditional work in semantics, the

knowledge we extract is utilized in the corresponding application and improves the

application performance. In addition, we aim to learn and evaluate our model based

on the application feedback without any human annotations on the text. Our work

supplements previous work which grounds words to objects only, while in our case we

aim to predict abstract pragmatic relations from their expressions in natural language.

Our work also extends previous work which assumes the information is expressed in

a single sentence, while in the parser code generation problem we predict a semantic

structure at the level of the whole document that consists of multiple sentences.

1.1 Learning High-Level Planning from Text

We first address the problem of planning in a complex virtual world, in which the goal

is to search for and execute a sequence of operations to complete certain planning

tasks. Comprehending action preconditions and effects is important for this problem

as it is the essential step in modeling the dynamics of the world. We express the

semantics of precondition relations extracted from text in terms of planning opera-

tions. The challenge of modeling this connection is to ground language at the level of

relations. This type of grounding enables us to create high-level plans based on lan-

guage abstractions. Our model jointly learns to predict precondition relations from

text and to perform high-level planning guided by those relations. We implement

this idea in the reinforcement learning framework using feedback automatically ob-

tained from plan execution attempts. When applied to a complex virtual world and

text describing that world, our relation extraction technique performs on par with a

11

supervised baseline, yielding an F-measure of 66% compared to the baseline's 65%.

Additionally, we show that a high-level planner utilizing these extracted relations sig-

nificantly outperforms a strong, text unaware baseline - successfully completing 80%

of planning tasks as compared to 69% for the baseline.

1.2 Generating Input Parsers from Natural Lan-

guage Specifications

In the second problem, we present a method for automatically generating input

parsers from English specifications of input file formats. The need to automate this

task arises because input format specifications are almost described in natural lan-

guages, with these specifications then manually translated by a programmer into the

code that reads the corresponding input. Our method can eliminate such development

overhead by automating this process. We use a Bayesian generative model to capture

relevant natural language phenomena and translate the English specification into a

specification tree, which is then translated into a C++ input parser. We model the

problem as a joint dependency parsing and semantic role labeling task. Our method

is based on two sources of information: (1) the correlation between the text and the

specification tree and (2) noisy supervision as determined by the success of the gen-

erated C++ parser in reading input examples. Our results show that our approach

achieves 80.0% F-Score accuracy compared to an F-Score of 66.7% produced by a

state-of-the-art semantic parser on a dataset of input format specifications from the

ACM International Collegiate Programming Contest (which were written in English

for humans with no intention of providing support for automated processing).

1.3 Thesis Overview

The remainder of the thesis is organized as follows: In Chapter 2, we provide details

of our model to high-level planning and our experimental results. In Chapter 3 we

describe our method of generating input parsers from natural language specifications

12

and present the empirical results. Chapter 4 concludes with the main ideas and the

contributions of this work.

13

Chapter 2

Learning High-Level Planning from

Text

2.1 Introduction

Understanding action preconditions and effects is a basic step in modeling the dynam-

ics of the world. For example, having seeds is a precondition for growing wheat. Not

surprisingly, preconditions have been extensively explored in various sub-fields of Al.

However, existing work on action models has largely focused on tasks and techniques

specific to individual sub-fields with little or no interconnection between them. In

NLP, precondition relations have been studied in terms of the linguistic mechanisms

that realize them, while in classical planning, these relations are viewed as a part of

world dynamics. In this paper, we bring these two parallel views together, grounding

the linguistic realization of these relations in the semantics of planning operations.

The challenge and opportunity of this fusion comes from the mismatch between

the abstractions of human language and the granularity of planning primitives. Con-

sider, for example, text describing a virtual world such as Minecraft1 and a formal

description of that world using planning primitives. Due to the mismatch in gran-

ularity, even the simple relations between wood, pickaxe and stone described in the

14

'http://www.minecraft.net/

A pickaxe, which is used to harvest stone, can be
made from wood.

(a)

Low Level Actions for: wood -+ pickaxe - stone

step 1: move from (0,0) to (2,0)
step 2: chop tree at: (2,0)
step 3: get wood at: (2,0)
step 4: craft plank from wood
step 5: craft stick from plank
step 6: craft pickaxe from plank and stick

step N-1: pickup tool: pickaxe
step N: harvest stone with pickaxe at: (5,5)

(b)

Figure 2-1: Text description of preconditions and effects (a), and the low-level actions

connecting them (b).

sentence in Figure 2-la results in dozens of low-level planning actions in the world, as

can be seen in Figure 2-1b. While the text provides a high-level description of world

dynamics, it does not provide sufficient details for successful plan execution. On the

other hand, planning with low-level actions does not suffer from this limitation, but

is computationally intractable for even moderately complex tasks. As a consequence,

in many practical domains, planning algorithms rely on manually-crafted high-level

abstractions to make search tractable [22, 31].

The central idea of our work is to express the semantics of precondition relations

extracted from text in terms of planning operations. For instance, the precondition

relation between pickaxe and stone described in the sentence in Figure 2-la indicates

that plans which involve obtaining stone will likely need to first obtain a pickaxe. The

novel challenge of this view is to model grounding at the level of relations, in contrast

to prior work which focused on object-level grounding. We build on the intuition

that the validity of precondition relations extracted from text can be informed by the

execution of a low-level planner. 2 This feedback can enable us to learn these relations

21f a planner can find a plan to successfully obtain stone after obtaining a pickaxe, then a pickaxe
is likely a precondition for stone. Conversely, if a planner obtains stone without first obtaining a
pickaxe, then it is likely not a precondition.

15

proposed a number of techniques for generating them [29, 54, 35, 3]. In general,

these techniques use static analysis of the low-level domain to induce effective high-

level abstractions. In contrast, our focus is on learning the abstraction from natural

language. Thus our technique is complementary to past work, and can benefit from

human knowledge about the domain structure.

18

2.3 The Approach

2.3.1 Problem Formulation

Our task is two-fold. First, given a text document describing an environment, we

wish to extract a set of precondition/effect relations implied by the text. Second, we

wish to use these induced relations to determine an action sequence for completing a

given task in the environment.

We formalize our task as illustrated in Figure 2-2. As input, we are given a world

defined by the tuple (S, A, T), where S is the set of possible world states, A is the set

of possible actions and T is a deterministic state transition function. Executing action

a in state s causes a transition to a new state s' according to T(s' I s, a). States are

represented using propositional logic predicates xi E X, where each state is simply a

set of such predicates, i.e. s C X.

Text (input):
A pickaxe, which is used
can be made from wood.

Precondition Relations:

Plan Suopickaxe

Plan Subgoal Sequence:

Ito harvest stone,

Lpickaxe -*stone i

Figure 2-2: A high-level plan showing two subgoals in a precondition relation. The
corresponding sentence is shown above.

The objective of the text analysis part of our task is to automatically extract a set

of valid precondition/effect relationships from a given document d. Given our defini-

19

stone
(goal)

without annotations. Moreover, we can use the learned relations to guide a high level

planner and ultimately improve planning performance.

We implement these ideas in the reinforcement learning framework, wherein our

model jointly learns to predict precondition relations from text and to perform high-

level planning guided by those relations. For a given planning task and a set of

candidate relations, our model repeatedly predicts a sequence of subgoals where each

subgoal specifies an attribute of the world that must be made true. It then asks

the low-level planner to find a plan between each consecutive pair of subgoals in the

sequence. The observed feedback - whether the low-level planner succeeded or failed

at each step - is utilized to update the policy for both text analysis and high-level

planning.

We evaluate our algorithm in the Minecraft virtual world, using a large collection

of user-generated on-line documents as our source of textual information. Our results

demonstrate the strength of our relation extraction technique - while using planning

feedback as its only source of supervision, it achieves a precondition relation extraction

accuracy on par with that of a supervised SVM baseline. Specifically, it yields an

F-score of 66% compared to the 65% of the baseline. In addition, we show that these

extracted relations can be used to improve the performance of a high-level planner.

As baselines for this evaluation, we employ the Metric-FF planner [25],3 as well as a

text-unaware variant of our model. Our results show that our text-driven high-level

planner significantly outperforms all baselines in terms of completed planning tasks

- it successfully solves 80% as compared to 41% for the Metric-FF planner and 69%

for the text unaware variant of our model. In fact, the performance of our method

approaches that of an oracle planner which uses manually-annotated preconditions.

3The state-of-the-art baseline used in the 2008 International Planning Competition:
http://ipc.informatik.uni-freiburg.de/

16

2.2 Related Work

Extracting Event Semantics from Text The task of extracting preconditions

and effects has previously been addressed in the context of lexical semantics [43,

44]. These approaches combine large-scale distributional techniques with supervised

learning to identify desired semantic relations in text. Such combined approaches have

also been shown to be effective for identifying other relationships between events, such

as causality [23, 10, 5, 4, 19].

Similar to these methods, our algorithm capitalizes on surface linguistic cues to

learn preconditions from text. However, our only source of supervision is the feedback

provided by the planning task which utilizes the predictions. Additionally, we not

only identify these relations in text, but also show they are valuable in performing an

external task.

Learning Semantics via Language Grounding Our work fits into the broad area

of grounded language acquisition, where the goal is to learn linguistic analysis from

a situated context [40, 45, 56, 20, 36, 37, 8, 34, 52]. Within this line of work, we are

most closely related to the reinforcement learning approaches that learn language by

interacting with an external environment [8, 9, 52, 7].

The key distinction of our work is the use of grounding to learn abstract pragmatic

relations, i.e. to learn linguistic patterns that describe relationships between objects

in the world. This supplements previous work which grounds words to objects in the

world [8, 52]. Another important difference of our setup is the way the textual infor-

mation is utilized in the situated context. Instead of getting step-by-step instructions

from the text, our model uses text that describes general knowledge about the domain

structure. From this text, it extracts relations between objects in the woHd which

hold independently of any given task. Task-specific solutions are then constructed by

a planner that relies on these relations to perform effective high-level planning.

Hierarchical Planning It is widely accepted that high-level plans that factorize a

planning problem can greatly reduce the corresponding search space [39, 1]. Previous

work in planning has studied the theoretical properties of valid abstractions and

17

tion of the world state, preconditions and effects are merely single term predicates, xi,

in this world state. We assume that we are given a seed mapping between a predicate

xi, and the word types in the document that reference it (see Table 2.3 for examples).

Thus, for each predicate pair (Xk, i), we want to utilize the text to predict whether

Xk is a precondition for xi; i.e., Xk -+ xi. For example, from the text in Figure 2-2,

we want to predict that possessing a pickaxe is a precondition for possessing stone.

Note that this relation implies the reverse as well, i.e. x, can be interpreted as the

effect of an action sequence performed on state Xk.

Each planning goal g C G is defined by a starting state so, and a final goal state

s'. This goal state is represented by a set of predicates which need to be made

true. In the planning part of our task our objective is to find a sequence of actions a

that connect sg to sg. Finally, we assume document d does not contain step-by-step

instructions for any individual task, but instead describes general facts about the

given world that are useful for a wide variety of tasks.

20

2.3.2 Model

The key idea behind our model is to leverage textual descriptions of preconditions and

effects to guide the construction of high level plans. We define a high-level plan as a

sequence of subgoals, where each subgoal is represented by a single-term predicate, xi,

that needs to be set in the corresponding world state - e.g. have (wheat) =true. Thus

the set of possible subgoals is defined by the set of all possible single-term predicates

in the domain. In contrast to low-level plans, the transition between these subgoals

can involve multiple low-level actions. Our algorithm for textually informed high-level

planning operates in four steps:

1. Use text to predict the preconditions of each subgoal. These predictions are for

the entire domain and are not goal specific.

2. Given a planning goal and the induced preconditions, predict a subgoal sequence

that achieves the given goal.

3. Execute the predicted sequence by giving each pair of consecutive subgoals to a

low-level planner. This planner, treated as a black-box, computes the low-level

plan actions necessary to transition from one subgoal to the next.

4. Update the model parameters, using the low-level planner's success or failure

as the source of supervision.

We formally define these steps below.

Modeling Precondition Relations Given a document d, and a set of subgoal

pairs (Xi, xj), we want to predict whether subgoal xi is a precondition for xj. We

assume that precondition relations are generally described within single sentences.

We first use our seed grounding in a preprocessing step where we extract all predicate

pairs where both predicates are mentioned in the same sentence. We call this set

the Candidate Relations. Note that this set will contain many invalid relations since

co-occurrence in a sentence does not necessarily imply a valid precondition relation.4

Thus for each sentence, Wk, associated with a given Candidate Relation, xi -+ xj, our

4In our dataset only 11% of Candidate Relations are valid.

21

Input: A document d, Set of planning tasks G,
1 Set of candidate precondition relations Call,
2 Reward function r(, Number of iterations T

3 Initialization:Model parameters 0_ = 0 and Oc = 0.

4 for i = 1 -. T do
5 Sample valid preconditions:
6 C +- 0

7 foreach (xi, xj) c Call do
8 foreach Sentence Wk containing xi and xj do
9 V P (xi -+ Xj Ik, qk; 0)

10 if v = 1 then C = C U (xi, xj)
11 end

12 end
13 Predict subgoal sequences for each task g.
14 foreach g E G do
15 Sample subgoal sequence i as follows:
16 for t = 1 -. n do
17 Sample next subgoal:
18 of ~ll P(x Ixt-1 , s , C- OX)

19 Construct low-level subtask from Xt-1 to xt

20 Execute low-level planner on subtask
21 end
22 Update subgoal prediction model using Eqn. 2.2
23 end
24 Update text precondition model using Eqn. 2.3
25 end

Algorithm 1: A policy gradient algorithm for parameter estimation in our model.

task is to predict whether the sentence indicates the relation. We model this decision

via a log linear distribution as follows:

p(xi - xj | Wk, q) 0c,) OC ec c ' 'ik'qk (2.1)

where Oc is the vector of model parameters. We compute the feature function #
using the seed grounding, the sentence Wk, and a given dependency parse qk of the

sentence. Given these per-sentence decisions, we predict the set of all valid precondi-

tion relations, C, in a deterministic fashion. We do this by considering a precondition

xi -+ xz as valid if it is predicted to be valid by at least one sentence.

22

Modeling Subgoal Sequences Given a planning goal g, defined by initial and final

goal states s and s, our task is to predict a sequence of subgoals 7 which will achieve

the goal. We condition this decision on our predicted set of valid preconditions C, by

modeling the distribution over sequences Y as:

n

p(5 | sj, sj, C;) =]7Jp(xt | -1, s, s, C; OX),
t=1

p(xt Ij 1, st , si , C; O8) c e~

Here we assume that subgoal sequences are Markovian in nature and model individual

subgoal predictions using a log-linear model. Note that in contrast to Equation 2.1

where the predictions are goal-agnostic, these predictions are goal-specific. As before,
6 is the vector of model parameters, and #x is the feature function. Additionally, we

assume a special stop symbol, xe, which indicates the end of the subgoal sequence.

Parameter Update Parameter updates in our model are done via reinforcement

learning. Specifically, once the model has predicted a subgoal sequence for a given

goal, the sequence is given to the low-level planner for execution. The success or failure

of this execution is used to compute the reward signal r for parameter estimation.

This predict-execute-update cycle is repeated until convergence. We assume that

our reward signal r strongly correlates with the correctness of model predictions.

Therefore, during learning, we need to find the model parameters that maximize

expected future reward [46]. We perform this maximization via stochastic gradient

ascent, using the standard policy gradient algorithm [53, 47].

We perform two separate policy gradient updates, one for each model component.

The objective of the text component of our model is purely to predict the validity

of preconditions. Therefore, subgoal pairs (xk, X1), where x, is reachable from Xk, are

given positive reward. The corresponding parameter update, with learning rate oc,

23

takes the following form:

AO, +- a, r Ocxi -j)

The objective of the planning component of our model is to predict subgoal se-

quences that successfully achieve the given planning goals. Thus we directly use

plan-success as a binary reward signal, which is applied to each subgoal decision in a

sequence. This results in the following update:

Aox <- ax r [OX (Xt, Xt-1, SO, s, C)-

E(hee) Onde in Xt-1, st, sb, s C)] , (2.3)

where t indexes into the subgoal sequence and ax is the learning rate.

24

Figure 2-3: Example of the precondition dependencies present in the Minecraft do-
main.

2.3.3 Applying the Model

We apply our method to Minecraft, a grid-based virtual world. Each grid location

represents a tile of either land or water and may also contain resources. Users can

freely move around the world, harvest resources and craft various tools and objects

from these resources. The dynamics of the world require certain resources or tools as

prerequisites for performing a given action, as can be seen in Figure 2-3. For example,

a user must first craft a bucket before they can collect milk.

Defining the Domain In order to execute a traditional planner on the Minecraft do-

main, we define the domain using the Planning Domain Definition Language (PDDL) [21].

This is the standard task definition language used in the International Planning Com-

petitions (IPC).5 We define as predicates all aspects of the game state - for example,

the location of resources in the world, the resources and objects possessed by the

player, and the player's location. Our subgoals xi and our task goals s' map directly

to these predicates. This results in a domain with significantly greater complexity

than those solvable by traditional low-level planners. Table 2.1 compares the com-

plexity of our domain with some typical planning domains used in the IPC.

Low-level Planner As our low-level planner we employ Metric-FF [25], the state-of-

the-art baseline used in the 2008 International Planning Competition. Metric-FF is

a forward-chaining heuristic state space planner. Its main heuristic is to simplify the

25

5http://ipc.icaps-conference.org/

Domain #Objects #Pred Types #Actions
Parking 49 5 4
Floortile 61 10 7
Barman 40 15 12

Minecraft 108 16 68

Table 2.1: A comparison of complexity between Minecraft and some domains used
in the IPC-2011 sequential satisficing track. In the Minecraft domain, the number of
objects, predicate types, and actions is significantly larger.

Words
Dependency Types
Dependency Type x Direction
Word x Dependency Type
Word x Dependency Type x Direction

Table 2.2: Example text features. A subgoal pair (xi, xj) is first mapped to word
tokens using a small grounding table. Words and dependencies are extracted along
paths between mapped target words. These are combined with path directions to
generate the text features.

task by ignoring operator delete lists. The number of actions in the solution for this

simplified task is then used as the goal distance estimate for various search strategies.

Features The two components of our model leverage different types of information,

and as a result, they each use distinct sets of features. The text component features #c
are computed over sentences and their dependency parses. The Stanford parser [18]

was used to generate the dependency parse information for each sentence. Examples

of these features appear in Table 2.2. The sequence prediction component takes as

input both the preconditions induced by the text component as well as the planning

state and the previous subgoal. Thus #x contains features which check whether two

subgoals are connected via an induced precondition relation, in addition to features

which are simply the Cartesian product of domain predicates.

26

Domain Predicate Noun Phrases
have (plank) wooden plank, wood plank
have (stone) stone, cobblestone
have(iron) iron ingot

Table 2.3: Examples in our seed grounding table. Each predicate is mapped to one
or more noun phrases that describe it in the text.

2.4 Experiments

2.4.1 Experimental Setup

Datasets As the text description of our virtual world, we use documents from the

Minecraft Wikif the most popular information source about the game. Our manually

constructed seed grounding of predicates contains 74 entries, examples of which can

be seen in Table 2.3. We use this seed grounding to identify a set of 242 sentences that

reference predicates in the Minecraft domain. This results in a set of 694 Candidate

Relations. We also manually annotated the relations expressed in the text, identifying

94 of the Candidate Relations as valid. Our corpus contains 979 unique word types

and is composed of sentences with an average length of 20 words.

We test our system on a set of 98 problems that involve collecting resources and

constructing objects in the Minecraft domain - for example, fishing, cooking and

making furniture. To assess the complexity of these tasks, we manually constructed

high-level plans for these goals and solved them using the Metric-FF planner. On

average, the execution of the sequence of low-level plans takes 35 actions, with 3

actions for the shortest plan and 123 actions for the longest. The average branching

factor is 9.7, leading to an average search space of more than 103 possible action

sequences. For evaluation purposes we manually identify a set of Gold Relations

consisting of all precondition relations that are valid in this domain, including those

not discussed in the text.

Evaluation Metrics We use our manual annotations to evaluate the type-level ac-

6http://www.minecraftwiki.net/wiki/Minecraft-Wiki/

27

curacy of relation extraction. To evaluate our high-level planner, we use the standard

measure adopted by the IPC. This evaluation measure simply assesses whether the

planner completes a task within a predefined time.

Baselines To evaluate the performance of our relation extraction, we compare against

an SVM classifier7 trained on the Gold Relations. We test the SVM baseline in a

leave-one-out fashion.

To evaluate the performance of our text-aware high-level planner, we compare

against five baselines. The first two baselines - FF and No Text - do not use any

textual information. The FF baseline directly runs the Metric-FF planner on the

given task, while the No Text baseline is a variant of our model that learns to plan

in the reinforcement learning framework. It uses the same state-level features as our

model, but does not have access to text.

The All Text baseline has access to the full set of 694 Candidate Relations. During

learning, our full model refines this set of relations, while in contrast the All Text

baseline always uses the full set.

The two remaining baselines constitute the upper bound on the performance of

our model. The first, Manual Text, is a variant of our model which directly uses the

links derived from manual annotations of preconditions in text. The second, Gold,

has access to the Gold Relations. Note that the connections available to Manual Text

are a subset of the Gold links, because the text does not specify all relations.

Experimental Details All experimental results are averaged over 200 independent

runs for both our model as well as the baselines. Each of these trials is run for 200

learning iterations with a maximum subgoal sequence length of 10. To find a low-

level plan between each consecutive pair of subgoals, our high-level planner internally

uses Metric-FF. We give Metric-FF a one-minute timeout to find such a low-level

plan. To ensure that the comparison between the high-level planners and the FF

baseline is fair, the FF baseline is allowed a runtime of 2,000 minutes. This is an

upper bound on the time that our high-level planner can take over the 200 learning

28

7SVMlight [26] with default parameters.

iterations, with subgoal sequences of length at most 10 and a one minute timeout.

Lastly, during learning we initialize all parameters to zero, use a fixed learning rate

of 0.0001, and encourage our model to explore the state space by using the standard

-greedy exploration strategy [46].

29

2 0.7

ij 0.6-
U-

r 0.5 -
Model F-score

' 0.4- ------ SVM F-score
2.3 -----.......- All-text F-score
cL 0.3

C

2 0 50 100 150 200
Learning Iteration

Figure 2-4: The performance of our model and a supervised SVM baseline on the
precondition prediction task. Also shown is the F-Score of the full set of Candidate
Relations which is used unmodified by All Text, and is given as input to our model.
Our model's F-score, averaged over 200 trials, is shown with respect to learning
iterations.

Sticks are the only building material required to craft a, fence or ladder.

Seeds for growing wheat can be obtained by breaking all grassi

Figure 2-5: Examples of precondition relations predicted by our model from text.
Check marks (/) indicate correct predictions, while a cross (X) marks the incorrect
one - in this case, a valid relation that was predicted as invalid by our model. Note
that each pair of highlighted noun phrases in a sentence is a Candidate Relation, and
pairs that are not connected by an arrow were correctly predicted to be invalid by
our model.

2.4.2 Results

Relation Extraction Figure 2-4 shows the performance of our method on identifying

preconditions in text. We also show the performance of the supervised SVM baseline.

As can be seen, after 200 learning iterations, our model achieves an F-Measure of

66%, equal to the supervised baseline. These results support our hypothesis that

planning feedback is a powerful source of supervision for analyzing a given text cor-

pus. Figure 2-5 shows some examples of sentences and the corresponding extracted

relations.

30

Method %Plans

FF 40.8
No text 69.4
All text 75.5
Full model 80.2
Manual text 84.7
Gold connection 87.1

Table 2.4: Percentage of tasks solved successfully by our model and the baselines. All
performance differences between methods are statistically significant at p < .01.

Gold 95%

Manual text %

0 Hard
Fu ll m o d e l 99% a sy

All text 8% 89%

No text % 88%

0% 20% 40% 60% 80% 100%

Figure 2-6: Percentage of problems solved by various models on Easy and Hard
problem sets.

Planning Performance As shown in Table 2.4 our text-enriched planning model

outperforms the text-free baselines by more than 10%. Moreover, the performance

improvement of our model over the All Text baseline demonstrates that the accuracy

of the extracted text relations does indeed impact planning performance. A similar

conclusion can be reached by comparing the performance of our model and the Manual

Text baseline.

The difference in performance of 2.35% between Manual Text and Gold shows the

importance of the precondition information that is missing from the text. Note that

Gold itself does not complete all tasks - this is largely because the Markov assumption

made by our model does not hold for all tasks. 8

Figure 2-6 breaks down the results based on the difficulty of the corresponding

planning task. We measure problem complexity in terms of the low-level steps needed

8When a given task has two non-trivial preconditions, our model will choose to satisfy one of the

two first, and the Markov assumption blinds it to the remaining precondition, preventing it from

determining that it must still satisfy the other.

31

path has word "use"

path has word "fill"
path has dependency type "dobj"
path has dependency type "xsubj"
path has word "craft"

path has word "craft"

path has dependency type "partmod"
path has word "equals"
path has word "use"
path has dependency type "xsubj"

Figure 2-7: The top five positive features on words and dependency types learned by

our model (above) and by SVM (below) for precondition prediction.

to implement a manually constructed high-level plan. Based on this measure, we

divide the problems into two sets. As can be seen, all of the high-level planners solve

almost all of the easy problems. However, performance varies greatly on the more

challenging tasks, directly correlating with planner sophistication. On these tasks our

model outperforms the No Text baseline by 28% and the All Text baseline by 11%.

Feature Analysis Figure 2-7 shows the top five positive features for our model and

the SVM baseline. Both models picked up on the words that indicate precondition

relations in this domain. For instance, the word use often occurs in sentences that

describe the resources required to make an object, such as "bricks are items used to

craft brick blocks". In addition to lexical features, dependency information is also

given high weight by both learners. An example of this is a feature that checks for

the direct object dependency type. This analysis is consistent with prior work on

event semantics which shows lexico-syntactic features are effective cues for learning

text relations [5, 4, 19].

32

Chapter 3

Generating Program Input Parsers

from Natural Language

Specifications

3.1 Introduction

The general problem of translating natural language specifications into executable

code has been around since the field of computer science was founded. Early attempts

to solve this problem produced what were essentially verbose, clumsy, and ultimately

unsuccessful versions of standard formal programming languages. In recent years

however, researchers have had success addressing specific aspects of this problem.

Recent advances in this area include the successful translation of natural language

commands into database queries [55, 58, 42, 33] and the successful mapping of natural

language instructions into Windows command sequences [6, 9].

In this paper we explore a different aspect of this general problem: the translation

of natural language input specifications into executable code that correctly parses the

input data and generates data structures for holding the data. The need to automate

this task arises because input format specifications are almost always described in

natural languages, with these specifications then manually translated by a program-

33

Figure 3-1: An example of (a) one natural language specification describing program
input data; (b) the corresponding specification tree representing the program input
structure; and (c) two input examples

mer into the code for reading the program inputs. Our method highlights potential

to automate this translation, thereby eliminating the manual software development

overhead.

Consider the text specification in Figure 3-la. If the desired parser is implemented

in C++, it should create a C++ class whose instance objects hold the different fields

of the input. For example, one of the fields of this class is an integer, i.e., "a single

integer T" identified in the text specification in Figure 3-la. Instead of directly

generating code from the text specification, we first translate the specification into a

specification tree (see Figure 3-1b), then map this tree into parser code (see Figure 3-

2). We focus on the translation from the text specification to the specification tree.1

We assume that each text specification is accompanied by a set of input examples

that the desired input parser is required to successfully read. In standard software

development contexts, such input examples are usually available and are used to test

the correctness of the input parser. Note that this source of supervision is noisy -

the generated parser may still be incorrect even when it successfully reads all of the

'During the second step of the process, the specification tree is deterministically translated into
code.

34

(a) In put Format Specification:

The input contains a single integer T that indicates the number of test cases.
Then follow the T cases. Each test case begins with a line contains an integer N,
representing the size of wall. The next N lines represent the original wall. Each line
contains N characters. The j-th character of the i-th line figures out the color ...

(b) Specification Tree:

the input

a single integer T test cases

an integer N the next N lines

N characters

(c) Two Program Input Examples:

1 2
10 2
YYWYYWWWWW YW

YWWWYWWWWW WW
YYWYYWWWWW 5

YYYYYWWWWW YWYWW

WWWWWWWWWW WWYYY

input examples. Specifically, the parser may interpret the input examples differently

from the text specification. For example, the program input in Figure 3-1c can be

interpreted simply as a list of strings. The parser may also fail to parse some correctly

formatted input files not in the set of input examples. Therefore, our goal is to design

a technique that can effectively learn from this weak supervision.

We model our problem as a joint dependency parsing and role labeling task, as-

suming a Bayesian generative process. The distribution over the space of specification

trees is informed by two sources of information: (1) the correlation between the text

and the corresponding specification tree and (2) the success of the generated parser

in reading input examples. Our method uses a joint probability distribution to take

both of these sources of information into account, and uses a sampling framework

for the inference of specification trees given text specifications. A specification tree

is rejected in the sampling framework if the corresponding code fails to successfully

read all of the input examples. The sampling framework also rejects the tree if the

text/specification tree pair has low probability.

We evaluate our method on a dataset of input specifications from ACM Interna-

tional Collegiate Programming Contests, along with the corresponding input exam-

ples. These specifications were written for human programmers with no intention

of providing support for automated processing. However, when trained using the

noisy supervision, our method achieves substantially more accurate translations than

a state-of-the-art semantic parser [14] (specifically, 80.0% in F-Score compared to an

F-Score of 66.7%). The strength of our model in the face of such weak supervision

is also highlighted by the fact that it retains an F-Score of 77% even when only one

input example is provided for each input specification.

35

1 struct TestCaseType {
2 int N;
3 vector<NLinesType*> IstLines;
4 InputType* pParentLink;
5

6

7 struct InputType {
8 int T;
9 vector<TestCaseType*> IstTestCase;

10 }
11

12 TestCaseType* ReadTestCase(FILE * pStream, InputType* pParentLink) {
13 TestCaseType* pTestCase = new TestCaseType;
14 pTestCase-+pParentLink = pParentLink;
15

16 ...

17

18 return pTestCase;
19

20

21 InputType* Readinput(FILE * pStream) {
22 InputType* pinput = new InputType;
23

24 plnput-T = Readlnteger(pStream);
25 for (int i = 0; i < pinput-+T; ++i) {
26 TestCaseType* pTestCase = new TestCaseType;
27 pTestCase = ReadTestCase (pStream, pinput);
28 p1nput-+IstTestCase.push-back (pTestCase);
29

30

31 return pinput;
32 }

Figure 3-2: Input parser code for reading input files specified in Figure 3-1.

36

3.2 Related Work

Learning Meaning Representation from Text Mapping sentences into structural

meaning representations is an active and extensively studied task in NLP. Examples

of meaning representations considered in prior research include logical forms based

on database query [50, 57, 30, 55, 42, 33, 24], semantic frames [16, 17] and database

records [13, 32].

Learning Semantics from Feedback Our approach is related to recent research

on learning from indirect supervision. Examples include leveraging feedback avail-

able via responses from a virtual world [6] or from executing predicted database

queries [11, 14]. While [6] formalize the task as a sequence of decisions and learns

from local rewards in a Reinforcement Learning framework, our model learns to pre-

dict the whole structure at a time. Another difference is the way our model incorpo-

rates the noisy feedback. While previous approaches rely on the feedback to train a

discriminative prediction model, our approach models a generative process to guide

structure predictions when the feedback is noisy or unavailable.

NLP in Software Engineering Researchers have recently developed a number of

approaches that apply natural language processing techniques to software engineering

problems. Examples include analyzing API documents to infer API library specifi-

cations [59, 41] and analyzing code comments to detect concurrency bugs [48, 49].

This research analyzes natural language in documentation or comments to better un-

derstand existing application programs. Our mechanism, in contrast, automatically

generates parser programs from natural language input format descriptions.

37

3.3 The Approach

3.3.1 Problem Formulation

The task of translating text specifications to input parsers consists of two steps, as

shown in Figure 3-3. First, given a text specification describing an input format,

we wish to infer a parse tree (which we call a specification tree) implied by the text.

Second, we convert each specification tree into formal grammar of the input format

(represented in Backus-Naur Form) and then generate code that reads the input into

data structures. In this paper, we focus on the NLP techniques used in the first step,

i.e., learning to infer the specification trees from text. The second step is achieved

using a deterministic rule-based tool. 2

As input, we are given a set of text specifications w {w,--- , wN}, where each

w' is a text specification represented as a sequence of noun phrases {w'}. We use

UIUC shallow parser to preprocess each text specificaton into a sequence of the noun

phrases. 3 In addition, we are given a set of input examples for each w. We use these

examples to test the generated input parsers to reject incorrect predictions made by

our probabilistic model.

We formalize the learning problem as a dependency parsing and role labeling

problem. Our model predicts specification trees t = {t 1 , - , tN} for the text specifi-

cations, where each specification tree t' is a dependency tree over noun phrases {wk}.

In general many program input formats are nested tree structures, in which the tree

root denotes the entire chunk of program input data and each chunk (tree node) can

be further divided into sub-chunks or primitive fields that appear in the program

input (see Figure 3-3). Therefore our objective is to predict a dependency tree that

correctly represents the structure of the program input.

In addition, the role labeling problem is to assign a tag z to each noun phrase w'

2Specifically, the specification tree is first translated into the grammar using a set of rules and
seed words that identifies basic data types such as int. Our implementation then generates a top-
down parser since the generated grammar is simple. In general, standard techniques such as Bison
and Yacc [28] can generate bottom-up parsers given such grammar.

3http://cogcomp.cs.illinois.edu/demo/shallowparse/?id=7

38

in a specification tree, indicating whether the phrase is a key phrase or a background

phrase. Key phrases are named entities that identify input fields or input chunks

appear in the program input data, such as "the input" or "the following lines" in

Figure 3-3b. In contrast, background phrases do not define input fields or chunks.

These phrases are used to organize the document (e.g., "your program") or to refer

to key phrases described before (e.g., "each line").

(a) Text Specification:

Your program is supposed to readrth pinput from the standard input and write its output to
the standard output.
The first line of the input contains ne integer N Ninsjfollow, the i-th of them contains

o real numbers Xi, Yij separated by a single space - the coordinates of the i-th house.
Each ofte folowing lines contains four real numbers separated by a single space. These
numbers are the coordinates of two different points (X1, Y1) and (X2, Y2), lying on the
highway.

(b) Specification Tree:

the input

one integer N N lines the following lines

two real four real
numbers Xi, Yi numbers

(c) Formal Input Definition:

o Input N
Lines [size = N]
FollowingLines [size = *]

0
0
0

a

0

0

N int
Lines Xi Yi
Xi float
Yi float
FollowingLines

F1 := float

F1 F2 F3 F4

Figure 3-3: An example of generating input parser code from text: (a) a natural
language input specification; (b) a specification tree representing the input format
structure (we omit the background phrases in this tree in order to give a clear view of
the input format structure); and (c) formal definition of the input format constructed
from the specification tree, represented as a context-free grammar in Backus-Naur
Form with additional size constraints.

39

3.3.2 Model

We use two kinds of information to bias our model: (1) the quality of the generated

code as measured by its ability to read the given input examples and (2) the fea-

tures over the observed text w2 and the hidden specification tree t' (this is standard

in traditional parsing problems). We combine these two kinds of information into

a Bayesian generative model in which the code quality of the specification tree is

captured by the prior probability P(t) and the feature observations are encoded in

the likelihood probability P(wlt). The inference jointly optimizes these two factors:

P(t w) c P(t) - P(wlt).

Modeling the Generative Process. We assume the generative model operates

by first generating the model parameters from a set of Dirichlet distributions. The

model then generates text specification trees. Finally, it generates natural language

feature observations conditioned on the hidden specification trees.

The generative process is described formally as follows:

" Generating Model Parameters: For every pair of feature type f and phrase

tag z, draw a multinomial distribution parameter Oz from a Dirichlet prior

P(9z). The multinomial parameters provide the probabilities of observing dif-

ferent feature values in the text.

" Generating Specification Tree: For each text specification, draw a specifi-

cation tree t from all possible trees over the sequence of noun phrases in this

specification. We denote the probability of choosing a particular specification

tree t as P(t).

Intuitively, this distribution should assign high probability to good specification

trees that can produce C++ code that reads all input examples without errors,

40

we therefore define P(t) as follows: 4

1 the input parser of t reads all

P(t) = . input examples without error

E otherwise

where Z is a normalization factor and E is empirically set to 10-6. In other

words, P(.) treats all specification trees that pass the input example test as

equally probable candidates and inhibits the model from generating trees which

fail the test. Note that we do not know this distribution a priori until the speci-

fication trees are evaluated by testing the corresponding C++ code. Because it

is intractable to test all possible trees and all possible generated code for a text

specification, we never explicitly compute the normalization factor 1/Z of this

distribution. We therefore use sampling methods to tackle this problem during

inference.

9 Generating Features: The final step generates lexical and contextual features

for each tree. For each phrase Wk associated with tag Zk, let wp be its parent

phrase in the tree and w, be the non-background sibling phrase to its left in

the tree. The model generates the corresponding set of features #(w, Wk)

for each text phrase tuple (wp, w,, Wk), with probability P(#(wp, ws, Wk)). We

assume that each feature f3 is generated independently:

P(w~t) = P($(wp,ws,wk))

fjEq(wp,ws,Wk)

where 0g is the j-th component in the multinomial distribution Ozk denoting the

probability of observing a feature f3 associated with noun phrase Wk labeled with

tag Zk. We define a range of features that capture the correspondence between

the input format and its description in natural language. For example, at the

'When input examples are not available, P(t) is just uniform distribution.

41

unigram level we aim to capture that noun phrases containing specific words

such as "cases" and "lines" may be key phrases (correspond to data chunks

appear in the input), and that verbs such as "contain" may indicate that the

next noun phrase is a key phrase.

The full joint probability of a set w of N specifications and hidden text specifica-

tion trees t is defined as:

N

P(9, t, w) = P(9) 7 P(t)P(wilti, 0)
i=1

N

= P(0) 17 P(ti) P(#(wlwi, wk)).
i=1 k

Learning the Model During inference, we want to estimate the hidden specification

trees t given the observed natural language specifications w, after integrating the

model parameters out, i.e.

t ~ P(tJw) = JOP(t, 6|w)do.

We use Gibbs sampling to sample variables t from this distribution. In general,

the Gibbs sampling algorithm randomly initializes the variables and then iteratively

solves one subproblem at a time. The subproblem is to sample only one variable

conditioned on the current values of all other variables. In our case, we sample one

hidden specification tree t while holding all other trees t-' fixed:

ti ~ P(tilw, t-) (3.1)

where t-' = (tl,--, ti-I , ti+1,.. - N -),t

However directly solving the subproblem (1) in our case is still hard, we therefore

use a Metropolis-Hastings sampler that is similarly applied in traditional sentence

parsing problems. Specifically, the Hastings sampler approximates (1) by first drawing

a new t' from a tractable proposal distribution Q instead of P(tlw, t-'). We choose

42

Q to be:

Q(ti'|0', wi) C P (wilt', 0'). (3.2)

Then the probability of accepting the new sample is determined using the typical

Metropolis Hastings process. Specifically, t' will be accepted to replace the last t'

with probability:

R(tz, t2) minm , P(ti'|w, t-i) Q(til6', wi)
'P(tilw, t-i) Q(ti'|6', wi)

{1 P(ti', t-i, w)P(ilti,1 0)
= min(1

'P(ti, t-i, w)P(wilti', 0')9

in which the normalization factors 1/Z are cancelled out. We choose 0' to be the

parameter expectation based on the current observations, i.e. 0' = E [0|w, t-'], so that

the proposal distribution is close to the true distribution. This sampling algorithm

with a changing proposal distribution has been shown to work well in practice [27,

15, 38]. The algorithm pseudo code is shown in Algorithm 2.

To sample from the proposal distribution (2) efficiently, we implement a dynamic

programming algorithm which calculates marginal probabilities of all subtrees. The

algorithm works similarly to the inside algorithm [2], except that we do not assume

the tree is binary. We therefore perform one additional dynamic programming step

that sums over all possible segmentations of each span. Once the algorithm obtains

the marginal probabilities of all subtrees, a specification tree can be drawn recursively

in a top-down manner.

Calculating P(t, w) in R(t, t') requires integrating the parameters 0 out. This has

a closed form due to the Dirichlet-multinomial conjugacy:

P(t, w) = P(t) j P(w t, 0)P(0)do

oc P(t) -J Beta (count(f) + o')

43

Input: Set of text specification documents w = {w1 , ... - ,

Number of iterations T

1 Randomly initialize specification trees t ={t, - , tN}

2 for iter= 1---T do

3 Sample tree t' for i-th document:
4 for i =1 --.- N do

5 Estimate model parameters:
6 O' = E [0'w,]
7 Sample a new specification tree from distribution Q:

9 Generate and test code, and return feedback:
10 f' = CodeGenerator(wi, t')

n1 Calculate accept probability r:
12 r = R(tijt')

13 Accept the new tree with probability r:
14 With probability r : t' = t'

16 end

16 end

17 Produce final structures:
18 return { t' if t' gets positive feedback }

Algorithm 2: The sampling framework for learning the model.

Here a are the Dirichlet hyper parameters and count(f) are the feature counts ob-

served in data (t, w). The closed form is a product of the Beta functions of each

feature type.

Model Implementation: We define several types of features to capture the correla-

tion between the hidden structure and its expression in natural language. For exam-

ple, verb features are introduced because certain preceding verbs such as "contains"

and "consists" are good indicators of key phrases. There are 991 unique features in

total in our experiments. Examples of features appear in Table 3.1.

We use a small set of 8 seed words to bias the search space. Specifically, we

require each leaf key phrase to contain at least one seed word that identifies the C++

primitive data type (such as "integer", "float", "byte" and "string").

44

Feature Type

Word
Verb
Distance
Coreference

I Description

each word in noun phrase Wk

verbs in noun phrase Wk and the verb phrase before wk

sentence distance between Wk and its parent phrase wp
Wk share duplicate nouns or variable names with w, or w.

Feature Value

lines, VAR
contains
1
True

Table 3.1: Example of feature types and values. To deal with sparsity, we map
variable names such as "N" and "X" into a category word "VAR" in word features.

We also encourage a phrase containing the word "input" to be the root of the

tree (for example, "the input file") and each coreference phrase to be a background

phrase (for example, "each test case" after mentioning "test cases"), by initially

adding pseudo counts to Dirichlet priors.

45

3.4 Experiments

3.4.1 Experimental Setup

Datasets: Our dataset consists of problem descriptions from ACM International Col-

legiate Programming Contests.5 We collected 106 problems from ACM-ICPC training

websites. From each problem description, we extracted the portion that provides in-

put specifications. Because the test input examples are not publicly available on the

ACM-ICPC training websites, for each specification, we wrote simple programs to

generate 100 random input examples.

Table 3.2 presents statistics for the text specification set. The data set consists of

424 sentences, where an average sentence contains 17.3 words. The data set contains

781 unique words. The length of each text specification varies from a single sentence

to eight sentences. The difference between the average and median number of trees

is large. This is because half of the specifications are relatively simple and have a

small number of possible trees, while a few difficult specifications have over thousands

of possible trees (as the number of trees grows exponentially when the text length

increases).

Total # of words 7330
Total # of noun phrases 1829
Vocabulary size 781
Avg. # of words per sentence 17.29
Avg. # of noun phrase per document 17.26
Avg. # of possible trees per document 52K
Median # of possible trees per document 79
Min # of possible trees per document 1

Max # of possible trees per document 2M

Table 3.2: Statistics for 106 ICPC specifications.

Evaluation Metrics: We evaluate the model performance in terms of its success in

generating a formal grammar that correctly represents the input format (see Figure 3-

5 Official Website: http://cm.baylor.edu/welcome.icpc
6 PKU Online Judge: http://poj.org/; UVA Online Judge: http://uva.onlinejudge.org/

46

3c). As a gold annotation, we construct formal grammars for all text specifications.

Our results are generated by automatically comparing the machine-generated gram-

mars with their golden counterparts. If the formal grammar is correct, then the

generated C++ parser will correctly read the input file into corresponding C++ data

structures.

We use Recall and Precision as evaluation measures:

Recall -# correct structures

text specifications

Precisio. # correct structures

produced structures

where the produced structures are the positive structures returned by our framework

whose corresponding code successfully reads all input examples (see Algorithm 2 line

18). Note the number of produced structures may be less than the number of text

specifications, because structures that fail the input test are not returned.

Baselines: To evaluate the performance of our model, we compare against four

baselines.

The No Learning baseline is a variant of our model that selects a specification tree

without learning feature correspondence. It continues sampling a specification tree

for each text specification until it finds one which successfully reads all of the input

examples.

The second baseline Aggressive is a state-of-the-art semantic parsing framework [14]. 7

The framework repeatedly predicts hidden structures (specification trees in our case)

using a structure learner, and trains the structure learner based on the execution feed-

back of its predictions. Specifically, at each iteration the structure learner predicts

the most plausible specification tree for each text document:

t' = argmaxt f (wi,t).

Depending on whether the corresponding code reads all input examples successfully

7We take the name Aggressive from this paper.

47

Model Recall Precision F-Score
No Learning 52.0 57.2 54.5
Aggressive 63.2 70.5 66.7
Full Model 72.5 89.3 80.0
Full Model (Oracle) 72.5 100.0 84.1
Aggressive (Oracle) 80.2 100.0 89.0

Table 3.3: Average % Recall and % Precision of our model and all baselines over 20
independent runs.

or not, the (w', t') pairs are added as an positive or negative sample to populate a

training set. After each iteration the structure learner is re-trained with the training

samples to improve the prediction accuracy. In our experiment, we follow [14] and

choose a structural Support Vector Machine SVMstruct 8 as the structure learner.

The remaining baselines provide an upper bound on the performance of our model.

The baseline Full Model (Oracle) is the same as our full model except that the feed-

back comes from an oracle which tells whether the specification tree is correct or not.

We use this oracle information in the prior P(t) same as we use the noisy feedback.

Similarly the baseline Aggressive (Oracle) is the Aggressive baseline with access to

the oracle.

Experimental Details: Because no human annotation is required for learning, we

train our model and all baselines on all 106 ICPC text specifications (similar to

unsupervised learning). We report results averaged over 20 independent runs. For

each of these runs, the model and all baselines run 100 iterations. For baseline

Aggressive, in each iteration the SVM structure learner predicts one tree with the

highest score for each text specification. If two different specification trees of the

same text specification get positive feedback, we take the one generated in later

iteration for evaluation.

8 www.cs.cornell.edu/people/tj/svm-light/svm-struct.html

48

80%r

70% --- - - - - -

-- l--- Rull Model (Recall)
-Aggely.e (Recall)

so%- Rail Model (Predslali)
- - Aggresive (Precision)

0% 20% 40% 60% 60% 100%

%supervision

Figure 3-4: Precision and Recall of our model by varying the percentage of weak
supervision. The green lines are the performance of Aggressive baseline trained with
full weak supervision.

3.4.2 Experimental Results

Comparison with Baselines Table 3.3 presents the performance of various models

in predicting correct specification trees. As can be seen, our model achieves an F-

Score of 80%. Our model therefore significantly outperforms the No Learning baseline

(by more than 25%). Note that the No Learning baseline achieves a low Precision of

57.2%. This low precision reflects the noisiness of the weak supervision - nearly one

half of the parsers produced by No Learning are actually incorrect even though they

read all of the input examples without error. This comparison shows the importance

of capturing correlations between the specification trees and their text descriptions.

Because our model learns correlations via feature representations, it produces sub-

stantially more accurate translations.

While both the Full Model and Aggressive baseline use the same source of feed-

back, they capitalize on it in a different way. The baseline uses the noisy feedback to

train features capturing the correlation between trees and text. Our model, in con-

trast, combines these two sources of information in a complementary fashion. This

combination allows our model to filter false positive feedback and produce 13% more

correct translations than the Aggressive baseline.

Clean versus Noisy Supervision To assess the impact of noise on model accu-

racy, we compare the Full Model against the Full Model (Oracle). The two versions

49

90%- P

so%-

70%-

60%-

50%-

#input examples

Figure 3-5: Precision and Recall of our model by varying the number of available
input examples per text specification.

achieve very close performance (80% v.s 84% in F-Score), even though Full Model is

trained with noisy feedback. This demonstrates the strength of our model in learning

from such weak supervision. Interestingly, Aggressive (Oracle) outperforms our ora-

cle model by a 5% margin. This result shows that when the supervision is reliable,

the generative assumption limits our model's ability to gain the same performance

improvement as discriminative models.

Impact of Input Examples Our model can also be trained in a fully unsupervised

or a semi-supervised fashion. In real cases, it may not be possible to obtain input

examples for all text specifications. We evaluate such cases by varying the amount

of supervision, i.e. how many text specifications are paired with input examples. In

each run, we randomly select text specifications and only these selected specifications

have access to input examples. Figure 3-4 gives the performance of our model with

0% supervision (totally unsupervised) to 100% supervision (our full model). With

much less supervision, our model is still able to achieve performance comparable with

the Aggressive baseline.

We also evaluate how the number of provided input examples influences the per-

formance of the model. Figure 3-5 indicates that the performance is largely insensitive

to the number of input examples - once the model is given even one input example,

its performance is close to the best performance it obtains with 100 input examples.

We attribute this phenomenon to the fact that if the generated code is incorrect, it

is unlikely to successfully parse any input.

50

(a)
Each is specified by ;two -strings 5, T of L~

The next N lines of the input file contain the Cartesian coordinates of
watchtowers, ne pair of coordinates) per line.

Figure 3-6: Examples of dependencies and key phrases predicted by our model. Green
marks correct key phrases and dependencies and red marks incorrect ones. The
missing key phrases are marked in gray.

Case Study Finally, we consider some text specifications that our model does not

correctly translate. In Figure 3-6a, the program input is interpreted as a list of

character strings, while the correct interpretation is that the input is a list of string

pairs. Note that both interpretations produce C++ input parsers that successfully

read all of the input examples. One possible way to resolve this problem is to add

other features such as syntactic dependencies between words to capture more language

phenomena. In Figure 3-6b, the missing key phrase is not identified because our model

is not able to ground the meaning of "pair of coordinates" to two integers. Possible

future extensions to our model include using lexicon learning methods for mapping

words to C++ primitive types for example "coordinates" to (int, int).

51

Chapter 4

Conclusions and Future Work

In this work we presented novel techniques to learning semantic relations in the con-

text of two different domain applications. By acquiring semantic relations from text,

our methods make it possible for machines to leverage such knowledge and then per-

form tasks that are intractable and generally require human involvement.

In the first planning domain, we presented a reinforcement learning framework

for inducing precondition relations from text by grounding them in the semantics of

planning operations. While using planning feedback as its only source of supervision,

our method for relation extraction achieves a performance on par with that of a

supervised baseline. Furthermore, relation grounding provides a new view on classical

planning problems which enables us to create high-level plans based on language

abstractions. We show that building high-level plans in this manner significantly

outperforms traditional techniques in terms of task completion.

In the second code synthesis domain, we presented a sampling method for translat-

ing natural language specifications that describe input formats into the actual parser

code that read them. Our results show that taking both the correlation between the

text and the specification tree and the success of the generated C++ parser in reading

input examples into account enables our method to correctly generate C++ parsers

for 72.5% of our natural language specifications.

This work opens several possible directions for future research. In the high-level

planning domain our method is limited to a single level of abstraction. Learning

52

an abstraction hierarchy can enable the induction of planning hierarchies from text.

Moreover, such hierarchies are also important in light of text describing complex

domains, where multiple levels of abstraction are essential for compactly describing

the domain. In addition, a more general scenario in code synthesis problems is to

generate code that can read input data and correctly produce expected output, i.e.

programming by input-output examples. This research can potentially reduce much

human effort in developing softwares.

53

Bibliography

[1] Fahiem Bacchus and Qiang Yang. Downward refinement and the efficiency of

hierarchical problem solving. Artificial Intell., 71(1):43-100, 1994.

[2] James K. Baker. Trainable grammars for speech recognition. In DH Klatt

and JJ Wolf, editors, Speech Communication Papers for the 97th Meeting of

the Acoustical Society of America, pages 547-550, 1979.

[3] Jennifer L. Barry, Leslie Pack Kaelbling, and Toms Lozano-Prez. DetH*: Ap-

proximate hierarchical solution of large markov decision processes. In IJCAI'11,

pages 1928-1935, 2011.

[4] Brandon Beamer and Roxana Girju. Using a bigram event model to predict

causal potential. In Proceedings of CICLing, pages 430-441, 2009.

[5] Eduardo Blanco, Nuria Castell, and Dan Moldovan. Causal relation extraction.

In Proceedings of the LREC'08, 2008.

[6] S. R. K. Branavan, Harr Chen, Luke S. Zettlemoyer, and Regina Barzilay. Re-

inforcement learning for mapping instructions to actions. In Proceedings of the

Annual Meeting of the Association for Computational Linguistics, 2009.

[7] S. R. K. Branavan, David Silver, and Regina Barzilay. Learning to win by reading

manuals in a monte-carlo framework. In Proceedings of A CL, pages 268-277,

2011.

54

[8] S.R.K Branavan, Harr Chen, Luke Zettlemoyer, and Regina Barzilay. Reinforce-

ment learning for mapping instructions to actions. In Proceedings of A CL, pages

82-90, 2009.

[9] S.R.K Branavan, Luke Zettlemoyer, and Regina Barzilay. Reading between the

lines: Learning to map high-level instructions to commands. In Proceedings of

ACL, pages 1268-1277, 2010.

[10] Du-Seong Chang and Key-Sun Choi. Incremental cue phrase learning and boot-

strapping method for causality extraction using cue phrase and word pair prob-

abilities. Inf. Process. Manage., 42(3):662-678, 2006.

[11] Mingwei Chang, Vivek Srikumar, Dan Goldwasser, and Dan Roth. Structured

output learning with indirect supervision. In Proceedings of the 27th Interna-

tional Conference on Machine Learning, 2010.

[12] David L. Chen and Raymond J. Mooney. Learning to sportscast: a test of

grounded language acquisition. In Proceedings of ICML, 2008.

[13] David L. Chen and Raymond J. Mooney. Learning to sportscast: A test of

grounded language acquisition. In Proceedings of 25th International Conference

on Machine Learning (ICML-2008), 2008.

[14] James Clarke, Dan Goldwasser, Ming-Wei Chang, and Dan Roth. Driving se-

mantic parsing from the world's response. In Proceedings of the Fourteenth Con-

ference on Computational Natural Language Learning, 2010.

[15] Trevor Cohn, Phil Blunsom, and Sharon Goldwater. Inducing tree-substitution

grammars. Journal of Machine Learning Research, 11, 2010.

[16] Dipanjan Das, Nathan Schneider, Desai Chen, and Noah A. Smith. Probabilistic

frame-semantic parsing. In Human Language Technologies: The 2010 Annual

Conference of the North American Chapter of the Association for Computational

Linguistics, pages 948-956, 2010.

55

[17] Dipanjan Das and Noah A. Smith. Semi-supervised frame-semantic parsing for

unknown predicates. In Proceedings of the 49th Annual Meeting of the Asso-

ciation for Computational Linguistics: Human Language Technologies, pages

1435-1444, 2011.

[18] Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning.

Generating typed dependency parses from phrase structure parses. In LREC

2006, 2006.

[19] Q. Do, Y. Chan, and D. Roth. Minimally supervised event causality identifica-

tion. In EMNLP, 7 2011.

[20] Michael Fleischman and Deb Roy. Intentional context in situated natural lan-

guage learning. In Proceedings of CoNLL, pages 104-111, 2005.

[21] Maria Fox and Derek Long. Pddl2.1: An extension to pddl for expressing tempo-

ral planning domains. Journal of Artificial Intelligence Research, 20:2003, 2003.

[22] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Planning: theory

and practice. Morgan Kaufmann, 2004.

[23] Roxana Girju and Dan I. Moldovan. Text mining for causal relations. In Pro-

ceedigns of FLAIRS, pages 360-364, 2002.

[24] Dan Goldwasser, Roi Reichart, James Clarke, and Dan Roth. Confidence driven

unsupervised semantic parsing. In Proceedings of the 49th Annual Meeting of

the Association for Computational Linguistics: Human Language Technologies -

Volume 1, HLT '11, 2011.

[25] J6rg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan gener-

ation through heuristic search. JAIR, 14:253-302, 2001.

[26] Thorsten Joachims. Advances in kernel methods. chapter Making large-scale

support vector machine learning practical, pages 169-184. MIT Press, 1999.

56

[27] Mark Johnson and Thomas L. Griffiths. Bayesian inference for pcfgs via markov

chain monte carlo. In Proceedings of the North American Conference on Com-

putational Linguistics (NAACL '07), 2007.

[28] Stephen C. Johnson. Yacc: Yet another compiler-compiler. Unix Programmer's

Manual, vol 2b, 1979.

[29] Anders Jonsson and Andrew Barto. A causal approach to hierarchical decompo-

sition of factored mdps. In Advances in Neural Information Processing Systems,

13:10541060, page 22. Press, 2005.

[30] Rohit J. Kate and Raymond J. Mooney. Learning language semantics from am-

biguous supervision. In Proceedings of the 22nd national conference on Artificial

intelligence - Volume 1, AAAI'07, 2007.

[31] Mariin Lekavf and Pavol Naivrat. Expressivity of strips-like and htn-like plan-

ning. Lecture Notes in Artificial Intelligence, 4496:121-130, 2007.

[32] P. Liang, M. I. Jordan, and D. Klein. Learning semantic correspondences with

less supervision. In Association for Computational Linguistics and International

Joint Conference on Natural Language Processing (ACL-IJCNLP), 2009.

[33] P. Liang, M. I. Jordan, and D. Klein. Learning dependency-based compositional

semantics. In Proceedings of the Annual Meeting of the Association for Compu-

tational Linguistics, 2011.

[34] Percy Liang, Michael I. Jordan, and Dan Klein. Learning semantic correspon-

dences with less supervision. In Proceedings of A CL, pages 91-99, 2009.

[35] Neville Mehta, Soumya Ray, Prasad Tadepalli, and Thomas Dietterich. Auto-

matic discovery and transfer of maxq hierarchies. In Proceedings of the 25th

international conference on Machine learning, ICML '08, pages 648-655, 2008.

[36] Raymond J. Mooney. Learning language from its perceptual context. In Pro-

ceedings of ECML/PKDD, 2008.

57

[37] Raymond J. Mooney. Learning to connect language and perception. In Proceed-

ings of AAAI, pages 1598-1601, 2008.

[38] Tahira Naseem and Regina Barzilay. Using semantic cues to learn syntax. In

Proceedings of the 25th National Conference on Artificial Intelligence (AAAI),

2011.

[39] A. Newell, J.C. Shaw, and H.A. Simon. The processes of creative thinking. Paper

P-1320. Rand Corporation, 1959.

[40] James Timothy Oates. Grounding knowledge in sensors: Unsupervised learning

for language and planning. PhD thesis, University of Massachusetts Amherst,

2001.

[41] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit

Paradkar. Inferring method specifications from natural language api descriptions.

In Proceedings of the 2012 International Conference on Software Engineering,

ICSE 2012, pages 815-825, Piscataway, NJ, USA, 2012. IEEE Press.

[42] Hoifung Poon and Pedro Domingos. Unsupervised semantic parsing. In Proceed-

ings of the 2009 Conference on Empirical Methods in Natural Language Process-

ing: Volume 1 - Volume 1, EMNLP '09, 2009.

[43] Avirup Sil, Fei Huang, and Alexander Yates. Extracting action and event seman-

tics from web text. In AAAI 2010 Fall Symposium on Commonsense Knowledge

(CSK), 2010.

[44] Avirup Sil and Alexander Yates. Extracting STRIPS representations of actions

and events. In Recent Advances in Natural Language Learning (RANLP), 2011.

[45] Jeffrey Mark Siskind. Grounding the lexical semantics of verbs in visual per-

ception using force dynamics and event logic. Journal of Artificial Intelligence

Research, 15:31-90, 2001.

58

[46] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-

tion. The MIT Press, 1998.

[47] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Pol-

icy gradient methods for reinforcement learning with function approximation. In

Advances in NIPS, pages 1057-1063, 2000.

[48] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /* iComment: Bugs

or bad comments? */. In Proceedings of the 21st ACM Symposium on Operating

Systems Principles (SOSP07), October 2007.

[49] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. aComment: Mining annotations

from comments and code to detect interrupt-related concurrency bugs. In Pro-

ceedings of the 33rd International Conference on Software Engineering (ICSE11),

May 2011.

[50] Lappoon R. Tang and Raymond J. Mooney. Automated construction of database

interfaces: integrating statistical and relational learning for semantic parsing. In

Proceedings of the conference on Empirical Methods in Natural Language Pro-

cessing, EMNLP '00, 2000.

[51] Cynthia A. Thompson and Raymond J. Mooney. Acquiring word-meaning map-

pings for natural language interfaces. JAIR, 18:1-44, 2003.

[52] Adam Vogel and Daniel Jurafsky. Learning to follow navigational directions. In

Proceedings of the ACL, pages 806-814, 2010.

[53] Ronald J Williams. Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine Learning, 8, 1992.

[54] Alicia P. Wolfe and Andrew G. Barto. Identifying useful subgoals in reinforce-

ment learning by local graph partitioning. In In Proceedings of the Twenty-Second

International Conference on Machine Learning, pages 816-823, 2005.

59

[55] Yuk Wah Wong and Raymond J. Mooney. Learning synchronous grammars for

semantic parsing with lambda calculus. In ACL, 2007.

[56] Chen Yu and Dana H. Ballard. On the integration of grounding language and

learning objects. In Proceedings of AAAI, pages 488-493, 2004.

[57] Luke S. Zettlemoyer and Michael Collins. Learning to map sentences to logi-

cal form: Structured classification with probabilistic categorial grammars. In

Proceedings of UAI, pages 658-666, 2005.

[58] Luke S. Zettlemoyer and Michael Collins. Learning context-dependent mappings

from sentences to logical form. In Proceedings of the Annual Meeting of the

Association for Computational Linguistics, 2009.

[59] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. Inferring resource specifications

from natural language api documentation. In Proceedings of the 2009 IEEE/A CM

International Conference on Automated Software Engineering, ASE '09, pages

307-318, Washington, DC, USA, 2009. IEEE Computer Society.

60

