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Abstract

Languages vary enormously in global importance because of historical, demographic, po-
litical, and technological forces, and there has been much speculation about the current
and future status of English as a global language. Yet there has been no rigorous way to
define or quantify the relative global influence of languages. I propose that the structure of
the network connecting multilingual speakers or translated texts, which I call the Global
Language Network, provides a concept of language importance that is superior to simple
economic or demographic measures. I map three independent global language networks
(GLN) from millions of records of online and printed linguistic expressions taken from
Wikipedia, Twitter, and UNESCO's database of book translations. I find that the structure
of the three GLNs is hierarchically organized around English and a handful of hub lan-
guages, which include Spanish, German, French, Russian, Malay, and Portuguese, but not
Chinese, Hindi or Arabic. Finally, I validate the measure of a language's centrality in the
GLNs by showing that it correlates with measures of the number of illustrious people born
in the countries associated with that language. I suggest that other phenomena of a lan-
guage's present and future influence are systematically related to the structure of the global
language networks.
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Chapter 1

Introduction

"...Behold, the people is one, and they have all one language; and this they begin

to do: and now nothing will be restrained from them, which they have imagined

to do. Go to, let us go down, and there confound their language, that they may

not understand one another's speech."

- Genesis 11:6-7

Of the thousands of languages that have ever been spoken only a handful have become

influential enough to be considered global languages. The scarcity of global languages

could explain our fascination with headlines such as "Is English or Mandarin the language

of the future?" [48] or "It may be time to brush up on your Mandarin" [41], which have be-

come quite common in the last decade. But what determines whether a language becomes

global? How do we measure the influence of a language? And what are the implications of

a world in which only a handful of languages are globally influential?

In the past, researchers have used a variety of measures to determine the global in-

fluence of a language. These include the number of people who speak it, its geographic

distribution, the volume of content generated in the language, and the wealth and power

of the nations or empires that use it or have used it in the past [18, 46, 50, 74]. Yet de-

mographic and economic measures are unable to capture an important aspect of the global

influence of a language [17]: its ability to connect speakers from different languages.
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Understanding the rise of a global language is difficult because the processes that de-

termine whether a language becomes global are diverse and often idiosyncratic. One ex-

ample is network externalities, such as the former use of French in diplomacy or the use of

English in air traffic control, in which the widespread use of a standard language for a spe-

cific purpose itself forces people in a certain profession to acquire it, making it even more

widespread. Major conquests, such as in the spread of the Roman Empire and colonialism,

have also increased the linguistic homogeneity of large territories, albeit in less diplomatic

ways. Finally, demic expansions, such as the one underlying the spread of agriculture and

its Indo-European speakers in Europe [11], contributed to the diffusion of languages in a

more distant past. Consequentially, the geographic distribution of languages can teach us

about the prehistoric spread of people across Earth [8] and can provide valuable knowledge

about the origins of human civilization.

The proper identification of global languages, and the understanding of the mechanisms

that give rise to their formation, have political and cultural implications. Policy makers and

political movements may be driven by the conflicting goals of promoting a common lan-

guage that facilitates global communication on one hand and protecting the local languages

that strengthen cultural diversity and ethnic or national pride on the other hand. Important

decisions therefore hinge on understanding the nature of global languages and the dynamics

that give rise to them. Such decisions include the creation and dissemination of legislation

that mandates the use of an official language in education, government and public spaces,

the subsidy of news and cultural media in a local language, and the investment in tech-

nologies for automatic translation. Individuals and businesses who wish to communicate

their ideas to a diverse global audience can also benefit from the identification of global

languages, which would allow them to make an informed decision about the languages to

which they should translate their work.

Finally, linguistic and cultural fragmentations remain important barriers to intercultural

exchange in a world where the costs of long-distance communication are historically low.

For instance, in the ten countries with the largest online populations, fewer than 8% of the

50 most visited news sites are non-domestic, and in France, only 2% of web news traffic is

directed to non-domestic sites [78].
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1.1 A multilingual world

In an attempt to overcome linguistic barriers, an increasing number of people learn a second

or third language [56, 4, 6]. Since learning a new language takes time and effort, people

carefully choose which languages to learn. Usually, these are languages that allow them

to improve their means of communication. For example, many study English as a second

language because it is the linguafranca in business, academia, and popular culture [6, 53,

59, 60]. In Switzerland, native speakers of German study French and native speakers of

French study German as part of the country's policy to encourage communication between

citizens from different language communities [10, 29, 58]. Immigrants learn the language

spoken in their new country. Often times their children immerse so well that they do not

speak the native language of the parents or they learn it as a second language to remain

connected to their heritage [15, 52, 51].

Learning a new language exposes the learner to the influence of another culture and

to ideas and information originating from it [24, 25]. People who learn a new language

usually retain their connection with their original culture or language community. Thus

they become a bridge between their original community and their new community and

facilitate the spread of information and ideas between them.

Translations are another channel through which information and ideas diffuse across

cultures. While translations spare the need to learn a new language, they are not arbitrary

and reflect a demand. After the fall of communism, translations of books from Western

Europe to Eastern Europe and former Soviet Union countries increased by a factor of five.

Particularly, there was an increase in translations of influential Western works and books

by anti-communist authors, reflecting a desire for knowledge that was forbidden during

communist times [1].

1.2 Measuring the global importance of a language

Which languages should we learn so we could expose ourselves to as many ideas as possi-

ble, and communicate our own ideas to as many people as possible? Despite the importance

of global languages, there is no rigorous formulation of the concept of a global language,
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nor a good way to measure the degree to which a language is global. Previous work mea-

sured the importance of languages based on their demographics. A ranking of the influence

of languages by their number of primary and secondary speakers, the number of countries

where they are spoken, and their economic power placed English first, followed by French

and Spanish far behind [74]. Ranking languages by the GDP of the countries in which they

are spoken placed English first as well-far ahead of Chinese, Japanese, and Spanish [18].

Languages were also ranked by the share of the information their speakers produce of

the total information produced world-wide [40]. Information production was defined in this

case as the number of books, journals, films, and web pages published in a language. This

ranking places English first, with more information produced than the following languages

combined, namely German, Spanish, Chinese and French.

The above rankings, however, lack important considerations. The influence of a lan-

guage is determined not only by its number of speakers, the economic, political and mil-

itary power of the countries that speak it, and other aggregate attributes, but also by its

connections to other languages. A language community is more likely to spread its ideas

if it is spoken by many polyglots and is translated to many languages. For example, while

Chinese ranks among the top 10 languages in each of the rankings above, it is still an es-

sentially monoglot language community [65, 74], so most of the information produced in

Chinese is accessible only to native speakers of the language. Ideas conceived by speak-

ers of Chinese are therefore less likely to spread to other cultures in comparison to ideas

conceived by speakers of polyglots language communities such as Spanish or Portuguese.

Studying translations can provide an insight about the accessibility of information cre-

ated in one language to speakers of other languages. Past studies measured the influence of

a language by its share of world-wide book translations [33, 72]. According to this mea-

sure, English holds a hyper-central position in the world-system of translations based on

the share of books translated from English of all book translated worldwide (40% in 1980,

a share that has increased since). French, German and Russian were significantly behind,

each being the source of 10% to 12% of world translations. However, the above studies

did not check to which languages a language was translated, and therefore provide only a

limited insight on the diffusion of ideas between language communities.
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1.3 Focus on the connections

In this thesis I use network science to develop a metric for measuring the global influence

of languages and to define what a global language is. My method formalizes the intuition

that certain languages are disproportionately influential because they provide direct and in-

direct paths of translation among most of the world's other languages. For example, it is

easy for an idea conceived by a Spaniard to reach a Londoner through bilingual speakers

of English and Spanish. An idea conceived by a citizen of Vietnam, however, might only

reach a Mapudungun speaker in south-central Chile through a circuitous path that connects

bilingual speakers of Vietnamese and English, English and Spanish, and Spanish and Ma-

pudungun. These multilingual speakers are the links between language communities [13].

They define a network that enables the global diffusion of information and ideas, and allow

information to flow without a dedicated lingua franca such as Esperanto. I call it the Global

Language Network.

The idea of a global language network (GLN), which I introduce in this thesis, is a

novel approach for evaluating the importance of a language and for studying language con-

nections and potentially the cross-lingual diffusion of ideas. The GLN maps connections

between languages using shared speakers and translations, thus shifting the focus from the

aggregate measures of languages-number of speakers, income, information production-

to the connections between them. The GLN offers a different perspective than phylogenetic

trees that connect languages based on words with a similar etymological origin [28], or se-

mantic networks that connect synonyms or words that co-occur frequently in text [35].

The rest of this thesis is organized as follows. Chapter 2 describes the method and the

datasets used to map three global language networks-for Twitter, Wikipedia and book

translations. Chapter 3 analyzes the three GLNs and their structural similarities. Chapter 4

demonstrates how the GLNs are used to explain the cultural influence of language commu-

nities. Finally, Chapter 5 concludes and suggests paths for future research and applications.

Supporting online material (SOM) for this thesis is available at http: //macro.

media.mit.edu/projects/gin/som.
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Chapter 2

Mapping the Global Language Networks

2.1 Methods

Finding connections between language communities is challenging. While surveys like the

Eurobarometer language survey [20, 21] identify polyglots, the number of respondents and

their geographical spread is limited. Fortunately, social networking services, blogs, and

other platforms for user-generated content allow us to track expressions to individual users,

making it possible to identify bridge figures that connect language communities [77]. So

far, studies that examined the role of individuals in connecting language communities were

restricted to a small number of languages, a small number of users, a small number of

topics or all of the above. Notable examples include the mapping and comparison of four

language networks on the LiveJournal blog service from links found among 6,000 blogs in

Portuguese, Russian, Japanese and Finnish [34], and interactions identified among 100,000

blogs that discussed the Haiti earthquake of 2010 in English, Spanish and Japanese [30].

Studies on a larger scale used geographic proximity as a proxy for trans-lingual con-

nections. These studies suggest to connect languages or cultures, or at least measuring

their bilateral interest, through requests for Wikipedia pages in languages other than the

language associated with the location of the requester [64], or through tweets in different

languages made from the same location [44]. While proximity of location may indicate

cultural contact, it does not necessarily indicate language contact. Paris is full of tweeting

tourists who get exposed to art, cuisine and other forms of French culture during their visit.
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However, most of them do not speak French so they are not directly exposed to informa-

tion and ideas generated in that language, and will not become bridges between the French

language community and their native language communities upon their return home.

Studies that map language connections based on a single dataset can draw only a par-

tial picture. There is no single global language network (GLN) because different sets of

speakers share different kinds of information across different sets of languages for differ-

ent purposes. For example, many people use phones and text messages for instant private

communication and post on services like Twitter to quickly communicate short-term mes-

sages to the public. Fewer people write books, which aim to capture specific knowledge

and preserve it for posterity. Accordingly, I map three different versions of the GLN using

data from Twitter, Wikipedia, and UNESCO's Index Translationum (IT), an international

index of printed book translations [69]. I define the exposure eij of language i to language

j in each dataset as the conditional probability P(ilj) of observing a connection between

the two languages in the dataset. I calculate the exposure for Twitter and Wikipedia as

eiy = N (2.1)
Nj

where Nj represents the number of users with an observed expression in language j,
and Mij represents the number of users who express themselves in both languages i and j.
Note that Nj < Mij, since some speakers are fluent in more than two languages and are

counted multiple times in Mij. The exposure for the book translations dataset is calculated

in a slightly different way, as

e = (2.2)
Nj

where Ni7 j represents the number of translations from language i to language j and Nj

represents the number of translations into language j. Note that for the translations dataset

N = Nisj since each individual translation is counted only once (see Section 2.4 for

further details on how IT records translations).

In all three cases I merged mutually intelligible languages. For example, Indonesian

and Malaysian were both coded as Malay, and the regional dialects of Arabic are all coded
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as Arabic. Further information on language notation and merging of languages can be

found in Appendix A.

Finally, I note that the estimated probabilities are not symmetrical (P(ilj) / P(j i)),

and that these asymmetries are often substantial. For example, the probability of observ-

ing a user tweeting in English, given that she was observed to tweet in Filipino is 90%

(eengi = 0.9), whereas the probability of observing that a user tweets in Filipino given that

she has been observed to tweet in English is only 2% (efil,eng= 0.02), SO eeng,f i > efileng.

I also note that for Twitter and Wikipedia these asymmetries merely reflect the differences

in the observed populations (the denominator of Equation 2.1), while for book translations

the asymmetries are more meaningful since translations have an inherent direction (Equa-

tion 2.2).

The resulting networks represent patterns of linguistic co-expression not among the en-

tire human population but only among the kinds of speakers and texts that contributed to

the respective datasets. The populations are confined to literate speakers, and in turn to a

subset of social media users (Twitter), book translators (Index Translationum), and knowl-

edgeable public-minded specialists (Wikipedia). Yet these are characteristics of the elites

that drive the cultural, political, technological, and economic processes with which ob-

servers of global language patterns are concerned. More generally, the tools and constructs

developed here may be used to map language networks for any stratum of speakers, given

pairwise data on the overlap of language use among them.

The following sections describe in detail the datasets and processes I used to map each

GLN and present visualizations that help understand the relative importance of each lan-

guage.

2.2 Twitter

Twitter (www .t witt er. c om) is a microblogging and online social networking service where

users communicate using text messages of up to 140 characters long called tweets. As of

December 2012, Twitter had over 500 million registered users around the world, tweeting

in many different languages. Of these, 200 million users were active every month [55].
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Tweets are attributed to their authors and can be used to identify polyglots and the

language communities they connect, making Twitter a good source for representing the

GLN of tens of millions of people. Registered Twitter accounts make up for 7% of world

population, but its demographics may not reflect real-life demographics [9]. For example,

Twitter users in the United States are younger and hold more liberal opinions than the

general public [49]. Twitter is also blocked in China, so the majority of Chinese speakers

cannot access it.

I created the initial dataset from 1,009,054,492 tweets collected between December 6,

2012 and February 13, 2012, through the Twitter garden hose, which gives access to 10% of

all tweets. I detected the language of each tweet using the Chromium Compact Language

Detector (CLD) [42], which was chosen for its wide language support and its relatively

accurate detection of short messages [31]. However, any automated language detection is

prone to errors [34], all the more so when performed on short, informal texts such as tweets.

To reduce the effect of such errors, I applied the following methods.

Firstly, to improve detection, I removed hashtags (marks of keywords or topics, which

start with a #), URLs, and @-mentions (references to usernames, which start with a @).

Hashtags, URLs and @-mentions are often written in English or in another Latin script,

regardless of the actual language of the tweet, and may mislead the detector.

Secondly, I used only tweets that CLD detected with a high degree of confidence. CLD

suggests up to three possible languages for the text detected, and gives each option a score

that indicates its certainty of the identification, 1 being the lowest and 100 being the highest.

If the top option has a much higher score than the other options, CLD marks the identifica-

tion as reliable. I only used tweets that CLD was able to detect with a certainty over 90%

and indicated a reliable detection. The 90% threshold was chosen as the optimal tradeoff

between detection accuracy and number of tweets detected, based on a sample of 1 million

tweets (see Figure 2.1 A).

Thirdly, as mutually intelligible languages are difficult to distinguish, I merged similar

languages. To do so, I converted the two-letter ISO 639-1 language codes [36] produced by

CLD to three-letter ISO 639-3 codes [61], and merged them using the ISO 639-3 macrolan-

guages standard. See Appendix A for further details on merging languages.
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Figure 2.1: A Number of tweets as function of certainty B Distribution of Twitter users by
the number of languages in which they tweet.

Finally, to reduce the effect of individual detection errors, I considered for each user

only languages in which he or she tweeted at least twice, and considered only users who

made at least five tweets overall. I still found that a large number of users tweeted in a

relatively large number of languages, and I attribute some of this to inaccurate language

detection. To prevent this from skewing the representation of the Twitter GLN, I discarded

users who tweeted in more than five languages (Figure 2.1 B). Five was chosen as the

cutoff based on the impression of linguist Richard Hudson that five languages were the

most spoken in a community; he coined the term hyper-polyglots for people who speak six

languages or more [19].1

Despite the measures described above, our Twitter dataset still contains detection errors.

First, CLD occasionally confuses languages that are similar in their written form but not

in their spoken form, such as Urdu and Farsi. Thus, the link between Urdu and Farsi in

the Twitter GLN may appear stronger than it actually is. CLD may also confuse languages

with no intuitive linguistic connection, such as Japanese and Greek. Japanese tweets often

contain emoji, Eastern-style emoticons, which may use Greek letters for stylistic purposes,

Some of these users might be bots, which are common on Twitter. Note however that multilingual Twitter

bots are not considered a common phenomenon, and even if they were, a bot reading news in one language

and re-tweeting them in another is certainly an indication of interaction between the two languages.
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such as the kissing emoticon ('E') or the crying emoticon (7r_7r). Japanese tweets that

contain emoji may be identified as Greek, especially if they are short enough and contain

no (or little) text in addition to the emoji. Thus the link between Japanese and Greek in the

Twitter GLN may appear stronger than in reality.

After applying the criteria listed above, I had a dataset of 548,285,896 tweets in 73

languages by 17,694,811 users, who represented over 10% of the active users at the time

the data were collected [67]. The clean dataset is available on the SOM page.

I used this dataset to generate the Twitter GLN shown in Figure 2.2. The visualiza-

tion represents each language as a node. Node sizes are proportional to the number of

speakers of each language (native and non-native) as recorded by [76], and node colors

indicate language families. Links indicate the strength of the connection between a pair of

languages: the color of a link shows the number of users who in tweet in both languages

and the width of the link indicates the exposure of one language to another on Twitter. The

exposure eij is the conditional probability of a Twitter user to tweet in language i given that

he or she tweets in language j (Equation 2.1). For example, for English and Portuguese the

dataset lists 10,859,465 users who tweet in English, 1,617,409 who tweet in Portuguese,

and 664,320 who tweet in both languages. Therefore, the Twitter exposure of Portuguese

to English is 41% (eeng,por = 664,320 = 0.41), whereas the exposure of English to Por-Or - 1,617,409

tuguese is only 6% (epr,eng = g664 320 0.06). The Twitter GLN in Figure 2.2 showstuguee isonly6% (por~ng -10,859,465=

only languages that are connected by at least 500 shared Twitter users and have an exposure

of at least 0.1% (ei ;> 0.001).

The Twitter GLN consists of 47 nodes and 131 links. Table 2.1 shows statistics for each

language (node) in the network. The unfiltered network is available on the SOM page.

2.3 Wikipedia

Wikipedia (www .wikipedia. org) is a multilingual, web-based, collaboratively edited en-

cyclopedia. As of March 2013, Wikipedia had 40 million registered user accounts across

all language editions, of which over 300,000 actively contributed on a monthly basis [43].

Wikipedia's single sign-on mechanism lets editors use the same username on all language
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Figure 2.2: The layout of the Twitter global language network. The network contains all the languages that have at least one link whose
exposure is 0.1% or more (egj > 0.001), with at least 500 shared users.



Tweets % of
Language Code Tweets Users per user total

users

2 Albanian sqi 26,682 5,155 5.18 0.03

4 Azerbaijani aze 12,794 1,261 10.15 0.01

6 Bulgarian bul 23,252 1,633 14.24 0.01

8 Chinese zho 453,837 24,113 18.82 0.14

10 Danish dan 64,537 12,029 5.37 0.07

12 English eng 255,351,176 10,859,465 23.51 61.37

14 Filipino fl 1,905,619 257,611 7.4 1.46

16 French fra 3,434,065 147,843 23.23 0.84

18 German deu 1,705,256 73,897 23.08 0.42

20 Haitian hat 22,204 2,600 8.54 0.01

22 Hindi hin 12,021 1,171 10.27 0.01

24 Italian ita 1,586,225 89,242 17.77 0.5

Tweets % of
Language Code Tweets Users per user total

users

26 Korean kor 11,674,755 289,982 40.26 1.64

28 Malay msa 49,546,710 1,651,705 30 9.33

30 Norwegian nor 170,430 16,500 10.33 0.09

32 Polish pol 167,597 8,207 20.42 0.05

34 Romanian ron 73,428 5,040 14.57 0.03

36 bro hbs 54,889 8,152 6.73 0.05
Croatian

38 Slovenian sly 21,468 2,230 9.63 0.01

40 Swahili swa 32,737 5,636 5.81 0.03

42 Tamil tam 40,693 1,432 28.42 0.01

44 Turkish tur 4,660,694 233,158 19.99 1.32

46 Vietnamese vie 144,500 6,150 23.5 0.03

Table 2.1: Statistics for languages in the Twitter global language network.

editions to which they contribute. This allows us to associate a contribution with a spe-

cific person and identify the languages spoken by that person. Like Twitter, the Wikipedia

dataset has its limitations and biases: Wikipedia is blocked in some countries, most notably

China, and Wikipedia editors represent neither the general public nor the typical internet

user.

I compiled the Wikipedia dataset as follows. Firstly, I used information on editors and

their contributions in different languages from the edit logs of all Wikipedia editions until

the end of 2011. This information was parsed from Wikipedia's data dumps. I considered

only edits to proper articles (as opposed to user pages or talk pages), and only edits made by

human editors. Edits by bots used by Wikipedia for basic maintenance tasks (e.g., fixing

broken links, spellchecking, adding references to other pages) were ignored, as many of

them make changes in an unrealistic number of languages, potentially skewing the GLN.

This initial dataset contained 643,435,467 edits in 266 languages by 7,344,390 editors.

Secondly, I merged the languages as I did for the Twitter dataset, discarding ten Wikipedia

editions in the process. Two of them are more or less duplicates of other editions, namely
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Figure 2.3: Distribution of Wikipedia editors by number of languages in which they con-
tribute.

simple (Simple English) of English and be-x-old (Classic Belarusian) of Official Belaru-

sian. The remaining eight editions could not be mapped to standard ISO 639-3 languages

and were discarded: bh, cbk~zam, hz, mapbms, nah, nds-nl, tokipona, roagtara. These

eight editions are small and contain together 220,575 edits by 318 contributors.

Finally, to reduce the effect of one-time edits in given languages editions, which may

be cosmetic or technical and may not indicate knowledge of a language, I set the same

thresholds as for the Twitter dataset. For each user I considered only languages in which

he or she made at least two edits, and considered only users who made at least five edits

overall. I also discarded editors who contributed to more than five languages, following the

rationale explained in the Twitter section (2.2). I did so because a large number of users

contributed to an unrealistic number of languages: hundreds of users contributed to over 50

language editions each, and dozens edited in over 250 languages each (see Figure 2.3). For

example, the user Juhko is a self-reported native speaker of Finnish (contributed 6,787 edits

to this edition by the end of 2011), and an intermediate speaker of English (834 edits) and

Swedish (20). However, Juhko contributed to ten additional language editions, in particular

Somali (149 edits) and Japanese (58). Most of these contributions are maintenance work

that does not require knowledge of the language, such as the addition of a redirection or the

reversion of changes.
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Edits %of
Language Code Edits Editors total

per user editors

2 Arabic ara 2,178,719 18,258 119.33 0.71

4 Bulgarian

6 Chinese

8 Danish

10 English

12 Estonian

14 French

16 German

18 Hebrew

20 Hungarian

22 Japanese

I
I
I
I
I
I
I
I
I

bul

zho

dan

eng

est
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deu

heb

hun

jpn

I
I
I
I
I
I
I
I
I

1,130,405

7,302,770

965,082

198,361,048

366,370

23,070,757

33,977,378

5,467,149

2,713,725

16,149,315

6,769

50,341

12,270

1,589,250

3,005

142,795

224,215

18,998

18,033

102,857

I
I
I
I
I
I
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145.07

78.65

124.81

121.92

161.57

151.54

287.77

150.49

157.01

U
U
U
U
U
U
U

U
U

0.26

1.96

0.48

62.01

0.12

5.57

8.75

0.74

0.7

4.01

Edits % of
Language Code Edits Editors per user total

editors

24 Latin lat 326,569 1,375 237.5_

26 Malay msa 969,369 11,005 88.08

28 Norwegian nor 1,789,110 22,777 78.55

30 Polish pol 6,589,015 47,015 140.15

32 Romanian ron 852,536 11,157 76.41

34 Serbo-Croatian hbs 2,030,039 10,901 186.23

36 Slovenian sly 456,115 5,556 82.09

38 Swedish swe 3,521,224 30,498 115.46

40 Thai tha 905,118 7,155 126.5

42 Ukrainian ukr 1,839,988 10,028 183.49

0.05

0.43

0.89

1.83

0.44

0.43

0.22

1.19

0.28

0.39

Table 2.2: Statistics for languages in the Wikipedia global language network.

The final dataset consists of 382,884,184 edits in 238 languages by 2,562,860 contribu-

tors, and is available on the SOM page. I used this dataset to generate the Wikipedia GLN

shown in Figure 2.4, which uses the same visualization conventions used for the Twitter

GLN. The visualized network shows only languages that are connected by at least 500

shared Wikipedia editors and have an exposure of at least 0.1% (eij > 0.001). For the

Wikipedia GLN, the exposure eij is the probability of a Wikipedia editor to contribute to a

language edition i given that he or she contributes to language edition j (See Equation 2.1

above). Exposure scores approximate the probability that digitally engaged knowledge spe-

cialists speak a pair of languages with a high level of mastery. For example, for German

and French, the dataset lists 142,795 editors who contribute to the French Wikipedia edi-

tion, 224,215 to the German edition, and 9,236 editors to both. Therefore, the Wikipedia

exposure of French to German is 6% (ede,fra = 142, 5 0.6)' whereas the exposure of

German to French is 4% (efra,deu = 236 = 0.04).
German 224,215 =00)

Overall, the Wikipedia GLN consists of 43 nodes and 195 links. Table 2.2 shows statis-

tics for each language. The unfiltered network is available on the SOM page.
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2.4 Book translations

The Index Translationum (IT) is an international bibliography of book translations main-

tained by UNESCO [69]. The online database contains information on books translated

and published in print in about 150 countries since 1979. However, some countries are

missing data for certain years, such as translations published in the United Kingdom in the

years 1995-2000 and 2009-2011 [68].

IT records translations rather than books, so it does not list books that have not been

translated. Moreover, IT also counts each translation separately. For example, IT records

22 independent translations of Tolstoy's Anna Karenina from Russian to English. In map-

ping the network I treat each independent translation separately, and in this case, count 22

translations from Russian to English. Also I note that the source language of a translation

recorded by IT can be different from the language in which the book was originally written.

For example, the IT records 15 translations of The Adventures of Tom Sawyer to Catalan (as

of March 2013), but only 13 were translated directly from the original English; the other

two are from Spanish and Galician. This characteristic of the dataset allows me to identify

languages that serve as intermediaries for translations.

I retrieved a dump of the data on July 22, 2012, which contained 2,244,527 translations

in 1,160 languages. After removing a few corrupt entries, I converted the language codes

listed in IT to standard three-letter ISO 639-3 codes. The following entries were discarded

from the dataset: 41 miscellaneous dialects of languages that were already listed (together

accounting for under 100 translations total), 46 languages that could not be mapped to

standard ISO 639-3 codes (together accounting for about a thousand translations total), and

five administrative codes (mis, mul, und, zxx, and not supplied; see [61]). The remaining

languages were merged into macrolanguages (see Appendix A).

The cleaned dataset contains 2,231,920 translations in 1,019 languages. I used this

dataset to generate the book translation GLN shown in Figure 2.5. This network shows

languages that are connected by at least 300 translations and have an exposure of at least

0.1% (eig > 0.001). The exposure eij is the conditional probability of a book to have

been translated from language i given that the book was translated into language j (Equa-
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Figure 2.5: The layout of the book translation global language network. The network contains all the languages
link whose exposure is 0.1% or more (eij > 0.001), with at least 300 translations.
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tion 2.2). For example, for English and Hebrew our dataset lists 146,294 total translations

into English, of which 2,831 translations are from Hebrew. Therefore, the translation expo-

sure of English to Hebrew is 0.2% (eheb,eng - 2 = 0.002). Because there are 10,961

total translations to Hebrew, of which 8,620 translations are from English, the translation

exposure of Hebrew to English is 79% (eeng,heb = 8,620 =0.79).10,961 .7)

I removed three languages that met the thresholds for translations and exposure, but are

no longer in use: Ancient Greek (ISO 639-3 identifier grc), Middle High German (gmh),

and Old French (fro). Overall, the book translation GLN consists of 71 nodes and 500

links. Table 2.3 shows statistics for each language. The unfiltered network is available on

the SOM page.
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Language Code Translations Translations
Lanuae Cde from to

Albanian

Armenian

Bashkir

Belarusian

Bulgarian

Chinese

Danish

English

Finnish

Galician

German

Hebrew

Hungarian

Italian

Kara-Kalpak

Kirghiz

Latin

Lithuanian

sqi

hye

bak

bel

bul

zho

dan

eng

fin

gig

deu

heb

hun

ita

kaa

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

1,424

1,100

357

1,409

3,667

13,337

21,239

1,225,237

8,296

1,346

201,718

9,889

11,256

66,453

129

708

19,240

1,985

U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U

6,757

2,139

502

1,874

25,742

62,650

64,799

146,294

46,271

2,371

292,124

10,961

54,989

59,830

568

1,528

362

15,447

Translations TranslationsLanguage Code from to

38 Malay msa 485 5,416

40 Maori mri 88 319

42 Moldavian mol 2,864 3,720

44 Norwegian nor 14,530 45,923

46 Persian fas 2,837 11,329

48 Portuguese por 11,390 74,721

50 Russian rus 101,395 82,772

52 Serbo-Croatian hbs 12,743 45,036

54 Slovak sik 4,205 19,641

spa

tgk

tat

bod

tuk

ukr

uzb

cym

52,955

476

462

1,508

434

2,877

872

621

228,910

1,062

819

344

741

4,514

2,757

2,312

Table 2.3: Statistics for languages in the books translation global language network.
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Chapter 3

Analysis

The three GLNs presented in Figures 2.2, 2.4 and 2.5 share a number of features. First,

the number of expressions observed in each language-Twitter users, Wikipedia editors,

or translations from a language-correlates strongly across the three networks (Figures 3.1

A-C). Moreover, the exposures of the multilingual links correlate strongly across the three

networks (Figures 3.1 D-F), in particular Twitter-Wikipedia and Wikipedia-book transla-

tions. This means that a language with a high or low exposure to another language in one

network is likely to have a similar exposure to the same language in the other networks.

3.1 Degree distribution

The three networks also share several structural features. First, the three GLNs exhibit a

scale-free structure [5]. Let the connectivity or degree ki of a language i be the number

of other languages connected to it. All three networks have long-tailed degree distribu-

tions, and their cumulative probability distributions are well approximated by the power

law behavior P(k > k*) ~ k- 2 for k* > 5 (Figures 3.2 A-C). That is, the probability of

a language to have a degree k* or larger decreases following the above power law as k*

increases. This behavior highlights the disproportionately high degree of hub languages.

Only two of the 47 languages in the Twitter GLN (English and Malay) are connected to 20

other languages or more, and only two of the 43 languages in the Wikipedia GLN (English
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Figure 3.1: Similarity of the three independent datasets I use for mapping the global lan-
guage networks. The top row shows the correlation between the number of expressions
across the three datasets: A tweets and Wikipedia edits in a language B tweets in a lan-
guage and translations from a language C Wikipedia edits in a language and book trans-
lations from a language. The bottom row shows the correlation between the exposures (e)
measured for language pairs in the D Twitter and Wikipedia GLNs, E Twitter and book
translation GLNs, and F Wikipedia and book translations GLNs.

38



and German). In the book translation GLN, only six languages of 71 (English, Russian,

French, German, Spanish and Italian) are connected to more than 20 languages.

3.2 Clustering-connectivity

Moreover, the three GLNs share what is known as a hierarchical structure [62]. A network

is considered to be hierarchical if the more connected its nodes are, the less likely their

neighbors are to be a clique. The method I use to measure the hierarchical structure of

each GLN was adapted from a method used to measure hierarchy in protein-interaction

and technological networks [54, 71].

The probability that the neighbors of a node are connected to each other is expressed

by the node's local clustering coefficient [73]. Formally, the clustering coefficient Ci of

language i is defined as Ci= k 2A), where ki is the degree of the language, Ai is the

observed number of fully-connected triplets (3-cliques) for the neighbors of i, and k(k - 1)
2

is the number of possible fully connected triplets for the neighbors of i (the number of ways

of choosing two nodes from the ki neighbors of language i). In both cases I count triplets

in an undirected version of the network. Then, I plot the clustering coefficient Ci of each

node i as a function of its degree ki. In a hierarchical network, the clustering of a node will

be inversely related to its degree [54].

The hierarchical structure of the GLNs is illustrated in Figures 3.2 D-F. The hierarchy is

characterized by an exponential decay of clustering as a function of connectivity, which is

faster than the power-law decay observed in biological and technological networks [54, 71].

In the GLN, the inverse relationship between clustering and connectivity means that hub

languages are linked to clusters of languages that are connected within themselves but are

not directly connected to languages in other clusters. Hence, the hierarchical structure

of the GLN indicates that hub languages act as bridges between languages from differ-

ent clusters. English is the major hub in all three GLNs. The intermediate hubs include

Malay, Spanish and Portuguese in the Twitter network, German in the Wikipedia network,

and Russian, French and German in the book translation network. These findings agree

with previous studies examining book translations, which concluded that English held a
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Figure 3.2: Analysis of the structure of the global language networks. Degree ranking dia-

grams, with cumulative degree distributions in the inset, for A Twitter GLN, B Wikipedia

GLN, and C book translation GLN. Clustering-connectivity diagrams, showing the clus-

tering of each language as a function of its connectivity: for D Twitter GLN, E Wikipedia
GLN, and F book translation GLN. Percolation analysis diagrams, showing the size of

the largest weakly connected component (LWCC) upon removing the nlth most connected

language (connectivity is re-calculated after removing each node): for G Twitter GLN,

H Wikipedia GLN, and I book translation GLN. The top horizontal line marks the 50%

threshold, and the dashed line marks 10%.
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hyper-central position in the world-system of translations, followed by French, German

and Russian [33, 72].

The hierarchical structure of the networks means that the paths connecting peripheral

languages go first through nodes in increasing order of connectivity, and then through nodes

in decreasing order of connectivity [66]. For example, in the book translation GLN the path

between Kazakh and Galician goes through nodes in increasing order of connectivity from

Kazakh to Russian and from Russian to English, and then through nodes in decreasing

order of connectivity from English to Spanish and from Spanish to Galician. Here, Kazakh

and Galician are peripheral languages in this GLN, Russian and Spanish are intermediate

hubs, and English is the main hub.

3.3 Percolation analysis

Finally, I explore the implications of the hierarchical structure of the GLN. I do so by

measuring the size of the network's largest weakly-connected component (LWCC) as nodes

are removed from the network in decreasing order of connectivity, a method known as

percolation analysis [14]. The LWCC of a network is the largest subset of nodes for which

there is an undirected path between every pair of nodes. Percolation analyses of this kind

have been used to study the vulnerability of networks to errors and attacks: due to their

nature, scale-free networks were found to be extremely vulnerable to attacks, that is, the

removal of their hubs [3].

Figures 3.2 G-I show that the three GLNs become quickly disconnected when a few hub

languages are removed. In all cases, the removal of five hubs or fewer reduced the largest

connected component to half its original size. People who do not speak these hub languages

are very limited in their ability to communicate with people from most other cultures, and

if these languages suddenly vanished off the face of the earth, global communication would

become extremely difficult. Removing 14, 8, and 22 languages from the Twitter, Wikipedia,

and book translation networks, respectively, reduced the largest connected component in

each network to a dyad. In such a situation, global communication would be impossible.
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Chapter 4

Language centrality and cultural

contribution

To demonstrate an application of the GLN, I study the relationship between the position

of a language in the GLN and the global cultural influence of its speakers, and compare it

with the relationship between the cultural influence of a language and its population and

income. I measure the position of a language in the GLN using its eigenvector centrality

[7]. Eigenvector centrality considers the connectivity of a language as well as that of its

neighbors, and that of its neighbors' neighbors, in an iterative manner. Hence, eigenvector

centrality rewards hubs that are connected to other hubs (a variant of this method is also

the basis for Google's PageRank algorithm [47]). Table 4.1 lists the eigenvector centrality

for each language in each of the three GLNs. The sources for the population and income

data and their preparation are explained in detail in Appendix B.

4.1 Cultural contribution dataets

I measure the cultural impact of a language through the number it speakers that made a

long-lasting cultural impression on the world. I focus on these illustrious people, rather

than on ideas or other forms of cultural expression, because people names are easier to

identify and match across languages.
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Language Code Twitter Wikipedia tsations

2 Albanian sqi 0.21 0.05 0.2

4 Armenian hye 0.06

6

8

10

12

14

16

Bashkir

Belarusian

Bulgarian

Chinese

Danish

English

I
I
I
I
I

bak

bel

bul

U
zho

dan

eng

0.08

0.16

0.19

0.1

0.4

0.18

0.03

0 06

0 29

0.35

0.5

1

18 Estonian est 0.06 0.05 0.29

20 Finnish fin 0.09 0.32 0.41

22 Galician gig 0.25 0.07 0.12

24 German deu 0.35 0.88 0.95

26 Haitian hat 0.11

28 Hindi hin 0.06 0.05 0.1

30 Icelandic isl 0.18

32 Japanese jpn 0.27 0.72 0.49

34 Kazakh kaz 0.07

36 Korean kor 0.4 0.16 0.2

38 Latvian lav 0.06 0.16

Language Code Twitter Wikipedia translations

40 Macedonian mkd 0.09

42 Malayalam mal 0.05 0.03

44 Maori mri 0.03

46 Moldavian mol 0.13

48 Norwegian nor 0.09 0.32 0.45

50 Persian fas 0.09 0.1 0.2

52 Portuguese por 0.57 0.46 0.35

54 Russian rus 0.22 0.64 0.86

56 Serbo- hbs 0.17 0.18 0.45
Croatian

58 Slovak slk 0.11 0.05 0.36

60 Spanish spa 0.69 0.72 0.78

I

62 Swedish

64 Tamil

66 Thai

68 Turkish

70 Uighur

swe

tam

tha

tur

0.12

0.06

0.22

0.31

0.64

0.05

0.05

0.26

uig

0.57

0.06

0.03

0.17

0.04

72 Urdu urd 0.07

74 Vietnamese vie 0.1 0.05 0.03

76 Yiddish yid 0.07

Table 4.1: Eigenvector centrality by language in each of the three GLNs (rounded to the
nearest hundredth).
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I use two separate methods to decide whether a person is illustrious. The first is having

Wikipedia articles in at least 20 language editions, and the second is being included in the

Human Accomplishment list [45], a list of 3,869 influential people in the arts and sciences,

from 800 BCE to 1950. As neither dataset contains information about the language used by

the illustrious people it lists, I start this section by describing how I associated illustrious

people with languages. Then, I dedicate a subsection to each dataset, in which I describe

how the dataset was retrieved and prepared for use.

4.1.1 Associating illustrious people with languages

Ideally each language would be given a point for each notable person who spoke this lan-

guage as his or her native language, or who used this language as the main language for his

or her main contributions. Unfortunately, this information is not available in a structured

format and finding it manually for each person does not scale well for thousands of people.

Therefore, I determined a person's language affiliation using the current language demo-

graphics for his or her country of birth. Each illustrious person in the datasets equals one

point, which is distributed across the languages spoken in his or her native country accord-

ing to their population [38, 12]. For example, Italian inventor Guglielmo Marconi counts

as one point for Italian. Former Canadian Prime Minister Pierre Trudeau contributes 0.65

to English, 0.35 to French. I stress again that my scoring is based on national identity and

not on cultural or linguistic identity. Trudeau was a native speaker of French while Leonard

Cohen is a native speaker of English, but since both of them are Canadian, each one adds

0.65 points for English and 0.35 points for French, regardless of their native language.

Refer to Table 4.2 for the language demographics of each country.

I determine a person's country of birth using present-day international borders. For

example, I code Italy as the country of birth for author Ippolito Nievo, although Italy was

unified only shortly before his death in 1861 and at the time of his birth his native Padua was

part of the Austrian Empire. This method produces unintuitive results: the Ancient Greek

historian Herodotus was born in Halicarnassus (present-day Bodrum, Turkey) and would

earn points for Turkish, while Mustafa Kemal Atattirk, founder of the Republic of Turkey,
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Country Languages Country Lanuagesg Coun.try Languages country Languages Country Languages Country Languages Country Languages Country Laguages

- Brunei Malay: 80, E00 glish - Gui40- Potu0 100% 136 New Zealand English, 91.2% 190 Togo Fr.ch 100%
Darssla 20% ._-B au --- -

- - - - - -- - - - -Lithu-in: 80*4 Serbo-Croatian: 95%,
2 Alban A - -56 Ecuador Spanish 100% 110 Lithuan a Russian: 10%, P.i6h 164 Serbia

Roman an 5% -10 --- Hungarian: 5%

30 Burkin. Fas.o French: 100% 84 H H aitian 74.% Frnh 138 Niger French: 00%- 192 Tuniia Arabie:100%
25.2%

- - --- 1-0.Mac, Chinese:o 97%, Englis: -
4 Engh 29% 58 El Salvador Spanish: 100% 112 (076- -. ) 1. -

9  
.3% 166 Sierra 166. English: 100%

Sam-a - - (China) LS% Filpino: 1.3%. -

Central Khm1r. 95% Chin-. 91.7%, Engsh. Nrfolk 1Tukmn: 72%, Rui
32 Camb, di. French: 2.5%, English: 86 Hong Kong 2.% 9 -7I d -ng l194 Turkma 12% Ubek: 9%1.

- - ~2.5%-- --.

Arabic 70%, Engli sh S.k: 90' Hungarian:-
6 Angola Portuguese SM% 60 Eritrea 30% 10%

34 -- na- Eniglish: 65%French:- . Swahili:80%,*English:
534 Cana 88 Iceland Icelandic: 100% 142 Oma, Arabic: 100% 196 Uganda35% - .. _______ _______.___-___- -9-
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Amharic: 327%,

62 Ethiopia Oro: 31.6%, Arabi.c
7.5%, E.glih: 7.5%

116 Malay.ia Malay 100% 170 Englih: 2%

--- ipF p o: 13.5%, English:
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-- ----- Zulu: 23-83%4, Xhos-
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50% 20% 14% 10.7%

Eglih: 78.5%, Chines: - - --- - -- - Spamish! 74!. Catalan:

12 Australia 2.5, Italian: 1.6%, 66 Finland Finnih: 95%. Swe0h074 Spam. 17%, Gahian0 7".
Greek: 1.3%, Arabic 5% -,Ind B.qu. 2".-1.2%- -

- Heaw 8% Arb cUzbek 74.13% Russ an:
40 Chile Englhsh 100% 94 Wsal 20*4 80%,A.: 148 Paraguay Spash 3.1% 202 Uzbekistan 1

42
%

T
k:4.

4
%

Azerbaijani 90.3%, --

14 Azerbajan Russian: *18%, 68 h French: 100% 122 Maunitamia Arabic 100% 176 St. Helena Englfh 100%

---- - -. % -r Fhpmao. 55% Engl h
42 Com.1b. Span sh 100% 96 Ja... Engsh 00% 150 Phhpp .. 204 Veneu-1. Spamsik 100.

16 Bahri. Arabi.: 100% 70 Gabon French: 100% m W124 Maytt French 100% 178 St Luc. Englah 100-

466FD- Frcnh 100% 98 J.rd. Arabic: 100. 152 Portugal Poriguese 100% 206 irin n U iS 16.8%,F.,. 66%
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48 Ctontia Serbo-Croti an 00% 102 Kuwait Arabc 50% English 156 Rcumn French: 100% 210 Zambia Englih 1.7%/
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M0 50% -

Spanish:60.7% -M--
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Table 4.2: Language demographics by country. Values for each country add to 100% or less.



was born in Thessaloniki, present-day Greece, and would earn points for Greek. Because

our language distribution statistics are from the last few years, we include only people born

in 1800 and later, to reduce the effect of geopolitical and cultural changes on our mapping

of countries to languages. To match the year limitation of the Human Accomplishment

dataset, I also set 1950 as the latest year of birth for the Wikipedia dataset.

Despite some inaccuracies, using present-day countries provides a consistent mapping

people who lived over a period of several millennia to their contemporary countries. More-

over, using present-day countries allows me to use the present-day language distribution

statistics for each country to identify the main languages spoken in a country and deter-

mine the language affiliation of each person.

4.1.2 Wikipedia

Wikipedia is available in more than 270 language editions. As Wikipedia is collaboratively

authored, each edition reflects the knowledge of the language community that contributed

to it [27, 32]. For example, an article about Plato in the Filipino Wikipedia indicates that

Plato is known enough among speakers of Filipino to motivate some of them to write an

article about him. While a Wikipedia article in just one language can be the result of short-

lived fame within a limited community, a person with articles written about him or her in

many languages has likely made a substantial cultural contribution that impacted people

from a diverse linguistic and cultural background.

I compiled the Wikipedia dataset of illustrious people as follows. I started by retrieving

a table of 2,345,208 people from Freebase (www .f reebase . com), a collaboratively curated

repository of structured data of millions of entities, such places and people. I used a data

dump from November 4, 2012; the latest version of the table is available at [22]. For

each person, the table contains his or her name, date of birth, place of birth, occupation,

and additional information. In addition, for each person with an article in the English

Wikipedia, Freebase stores the Wikipedia unique identifier (known as pageid or curid) of

the respective article, which I retrieved through the Freebase API [23]. The pageid and the

Wikipedia API [75] were used to find the number of language editions in which a person
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Figure 4.1: Number of biographical articles with versions in at least N Wikipedia language
editions.

had an article. Then, the pageid, Wikipedia article name, and number of languages of each

article were added to the table retrieved from Freebase.

I matched 991,684 people with the English Wikipedia, from which I selected 216,280

people with a defined date of birth, place of birth and gender. I then restricted this list to

include only the 13,334 people who had articles in at least 20 Wikipedia language editions.

The 20-language threshold generated a group that is exclusive enough while still containing

enough data points (Figure 4.1). I refer to this dataset as Wikipedia 20. For comparison, a

25-language threshold would give 8,942 articles, and a 30-language threshold only 6,336.

Next, I converted dates to a standard four-digit year format. While doing so, I fixed

all BCE years, which the Freebase dump listed one year off. For example, Jesus's year

of birth was listed as 3 BCE instead of 4 BCE. I then used the Google Geocoding API

[26] to resolve the listed places of birth to latitude-longitude coordinates, and used the

GeoNames database (www . geonamnes . corn) to resolve the coordinates into the present-day

name of the country in which each person was born. Finally, I converted countries to

languages as described in Section 4.1.1 above. To increase the accuracy of the conversion,

I selected from the Wikipedia 20 dataset only the 6,158 people who were born after 1800

and before 1950. Tables 4.3 and 4.4 show the number of illustrious people for each country

and language, respectively.
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People People
Country (all (1800-

years) 1950)

2 Albania 20 11

4 Andorra 2 1

6 Argentina 124 39

8 Aruba 1 1

10 Austria 165 111

12 Bahrain 2 1

14 Barbados 2 N/A

16 Belgium 109 49

18 Benin 5 1

20 Bolivia 4 2

22 Botswana 4 3

24 Brunei 1 1

26 Burkina Faso 3 2

28 Cambodia 6 5

30 Canada 192 77

32 Central African 6 4
Republic

34 Chile 36 18

36 Colombia 24 5

38 Congo, Republic 8 1

40 C8te d'Ivoire 8 1

42 Cuba 19 14

44 Czech Republic 142 70

46 Denmark 96 38

48 Dominica 2 1

50 East Timor 3 3

52 Egypt 37 20

54 Equatorial Guinea 1 1

56 Estonia 23 11

58 Faroe Islands 4 2

60 Finland 84 39

62 French Guiana 2 1

64 Gabon 3 3

66 Germany 798 437

68 Gibraltar 1 N/A

People People
Country (all (1800-

years) 1950)

70 Greenland 3 1

72 Guadeloupe 4 1

74 Guatemala 5 3

76 Guinea 3 2

78 Guyana 1 N/A

80 Honduras 7 1

82 Hungary 86 67

84 India 165 88

86 Iran 47 17

88 Ireland 110 40

90 Israel 56 28

92 Jamaica 18 7

94 Jersey 2 N/A

96 Kazakhstan 27 20

98 Kosovo 4 N/A

100 Kyrgyzstan 3 2

102 Lebanon 21 9

104 Liberia 5 3

106 Lithuania 25 15

108 Macedonia 15 3

110 Malawi 4 3

112 Maldives 3 1

114 Malta 7 4

116 Mauritania 3 3

118 Mexico 68 25

120 Monaco

122 Montenegro

124 Mozambique

126

128

130

132

134

136

I
I
I
I
I

Namibia

Nepal

New Caledonia

Nicar

Nigeria

Norway

9

7

U4

2

1

7

37

79

2

2

3

N/A

N/A

7

6

42

People People
Country (all (1800-

years) 90

138 Pakistan 31 18

140 Palestinian State 3 1

142 Papua Nw Guinea1 1

144 Peru 22 15

146 Poland 183 125

148 Puerto Rico 12 3

150 Romania 65 34

152 Rwanda 2 1

154 Saint Lucia 1 1

156 Samoa 2 2

158 Senegal 12 3

160 Seychelles 2 2

162 Singapore 7 4

164 Slovenia 28 6

166 Somalia 11 5

168 Korea, Republic 42 10

170 Spain 346 100

172 St. Lucia 1 1

174 Suriname 7 3

176 Switzerland 111 57

178 Taiwan 15 4

180 Tanzania 4 3

182 Bahamas 4 2

184 To o 6 3

186 Trinidad and Tobago 6 2

188 Turkey 96 27

190 Virgin Islands, U.S. 2 1

192 Ukraine 114 62

194 United Ki dom 1515 673

198 Venezuela

200 Yemen

202 Zimbabwe

Total

13

1

7

13334

U
U
U
U

2

4

6158

Table 4.3: Number of people with articles in at least 20 Wikipedia language editions, by
country.
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People People

Language Code (all (1800-
years) 1950)

Albanian

Armenian

Basque

Bengali

Catalan

Czech

Dutch

sqi

hye

eus

ben

cat

U
U
U

ces

nld

21.5

17.1

6.9

22.2

59.8

37

267.5

U

I
I
I
U
U

11.1

8.4

2

15

17.5

16

106.5

16 Estonian est 16.1 7.7

Finnish

Galician

German

Haitian

Hindi

Icelandic

Japanese

Kirghiz

fin

gig

deu

hat

hin

isl

jpn

kir

79.8

24.2

1019.9

9.4

68.7

14

216

1.9

U
U
U
U
U
U
U

37

7

574.5

4.6

36.6

5

93

1.3

I
U

I

I
I

I

I

People People

Language Code (all (1800-
years) 1950)

I

I
I
I

I

I

34

36

38

40

42

44

46

I
I
I
I
I
I

48

50

52

54

56

58

60

62

64

I
I

I
I
I
I
I

Latvian

Macedonian

Malayalam

Marathi

Norwegian

Polish

Romanian

Serbo-
Croatian

Slovak

Spanish

Swedish

Tamil

Turkish

Ukrainian

Uzbek

Welsh

U
U
U
U
U
U

lav

mkd

mal

mar

nor

pol

ron

9.9

5.3

5.3

11.6

79

181.5

65.4

U
U
U
U
U
U

7

1.3

2.8

6.2

42

123.8

32.2

hbs 145.4 34.4

U
U
U
U
U
U
U

slk

spa

swe

tam

tur

ukr

uzb

cym

30.6

994.6

179.2

11

93.2

76.6

7.4

18.2

U
U
U
U
U
U
U

9

391.1

74

6.3

28.1

41.6

1.8

8.1

Table 4.4: Number of people with articles in
language (rounded to the nearest tenth).

at least 20 Wikipedia language editions, by

50

I

I

I
I

2

4

6

8

10

12

14

I

I
I
I
I
I

I
I

18

20

22

24

26

28

30

32

I
I

I



4.1.3 Human Accomplishment

The second measure of illustrious people is based on the book Human Accomplishment:

The Pursuit of Excellence in the Arts and Sciences, 800 B.C. to 1950 [45], which ranks the

contribution of 3,869 people to different fields of arts and science. Each listed person is

ranked on a scale of 1 to 100 for his or her contribution to one or more of the following

fields: art, literature, music, philosophy, astronomy, biology, chemistry, earth sciences,

mathematics, medicine, physics and technology. People who contributed to more than one

field were ranked separately for each field. For example, Isaac Newton received the highest

score of 100 for his contribution in physics, and a score of 88.93 for his contribution in

mathematics. For each person, the Human Accomplishment tables contain his or her name,

ranking in all relevant fields, year of birth, year of death, year flourished, country of birth

and country of work. I considered each person that was listed on Human Accomplishment

an illustrious person, regardless of his or her rank.

To find the number of notable people for each language group, I converted countries

of birth to languages as explained in Section 4.1.1. In most cases, I used the countries of

birth as listed on Human Accomplishment. However, the dataset occasionally provided a

geographical or cultural region, rather than a country, as a place of birth: Balkans, Latin

America, Sub-Saharan Africa, Arab World, Ancient Greece and Rome. I replaced the first

three with the specific places of birth for the respective people, as listed on Wikipedia 20,

and converted them to languages based on their present-day countries. I did not resolve

Arab World, Ancient Greece or Rome to specific locations, but instead converted them

directly to Arabic, Ancient Greek, or Latin, respectively. As with the Wikipedia 20 dataset,

I increased the accuracy of the country-to-language mapping by selecting only the 1,655

people born between 1800 and 1950. Tables 4.5 and 4.6 show the number of illustrious

people for each country and language, respectively.

4.2 Results

Figure 4.2 shows the bivariate correlation between the number of illustrious people mea-

sured using the Wikipedia dataset and the eigenvector centrality of that language in the
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Country

2 Arab World

4 Australia

6 Belgium

8 Bulgaria

10 Chile

12 Croatiae

14 Czech Republic

People

(all
years)

People

(1800-
1950)

86 14

Country

26 Kenya

People

(all
years)

People

(1800-
1950)

1 1

4 4 28 Montenegro 1 1

82 27 30 New Zealand 3 3

1 1 32 Norway 23 22

3 3 34 Poland 25 21

5 3 36 Romania 5 4

48 28 38 Russia 134 118

16 Finland

18 Germany

20 Guatemala

22 Iceland

6 5 40 Slovakia

536 267 42 South Africa

1 1 44 Sweden

2 1 46 United Kingdom

24 Italy 389 58

Table 4.5: Number of people listed

People People

Language Code (all (1800-
years) 1950)

2 Albanian sqi 0 0

4 Basque eus 1.5 0.5

6 Bulgarian bul 0.8 0.8

8 Chinese zho 237.1 22.1

10 Danish dan 37 20

12 English eng 772.1 461.4

14 French fra 593.6 258.1

16 German deu 645.1 330.9

18 Hindi bin 38.1 6.6

20 Icelandic isl 2 1

Total

4 4

1 1

44 21

531 230

3869 1655

on Human Accomplishment, by country.

People
Language Code (all

years)

22 Japanese

24 Marathi

26 Polish

28 Romanian

People
(1800-
1950)

jpn 169 57

mar 6.5 1.1

pol

ron

24.4 20.5

4.5 3.6

30 Serbo-Croatian bbs 9.5 6.9

32 Slovenian sly 2 2

34 Swahili swa 0.8 0.8

36 Tamil tam 5.5 0.9

38 Urdu urd 4.7 0.8

Table 4.6: Number of people listed on Human Accomplishment, by language
the nearest tenth).

(rounded to
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Figure 4.2: Number of people per language (born 1800-1950) with articles in at least 20
Wikipedia language editions as a function of their language's eigenvector centrality in the
A Twitter GLN, B Wikipedia GLN, and C book translations GLN. Circle size represents
the number of speakers for each language, and the color intensity represents GDP per capita
for the language.

Twitter, Wikipedia and book translation networks. I use only the 38 languages that are

present in all three GLNs. Table 4.7 presents these results in the form of a regression table

where variables are introduced sequentially.

With the exception of the Twitter dataset, the correlation between the number of il-

lustrious people and the eigenvector centrality of a language is higher than the correlation

observed between the number of illustrious people and the income and population of the

language group. In fact, although there is an important collinear component between the

centrality of a language in the Wikipedia or book translation network and the income and

population of its speakers, the orthogonal component explains an important amount of the

variance. The semi-partial correlation, defined as the difference between the R2 obtained

from a regression with all variables and a regression where the variable in question has been

removed, indicates that the percentage of the variance in the number of illustrious people

explained by the Wikipedia and book translation GLNs are respectively 33.6% (F=77.57,

p-value<0.001) and 35.5% (F=93.79, p-value<0.001) after the effects of income and pop-

ulation have been taken into account. In contrast, the semi-partial contribution of income

and population is only 2.4% (F=2.82, p-value=0.07) when measured against the Wikipedia

GLN, and 10.6% (F=14.1, p-val.ue<0.001) when measured against the book translation

GLN. Results for all years are presented in Appendix C.
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(1) (2) (3) (4) (5) (6) (7)
Number of illustrious people born 1800-1950 per language,

based on having biographies in over 20 Wikiepdia language editions

logio(Population) 0.639*** 0.579*** 0.033 0.294***
(0.109) (0.140) (0.093) (0.068)

logio(GDP per capita) 0.996*** 0.922** -0.261 0.059
(0.251) (0.274) (0.203) (0.165)

EV centrality [Twitter] 1.429** 0.297
(0.407) (0431)

EV centrality [Wikipedia] 2.125*** 2.196***
(0.164) (0.253)

EV centrality [book trans.] 2.190*** 1.928***
(0.205) (0.202)

(Intercept) -3.559** 1.224*** 0.940*** 0.7 4 0 *** -3.233* 1. 941* 0.121
(1.126) (0.139) (0.067) (0.095) (1.229) (0.898) (0.709)

Observations 38 38 38 38 38 38 38
p-value 0 0.001 0 0 0 0 0
R-squared 0.512 0.255 0.824 0.761 0.519 0.848 0.867
Adjusted R-squared 0.484 0.234 0.819 0.754 0.476 0.835 0.856

***,**,*significant at 0.
1
%, 

1
% and 5 % levels, respectively. Standard errors in parentheses.

Illustrious people D Twitter EV Cent.B by country English 1.00
United States 1807 Malay 0.82
United Kingdom 673 Spanish 0.69
France 491 Portuguese 0.57
Germany 437 French 0.51
Russia 238 Dutch 0.48
Italy 320 Ital ian 0.47
Poland 125 E Wikipedia EV Cent.

Spain 100 English 1.00
Span 90 German 0.88
Japan French 0.82

Illustrious people Spanish 0.72
C by language Japanese 0.72

English 2325.1 Italian 0.67
French 586.1 Russian 0.64
German 594 F Book translation EV Cent.
Spanish 391 1 F BEnlst10
Russian 279.6 English 1.00
Italian 227.5 Ge n 0.95
Polish 123.8 Russian 0.86
Dutch 106.5 Spanish 0.78
Japanese 93.0 Italian 0.67
Portuguese 90.4 Swedish 0.57

Table 4.7: GLN centrality and the number of illustrious people per language according
to Wikipedia 20. A Regression table explaining the number of people (born 1800-1950)
of each language group about which there are articles in at least 20 Wikipedia language
editions as a function of the language group's GDP per capita, population, and eigenvector
(EV) centrality in each of GLNs. Cultural production rankings: the B countries and C
languages that produced the largest number of people about which there are articles in at
least 20 Wikipedia editions. GLN eigenvector centrality rankings for languages represented
in biographies list: top seven languages in D the Twitter GLN, E the Wikipedia GLN, and
F the book translation GLN.

Figure 4.3 and Table 4.8 show the same analysis but using the list of illustrious peo-

ple from Human Accomplishment. I used only the languages that are present in all three

GLNs. In addition, I removed Albanian as it proved to be a major outlier and the num-

ber of illustrious people associated with this language was negligible (0.05). The cultural

influence of the languages as reflected in this biographical dataset is best explained by a

combination of population, GDP and the centrality of a language in the book translation

network (Table 4.8), which accounts for 91% of the variance. Centrality in the Wikipedia

GLN or book translation GLN alone explains 76% and 84% of the variance, respectively,

and 11.2% (F=13.07, p-value<0.001) and 24.9% (F=73.84, p-value<0.001) at the margin,

as measured by the semi-partial correlation. Results for all years and results with Albanian

are presented in Appendix C.

The data cannot distinguish between the hypothesis that speakers translate material

from a hub language into their own language because the content produced in the hub

language is more noteworthy, and the hypothesis that a person has an advantage in the

competition for international prominence if he or she is born in a location associated with a
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Figure 4.3: Number of people per language (born 1800-1950) listed in Human Accom-
plishment as a function of their language's eigenvector centrality in the A Twitter GLN, B
Wikipedia GLN, and C book translations GLN. Circle size represents the number of speak-
ers for each language, and the color intensity represents GDP per capita for the language.

(1) (2) (3) (4) (5) (6) (7)
Number of illustrious people born 1800-1950 per language,

based on inclusion in Human Accomplishment

log 10(Population)

logo(GDP per capita)

EV centrality [Twitter]

EV centrality [Wikipedia]

EV centrality [book trans.]

(Intercept)

Observations
p-value
R-squared
Adjusted R-squared

***,**,* significant at 0.1%,

0.874***
(0.127)

1.898***
(0.340)

0.800***
(0.176)

1.767***
(0.404)
0.322

(0.521)
1.983***
(0.508)

2.253***
(0.243)

2.720***
(0.229)

-8.262*** 0.622** 0.316** -0.103 -7.678***
(1.561) (0.176) (0.113) (0.120) (1.841)

29 29 29 29 29
0 0.001 0 0 0

0.664 0.361 0.761 0.839 0.669
0.638 0.337 0.752 0.833 0.629

1% and 5% levels, respectively. Standard errors in parentheses.

0.262
(0.202)
0.568

(0.470)

1.710**
(0.482)

-2.299
(2.125)

29
0

0.776
0.75

0.398***
(0.087)
0.768**
(0.222)

2.006***
(0.238)

-3.657***
(0.979)
29
0

0.913
0.902

B Illustrious people
by country

United States 272
Germany 267
France 236
United Kingdom 230
Russia 118
Italy 58
Japan 57
Austria 48
Switzerland 32
Netherlands 31

Illustrious people
Cby language

English 461.4
German 330.9
French 258.1
Russian 118.0
Italian 61.0
Spanish 59.9
Japanese 57.0
Dutch 47.2
Czech 28.0
Chinese 22.1

Table 4.8: GLN centrality and number of illustrious people per language according to
Human Accomplishment (HA). A Regression table explaining the number of people (born
1800-1950) of each language group listed in HA as a function of the language group's
GDP per capita, population, and eigenvector (EV) centrality in each of GLNs. Cultural
production rankings: the B countries and C languages that contributed the largest number
of people to the HA list.
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hub language. These alternatives are not mutually exclusive, since the two mechanisms are

likely to reinforce each other. Either alternative would highlight the importance of global

languages: the position of a language in the network either enhances the visibility of the

content produced in it or signals the earlier creation of culturally relevant achievements.

Moreover, the results show that the position of a language in the GLN carries information

that is not captured by measures of income or population.
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Chapter 5

Conclusions

In this thesis I used network science to offer a new and precise characterization of a lan-

guage's global importance. The global language networks (GLNs), mapped from millions

of online and printed linguistic expressions, reveal that the world's languages exhibit a hi-

erarchical structure dominated by a central hub, English, and a halo of intermediate hubs,

which include other global languages such as German, French, and Spanish. While lan-

guages such as Chinese, Arabic and Hindi are immensely popular, I document an impor-

tant sense in which these languages are more peripheral to the world's network of linguistic

influence. For example, the low volume of translations into Arabic, as indicated by our In-

dex Translationum GLN and matched by the peripheral position of Arabic in the Twitter

and Wikipedia GLNs, had been identified as an obstacle to the dissemination of outside

knowledge into the Arab world [70].

One might argue that the peripheral position of Chinese, Hindi and Arabic in the GLNs

stems from biases in the datasets used, such as the underrepresentation of these languages

and of some regional languages to which they connect. Indeed, China censors Twitter,

Wikipedia and other forms of communication, and many Indians prefer English to Hindi

because it is much easier to type. However, the peripheral role of Chinese, Hindi and Arabic

in three global forums of recognized importance-Twitter, Wikipedia, and printed book

translations-indicates the limited ability of these languages to spread their ideas around

the world, at least for the time being, and weakens their claim for global influence. Of

course, Chinese, Hindi or Arabic might be connected to languages that are spoken in their
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respective regions and are not documented in the datasets we used. However, this would

still not make them global hubs, since a global language also connects distant languages,

and not just local or regional ones.

The substantial hierarchical structure of the three GLNs points to a variety of causal

hypothesis and raises questions about the dynamics and effects of globalization. For exam-

ple, the structure of the GLNs suggests that the world may enjoy the benefits of worldwide

communication without either a dedicated international language such as Esperanto, or the

hegemony of English-or any other language-as the world's only global language. As-

sessments of temporal changes in the structure of the GLNs or in their parameters can

identify whether English is gaining or losing influence with respect to the languages of ris-

ing powers such as India or China. Such changes, as well as the differences between GLNs

based on traditional media (printed books) and new media (Twitter), may help to predict a

language's likelihood of global importance, marginalization, and, perhaps in the long term,

extinction.

GLN centrality can therefore complement current predictions of language processes,

which rely mostly on a language's number of speakers [2, 16] and to a lesser extent on

geographical and economic properties of the regions in which it is spoken [63]. Is it time to

brush up on your Mandarin then? A prediction based on the GLN centrality of languages,

as opposed to their number speakers or their economic power, shows that at least in the

foreseeable future, enrolling in a Spanish class would be a better use of your time.
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Appendix A

Language notation

Each of our three datasets uses a different system for identifying language names. For

the sake of consistency, I converted the language identifiers to ISO 639-3 identifiers. ISO

639-3 is a code that aims to define three-letter identifiers for all known human languages

[61]. For example, English is represented as eng, Spanish as spa, Modem Greek as ell and

Ancient Greek as grc.

Some languages are mutually intelligible or nearly mutually intelligible with others,

such as Serbian and Croatian, Indonesian and Malaysian, and the various regional dialects

of Arabic. Because of the similarity of mutually intelligible languages I do not consider

their speakers as polyglots. Instead, I merged mutually intelligible languages to macrolan-

guages following the ISO 639-3 Macrolanguage Mappings [61]. For example, I merged

29 varieties of Arabic into one Arabic macrolanguage (labelled by the ISO 639-3 identifier

ara), and Malaysian, Indonesian, and 34 other Bhasa languages into a Malay macrolan-

guage (msa).

Another reason for consolidating languages is that the language detector I used to iden-

tify the language of tweets cannot distinguish between the written forms of many mutually

intelligible languages, such as Indonesian and Malaysian and Serbian and Croatian. For this

reason, I added a couple of merges that are not in the ISO 639-3 macrolanguage mappings:

I consolidated Serbian, Croatian, and Bosnian into Serbo-Croatian (hbs) even though the

latter had been deprecated as a macrolanguage, and merged Tagalog (tgl) with Filipino (fil)

into one Filipino language that uses the identifierfil. The full conversion table is available
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on the SOM page.

Finally, I mapped languages to language families [57] using the hierarchy in Ethnologue

[38] complemented by information from articles from the English Wikipedia about the

respective languages. I used the standard language family names and identifiers as defined

by ISO 639-5 [39].
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Appendix B

Demographics

B.1 Population

I retrieved language speaker estimates from the June 14, 2012 version of the Wikipedia

statistics page [76]. These estimate include all speakers of a language, native and non-

native alike. I converted language names to ISO 639-3 identifiers and merged them into

macrolanguages as explained in Appendix A. Refer to Table B. 1 for number of speakers

for languages in the GLNs.

In general, the number of speakers of a macrolanguage is the sum of speakers of its

constituent languages. However, for the macrolanguages listed in Table B.2 I determined

that the estimated number of speakers for one of the individual languages that constitute

them includes speakers of the other languages, and used that number as the speaker estimate

for the entire macrolanguage.

B.2 Income

The GDP (gross domestic product) per capita for a language 1 measures the average con-

tribution of a single speaker of language 1 to the world GDP, and is calculated by summing

the contributions of speakers of 1 to the GDP of every country, and dividing the sum by the

number of speakers of 1. A similar method was used by [18]. Given a country c, let Gc

be the GDP per capita (based on purchasing-power-parity) of that country (retrieved from
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Speakers GDP per
Language Code (millions) capita ($)

2

4

6

8

10

12

14

I
U
U
U
I
U

Albanian

Armenian

Bashkir

Belarusian

Bulgarian

Chinese

Danish

sqi

hye

bak

bel

bul

zho

dan

16

6

2

6

12

1575

6

1,719

3,265

N/A

8,772

6,750

8,003

34,325

I
I
I
I

I
I

16 English eng 1500 11,943

18 Estonian est 1.07 16,995

20 Finnish fin 6 30,195

22 Galician glg 4 25,213

24 German deu 185 19,535

26 Haitian hat 12 2,322

28 Hindi hin 550 3,322

30 Icelandic isl 0.32 37,250

32 Japanese jpn 132 33,521

34 Kazakh kaz 12 11,391

36 Korean kor 78 19,866

38 Latvian lav 2.15 9,292

Language Code Speakers GDP per
(millions) capita ($)

40 Macedonian mkd 3 4,785

42 Malayalam mal 37 3,849

44 Maori mri 0.157 N/A

46 Moldavian mol N/A N/A

48 Norwegian nor 5 50,340

50 Persian fas 107 7,352

52 Portuguese por 290 9,535

54 Russian rus 278 9,437

56 Croatan hbs 23 7,927

58 Slovak sik 7 16,428

60 Spanish spa 500 13,300

62 Swedish swe 10 37,727

64 Tamil tam 66 4,311

66 Thai tha 73 8,636

68 Turkish tur 70 15,156

70 Uighur uig 10 N/A

72 Urdu urd 60 4,416

74 Vietnamese vie 80 3,842

76 Yiddish yid 3 N/A

Table B. 1: Population and GDP per capita for languages in the GLNs.
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ISO 639-3 Speaker estimate we Individual languages according to Wikipedia Statistics
Macrolanguage identifier use in our dataset Wikipedia (Wikipedia language code) speaker estimate

Akan aka 19 million Akan (ak) 19 million
Twi (tw)

Malay (ms)

15 million

300 million
a,1M1U myia J V HIIIIIndonesian (id) 250 million

Norwegian (no) 5 million
5 million

Table B.2: Macrolanguages for which the estimated number of speakers is not an sum of
the estimates for the individual languages that constitute them.

[37]) and let Nc be its population, retrieved from [12]. Also, given a language 1, let Nc

be the number of speakers of 1 in country c, obtained from [38] and [12]. I calculated Nc

using the language demographics listed in Table 4.2. Thus, G1, the GDP per capita for 1 is

ZcC

Z Nic
C

Refer to Table B. 1 for GDP per capita for languages in the GLNs.
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Appendix C

Regression tables for all years

In Section 4.2, I presented the correlation between the centrality of a language and the num-

ber of illustrious people associated with this language, as determined by two independent

datasets. I considered only people born between 1800 and 1950 to improve the accuracy

of the country-to-language mappings. In addition, I removed Albanian from the Human

Accomplishment regressions, as this language proved to be a major outlier and the number

of illustrious people associated with it was negligible (0.05).

This appendix presents the results of the regressions without any restrictions on year

of birth, for the Wikipedia 20 dataset (e.g., people with articles in at least 20 Wikipedia

language editions, Table C. 1) and the Human Accomplishment dataset (Table C.2). In addi-

tion, I present here a version of the Human Accomplishment regression table that includes

Albanian (Table C.3).

As in Section 4.2, the correlation between the number of illustrious people and the

eigenvector centrality of a language in the Wikipedia or book translation networks-though

not the Twitter network-is higher than the correlation observed between the number of il-

lustrious people and the income and population of the language. Also, in both the restricted

and unrestricted regressions, eigenvector centrality in the Twitter network does not explain

much of the variance in number of illustrious people per language.

For full listings of language population and GDP per capita, refer to Table B. 1. For full

listings of language centrality measures, refer to Table 4.1. For full listings of number of

illustrious people by country and language, refer to Tables 4.3 to 4.6.
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(1) (2) (3) (4) (5) (6) (7)
Number of illustrious people born per language,

based on having biographies in over 20 Wikiepdia language editions

logio(Population)

logi 0(GDP per capita)

EV centrality [Twitter]

EV centrality [Wikipedia]

EV centrality [book trans.]

(Intercept)

Observations
p-value
R-squared
Adjusted R-squared

significant at 0.1%,

0.616***

(0.111)
1.106***
(0.255)

1.461***
(0.408)

2.095***
(0.180)

0.535***
(0.142)

1.006***
(0.277)
0.401

(0.436)

2.196***
(0.208)

-3.619** 1.569*** 1.302*** 1.091*** -3.180*
(1.145) (0.139) (0.074) (0.097) (1.243)

38 38 38 38 38
0 0.001 0 0 0

0.502 0.263 0.79 0.755 0.514
0.473 0.242 0.784 0.748 0.471

1% and 5% levels, respectively. Standard errors in parentheses.

0.045
(0.109)
-0.079
(0.236)

2.070***
(0.295)

1.564

(1.048)
38
0

0.796
0.778

0.281***

(0.077)
0.195

(0.187)

1.872***
(0.229)
-0.046

(0.803)
38
0

0.832
0.817

A

Table C. 1: GLN centrality and the number of illustrious people per language according
to Wikipedia 20, without restrictions on year of birth. A Regression table explaining the
number of people of each language about which there are articles in at least 20 Wikipedia
language editions as a function of the language's GDP per capita, population, and eigen-
vector (EV) centrality in each of GLNs. Cultural production rankings: the B countries and
C languages that produced the largest number of people about which there are articles in at
least 20 Wikipedia editions.

(1) (2) (3) (4) (5) (6) (7)
Number of illustrious people per language,

based on inclusion in Human Accomplishment

logio(Population)

log io(GDP per capita)

EV centrality [Twitter]

EV centrality [Wikipedia]

1.043***
(0.124)

1.866***
(0.334)

1.042***
(0.174)

1.864***
(0.399)
0.004

(0.515)
2.129***
(0.566)

0.727**

(0.232)
1.180*

(0.538)

0.882
(0.553)

0.750***

(0.140)
1.170**

(0.359)

2.293***
(0.322)

EV centrality [book trans.] 2.501 *** 1.237**
(0.404) (0.385)

(Intercept) -8.093*** 0.899*** 0.617*** 0.314 -8.086*** -5.019* -5.255**
(1.531) (0.196) (0.150) (0.211) (1.820) (2.435) (1.583)

Observations 29 29 29 29 29 29 29
p-value 0 0.001 0 0 0 0 0
R-squared 0.733 0.344 0.652 0.587 0.733 0.757 0.811
Adjusted R-squared 0.712 0.32 0.639 0.571 0.701 0.728 0.788

**,, significant at 0.1%, 1% and 5% levels, respectively. Standard errors in parentheses.

B "i us"" e**l*
by country

France 542
Germany 536
United Kingdom 531
Italy 389
United States 297
China 237
Japan 169
Russia 134
Ancient Greece 134
India 93

C Illustrious people
by language

English 772.1
German 645.1
French 593.6
Italian 394.8
Chinese 237.1
Japanese 169.0
Russian 134.0
Dutch 133.2
Spanish 100.5
Arabic 86.0

Table C.2: GLN centrality and number of illustrious people per language according to
Human Accomplishment (HA), without any restriction on year of birth. A Regression ta-
ble explaining the number of people of each language listed in HA as a function of the
language's GDP per capita, population, and eigenvector (EV) centrality in each of GLNs.
Cultural production rankings: the B countries and C languages that contributed the largest
number of people to the HA list.
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by country
United States 3726
United Kingdom 1515
France 930
Germany 798
Italy 644
Russia 372
Spain 346
Japan 216
Netherlands 195
Canada 192

C Illustrious people
by language

English 5071.0
French 1145.8
German 1019.9
Spanish 994.6
Italian 661.9
Russian 449.6
Dutch 267.5
Portuguese 264.6
Japanese 216.0
Arabic 194.2
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(1) (2) (3) (4) (5) (6) (7)
Number of illustrious people born 1800-1950 per language,

based on inclusion in Human Accomplishment

logo(Population)

log j0(GDP per capita)

EV centrality [Twitter]

EV centrality [Wikipedia]

0.896***

(0.113)
1.981***

(0.263)
2.064**
(0.618)

0.856***
(0.146)

1.929***
(0.292)
0.210

(0.479)
2.474***

(0.308)

0.538**
(0.170)

1.317***
(0.347)

1. 174*
(0.446)

0.535***
(0.088)

1.226***

(0.197)

EV centrality [book trans.] 2.960*** 1.786***
(0.323) (0.265)

(Intercept) -8.652*** 0.523* 0.180 -0.269 -8.428*** -5.723** -5.722***
(1.193) (0.211) (0.141) (0.166) (1.315) (1.551) (0.852)

Observations 30 30 30 30 30 30 30
p-value 0 0.002 0 0 0 0 0
R-squared 0.754 0.285 0.697 0.75 0.756 0.806 0.911
Adjusted R-squared 0.736 0.26 0.686 0.741 0.728 0.783 0.9

* * significant at 0.1%, 1% and 5% levels, respectively. Standard errors in parentheses.

B "llustrious people

United States 272
Germany 267
France 236
United Kingdom 230
Russia 118
Italy 58
Japan 57
Austria 48
Switzerland 32
Netherlands 31

c Illustrious people
Egby language

English 461.4
German 330.9
French 258.1
Russian 118.0
Italian 61.0
Spanish 59.9
Japanese 57.0
Dutch 47.2
Czech 28.0
Chinese 22.1

Table C.3: GLN centrality and the number of illustrious people per language according to
Wikipedia, for people born 1800-1950, including Albanian. Parts B and C are identical to
Table 4.8.
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