
New Methods for Sensitivity Analysis of Chaotic

Dynamical Systems

by

Patrick Joseph Blonigan

B.S., Cornell University (2011)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

c© Massachusetts Institute of Technology 2013. All rights reserved.

Author .
Department of Aeronautics and Astronautics

May 10, 2013

Certified by. .
Qiqi Wang

Assistant Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Eytan H. Modiano

Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

New Methods for Sensitivity Analysis of Chaotic Dynamical

Systems

by

Patrick Joseph Blonigan

Submitted to the Department of Aeronautics and Astronautics
on May 10, 2013, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

Computational methods for sensitivity analysis are invaluable tools for fluid dynam-
ics research and engineering design. These methods are used in many applications,
including aerodynamic shape optimization and adaptive grid refinement.

However, traditional sensitivity analysis methods break down when applied to
long-time averaged quantities in chaotic dynamical systems, such as those obtained
from high-fidelity turbulence simulations. Also, a number of dynamical properties of
chaotic systems, most notably the “Butterfly Effect”, make the formulation of new
sensitivity analysis methods difficult.

This paper will discuss two chaotic sensitivity analysis methods and demonstrate
them on several chaotic dynamical systems including the Lorenz equations and a
chaotic Partial Differential Equation, the Kuramoto-Sivshinsky equation. The first
method, the probability density adjoint method, forms a probability density func-
tion on the strange attractor associated with the system and uses its adjoint to find
gradients. This was achieved using a novel numerical method in which the attractor
manifold, instead of a region of phase space, is discretized. The second method, the
Least Squares Sensitivity method, finds some “shadow trajectory” in phase space
for which perturbations do not grow exponentially. This method is formulated as
a quadratic programing problem with linear constraints. Several multigrid-in-time
methods to solve the KKT system arising from this optimization problem will be
discussed in depth.

While the probability density adjoint method is better suited for smaller systems
and reduced order models, least squares sensitivity analysis, solved with a multigrid-
in-time method could be applied to higher dimensional systems such as high fidelity
fluid flow simulations.

Thesis Supervisor: Qiqi Wang
Title: Assistant Professor of Aeronautics and Astronautics

3

4

Acknowledgements

Firstly, I would like to thank my advisor, Professor Qiqi Wang. I am very grateful

for all the help and support I have recieved from him over the past two years and

I look forward to working with him on my PhD research and beyond. The research

presented in this thesis was conducted at MIT, NASA Langley, and the 2012 summer

program at Stanford University’s Center for Turbulence Research (CTR). During

my time at NASA Langley, I received a great deal of advive and guidance from the

research scientists of the Computational AeroSciences group. I would like to thank

Dr. Boris Diskin of the National Institute of Aerospace for his insights into multigrid

methods and Dr. Eric Nielsen for his all help during my time in Virginia, especially

for running the airfoil simulations presented in this thesis with NASA’s FUN3D CFD

code. I would also like to thank Dr. Johan Larsson for hosting Professor Wang, Rui

Chen and I for the CTR summer program. Finally, I would like to thank my parents,

Margaret and Gregg, and my brothers, Andrew and Charlie, for all their love and

support during my first two years at MIT.

5

6

Contents

1 Introduction 19

1.1 Motivation . 19

1.2 Past Work . 21

1.3 Thesis Outline . 21

2 Computing Sensitivities of Chaotic Systems 23

2.1 Traditional Sensitivity Analysis Methods 23

2.1.1 Forward/Tangent Sensitivity Analysis 23

2.1.2 Backward/Adjoint Sensitivity Analysis 24

2.2 Breakdown of traditional sensitivity analysis for chaotic systems . . . 25

2.2.1 Sensitivity analysis of chaotic fluid flows 28

2.3 Smoothness of the Mean and Stationary Density Distribution of Chaos 29

3 Probability Density Adjoint Method for Chaotic 1D Maps 37

3.1 Introduction . 37

3.2 Computing Stationary Density . 37

3.3 Computing gradients using the density adjoint 40

3.4 Algorithm Summary . 42

3.5 Density adjoint for the cusp map . 43

4 Probability Density Adjoint Method for Continuous Chaotic Sys-

tems 45

4.1 Introduction . 45

7

4.2 Computing Stationary Density . 46

4.3 Computing the Density Adjoint . 52

4.4 Algorithm Summary . 54

4.5 Density adjoint for the Lorenz equations 55

4.6 Discussion . 57

5 Least Squares Sensitivity Method 59

5.1 Lyapunov Exponents and the Shadowing Lemma 59

5.2 Computing the Shadow Trajectory 63

5.3 Solving the KKT system numerically 64

5.4 LSS Examples . 65

5.4.1 The Lorenz Equations . 65

5.4.2 The Kuramoto-Sivashinsky Equation 66

6 Multigrid-in-time for Least Squares Sensitivity Analysis 69

6.1 Solving the KKT System numerically 70

6.2 Classic Multigrid . 71

6.3 Cyclic Reduction . 72

6.4 Higher Order Averaging/Krylov Subspace Scheme 74

6.4.1 Matrix restriction multigrid 75

6.4.2 Solution restriction multigrid 78

7 Conclusions 85

A Probability Density Adjoint Method 87

A.1 Probability density adjoint for 1D maps 87

A.1.1 Deriving the continuous density adjoint equation 87

A.1.2 Derivation of the gradient equation 89

A.1.3 Deriving the discrete density adjoint equation 90

A.2 Probability density adjoint for continuous chaos 91

A.2.1 Deriving the continuous adjoint equation 91

A.2.2 Deriving the discrete Adjoint Equation 93

8

A.2.3 Computing Attractor Surface Areas 94

A.2.4 Computing gradients on the attractor surface 95

B Least Squares Sensitivity Analysis 97

B.1 Deriving the KKT System . 97

B.2 Computing Sensitivities using a Shadow Trajectory 98

B.3 Cyclic Reduction . 99

B.3.1 Conducting cyclic reduction without inverting main diagonal

matrices . 99

B.3.2 Estimating the operation count for cyclic reduction 100

9

10

List of Figures

2-1 Lorenz equation sensitivities. The objective function is time-averaged

z. The derivatives are with respect to the parameter r. [12] 27

2-2 Vorticity contours for Mach 0.1, Reynolds number 10000 flow past a

NACA 0012 airfoil at an angle of attack of 20 degrees. 28

2-3 Drag coefficient Cd versus time step for the NACA 0012 airfoil. The

aperiodic nature of drag is one indication that the air flow is chaotic. 29

2-4 L2 norm of the adjoint residual versus time step. Note the exponential

increase in magnitude as the adjoint is propagated further back in time. 29

2-5 The shape of the logistic, tent and Cusp maps. 31

2-6 Smoothness of x as a function of parameter ξ. 31

2-7 Stationary density . 32

2-8 z and x2 of the Lorenz attractor as r varies. 33

2-9 x and z of the Rössler attractor as c varies. 33

2-10 The stationary density of the Lorenz attractor and the Rössler attractor

projected into the (x, z) plane. 34

3-1 Density Mapping for the cusp map 38

3-2 Cusp map transition matrix Pn structure for ξ = 0.5. 40

3-3 Cusp map density distribution ρs for ξ = 0.5. Generated with 256

nodes. 40

3-4 Adjoint φ for the cusp map with ξ = 0.5, generated using 1024 nodes. 43

11

3-5 Comparison of gradients computed using the adjoint method and the

finite difference method. 1D space between 0 and 1 was discretized

using 256 nodes. 44

3-6 Convergence of the residual r of ∂J
∂ξ

with the number of nodes n for

ξ = 0.5. The residual was calculated by taking the L2 norm of the

difference between the gradient for n nodes and 8096 nodes. 44

4-1 Poincaré Section at z = 27 for Lorenz attractor trajectories with ∂z
∂t
> 0. 46

4-2 Three dimensional view of the 2D surface approximating the Lorenz

Attractor and the Poincaré section at z = 27. 46

4-3 Node distribution corresponding to a 64 streamline by 64 streamwise

mesh for the Lorenz attractor. It was found that distributing the

streamline starting positions so that there were more streamlines near

the bifurcation increased the rate of convergence to the true density

distribution. 49

4-4 Transition Matrix Pn Structure for a roughly uniform streamline dis-

tribution. Note the similarity of this matrix to that for the Cusp map 50

4-5 Transition Matrix Pn Structure for a non-uniform streamline distribu-

tion with more streamlines starting near y0 = 18. 50

4-6 Density ρs versus x on the Poincare Section at z = 27. 512 streamlines

were used to form Pn. 50

4-7 Density distribution on the surface of the Lorenz attractor for a 512

by 128 mesh. 50

4-8 Convergence of z for two different streamline start point distributions,

where M is the number of streamlines. The clustered distribution has

streamlines clustered near the bifurcation of the attractor. 52

4-9 Adjoint φ versus x on the Poincaré Section at z = 27. 1024 streamlines

were used to form Pn. 55

4-10 Adjoint distribution on the surface of the Lorenz Attractor for a 512

by 128 mesh. 55

12

4-11 Sensitivity of z with respect to the parameters s, b, r and z0 for dif-

ference grid sizes M . M is number of the streamlines, N (= 1
4
M) is

the number of nodes along a streamline. The level lines correspond

to sensitivities computed using finite differences of ensemble averaged

data and the dotted lines are the 3σ confidence bounds [24]. 56

5-1 Schematic of Lyapunov exponents and covariant vectors 60

5-2 Phase space trajectory of a chaotic dynamical system. The unsta-

ble manifold, in red, is the space of all Lyapunov covariant vectors

corresponding to positive exponents. The stable manifold, in green,

corresponds to the space of all covariant vectors associated with nega-

tive exponents. A perturbation to the system (in red) has components

in both manifolds, and the unstable component causes the perturbed

trajectory (pink) to diverge exponentially from the unperturbed tra-

jectory (in black). LSS chooses a perturbed trajectory with a different

initial condition (in blue) that does not diverge from the unperturbed

trajectory. 61

5-3 LEFT: Original and shadow phase space trajectories without any time

transformation (dτ/dt = 1). RIGHT: Original and shadow phase space

trajectories with a time transformation dτ/dt = 1 + η that minimizes

the distance between the two trajectories in phase space for all time. 62

5-4 Lorenz equation phase space trajectory (u(t)) for r = 28 (blue) and

a corresponding approximate shadow trajectory (u(t) + v(t)) (red).

Integration time was T = 20 in dimensionless time units. 66

5-5 Gradient of long-time averaged z with respect to the parameter r.

Gradients computed with trajectory length T = 20 are shown as black

diamonds. Those computed using T = 1000 are shown as a red line. 66

13

5-6 Time and space averaged u(x, t) versus the parameter c. The error bars

show the standard deviation computed from 20 solutions from random

initial conditions for t = 1024 time units. The slope of the objective

function is approximately -0.842. 68

5-7 Gradient of time and space averaged u with respect to the parameter

c. Gradients computed with trajectory length T = 100 are shown as

black diamonds. Those computed using T = 1000 are shown as a red

line. 68

5-8 LEFT: KS equation solution (u(x, t)) for c = −0.5. RIGHT: Corre-

sponding approximate shadow trajectory (u(x, t)+v(x, t)). Integration

time was T = 100 in dimensionless time units. Note the transformed

time scale τ for the shadow trajectory. 68

6-1 Convergence of the gradient of time-averaged z with respect to r, as

computed using multigrid in time with 10 relaxation iterations before

restriction and after prolongation on each level. 72

6-2 L2 norm of the residual while solving for the gradient of time-averaged

z with respect to r using multigrid in time. Similar behavior was

observed when computing other gradients 72

6-3 Lorenz equation solution; x,y,z are blue, green and red respectively. . 76

6-4 Convergence of matrix restriction multigrid with dtf = 0.01 for differ-

ent orders of averaging. 76

6-5 Condition Number κ (solid line) and maximum eigenvalue λmax (dashed

line) versus time step dt for coarsened grids corresponding to a fine grid

with dt = 0.001 for the LSS system associated with the Lorenz equations 77

6-6 Convergence of Block Gauss-Seidel and Conjugate Gradient on the fine

grid (dt=0.01,α2 = 40) and a coarsened grid (dt=0.02,α2 = 40). . . . 77

6-7 Convergence of matrix restriction multigrid for different fine grid time

steps dtf . 79

14

6-8 Convergence rate of matrix restriction multigrid versus α2. The conver-

gence rate is −γ, from the curve fit log10 ‖r‖L2 = γ log10NV + log10C

of the residual L2 norm ‖r‖L2 versus the number of V-cycles NV . . . 79

6-9 Convergence of matrix restriction multigrid for different coarsening

thresholds dtc. 79

6-10 Convergence of solution restriction multigrid for different values of dtf . 80

6-11 Convergence rate of solution restriction multigrid versus α2. The con-

vergence rate is−γ, from the curve fit log10 ‖r‖L2 = γ log10NV +log10C

of the residual L2 norm ‖r‖L2 versus the number of V-cycles NV . . . 80

6-12 Convergence of solution restriction multigrid with 1st, 3rd and 5th

order averaging. 81

6-13 Convergence plots for matrix restriction multigrid with MINRES smooth-

ing, dtc = 5, and 4th order averaging and solution restriction multigrid. 81

6-14 Convergence of MINRES for an LSS system for the Lorenz equations

with dtf = 0.004 and α2 = 40. The dashed line shows the gradient

computed at a given iteration, which should be roughly 1.01± 0.04 [24] 82

6-15 Convergence of solution restriction multigrid for an LSS system for the

Lorenz equations. The dashed line shows the gradient computed at a

given iteration, which should be roughly 1.01± 0.04 [24] 82

A-1 The effect of a perturbation on the mapping function. 90

15

16

List of Tables

5.1 Comparison of sensitivities computed using linear regression with 10

samples [24] (LR), the probability density adjoint (PDA) method with

a 256 by 512 grid for the attractor discretization, and LSS. 66

B.1 Estimate of Operation Count per iteration for cyclic reduction and for

the Jacobi method for comparison. 101

17

18

Chapter 1

Introduction

1.1 Motivation

Sensitivity analysis of systems governed by ordinary differential equations (ODEs)

and partial differential equations (PDEs) is important in many fields of science and

engineering. Its goal is to compute sensitivity derivatives of key quantities of interest

to parameters that influence the system. Applications of sensitivity analysis in science

and engineering include design optimization, inverse problems, data assimilation, and

uncertainty quantification.

Adjoint based sensitivity analysis is especially powerful in many applications,

due to its efficiency when the number of parameters is large. In aircraft design, for

example, the geometric parameters that define the aerodynamic shape is very large.

As a result, the adjoint method of sensitivity analysis has proven to be very successful

for aircraft design [10], [19]. Similarly, the adjoint method has been an essential

tool for adaptive grid methods for solving PDE’s [22], solving inverse problems in

seismology, and for assimilating observation data for weather forecasting.

Sensitivity analysis for chaotic dynamical systems is important because of the

prevalence of chaos in many scientific and engineering fields. One example is highly

turbulent gas flow of mixing and combustion processes in jet engines. In this example,

and in other applications with periodic or chaotic characteristics, statistical averaged

quantities such as mean temperature and mean aerodynamic forces are of interest.

19

Therefore, the general problem this paper seeks a solution to is:

Given
du

dt
= f(u, ξ), J = lim

T→∞

1

T

∫ T

0

J(u, ξ)dt, Compute
∂J

∂ξ
(1.1)

Sensitivity analysis for chaotic dynamical systems is difficult because of the high

sensitivity of these systems to the initial condition, known as the ”Butterfly Effect”.

Slightly different initial conditions will result in very different solutions, which diverge

exponentially with time [14]. This also results in exponential growth of sensitivities

and therefore the sensitivity of long-time averaged quantities is not equal to the long-

time average sensitivities of chaotic systems [12]. Because the derivative and long-time

average do not commute, the traditional adjoint method computes sensitivities that

diverge, as shown in the work done by Lea et al. [12].

This paper presents two new methods for computing sensitivities of mean quanti-

ties in chaotic dynamical systems. The two methods require that the chaotic system

is ergodic; that long time behavior of the system is independent of initial conditions.

The key idea of the first method, the probability density adjoint method, is to

describe the objective function J as an average in phase space as in [21]:

J =

∫
Rn

J(u)ρs(u)du (1.2)

The probability density function or the invariant measure of the chaotic system ρs(u)

is governed by a probability density equation, whose adjoint equation can be solved

to compute the desired sensitivities.

The second method, the least squares sensitivity (LSS) method, finds a perturbed

trajectory that does not diverge exponentially from some trajectory in phase space.

This non-diverging trajectory, called a “shadow trajectory”, has its existence guaran-

teed by the shadowing lemma [16] for a large number of chaotic systems and can be

used to compute sensitivities. The shadow trajectory is found by solving a quadratic

programing problem with linear constraints, and is more readily extendible to high

dimensional systems than the probability density adjoint method.

20

1.2 Past Work

Prior work in this area includes the ensemble-adjoint method proposed by Lea et

al. [12]. This method has been applied to an ocean circulation model with some

success [13]. Eyink et al. then went on to generalize the ensemble-adjoint method

[6]. The ensemble-adjoint method involves averaging over a large number of ensemble

calculations. It was found by Eyink et al. that the sample mean of sensitivities

computed with the ensemble adjoint approach only converges as N−0.46, where N is

the number of samples, making it less computationally efficient than a naive Monte-

Carlo approach [6].

More recently, a Fokker-Planck adjoint approach for climate sensitivity analysis

has been derived [21]. This approach involves finding a probability density function

which satisfies a Fokker-Planck equation to model the climate. The adjoint of this

Fokker-Planck equation is then used to compute derivatives with respect to long time

averaged quantities. However, this method requires the discretization of phase space,

making it computationally infeasible for systems with a high number of dimensions.

Also, the method requires adding diffusion into the system, potentially making the

computed sensitivities inaccurate.

1.3 Thesis Outline

The rest of this paper is organized as follows: chapter 2 discusses the breakdown of

traditional sensitivity analysis methods for chaotic systems and the well-posedness of

the problem (1.1) by analyzing the differentiability of the time averaged quantities

J in both discrete and continuous chaotic dynamical systems. Chapter 3 presents

the probability density adjoint method for chaotic, 1D iterated maps. Chapter 4

extends the probability density adjoint method to continuous dynamical systems,

with the Lorenz equations as an example. Chapter 5 discusses least squares sensi-

tivity analysis (LSS) and demonstrates it on a system of ordinary differential equa-

tions (ODEs), the Lorenz equations, and a partial differential equation (PDE), the

21

Kuramoto-Sivashinsky (KS) equation. Chapter 6 discusses several multigrid-in-time

schemes that could be used to solve the KKT system associated with LSS. Chapter

7 concludes this paper.

22

Chapter 2

Computing Sensitivities of Chaotic

Systems

2.1 Traditional Sensitivity Analysis Methods

2.1.1 Forward/Tangent Sensitivity Analysis

Traditional sensitivity analysis for the system governed by equation (1.1) is conducted

by solving the following equation:

∂J

∂ξ
=

1

T

∫ T

0

∂J

∂ξ
dt

The term ∂J
∂ξ

can be computed by solving the linearization or tangent equation of the

ODE of interest:

dv

dt
=
∂f

∂u
v +

∂f

∂ξ
, v ≡ ∂u

∂ξ
(2.1)

And using the chain rule:

∂J

∂ξ
=

1

T

∫ T

0

〈
∂J

∂u
, v

〉
dt (2.2)

To compute sensitivities using forward sensitivity analysis:

23

1. Compute the forward solution u by integrating the ODE in equation (1.1) for-

ward in time.

2. Compute the tangent v by integrating equation (2.1) forwards in time (starting

from t = 0). Note that ∂f
∂u

is computed using the forward solution u.

3. Use equation (2.2) to compute gradients.

Forward sensitivity analysis is best for situations with few parameters, ξ, and

many objective functions, J .

2.1.2 Backward/Adjoint Sensitivity Analysis

The adjoint method allows us to efficiently compute the sensitivity of J to many dif-

ferent parameters. Using the adjoint, the computational cost to compute sensitivities

to all parameters of interest is roughly that of two forward integrations [10].

Using forward sensitivity analysis would require solving for v for every parameter

ξ. To avoid this, start by adding the inner product of the adjoint variable ψ and

equation (2.1):

∂J

∂ξ
=

1

T

∫ T

0

〈
∂J

∂u
, v

〉
+

〈
ψ,

(
−dv
dt

+
∂f

∂u
v +

∂f

∂ξ

)〉
dt

Where the inner product 〈·, ·〉 is a dot product for vectors for an ODE or the dis-

cretization of a PDE. Using integration by parts:

∂J

∂ξ
=

1

T

∫ T

0

〈
∂J

∂u
, v

〉
+

〈
v,

(
dψ

dt
+
∂f

∂u

∗
ψ

)〉
+

〈
∂f

∂ξ
, ψ

〉
dt+ 〈ψ, v〉 |T0

Where x∗ denotes the transpose or complex conjugate of x. Rearranging to collect

terms including v:

∂J

∂ξ
=

1

T

∫ T

0

〈
v,

(
dψ

dt
+
∂f

∂u

∗
ψ +

∂J

∂u

)〉
+

〈
∂f

∂ξ
, ψ

〉
dt+ 〈ψ, v〉 |T0

24

To eliminate any dependence of the gradient on the tangent solution v, we choose the

adjoint variable to satisfy:

dψ

dt
+
∂f

∂u

∗
ψ +

∂J

∂u
= 0 ψ(0) = ψ(T) = [0] (2.3)

Where [0] is a vector of all zeros. Now sensitivities can be computed using the

following equation:

∂J

∂ξ
=

1

T

∫ T

0

〈
∂f

∂ξ
, ψ

〉
dt (2.4)

For different parameters ξ, ∂f
∂ξ

will change, but not ψ. Therefore, to compute

sensitivities to ξ, just compute ∂f
∂ξ

and substitute it into equation (2.4).

To compute sensitivities:

1. Compute the forward solution u by integrating the ODE in equation (1.1) for-

ward in time.

2. Compute the adjoint ψ by integrating equation (2.3) backwards in time (from

t = T to t = 0). Note that ∂f
∂u

is computed using the forward solution u.

3. Use equation (2.4) to compute gradients.

2.2 Breakdown of traditional sensitivity analysis

for chaotic systems

Although traditional sensitivity analysis methods work for systems with initial tran-

sience and can be modified to work for systems with limit cycles [11], the traditional

sensitivity analysis methods discussed in the previous section break down for chaotic

systems.

Consider the general problem defined in chapter 1, equation (1.1). Define:

25

J̄T (ξ) =
1

T

∫ T

0

J(u(t), ξ)dt, J̄∞(ξ) = lim
T→∞

J̄T (ξ)

Where J̄∞ is the infinite time average. For non-chaotic systems, J̄T will converge

to J̄∞ as T →∞. However, this is not the case for chaotic systems, for which:

dJ̄∞

dξ
6= lim

T→∞

dJ̄T

dξ
(2.5)

In words, the derivative of a time averaged quantity is not equal to the time aver-

aged derivative of that quantity. This inequality occurs because uniform convergence

of the derivatives is not achieved:

lim
T→∞

∫ T

0

lim
ε→∞

J(ξ + ε)− J(ξ)

ε
dt 6= lim

T→∞

∫ T

0

∂J

∂ξ
dt

Consider the Lorenz equations, a low order model of Rayleigh-Bénard convection [14]:

dx

dt
= s(y − x),

dy

dt
= x(r − z)− y, dz

dt
= x y − b z . (2.6)

As shown in figure 2-1, the magnitude of local derivatives grows exponentially as T

is increased. However, the overall trend of mean z versus r indicates that ∂z
∂r
≈ 1. This

shows that the traditional sensitivity analysis methods do not give useful sensitivity

data for chaotic systems.

The discrepancy in equation (2.5) occurs because of the system’s unstable mode

associated with its positive Lyapunov exponent. The Lyapunov exponent is the rate

at which two trajectories that are initially a short distance apart in phase space at

some time converge (or diverge) in time. Unlike steady and periodic systems, chaotic

systems have at least one positive Lyapunov exponent, meaning that two initially

close trajectories will diverge. This means the sensitivity of J to some perturbation

at time t = 0 will grow exponentially in time, resulting in the inequality of equation

(2.5). This divergence is the manifestation of Edward Lorenz’s “Butterfly effect” [14].

26

Figure 2-1: Lorenz equation sensitivities. The objective function is time-averaged z.
The derivatives are with respect to the parameter r. [12]

27

2.2.1 Sensitivity analysis of chaotic fluid flows

The divergence of time averaged sensitivities has also been shown (indirectly) by

the divergence of the magnitude of the drag-adjoint field of a cylinder in cross flow

[25]. This section demonstrates the problem for a NACA 0012 airfoil at a high

angle of attack, as this geometry and configuration is commonplace in aerospace

applications, including low speed aircraft maneuvers, and air flow around rotor and

propeller blades. The sensitivity of time averaged drag with respect to angle of attack

was investigated. Work by Pulliam [17] indicates that the airflow around a NACA

0012 at 20 degrees angle of attack and free stream Mach number of 0.2 is chaotic

when the Reynolds number is 3000 and above. It is important to note that it is not

known if the chaos observed by Pulliam is a physical property of the flow or a purely

numerical phenomenon.

Figure 2-2: Vorticity contours for Mach 0.1, Reynolds number 10000 flow past a
NACA 0012 airfoil at an angle of attack of 20 degrees.

All simulations were run using NASA’s FUN3D CFD code, which includes a dis-

crete adjoint solver. Divergence of the adjoint variable, which is used to compute

sensitivity gradients, is observed by averaging the sensitivity over time intervals of

different lengths. As the time interval of the average is increased in length, the mag-

nitude of the sensitivity should increase exponentially, as observed for the Lorenz

equation in the previous section. The adjoint is propagated backwards in time, and

earlier perturbations will have an exponentially greater effect on the final state of the

28

system than later perturbations.

The simulation was a NACA 0012 at 20◦ angle of attack in M = 0.1, Re =

10000 flow. For these parameters the adjoint variables were observed to diverge

exponentially with backwards time. This is seen from the divergence of the L2 norm

of the adjoint residual shown in figure 2-4. This divergence shows that FUN3D’s

adjoint solver breaks down when applied to chaotic flow fields.

Figure 2-3: Drag coefficient Cd versus
time step for the NACA 0012 airfoil. The
aperiodic nature of drag is one indication
that the air flow is chaotic.

Figure 2-4: L2 norm of the adjoint resid-
ual versus time step. Note the exponen-
tial increase in magnitude as the adjoint
is propagated further back in time.

As in Pulliam’s work it is uncertain whether this chaos is a physical or numerical

effect. Regardless of the source of the chaos, the divergence of the adjoint-based

gradient poses a serious problem to engineers who wish to perform sensitivity analysis

on simulations with chaotic flow fields.

2.3 Smoothness of the Mean and Stationary Den-

sity Distribution of Chaos

Not every chaotic dynamical systems has differentiable mean quantities J . Hyper-

bolic chaos, a class of dynamical systems with ideal attractors, are known to have

mean quantities that respond differentiably to small perturbations in its parameters

[3]. Chaotic systems whose mean quantities are differentiable to perturbations are

29

generally classified as quasi-hyperbolic systems [3]. Other chaotic dynamical systems

are known as non-hyperbolic. In these non-hyperbolic systems, the mean quantities

are usually not differentiable, or even continuous as the parameters vary. In fact,

the long time average for non-hyperbolic systems may have non-trivial dependence

on the initial condition, leading to mean quantities that are not well-defined. This

section numerically demonstrates this difference between quasi-hyperbolic chaos and

non-hyperbolic chaos with examples both in 1D maps and in 3D continuous chaotic

dynamical systems.

We first study three parameterized 1D chaotic maps:

1. The logistic map

xk+1 = Flogistic(xk) =

(
4− ξ

4

)
xk(1− xk) (2.7)

2. The tent map

xk+1 = Ftent(xk) =

(
2− ξ

2

)
min(xk, 1− xk) (2.8)

3. The Cusp map

xk+1 = Florenz(xk) =

(
1− ξ

4

)(
1−

∣∣∣∣12 − x
∣∣∣∣−
√∣∣∣∣14 − x

2

∣∣∣∣
)

(2.9)

We also consider another “sharp” version of the Cusp map

xk+1 = Florenz(xk) =

(
1− ξ

4

)(
1−

∣∣∣∣12 − x
∣∣∣∣− (∣∣∣∣14 − x

2

∣∣∣∣)0.3
)

(2.10)

In all three maps, the parameter ξ controls the height of the maps. Figure 2-5 shows

the logistic map for ξ = 0.8, the tent map for ξ = 0.2 and the two Cusp maps for

ξ = 0.2.

Although the logistic map, the tent map and the Cusp map have the same mono-

30

tonic trends in [0, 0.5] and [0.5, 1], the smoothness of their mean

x = lim
N→∞

1

N

N∑
k=1

xk (2.11)

with respect to the parameter ξ are very different. Figure 2-6 plots the mean x of the

three chaotic maps against the parameter ξ. The mean is approximated as

x ≈ 1

N M

M∑
i=1

N+n0∑
k=n0

xi,k, xi,k+1 = F (xi,k), M = 1000, N = 50000, n0 = 1000,

(2.12)

and xi,0 are uniformly randomly sampled in [0.25, 0.75).

0.0 0.2 0.4 0.6 0.8 1.0
xk

0.0

0.2

0.4

0.6

0.8

1.0

x
k
+
1

Tent map
Logistic map
Cusp map
Sharp Cusp map

Figure 2-5: The shape of the logistic,
tent and Cusp maps.

0.0 0.2 0.4 0.6 0.8 1.0
ξ

0.50

0.52

0.54

0.56

0.58

0.60

0.62
x̄

Tent map
Logistic map
Cusp map
Sharp Cusp map

Figure 2-6: Smoothness of x as a func-
tion of parameter ξ.

The mean x of the logistic map appears to be discontinuous with respect to ξ.

The mean of the tent map appears to be continuous and differentiable with respect

to ξ, but it is difficult to assess its higher order smoothness. The mean of the two

Cusp maps appears to be smoother than the tent map.

The smoothness of x with respect to the parameter ξ is correlated to the smooth-

ness of the stationary density distribution. The stationary density distribution is a

density distribution in the state space that is invariant under the dynamical system.

For hyperbolic and quasi-hyperbolic systems, it can be rigorously characterized as the

Sinai-Ruelle-Bowen (SRB) measure [20]. The stationary density can be computed by

31

evolving the dynamical system, with the initial condition drawn from an arbitrary,

continuous density distribution in phase space.

0.0 0.2 0.4 0.6 0.8 1.0
x̄

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

Tent map
Logistic map

0.0 0.2 0.4 0.6 0.8 1.0
x̄

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

Cusp map
Sharp Cusp map

Figure 2-7: Stationary density

Figure 2-7 shows the stationary density distribution of the logistic map, the tent

map and the two Cusp maps. The logistic map has a stationary density function that

concentrates at discrete points, as evident from the peaks in the density function.

The stationary density function of the tent map is bounded, but appears to contain

discontinuities. The density of the Cusp map is continuous; while the density of

the sharp Cusp map appears to be the most smooth. We find that the maps with

smoother mean quantities tend to have smoother stationary distributions.

The same conclusion can be drawn from continuous dynamical systems. Here, we

analyze the mean quantities and the stationary density distributions of the two most

well known chaotic attractors: the Rössler attractor

dx

dt
= −y − z, dy

dt
= x+ a y,

dz

dt
= b+ z(x− c) (2.13)

and the Lorenz attractor (see 6.1).

For the Rössler attractor, we analyze how x and z change as the parameter c

varies. For the Lorenz attractor, we know that x ≡ y ≡ 0 due to symmetry of the

governing equation. Therefore, we focus on the non-trivial quantities z and x2 as the

Rayleigh number r varies.

32

28 29 30 31 32 33
�

62

64

66

68

70

72

74

76

78

�

x
2

�

23

24

25

26

27

28

29

�

z�

Figure 2-8: z and x2 of the Lorenz at-
tractor as r varies.

13.0 13.2 13.4 13.6 13.8 14.0
�

�0.96

�0.94

�0.92

�0.90

�0.88

�0.86

�0.84

�

y�

0.84

0.86

0.88

0.90

0.92

0.94

0.96

�

z�

Figure 2-9: x and z of the Rössler at-
tractor as c varies.

Figures 2-8 and 2-9 show how the mean quantities respond to parameter change

for the Lorenz attractor and the Rössler attractor. The Rössler attractor has similar

behavior to the logistic map. The mean quantities are not smooth functions of the

parameter c. The Lorenz attractor has mean quantities that are smooth functions of

its parameter.

Figures 2-10 a and b show the stationary density distributions projected onto

the xz and xy planes respectively for the Lorenz and Rössler attractors. As was the

case for the 1D maps, the density of the Lorenz attractor, whose mean quantities

vary smoothly with respect to parameter changes has a smooth density distribution.

A number of discontinuities are present in the density distribution of the Rössler

attractor, whose mean quantities do not exhibit smooth variation with respect to

parameter changes.

The relationship between hyperbolicity and smoothness of stationary density pro-

vide an empirical justification for the methods developed in this paper. If the mean

quantities are differentiable with respect to the parameters of a chaotic dynamical sys-

tem, the stationary density function in the state space is likely smooth on its attractor

manifold. This smooth density function can be accurately solved by discretizing its

governing equation, namely the probability density equation on its attractor mani-

fold. Sensitivity derivatives of the mean quantities with respect to the parameters can

33

�20 �15 �10 �5 0 5 10 15 20
x

0

10

20

30

40

50

z

0.0000

0.0004

0.0008

0.0012

0.0016

0.0020

0.0024

0.0028

0.0032

0.0036

(a) Lorenz attractor at ρ = 28, σ = 10, β = 8/3.

�20 �10 0 10 20
x

�20

�10

0

10

20

y

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

(b) Rossler attractor at a = b = 0.1, c = 14.

Figure 2-10: The stationary density of the Lorenz attractor and the Rössler attractor
projected into the (x, z) plane.

34

then be computed via sensitivity analysis of the probability density equation. Also,

the smooth variations of mean quantities with parameters indicates that computing

the shadow trajectory required for LSS is a well posed problem.

35

36

Chapter 3

Probability Density Adjoint

Method for Chaotic 1D Maps

3.1 Introduction

This chapter uses the parameterized cusp map as an example to illustrate the prob-

ability density adjoint method. This 1D map is defined as

xk+1 = Fcusp(xk) = 1− ξ|2x− 1| − (1− ξ)
√
|2x− 1| (3.1)

Where the parameter 0 ≤ ξ ≤ 1 defines the shape of the map. When ξ = 1, the

map is a tent map (equation (2.8)); when ξ = 0.5, the map is a cusp map (equation

(2.9)). The method was used to compute the sensitivity of the mean x̄ with respect

to the parameter ξ.

3.2 Computing Stationary Density

The stationary density ρs(x) is a one dimensional probability density distribution de-

termined by a given mapping function xk+1 = F (xk). It is governed by the Frobenius-

Perron equation,and defines the probability that an initial point x0 will be mapped

to some region ∆x after infinitely many mappings. Consider a series of random vari-

37

ables Xk satisfying Xk+1 = F (Xk) for all k ≥ 0. The distribution of Xk converges to

the stationary distribution as k →∞ whenever X0 has a finite distribution function.

Denote the Frobenius-Perron operator P as the map from the probability distribution

ρk of Xk to the probability distribution ρk+1 of Xk+1 [5]. Then ρs = limk→∞ P
k(ρ0)

for any finite ρ0. An equivalent statement is that ρs(x) is an eigenfunction of the

operator P , with an eigenvalue of one:

(Pρs)(x) = ρs(x) , x ∈ [0, 1] (3.2)

The operator P in equation (3.2) is the Frobenius-Perron operator defined in [5] as:

∫ 1

0

Pρ(x)dx =

∫ 1

0

ρ(F (x))dx (3.3)

To derive P , recall that probability density is conserved in our domain, phase space,

by the normalization axiom of probability.

xk+1

xk

1

10
0

y

xL xR

δy

δxL δxR

Figure 3-1: Density Mapping for the cusp map

In the case of the map shown in figure 3-1, the integral of the density contained in the

small intervals δxL and δxR will be mapped into the interval δy. This can be written

as follows, where y = F (xL) = F (xR):

38

∫ y+δy

y

ρk+1(s) ds =

∫ xL+δxL

xL

ρk(s) ds+

∫ xR+δxR

xR

ρk(s) ds

Differentiating with respect to s and dividing both sides by dy/ds, an expression for

the mapping of density is obtained:

ρk+1(y) =
1

|F ′(xL)|ρk(xL) +
1

|F ′(xR)|ρk(xR) (3.4)

Where F ′(x) = dF
dx

. Ding and Li [5] compute ρ0 by using finite elements to construct

a discrete approximate of P . Both linear and higher order elements were investigated

and ρ0 was correctly computed for a number of 1D maps including the tent map.

We construct a finite difference discretization of the Frobenius-Perron operator

P based on equation (3.4). The interval [0, 1] is discretized into n equally spaced

nodes, with yi = i−1
n−1

. We represent the discretized version of the linear operator P

as an n by n matrix Pn. From equation (3.4), for the discretized density distributions

ρ
k
≡ (ρk(y1), ρk(y2), ..., ρk(yn)) and ρ

k+1
≡ (ρk+1(y1), ρk+1(y2), ..., ρk+1(yn)):

ρ
k+1

= Pnρk

The matrix Pn is constructed by finding xLi, xRi = F−1(yi). This is done by com-

puting the inverse functions associated the left and right sides of F (x) with Newton’s

method. Next, F ′(x) is determined at all xLi and xRi. In most cases, xLi, xRi will

not be equal to any yk from the discretization. To account for this, ρ(xLi) and ρ(xRi)

are found by linear interpolation between the two nearest nodes. This means that

each row of Pn will typically contain two pairs of non-zero entries, one pair for the

right side of F (x), the other for the left side. For a uniform discretization of yi, the

non-zero entries will form the shape of F (x) upside down in the matrix, as shown in

figure 3-2. It is important to note that although equation (3.4) is derived assuming

conservation of probability mass, Pn does not conserve probability mass. Unlike P ,

the largest eigenvalue λ of Pn is not exactly one, due to numerical error from the

interpolation. To use Pn to compute ρs(x) with a power iteration, ρs(x) must be

manipulated after each iteration such that its integral is equal to one.

39

As shown by figure 3-3, ρs(x) for the cusp map is continuous, suggesting that the

objective function is continuous with respect to ξ and the sensitivity with respect to

ξ is defined.

0 200 400 600 800 1000

0

200

400

600

800

1000

nz = 4058

Figure 3-2: Cusp map transition matrix
Pn structure for ξ = 0.5.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

ρ s

Figure 3-3: Cusp map density distribu-
tion ρs for ξ = 0.5. Generated with 256
nodes.

3.3 Computing gradients using the density adjoint

By the definition of the Frobenius-Perron Operator P , a perturbation to F (x) leads

to a perturbation to P . As ρs(x) is the first eigenfunction of the Frobenius-Perron

Operator, there is a density perturbation δρs(x) corresponding to a perturbation to

the operator. A perturbation to a mean quantity δJ̄ can be computed from δρs(x)

using the following expression, where J(x) is the quantity of interest:

δJ̄ =

∫ 1

0

J(x) δρs(x) dx (3.5)

δJ̄ can also be computed using the adjoint density φ

δJ =

∫ 1

0

φ(x) δP ρs(x) dx (3.6)

where φ satisfies the adjoint equation:

P ∗φ− φ = J − J (3.7)

40

For a more detailed derivation of the adjoint equation, see appendix A.1.1

λ is the first eigenvalue of the operator and is equal to one.

The term δPρs in equation 3.6 can be found by considering the mapping of probability

mass. First we define δρ0 = δPρs. From equation (3.2):

ρs + δρ0 = (P + δP)ρs

Assuming a small perturbation δP (and therefore a small δF):

∫ y

0

δρ0 ds = ρs(xL)δxL − ρs(xR)δxR (3.8)

For a small perturbation δF , it can be shown that:

δF

δx
≈ F ′(F−1(y))

Substituting into equation (3.8) and differentiating with respect to y:

δρ0 = δPρs =
∂

∂y

(
ρs(xL)

F ′(xL)
δF (xL)− ρs(xR)

F ′(xR)
δF (xR)

)
(3.9)

Combining equations(3.9) and (3.6), an expression for δJ̄ in terms of a mapping

function perturbation δF is obtained:

δJ̄ =

∫ 1

0

φ(y)
∂

∂y

(
ρs(xL)

F ′(xL)
δF (xL)− ρs(xR)

F ′(xR)
δF (xR)

)
dy (3.10)

If F and δF are symmetric, F ′(xL) will be positive and F ′(xR) will be negative,

therefore (3.4) can be rewritten as:

ρs(F (x)) =
1

F ′(xL)
ρs(xL)− 1

F ′(xR)
ρs(xL) (3.11)

Combining equations (3.10) and (3.11):

δJ̄ =

∫ 1

0

φ(y)
∂

∂y
(ρs(y)δF (F−1(y)))dy (3.12)

41

This is consistent with the equation for the density derivative in [20]. To compute

the gradient with respect to some parameter ξ, substitute ∂F
∂ξ
δξ for δF in equation

(3.12) and divide through by δξ:

∂J̄

∂ξ
=
δJ̄

δξ
=

∫ 1

0

φ(y)
∂

∂y

(
ρs(xL)

F ′(xL)

∂F

∂ξ
|xL −

ρs(xR)

F ′(xR)

∂F

∂ξ
|xR
)
dy (3.13)

Or for the symmetric case:

∂J̄

∂ξ
=

∫ 1

0

φ(y)
∂

∂y

(
ρs(y)

∂F

∂ξ
|F−1(y)

)
dy (3.14)

Finally, care needs to be taken when discretizing the density adjoint equations.

The first eigenvalue of the discrete operator Pn is not exactly one and can change when

the system is perturbed. Because of this, an additional adjoint equation is required

for λ to compute the discrete density adjoint (see appendix A.1.3 for a derivation):

 P T
n − λI −v
−ρT

s
0

 φ

η

 =

 J

0

 (3.15)

Where η is the adjoint of λ and can be shown to be equal to J in the continuous

limit.

3.4 Algorithm Summary

To compute some gradient ∂J
∂ξ

, the following algorithm was used:

1. Compute the inverse of the mapping function F (x) using Newton’s Method.

2. Construct the matrix Pn using the equations outlined in section 3.2.

3. Determine the stationary density ρ
s

using a power method. Also determine the

left eigenvector v corresponding to the eigenvalue λ of ρ
s
.

4. Compute the adjoint variable φ by solving (3.15). To solve (3.15), be sure to

take advantage of the sparseness of Pn.

42

5. Compute the gradient using (3.13) or (3.14). Approximate the y-derivative with

a 2nd order center finite difference scheme.

3.5 Density adjoint for the cusp map

The sensitivity of the mean x̄ with respect to the parameter ξ for the cusp map was

computed. For comparison, ∂x̄
∂ξ

was also computed using 1st order finite differences

of equation (1.2) adapted for the 1D case and discretized in n nodes:

x̄ = (1/n)xTρ
s

(3.16)

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

5

6

x

φ

Figure 3-4: Adjoint φ for the cusp map with ξ = 0.5, generated using 1024 nodes.

Figure 3-4 shows the adjoint density distribution for the cusp map with ξ = 0.5.

Sensitivities are almost discontinuous, so small perturbations to density can have

large effects on the objective function, which is consistent with Lorenz’s “butterfly

effect”. However, there is a fractal structure to the density adjoint. This arises from

the adjoint being computed backwards in time with the operator P T
n . Pn folds and

stretches density distributions, so P T
n duplicates and compresses features of adjoint

density distributions. This fractal structure arises because of the cusp map’s “peak”

at x = 0.5, which causes the folding and stretching.

Despite the additional numerical dissipation, the 1D density adjoint computes

accurate gradient values. Figure 3-5 shows the adjoint and finite difference computed

43

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

ξ

dx
/d

ξ

Adjoint
FD

Figure 3-5: Comparison of gradients
computed using the adjoint method and
the finite difference method. 1D space
between 0 and 1 was discretized using
256 nodes.

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

n

||r
||

Residual r

r = 0.25 n−1

Figure 3-6: Convergence of the residual
r of ∂J

∂ξ
with the number of nodes n for

ξ = 0.5. The residual was calculated by
taking the L2 norm of the difference be-
tween the gradient for n nodes and 8096
nodes.

gradients match up well visually. It was found that the adjoint method predicts the

gradient within 5% of the finite difference calculation for most values of ξ. The highest

error is just under 10%. The order of convergence of the gradient varied slightly with

ξ and was typically around 1.15, as in figure 3-6.

44

Chapter 4

Probability Density Adjoint

Method for Continuous Chaotic

Systems

4.1 Introduction

The following chapter uses the Lorenz equations as an example to illustrate the prob-

ability density adjoint method. The method was used to compute the partial deriva-

tive of z with respect to the parameters s, r, b and z0 in the slightly modified Lorenz

equations:

dx

dt
= s(y − x)

dy

dt
= −x(z − z0) + rx− y

dz

dt
= xy − b(z − z0)

The parameters were set to their canonical values of s = 10, r = 28, b = 8/3

and z0 = 0. The Lorenz attractor with these parameters has a fractal dimension of

roughly 2.05, so the attractor was approximated as a 2D surface in 3D phase space.

45

4.2 Computing Stationary Density

In multiple dimensions, one could build a discrete Frobenius-Perron operator Pn as

in the 1D case. Pn would be an N by N matrix, where N is number of cells or

nodes used to discretize the strange attractor. To reduce the size of the matrix Pn,

the matrix is built for a Poincaré section. In this case, Pn is n by n, where n is the

number of nodes in the Poincaré section, which is typically a small fraction of the

total number of nodes N . For the Lorenz attractor, a good choice for the Poincaré

section is a constant z-plane including the two non-zero unstable fixed points at

(±
√
b(r − 1),±

√
b(r − 1), r − 1).

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

x

y

Figure 4-1: Poincaré Section at z =
27 for Lorenz attractor trajectories with
∂z
∂t
> 0.

Figure 4-2: Three dimensional view of
the 2D surface approximating the Lorenz
Attractor and the Poincaré section at z
= 27.

This Poincaré section has an attractor cross-section that can be well approximated

as a function of either x or y. Therefore solving for the density distribution at the

Poincaré section is a 1D map problem and the stationary density distribution ρs can

be computed from this operator Pn as shown in chapter 3. For the Lorenz attractor,

the starting positions of the streamlines were determined using a 7th order polynomial

curve fit through a Poincaré section taken from a trajectory with length t = 10000.

As the Poincaré section can be modelled with a polynomial curve fit, the attractor

itself can be approximately modelled as a 2D surface, as shown in figure 4-2.

46

As the Lorenz attractor lies in a three dimensional phase space, vector notation

is used in this section. A lower case symbol is a scalar (i.e. stationary density ρs), a

symbol with an arrow overhead is a column vector (i.e. phase space position ~x ≡ u

from equation (1.1)) and a matrix/tensor is indicated by bold script (i.e. a Jacobian

J).

Unlike the 1D case, an explicit form of the mapping function is not available.

Instead, a probability mass conservation equation is derived from the normalization

and additivity axioms of probability. The probability mass conservation equation can

be used to compute the ratio between densities for a given ”mapping”, which can be

used instead of the mapping function slope in the density mapping equation.

A very helpful physical analogy to the conservation of probability on the attractor

surface is the conservation of mass in a fluid flow. Like mass, probability cannot

be created or destroyed according to the nonnegativity and normalization axioms.

Therefore, the following equation holds:

~∇s · (ρs(~x)~f(~x)) = 0 (4.1)

Where the gradient operator ~∇s is over the surface of the attractor, ~x is a point in

phase space Rn and:

d~x

dt
= ~f(~x)

Is the system of equations governing the dynamical system of interest. The phys-

ical analog of ~f(~x) is a velocity field in a fluid flow.

From (4.1), a partial differential equation (PDE) governing the density distribution

on an attractor can be derived. From the chain rule:

~f(~x) · ~∇sρ(~x) + ρ(~x)∇s · ~f(~x) = 0

The Lorenz attractor is approximated as a 2D surface, so two natural coordinates

are used; l, which is in the direction of the “velocity field” defined by ~f(~x) and s,

47

which is orthogonal to l but tangent to the attractor surface. l and s will be referred

to as the streamwise and spanwise directions respectively. l̂ and ŝ are unit vectors

along the streamwise and spanwise directions.

Therefore:

~∇s · ~f(~x) =
∂fl
∂l

+
∂fs
∂s

Where fl and fs are the l̂ and ŝ components of ~f(~x).

Using the surface coordinates, the density PDE can be simplified:

|~f(~x)|∂ρ
∂l

= −ρ(~x)~∇s · ~f(~x) ⇒ ∂ρ

∂t
= −ρ(~x)~∇s · ~f(~x)

To compute ~∇s · ~f(~x), the 3D Cartesian gradients of fl and fs are needed. By the

definition of the Jacobian, J:

∂ ~fl
∂l

= Jl̂,
∂ ~fs
∂s

= Jŝ

To compute the magnitude of the derivatives in their respective directions:

∂fl
∂l

=
∂ ~fl
∂l
· l̂, ∂fs

∂s
=
∂ ~fl
∂s
· ŝ

Therefore:

∂ρ

∂t
= −ρ(~x)(l̂TJl̂ + ŝTJŝ) (4.2)

As ρ is invariant when multiplied by a constant, this equation can be integrated

to find the ratio between density at different points on a given Poincaré section:

log
ρ(T)

ρ0

= −
∫ T

0

(l̂TJl̂ + ŝTJŝ)dt (4.3)

Where ρ0(x) is defined as the density at the beginning of the streamline beginning

at x. Equation (4.3) is numerically integrated to find the ratio between the density

at the beginning and end of n streamlines. These ratios, along with the start and

48

end positions of each streamline can be used to form a Frobenius-Perron Operator

Pn with a first eigenvector corresponding to the stationary density distribution at the

Poincaré section. As the streamline starting and ending point will rarely match (i.e.

x(T)i 6= x(0)j), linear interpolation is used as in the 1D case to compute the density

“flow” between the starting and ending points.

By the symmetry of the Lorenz equations, the Poincaré plane intersections for the

Lorenz attractor are 180 degree rotational translations of one another as is evident

in figure 4-1, where it can be seen that x = −x and y = −y. This symmetry

of the attractor can be exploited for lower computational costs. If the attractor is

discretized with streamlines starting along the Poincaré section in the first quadrant

(x > 0, y > 0), a portion of the streamlines return to the first quadrant and a portion

go to the third quadrant (x < 0, y < 0), as seen in figure 4-3. By symmetry, the

streamlines running from the first to the third quadrant are the same as those from

the third to the first rotated 180 degrees about the z-axis. This means that the density

flux from the third quadrant is the same as the density flux to the third quadrant.

The density flow from returning and incoming streamlines make up two sides of the

transition matrix Pn, as shown in figures 4-4 and 4-5.

Figure 4-3: Node distribution corresponding to a 64 streamline by 64 streamwise
mesh for the Lorenz attractor. It was found that distributing the streamline starting
positions so that there were more streamlines near the bifurcation increased the rate
of convergence to the true density distribution.

49

0 200 400 600 800 1000

0

200

400

600

800

1000

nz = 4080

Figure 4-4: Transition Matrix Pn Struc-
ture for a roughly uniform streamline
distribution. Note the similarity of this
matrix to that for the Cusp map

0 200 400 600 800 1000

0

200

400

600

800

1000

nz = 4088

Figure 4-5: Transition Matrix Pn Struc-
ture for a non-uniform streamline dis-
tribution with more streamlines starting
near y0 = 18.

8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

x

ρ

Figure 4-6: Density ρs versus x on the
Poincare Section at z = 27. 512 stream-
lines were used to form Pn.

Figure 4-7: Density distribution on the
surface of the Lorenz attractor for a 512
by 128 mesh.

Because the finite difference scheme does not ensure conservation of probability

mass, the Poincaré stationary distribution ρ0(x0) as computed using a power method

is not properly normalized. This is because the first eigenvalue is not equal to one as

it would be if probability mass was conserved. To normalize ρ0(x0) begin with the

density over the entire attractor and use the fact that dl = |~f(~x)|dt:

∫∫
ρ dlds =

∫∫
ρ|~f(~x)|dtds = 1 (4.4)

Conservation of probability mass along a streamline can be written as:

50

ρ|~f(~x)|ds = ρ0|~f(~x0)× ŝ0|ds0

Where ds is the width of the streamline at a given ~x, ds0 is its initial width, ~f(~x0)

is the ”initial velocity” and ŝ0 is the initial spanwise direction. Substituting into

equation (4.4):

∫∫ T

0

ρ0|~f(~x0)× ŝ0|ds0dt = 1∫
ρ0

∫ T

0

dt|~f(~x0)× ŝ0|ds0 = 1∫
ρ0T |~f(~x0)× ŝ0|ds0 = 1

The discretized form of this equation, which can be used to normalize ρ0, is:

ρT
0
v = 1

Where:

vi = T |f(x0)× ŝ0|ds0 (4.5)

and T is the total time a particle spends along streamline i. It can be shown that v

is the leading eigenvector of Pn corresponding to λ ≈ 1.

Figure 4-6 shows the Poincaré section stationary distribution ρ0(x0) for the Lorenz

attractor. Like the stationary distribution for the cusp map it is smooth and contin-

uous.

Once the Poincaré stationary distribution ρ0(x0) is computed and normalized, the

stationary density distribution over the entire attractor is computed by integrating

equation (4.2) for each streamline with ρ0(x0) as the initial value of ρ for a streamline

starting at x0. The density distribution computed for the Lorenz attractor is shown

in figure 4-7. The apparent discontinuity results from the intersection of the two

branches of the attractor. The sum of the density distribution on the intersection of

51

these two branches is equal to the distribution on the Poincaré section.

10
2

10
3

23.4

23.6

23.8

24

24.2

M

A
ve

ra
ge

 z

Uniform x−spacing
Clustered x−spacing

Figure 4-8: Convergence of z for two different streamline start point distributions,
where M is the number of streamlines. The clustered distribution has streamlines
clustered near the bifurcation of the attractor.

Figure 4-8 shows that z = 23.6 from the density distribution, which is consis-

tent with the value z = 23.550 found using ensemble averages of long phase space

trajectories.

4.3 Computing the Density Adjoint

As the negative Lyapunov exponent for the Lorenz attractor has a large magnitude

relative to the positive Lyapunov exponent, it can be assumed that perturbations

the long-time averaged quantity J arise mainly from perturbations to the stationary

density δρ as opposed to perturbations to the attractor manifold:

δJ =

∫∫
J(~x)δρ dlds (4.6)

The adjoint density equation can be found using equation (4.6) and the lineariza-

tion of equation (4.1) (see appendix A.2.1 for detailed derivation):

∂φ

∂t
= J(~x)− J (4.7)

Perturbations to J can then be computed using:

52

δJ =

∫∫
φ ~∇s · (ρsδ ~f) dlds (4.8)

Therefore gradients with respect to some parameter ξ are:

∂J

∂ξ
=

∫∫
φ ~∇s ·

(
ρs
∂ ~f

∂ξ

)
dlds

To derive the discrete adjoint equations for a numerical scheme, first consider

equation

(1.2):

J =

∫∫
J(~x)ρ(~x)dlds

This can be rewritten as:

J =

∫∫ T

0

J(t)dtρ0|~f(~x0)× ŝ0|ds0

Defining J
i

=
∫ T

0
J(t)dt for streamline i “flowing” from the Poincaré section, the

above equation has the discretized form:

J = J TDρ
0

(4.9)

where D is a diagonal matrix with |~f(~x0) × ŝ0|ds0 for the ith streamline along the

main diagonal. Using D to rescale Pn, the adjoint equation for ρ
0

can be derived for

the 1D Poincaré map as in chapter 3 (see appendix A.2.2 for a detailed derivation):

 (D−1P TD − λI) −D−1v

ρT
s
D 0

 φ
0

J

 =

 J
0

 (4.10)

λ is included in equation (4.10) because it is not exactly one in practice. The

adjoint density along the Poincaré section φ0(x0) is computed using equation (4.10).

Then equation (4.7) is integrated to compute the adjoint along each streamline, using

φ0(x0) as the initial value.

53

Gradients can be computed by discretizing equation (4.8):

∂J

∂ξ
≈

N∑
k=0

φk [~∇s ·
(
ρs
∂ ~f

∂ξ

)
]kdAk (4.11)

Where dAk is the area corresponding to the kth node. This can be computed by

integrating a differential equation formed using conservation of probability mass (see

appendix A.2.3). The quantity [~∇s ·
(
ρs

∂f
∂ξ

)
]k can be computed by finite differences

as ρs is known for each node and ∂ ~f
∂ξ

can be found analytically for each node (see

appendix A.2.4 for a detailed derivation).

4.4 Algorithm Summary

To compute some gradient ∂J
∂ξ

, the following algorithm was used:

1. Find a Poincaré Section for the attractor such that the intersections trace an

approximately one to one function, as seen in in figure 4-1. Find a curve fit for

these intersections.

2. Construct the matrix Pn with a loop, by integrating (4.2) along a set of stream-

lines originating and terminating at the Poincaré Plane from step 1.

3. Determine the stationary density ρ0 on the Poincaré plane using a power method.

Smooth this distribution using a low-pass filter if necessary.

4. Compute J using the following equation:

J = ρT0DJs

5. Determine the left eigenvector v corresponding to the eigenvalue λ of ρ0 using

(4.5).

6. Compute the Poincaré Plane adjoint variable φ0 by solving (3.15). To solve

(4.10), be sure to take advantage of the sparseness of Pn.

54

7. Using ρ0 and φ0 as initial values, integrate (4.2) and (4.7) along each streamline

to find ρs and φ for the entire attractor.

8. Find ∂ ~f
∂ξ

analytically and calculate its value at all nodes.

9. Compute the gradient using (4.11).

4.5 Density adjoint for the Lorenz equations

Figures 4-9 and 4-10 show the adjoint density distribution on the Poincaré section

and on the entire attractor surface. As for the cusp map, the adjoint has a fractal

structure. Starting from the Poincaré plane, a given distribution is duplicated along

both branches of the attractor and is propagated backward in time towards the origin,

where it is squeezed and merged with the distribution from the other side of the

attractor. This merged, squeezed distribution then propagates back to the Poincaré

section. As the sensitivity is for long time averages, this process is repeated many

times, resulting in the fine fractal structures shown in figures 4-9 and 4-10.

8 10 12 14 16 18
−50

−40

−30

−20

−10

0

10

20

x

φ

Figure 4-9: Adjoint φ versus x on the
Poincaré Section at z = 27. 1024 stream-
lines were used to form Pn.

Figure 4-10: Adjoint distribution on the
surface of the Lorenz Attractor for a 512
by 128 mesh.

Equation (4.11) can be used to compute the sensitivity of the average z position

of the Lorenz attractor with respect to a number of parameters.

55

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

M

∂
z

/ ∂
 s

10
2

10
3

−6

−5

−4

−3

−2

−1

0

M

∂
z

/ ∂
 b

10
2

10
3

0.5

1

1.5

M

∂
z

/ ∂
 r

10
2

10
3

0.5

1

1.5

M

∂
z

/ ∂
 z

0

Figure 4-11: Sensitivity of z with respect to the parameters s, b, r and z0 for difference
grid sizes M . M is number of the streamlines, N (= 1

4
M) is the number of nodes

along a streamline. The level lines correspond to sensitivities computed using finite
differences of ensemble averaged data and the dotted lines are the 3σ confidence
bounds [24].

From figure 4-11 it can be seen that the density adjoint method predicts the

gradients quite well. ∂z
∂z0

is the most accurately predicted (under-predicted by 5% for

the denser grids). ∂z
∂r

converges to values roughly 10% under the gradient predicted

using finite differences. ∂z
∂r

is over-predicted by around 12%. Finally ∂z
∂b

converges

slower than the other gradients and is over-predicted by around 9% by the densest

grid (2048 by 512).

Larger errors are present in the continuous, two dimensional implementation of

the density adjoint because changes in density distribution are not solely responsible

for changes in the objective function. Perturbations to the Lorenz equation param-

eters displace and deform the attractor manifold as well, and these changes are not

accounted for by the density adjoint method outlined in the this paper.

56

4.6 Discussion

As discussed in the previous two chapters, the probability density adjoint method

computes the sensitivity of long time averaged quantities to input parameters for

ergodic chaotic dynamical systems if a few conditions are met. Firstly, the system

must have a smooth invariant measure (probability density function). Secondly, the

manifold of the strange attractor associated with the system must be correctly ap-

proximated and discretized in phase space. For 1D chaotic maps discretization is

trivial. For continouous chaotic systems, such as the Lorenz equations, discretization

of the attractor manifold is more involved but achievable.

Although some additional work needs to be done on computing the contribu-

tion of the displacement of the attractor manifold to sensitivities, the density adjoint

method has computed accurate gradients for the 1D cusp map and the approximately

2D Lorenz attractor. The probability density adjoint method could be used to analyze

low-dimensional chaotic systems. However, the need to discretize the attractor could

make it difficult to compute the density adjoint for high-dimensional chaotic systems,

such as computational simulations of turbulent airflow. The probability density ad-

joint also provides insight into adjoint sensitivities of chaotic systems. The adjoint

density is observed to be fractal in structure, an illuminating result given that the

stretching and folding of density distributions forwards in time becomes compressing

and duplicating adjoint density distributions backwards in time. This fractal struc-

ture is due to the peak of the cusp map and the bifurcation of the Lorenz attractor

and further work is needed to see if fractal adjoints are specific to these systems or

if all chaotic dynamical systems have fractal adjoint densities. The probability den-

sity adjoint formulation also shows that accurate gradients can be computed in the

presence of some numerical dissipation.

57

58

Chapter 5

Least Squares Sensitivity Method

As for the probability density adjoint method, the least squares sensitivity (LSS)

method requires the assumption of ergodicity. Unlike the probability density adjoint

method, LSS does not require the discretization of the attractor associated with the

dynamical system of interest. This makes LSS more readily extendible to higher

dimensional chaotic systems than the probability density adjoint method.

5.1 Lyapunov Exponents and the Shadowing Lemma

Before LSS and the shadowing lemma from which it is derived is discussed, a more in-

depth discussion of Lyapunov exponents and Lyapunov covariant vectors is required.

For some system du
dt

= f(u), there exist Lyapunov covariant vectors φ1(u), φ2(u), ..., φi(u)

corresponding to each Lyapunov exponent Λi, which satisfy the equation:

d

dt
φi(u(t)) =

∂f

∂u
· φi(u(t))− Λiφi(u(t))

To understand what Λi and φi represent, consider a sphere comprised of pertur-

bations δf to a system ∂u
∂t

= f(u) at some time, as shown in the far left of figure 5-1.

As this system evolves in time, this sphere expands in some directions, contracts in

some, and remains unchanged in others. The rate at which the sphere expands or

contracts corresponds to the Lyapunov exponent Λi and the corresponding direction

59

Lyapunov Exponents: Avg. Rate of deformation
Covariant Vectors:Direction of deformation

Uniform
Perturbations

Trajectory for u̇ = f(u)

Figure 5-1: Schematic of Lyapunov exponents and covariant vectors

of expansion or contraction is the Lyapunov covariant vector φi. It is important to

note that the φi are not the same as local Jacobian eigenvectors, φi depends on all

Jacobians along a trajectory. Also, the φi are not necessarily orthogonal, but the

number of Lyapunov covariant vectors is the same as the number of dimensions of

the system.

A strange attractor, the type of attractor associated with chaotic dynamical sys-

tems, has at least one positive and one zero Lyapunov exponent. To illustrate the

effect of the positive exponent, we consider figure 5-2. We see that if the perturbed

trajectory has the same initial condition as the unperturbed trajectory, the two trajec-

tories diverge exponentially, leading to the issues with traditional sensitivity analysis

discussed in chapter 2.

However, the assumption of ergodicity means that it is not necessary to compare

two trajectories with the same initial condition. Therefore, an initial condition can be

chosen such that the perturbed and unperturbed trajectories do not diverge, resulting

in the blue trajectory in figure 5-2. The existence of this trajectory, called a “shadow

trajectory”, follows from the shadowing lemma [16] : Consider a reference solution

ur to

du

dt
= f(u, ξ)

If this system has a Hyperbolic strange attractor and if some system parameter ξ

is slightly perturbed:

For any δ > 0 there exists ε > 0, such that for every ur that satisfies ‖dur/dt −

60

Figure 5-2: Phase space trajectory of a chaotic dynamical system. The unstable
manifold, in red, is the space of all Lyapunov covariant vectors corresponding to
positive exponents. The stable manifold, in green, corresponds to the space of all
covariant vectors associated with negative exponents. A perturbation to the system
(in red) has components in both manifolds, and the unstable component causes the
perturbed trajectory (pink) to diverge exponentially from the unperturbed trajectory
(in black). LSS chooses a perturbed trajectory with a different initial condition (in
blue) that does not diverge from the unperturbed trajectory.

61

Shadow
Trajectory
u′(t)

Original
Trajectory

u(t)
dt

dτ

u(ti)

u(ti+1)

u′(τi+1)

u′(τi)

Shadow
Trajectory
u′(t)

Original
Trajectory

u(t)
dt

dτ

u(ti)

u(ti+1)

u′(τi+1)

u′(τi)

Figure 5-3: LEFT: Original and shadow phase space trajectories without any time
transformation (dτ/dt = 1). RIGHT: Original and shadow phase space trajectories
with a time transformation dτ/dt = 1 + η that minimizes the distance between the
two trajectories in phase space for all time.

f(ur)‖ < ε, 0 ≤ t ≤ T , there exists a true solution us and a time transformation τ(t),

such that ‖us(τ(t))−ur(t)‖ < δ, |1− dτ/dt| < δ and dus/dτ − f(us) = 0, 0 ≤ τ ≤ T .

Note that ‖ · ‖ refers to distance in phase space

Therefore, relaxing the initial condition allows us to find the shadow trajectory

us(τ). The key assumption of the shadowing lemma is that the attractor associated

with the system of interest is hyperbolic. The key property of hyperbolic attractors for

the shadowing lemma is that tangent space can be decomposed into stable, neutrally

stable and unstable components everywhere on the attractor manifold [8]. Another

way to state this property is that the Lyapunov covariant vectors make up a basis

for phase space at all points on the attractor. Although this not the case for many

attractors, including the Lorenz attractor, there is a Chaotic Hypothesis which states

that many high-dimensional chaotic systems will behave as if they were hyperbolic

[6]. For example, since the single point on the Lorenz attractor that is not hyperbolic

is the unstable fixed point at the origin, most phase space trajectories do not pass

through it and the shadowing lemma holds.

The time transformation alluded to in the shadowing lemma is required to deal

with the zero (neutrally stable) Lyapunov exponent, whose covariant vector is simply

f(u). The need for this transformation can be seen by considering figure 5-3.

The time transformation, referred to as “time dilation” in this paper and other

62

LSS literature, is required to keep a phase space trajectory and its shadow trajectory

close (in phase space) for all time.

5.2 Computing the Shadow Trajectory

Although LSS could be implemented by computing Lyapunov exponents and covari-

ant vectors (as in [24]), this is not necessary. To find the shadow trajectory, an

optimization problem is solved, where the objective function is the L2 norm of the

tangent solution [26]. That is, for some system of equations du
dt

= f(u, ξ), the tangent

equations are solved, where v = ∂u
∂ξ

:

min
v,η

1

2

∫ T

0

v2 + α2η2dt, s.t.
dv

dt
=
∂f

∂u
v +

∂f

∂ξ
+ ηf , 0 < t < T, (5.1)

where η is the time dilation term, corresponding to the time transformation from the

shadowing lemma discussed in the previous section.

This optimization problem is a linearly constrained least-squares problem, with

the following KKT equations, derived using calculus of variations (see appendix B.1):

∂w

∂t
= −∂f

∂u

∗
w − v w(0) = w(T) = 0 (5.2)

α2η = −〈f, w〉 (5.3)

dv

dt
=
∂f

∂u
v +

∂f

∂s
+ ηf (5.4)

Equations (5.2), (5.3) and (5.4) can be combined to form a single second order

equation for the Lagrange multiplier w, as in [18]:

−d
2w

dt2
−
(
d

dt

∂f

∂u

∗
− ∂f

∂u

d

dt

)
w +

(
∂f

∂u

∂f

∂u

∗
+

1

α2
ff ∗
)
w =

∂f

∂ξ
, w(0) = w(T) = 0

(5.5)

63

Equation (5.5) shows that the LSS method has changed the tangent equation from

an initial value problem to a boundary value problem. The LSS solution can be used

to compute gradients for some quantity of interest J (i.e. Drag):

∂J̄

∂ξ
=

〈
∂J

∂u
, v

〉
+ ηJ − ηJ

Where x ≡ 1
T

∫ T
0
x dt. See appendix B.2 for a derivation of this.

5.3 Solving the KKT system numerically

Equations (5.2), (5.3) and (5.4) are discretized using finite differences and combined

to form the following symmetric system:



I FT
0

I GT
1 FT

1

. . . GT
2

. . .

I
. . . FT

m−1

I GT
m

α2 fT1

α2 fT2
. . .

. . .

α2 fTm

F0 G1 f1

F1 G2 f2

. . .
. . .

. . .

Fm−1 Gm fm





v0

v1

...

...

vm

η1

η2

...

ηm

w1

w2

...

wm



= −



0

0

...

...

0

0

..

.

0

b1

b2

...

bm



Fi =
I

∆t
+

1

2

∂f

∂u
(ui, ξ), Gi = − I

∆t
+

1

2

∂f

∂u
(ui, ξ),

bi =
1

2

(
∂f

∂ξ
(ui, ξ) +

∂f

∂ξ
(ui+1, ξ)

)
, fi =

1

2
(f(ui) + f(ui+1)) , i = 0, ...,m

This KKT system is a block matrix system, where each block is n by n, where n

is the number of states (i.e. the number of nodes in a CFD simulation). wi and vi

64

are length n vectors, and ηi is a scalar. The blocks highlighted in red correspond to

equation (5.2), white to equation (5.3), and yellow to (5.4).

Note that as the system is symmetric, the adjoint is computed simply by changing

the right hand side, allowing many gradients to be computed simultaneously.

The KKT system is quite large, with 2mn+n+ 1 by 2mn+n+ 1 elements for m

time steps. For a discretization with a stencil of five elements, the matrix would have

approximately 23mn non-zero elements. Consider a CFD simulation with 1 × 105

nodes (n = 1 × 105) and 16000 time steps. For this simulation, the KKT matrix

would be 3.2× 109 by 3.2× 109 with 3.7× 1010 non-zero elements. Therefore, to use

the LSS method on CFD problems, a method is needed to solve the KKT system

without forming the entire matrix.

5.4 LSS Examples

LSS has been successfully applied to both Ordinary Differential Equations (ODEs)

and a Partial Differential Equation (PDE) [26]. Results for the Lorenz equations (an

ODE system) and the Kuramoto-Sivashinsky (KS) equation (a PDE) are presented

in this paper.

5.4.1 The Lorenz Equations

The Lorenz equations were solved forward in time using a 4th order Runge-Kutta

time stepping scheme. LSS was conducted by forming and inverting the KKT matrix

shown in section 5.3. Solutions were integrated from a random initial condition and

run for 100 time units before LSS was applied, to ensure that the portion of the

solution being used was on the attractor manifold.

Figure 5-4 shows an approximate shadow trajectory for the Lorenz equations.

Note how the trajectories stay close for all times, as governed by the shadowing

lemma. The shadow trajectory allows the computation of accurate sensitivities for

relatively short integration times as shown in table 5.1. Figure 5-5 shows gradients

computed for a number of r values and two integration time lengths.

65

Figure 5-4: Lorenz equation phase space
trajectory (u(t)) for r = 28 (blue) and a
corresponding approximate shadow tra-
jectory (u(t) + v(t)) (red). Integration
time was T = 20 in dimensionless time
units.

25 26 27 28 29 30
0

0.5

1

1.5

r

dz
/d

r

Figure 5-5: Gradient of long-time av-
eraged z with respect to the parameter
r. Gradients computed with trajectory
length T = 20 are shown as black dia-
monds. Those computed using T = 1000
are shown as a red line.

Method Int. Time dz̄/ds dz̄/dr dz̄/db

LR 1000000 0.16± 0.02 1.01± 0.04∗ −1.68± 0.15
PDA 1000 0.1782 (11%) 0.9369 (7%) -1.8374 (9%)
LSS 20 0.1558 (2%) 1.0094 (< 1%) -1.6043 (5%)

Table 5.1: Comparison of sensitivities computed using linear regression with 10 sam-
ples [24] (LR), the probability density adjoint (PDA) method with a 256 by 512 grid
for the attractor discretization, and LSS.

5.4.2 The Kuramoto-Sivashinsky Equation

The KS equation is a 4th order, chaotic PDE, that can be used to model a number

of physical phenomena including turbulence in the Belouzov-Zabotinskii reaction and

thermal diffusive instabilities in laminar flame fronts [9]:

∂u

∂t
= −(u+ c)

∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4

The c term is added to make the system ergodic [18]. In addition, the KS equation

66

is made ergodic by using the boundary conditions:

u
∣∣∣
x=0,100

=
∂u

∂x

∣∣∣∣
x=0,100

= 0

and u(x, 0) is randomly chosen at each node xi from u ∈ [−0.5, 0.5]. The objective

function was chosen to be u averaged over both space and time:

J =
1

128T

∫ T

0

∫ 1

0

128u(x, t) dx dt

The system was discretized using a 2nd order finite difference scheme in space and

solved forward in time using a 4th order Runge-Kutta time stepping scheme. The

system was integrated for 300 time units before LSS was applied to ensure the solution

was on the attractor, as was done for the Lorenz equations.

Even if relatively short integration times are used, LSS computes accurate gradi-

ents of time and space averaged u (or J), as shown by how closely the approximate

slope in figure 5-6 is matched by the LSS gradients in figure 5-7.

Finally, figure 5-8 shows an approximate shadow trajectory for a KS equation

solution with c = −0.5. Note that although the values of u are different, the oscilla-

tory structures in space and time are similar for the solution and its shadow. This

means that a “shadow trajectory” in the context of fluid flows would be a flow field

corresponding to some altered parameter or boundary condition with similar flow

structures, but different velocity, pressure and temperature fields.

67

−1 −0.8 −0.6 −0.4 −0.2
0

0.2

0.4

0.6

0.8

1

c

A
ve

ra
ge

 u

Figure 5-6: Time and space averaged
u(x, t) versus the parameter c. The error
bars show the standard deviation com-
puted from 20 solutions from random ini-
tial conditions for t = 1024 time units.
The slope of the objective function is ap-
proximately -0.842.

−1 −0.8 −0.6 −0.4 −0.2
−1

−0.8

−0.6

−0.4

−0.2

0

c

du
/d

c

Figure 5-7: Gradient of time and space
averaged u with respect to the parameter
c. Gradients computed with trajectory
length T = 100 are shown as black dia-
monds. Those computed using T = 1000
are shown as a red line.

Figure 5-8: LEFT: KS equation solution (u(x, t)) for c = −0.5. RIGHT: Correspond-
ing approximate shadow trajectory (u(x, t)+v(x, t)). Integration time was T = 100 in
dimensionless time units. Note the transformed time scale τ for the shadow trajectory.

68

Chapter 6

Multigrid-in-time for Least

Squares Sensitivity Analysis

When choosing a method to solve LSS numerically, we consider equation (5.5). As

this equation is elliptic in time, a multigrid-in-time scheme is attractive because of

its fast convergence relative to other iterative methods for many elliptic PDEs [23].

Several multigrid schemes were used to solve the LSS KKT system, with vastly

varying convergence rates and computational cost. The first scheme considered, re-

ferred to as “classic” multigrid, is based off of the geometric multigrid scheme outlined

by Briggs et al. [23]. This scheme leads to very slow convergence of the KKT system’s

residual. The second scheme considered was cyclic reduction. This scheme converges

in one cycle if the system is solved exactly on the coarsest grid. However, the imple-

mentation of this scheme would use too much memory or require too many floating

point operations to be viable for solving large scale systems with the computational

resources that are currently available to most engineers and scientists. Finally, it was

found that using a scheme with a Krylov subspace solver as a smoother and higher

order averaging between the KKT systems on the fine and coarse grids led to text-

book multigrid convergence rates. This was found to be the case for schemes which

satisfied the variational condition and those that did not, although schemes that did

not satisfy the variational condition converged slightly slower than those that did.

This chapter is comprised of a detailed discussion of the above results. Each

69

section will outline each scheme. Also, each section will present the performance of

each scheme when used to apply the LSS method to the Lorenz equations. Finally,

the implications of these results for the computational efficiency of each scheme will

be discussed.

6.1 Solving the KKT System numerically

Rather than directly discretizing equation (5.5), we solve the Schur complement of

the KKT system shown in section 5.3. The KKT system can be written as:


I 0 BT

0 α2I CT

B C 0




v

η

w

 = −


0

0

b


where B is a mn × (m + 1)n matrix and C is a mn ×m matrix. Conducting block

Gaussian elimination, the Schur complement is found to be:

(BBT +
1

α2
CCT)︸ ︷︷ ︸

A

w = b

Written in terms of the block matrices in section 5.3:
F0F

T
0 +G1G

T
1 + 1

α2 f1f
T
1 G1F

T
1

F1G
T
1 F1F

T
1 +G2G

T
2 + 1

α2 f2f
T
2 G2F

T
2

. . .
. . .

. . .

Fm−1G
T
m−1 Fm−1F

T
m−1 +GmG

T
m + 1

α2 fmf
T
m


︸ ︷︷ ︸

A

From this form we see that the Schur complement is a mn × mn SPD and block

tridiagonal matrix.

70

6.2 Classic Multigrid

The first multigrid scheme implemented was a simple geometric scheme, referred to

in this paper as “classic multigrid”. Restriction is achieved by eliminating every

second equation and prolongation is carried out by linear interpolation. A “V” cycle

was used, in which the system is coarsened until only one equation remains, then

prolongated back to the full fine grid. Gauss-Seidel iterations were was used for

relaxation, with 4-10 cycles before restriction and after prolongation on each level.

The scheme was found to be unstable if the under-relaxation factor is kept the same

on the coarser grid. An empirical formula was used to reduce the under-relaxation

factor as the time-step ∆t increases in length on the coarse grid.

The method was tested on the Lorenz equations. The gradient of time-averaged

z with respect to the parameters b, r, and s was computed:

dz̄

ds
= 0.122,

dz̄

dr
= 1.00,

dz̄

db
= −1.67. (6.1)

The gradients with respect to r and b are within the error bounds of the finite

difference obtained by [24] using linear regression, while the gradient with respect to

s was slightly over-predicted.

The gradients converged within 20-30 cycles, as shown in figure 6-1. However, the

residual of the system did not converge as quickly, as in figure 6-2. In fact, the residual

was not observed to converge to machine precision until around 104 cycles. Subse-

quent analysis explored the causes of the slow convergence of the residual. Firstly, the

method was analyzed by conducting Ideal Coarse Grid (ICG) iterations, as defined

in [1]. The convergence of the ICG iterations was found to be satisfactory, suggesting

that the relaxation scheme was working well and the convergence issues arose from

the grid coarsening scheme. Also, convergence on individual grids was analyzed. It

was found that the residual did not decrease in magnitude on the coarsest grids. Ad-

ditionally, the method was carried out on the KS equation and the same convergence

issues were observed.

Although this implementation of the multigrid in time method found correct gra-

71

Figure 6-1: Convergence of the gradient
of time-averaged z with respect to r, as
computed using multigrid in time with
10 relaxation iterations before restriction
and after prolongation on each level.

Figure 6-2: L2 norm of the residual while
solving for the gradient of time-averaged
z with respect to r using multigrid in
time. Similar behavior was observed
when computing other gradients

dient values, the residual convergence issues make the robustness of the method ques-

tionable. The multigrid analysis methods carried out indicate that different grid

coarsening techniques need to be explored to ensure textbook multigrid convergence

to a near-zero residual.

6.3 Cyclic Reduction

In classic multigrid, linear interpolation is used for prolongation, but it is not the best

method when the coefficients of the equation being solved are highly oscillatory or

discontinuous [4]. If this is the case, the coarse grid correction is a poor approximation

for the low order error, and textbook multigrid convergence is not achieved. In this

case, interpolation to some fine grid point with index i should be carried out by

solving (5.5) with ∂f
∂ξ

= 0 between the two nearest coarse grid points, i− 1 and i+ 1,

with the boundary conditions w(ti−1) = wi−1 and w(ti+1) = wi+1. This interpolation

scheme can be proved to lead to a multigrid scheme that converges independently

of grid size for 1D problems [4]. Furthermore, it can be shown that this scheme is

equivalent to cyclic reduction [4]. Cyclic reduction is carried out as follows: defining

the lower, main and upper diagonal blocks as Li, Di and Ui, elimination is conducted

as follows for three given rows:

72

Li−1wi−2 +Di−1wi−1 + Ui−1wi = bi−1 (6.2)

Liwi−1 +Diwi + Uiwi+1 = bi (6.3)

Li+1wi +Di+1wi+1 + Ui+1wi+2 = bi+1 (6.4)

Equations (6.2) and (6.4) give expressions for wi−1 and wi+1, which can be sub-

stituted into equation (6.3):

LIwi−2 +DIwi + UIwi+2 = bI

Where:

LI = −LiD−1
i−1Li−1

DI = −LiD−1
i−1Ui−1 +Di − UiD−1

i+1Li+1

UI = −UiD−1
i+1Ui+1

fI = −LiD−1
i−1fi−1 + fi − UiD−1

i+1fi+1

bI = −LiD−1
i−1bi−1 + bi − UiD−1

i+1bi+1

(6.5)

If the system is solved exactly on the coarsest grid, cyclic reduction will converge

in one cycle. Also, the algorithm can be implemented in parallel, as each coarse grid

equation only depends on three adjacent fine grid equations.

Although equation (6.5) involves inverting the main diagonal matrices D, which

contains products of Jacobians ∂f
∂u

, in practice these inversions do not need to be car-

ried out (see appendix B.3.1). However, the operation count of this scheme does not

scale very well with the size of the KKT system. It can be shown (see appendix B.3.2)

that the number of floating point operations, N , required for matrix multiplication

with the coarse grid matrix scales approximately as:

N ∼ O(2p(2q)l)

Where p is the number of operations required to multiply a vector by an Fi or Gi

matrix, q is the number of iterations needed by an iterative solver to solve any system

73

involving D−1
i , and l is the number of levels, assuming the coarsest grid is n×n (one

time step). This is very large relative to the approximate operation count for a single

Jacobi iteration on the LSS KKT system:

N ∼ O(2(l+2)p)

To summarize, the advantages of cyclic reduction are in its memory efficiency and

potential for parallel implementation, not its operation count.

6.4 Higher Order Averaging/Krylov Subspace Scheme

Taking into account the performance of classic multigrid and cyclic reduction, a new

multigrid scheme was designed for solving the KKT system associated with LSS.

The poor performance of classic multigrid and the excellent performance of cyclic

reduction indicate that the accuracy of the coarse grid correction has a large effect on

the convergence rate of the scheme. To obtain a more accurate coarse grid correction,

higher order averaging was used to coarsen the KKT system. Higher order averaging

ensures that the coarse grid non-linear solution u(t) from which the KKT system is

constructed is smooth, which leads to better multigrid performance [4].

Higher order averaging schemes are formed as follows: consider a two point (first

order) average of some value x at time step i:

xi =
1

2
xi−1/2 +

1

2
xi+1/2

A first order scheme is formed by setting xi−1/2 = xi−1 and xi+1/2 = xi+1. For a

second order scheme, set xi−1/2 = 1
2
xi−1 + 1

2
xi and xi+1/2 = 1

2
xi + 1

2
xi+1:

xi =
1

4
xi−1 +

1

2
xi +

1

4
xi+1

The third order scheme can be derived by substituting first order averages into

the second order scheme, and so on:

74

xi+1/2 =
1

8
xi−1 +

3

8
xi +

3

8
xi+1 +

1

8
xi+2 3nd Order

xi =
1

16
xi−2 +

1

4
xi−1 +

3

8
xi +

1

4
xi+1 +

1

16
xi+2 4th Order

xi+1/2 =
1

32
xi−2 +

5

32
xi−1 +

10

32
xi +

10

32
xi+1 +

5

32
xi+2 +

1

32
xi+3 5th Order

Higher order averaging was applied to multigrid-in-time in two ways. Matrix

restriction multigrid uses higher order averaging on the KKT matrix itself, using

McCormick et al’s variational conditions [15]. Solution restriction multigrid uses

higher order averaging on the non-linear solution u(t). The KKT system is formed

on the coarse grid from the restricted solution u(t).

In addition, it was observed that stationary iterative methods such as Block Gauss

Seidel converge very slowly for the KKT system. Krylov subspace methods such as

conjugate gradient and MINRES1 were examined as smoothers as an alternative to

the stationary methods used in classic multigrid. Other parameters of the KKT

system and the multigrid solver were also examined and some were found to have a

considerable effect on convergence rates, especially the parameter α2 from equation

(5.5), the weighting of the time dilation term in the minimization statement.

The following sections discuss matrix restriction multigrid and its application to

LSS for the Lorenz equations, followed by a discussion of solution restriction multigrid.

Finally, the cost of solution restriction multigrid is compared to MINRES.

6.4.1 Matrix restriction multigrid

Matrix restriction multigrid was designed to satisfy the variational conditions [15]:

I2h
h = ch(Ih2h)

T , A2h = I2h
h A

hIh2h

Where Ah is the fine grid matrix, Ah is the coarse grid matrix, I2h
h is the restriction

matrix, Ih2h is the prolongation matrix and ch is some constant that could depend on

1These methods were chosen because the KKT system is Symmetric Positive Definite.

75

0 2 4 6 8 10
−30

−20

−10

0

10

20

30

40

50

t

u

Figure 6-3: Lorenz equation solution;
x,y,z are blue, green and red respectively.

2 4 6 8 10

10
−6

10
−4

10
−2

10
0

10
2

V cycle

R
es

id
ua

l L
2

no
rm

2nd
3rd
4th

Figure 6-4: Convergence of matrix re-
striction multigrid with dtf = 0.01 for
different orders of averaging.

the grid size.

Satisfying the variational condition ensures that the error of the solution will

decrease monotonically, assuming the smoother decreases or does not change the

magnitude of the error on all grids [15].

Matrix restriction multigrid has been demonstrated on LSS for the Lorenz equa-

tions, in particular the solution shown in figure 6-3. Unless otherwise stated, the

results presented correspond to a multigrid scheme with conjugate gradient (CG)

smoothing with ν1 = 30 presmoothing iterations, ν2 = 30 postsmoothing iterations,

4th order averaging, dt = dtf = 0.0012 on the finest grid and dt = 0.08 on the coarsest

grid.

Since the typical Lorenz equation solution in figure 6-3 is oscillatory, a higher

order averaging scheme can be used to improve the coarse grid correction by ensuring

that the components of the block matrices (which depend on u(t)) that make up

KKT matrix vary smoothly even on very coarse grids. Because of this, the use of

higher order averaging drastically improves the convergence rate of multigrid-in-time,

as shown by figure 6-4.

Block Gauss-Seidel and other stationary solvers that are used for smoothing in

76

10
−3

10
−2

10
−1

10
0

10
1

10
0

10
5

10
10

Time Step Size

κ

10
−3

10
−2

10
−1

10
0

10
1
10

0

10
5

10
10

λ m
ax

Figure 6-5: Condition Number κ (solid
line) and maximum eigenvalue λmax
(dashed line) versus time step dt for
coarsened grids corresponding to a fine
grid with dt = 0.001 for the LSS system
associated with the Lorenz equations

0 50 100 150 200 250
10

0

10
1

10
2

10
3

iteration

R
es

id
ua

l L
2

N
or

m

CG, dt = 0.01
BGS, dt = 0.01
CG, dt = 0.02
BGS, dt = 0.02

Figure 6-6: Convergence of Block
Gauss-Seidel and Conjugate Gradient
on the fine grid (dt=0.01,α2 = 40) and
a coarsened grid (dt=0.02,α2 = 40).

classic multigrid schemes were found to converge very slowly. Also, the convergence

of these solvers worsen as the grid is coarsened, as shown in figure 6-6. This is

because the largest eigenvalue of the KKT system, which can be shown to set the

convergence rate of a stationary solver [7], decreases at a slower rate as the KKT

system is coarsened, as shown in figure 6-5. This is in contrast to the behavior of

the finite difference (or finite element) matrix of the Poisson equation, whose largest

eigenvalue decreases exponentially as the grid is coarsened, resulting in much faster

convergence of Jacobi or Gauss-Seidel solvers on the coarser grids [7].

To accelerate convergence of multigrid-in-time, conjugate gradient (CG) is used

as a smoother. With a CG smoother, the rate of convergence is bounded by ((κ −
1)/κ)N , where κ is the condition number of the KKT matrix Ah and N is the number

of smoothing iterations [2]. The condition number decreases quickly as the grid is

coarsened (see figure 6-5), leading to faster CG convergence on coarser grids, as seen

in figure 6-6.

A matrix restriction scheme with a CG smoother and 4th order averaging has

77

been observed to converge independently of the number of fine grid points, as shown

in figure 6-7.

In addition, a number of tuning parameters were observed to affect this conver-

gence rate. The parameter α2 from equation (5.5), the weighting of the time dilation

term in the minimization statement, has a strong effect on multigrid convergence, as

shown in figure 6-8. There is an optimal α2, found to be equal to around 40 in the

case of our sample problem. α2 has an effect on convergence because it affects the

condition number and the eigenvalue spectrum of A on all grids.

We define the coarsening threshold dtc is defined as the time step size below which

multigrid is not called recursively. Figure 6-9 shows that there is an optimal value for

dtc. Below this, the coarse grid correction actually slows convergence in some cases,

because it is a poor approximation for low order errors.

6.4.2 Solution restriction multigrid

Although matrix restriction multigrid performs very well, using the variational con-

dition to form the coarse grid matrix makes the matrix restriction multigrid more

expensive than classic multigrid. To conduct matrix multiplication on a coarse grid,

the coarse grid solution is prolongated to the fine grid, multiplied by the fine grid ma-

trix Ah and then restricted to the coarse grid. This means that conducting smoothing

on the coarse grid(s) is slightly more expensive than smoothing on the fine grid.

By restricting the non-linear solution u(t) instead of the matrix Ah, solution re-

striction multigrid results in reduced smoothing costs on the coarse grid, because the

KKT system formed on the coarse grid from the restricted u(t) is half the size of

the fine grid system. As shown by figure 6-10, the solution restriction scheme also

leads to convergence rates with little dependence on dtf for a given dtc for the Lorenz

equations 2.

As observed for matrix restriction multigrid, the value of the parameter α2 and

the order of averaging both affect the convergence rate, as shown in figures 6-11 and

2Parameter values used for this plots in this section (unless otherwise stated): dtf = 0.004 or
m = 4096, ν1 = ν2 = 30, dtc = 0.2, α2 = 40, MINRES smoothing, and 3rd order averaging

78

1 2 3 4 5 6

10
−5

10
0

V cycle

R
es

id
ua

l L
2

no
rm

dt

f
=0.05

dt
f
=0.01

dt
f
=0.005

dt
f
=0.0012

dt
f
=0.0006

Figure 6-7: Convergence of matrix restriction multigrid for different fine grid time
steps dtf .

10
0

10
1

10
2

10
3

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

α2

C
on

ve
rg

en
ce

 r
at

e

Figure 6-8: Convergence rate of matrix restriction multigrid versus α2. The conver-
gence rate is −γ, from the curve fit log10 ‖r‖L2 = γ log10NV + log10C of the residual
L2 norm ‖r‖L2 versus the number of V-cycles NV .

1 2 3 4 5 6 7 8

10
−5

10
0

V cycle

R
es

id
ua

l L
2

no
rm

dt

c
 = 0.005

dt
c
 = 0.01

dt
c
 = 0.05

dt
c
 = 0.1

dt
c
 = 0.2

dt
c
 = 0.4

Figure 6-9: Convergence of matrix restriction multigrid for different coarsening
thresholds dtc.

79

5 10 15 20 25 30

10
−5

10
0

V cycle

R
es

id
ua

l L
2

no
rm

dt

f
=0.01

dt
f
=0.005

dt
f
=0.002

dt
f
=0.001

Figure 6-10: Convergence of solution restriction multigrid for different values of dtf .

10
0

10
1

10
2

10
3

0.1

0.2

0.3

0.4

0.5

0.6

α2

C
on

ve
rg

en
ce

 r
at

e

Figure 6-11: Convergence rate of solution restriction multigrid versus α2. The conver-
gence rate is −γ, from the curve fit log10 ‖r‖L2 = γ log10NV + log10C of the residual
L2 norm ‖r‖L2 versus the number of V-cycles NV .

80

0 10 20 30

10
−5

10
0

V cycle

R
es

id
ua

l L
2

no
rm

1st
3rd
5th

Figure 6-12: Convergence of solution re-
striction multigrid with 1st, 3rd and 5th
order averaging.

0 10 20 30

10
−5

10
0

V cycle

R
es

id
ua

l L
2

no
rm

Matrix
Solution

Figure 6-13: Convergence plots for ma-
trix restriction multigrid with MINRES
smoothing, dtc = 5, and 4th order aver-
aging and solution restriction multigrid.

6-12. However, higher order averaging is only beneficial to a certain degree, as the

5th order scheme leads to slower convergence than the 3rd order one (figure 6-12).

This is because high order averaging could smooth u(t) too much. If this is the case

the course grid u(t) is a poor approximation of the fine grid u(t). Also, α2 has a

much greater effect than the averaging scheme on the convergence rate of solution

restriction multigrid.

There is a slight trade-off for the lower costs of solution restriction multigrid.

Figure 6-13 shows that solution restriction multigrid converges slightly slower than

matrix restriction multigrid. However, this slower convergence does not outweigh the

benefits of the lower cost of solution restriction multigrid.

The benefits of solution restriction multigrid can be seen by comparing its cost

to that of using MINRES to solve the fine grid solution. Figure 6-14 shows that the

solution of the KKT system converges after about 4700 iterations, and the gradient

converges after about 1800 iterations. For a Krylov subspace method applied to a

sparse matrix, the number of floating point operations for a single iteration, pMINRES,

is pMINRES ∼ O(mnN), where N is the number of previous iterations, m is the

81

0 1000 2000 3000 4000 5000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration

R
es

id
ua

l L
2

no
rm

0 1000 2000 3000 4000 5000
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

dz
/d

r

Figure 6-14: Convergence of MINRES for an LSS system for the Lorenz equations
with dtf = 0.004 and α2 = 40. The dashed line shows the gradient computed at a
given iteration, which should be roughly 1.01± 0.04 [24]

0 5 10 15 20 25 30
10

−10

10
−5

10
0

10
5

V cycle

R
es

id
ua

l L
2

no
rm

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

dz
/d

r

Figure 6-15: Convergence of solution restriction multigrid for an LSS system for the
Lorenz equations. The dashed line shows the gradient computed at a given iteration,
which should be roughly 1.01± 0.04 [24]

82

number of time steps and n is the number of dimensions of the dynamical system [7].

Therefore, for the solution in figure 6-14 the total number of operations, PMINRES,

is roughly

PMINRES ∼ 4700O(mn)

For a fixed number of iterations N = ν1 + ν2, the cost of smoothing is halved for

one coarsening as mn is halved when the system is coarsened. When a large number

of grids are used for a V-cycle:

pMG ∼ O(mn(ν1 + ν2)) +
1

2
O(mn(ν1 + ν2)) +

1

4
O(mn(ν1 + ν2)) + ...

≈ 2O(mn(ν1 + ν2)) = 120O(mn)

Figure 6-15 shows that the solution of the KKT system converges after about 20

cycles with solution restriction multigrid, therefore:

PMG ∼ 2400O(mn) ≈ 1

2
PMINRES

In addition to requiring only half of the floating point operations of MINRES,

solution restriction multigrid computes the correct gradient after 2 cycles, which re-

quires 240O(mn) operations, an order of magnitude less than the roughly 1800O(mn)

operations required by MINRES.

To summarize, multigrid-in-time is found to work well when higher order averaging

is used to construct the KKT system on coarse grids and a Krylov subspace method

is used for smoothing. Matrix restriction multigrid converges quickly, but smoothing

on the coarse grid requires more operations than smoothing on the fine grid . Solution

restriction multigrid converges slightly slower than matrix restriction multigrid, but

is less expensive. Because of its lower cost, solution restriction multigrid is currently

the most promising numerical method for implementing LSS for large scale systems.

83

84

Chapter 7

Conclusions

In conclusion, traditional sensitivity analysis methods are unable to compute sen-

sitivities of long-time averaged quantities in chaotic dynamical systems. Two new

methods, the probability density adjoint method and the least squares sensitivity

(LSS) method are able to compute these sensitivities if the system is ergodic.

The probability density adjoint method works well for 1D maps and low order

ODEs, but it would be difficult to extend to the higher dimensional (10+) attractors

associated with many ODEs and discretized PDEs of engineering interest. It does

however provide an insight into sensitivities of low-dimensional chaotic dynamic sys-

tems. For instance, the highly oscillatory adjoint density solutions show how small

perturbations which are relatively small distance apart in phase space can have rad-

ically different effects on long-time averaged quantities.

LSS is more readily extended to sensitivity analysis of higher dimensional ODEs

and PDEs and has been shown to compute accurate gradients for the Lorenz equation

and a modified version of the Kuramoto-Sivashinsky equation. To solve the large KKT

system associated with LSS, several multigrid-in-time schemes have been investigated.

Classic geometric multigrid with a Gauss-Seidel smoother was found to converge very

slowly. Cyclic reduction converged in one cycle and can be run in parallel but it

used a very large number of floating point operations to solve the system. A higher

order averaging multigrid scheme with a Krylov subspace smoother was found to give

textbook multigrid convergence. It was found that the parameter α2, the weighting of

85

the time dilation term in equation (5.1), had a large effect on the rate of convergence

of multigrid.

Future work will start with further investigation of solution restriction multigrid-

in-time. In particular, a method to determine the α2 value corresponding to the

fastest rate of convergence needs to be found.

Once a robust, scalable numerical method for solving the KKT equation is found,

LSS will be tested on chaotic fluid flows, such as air flow around the NACA 0012

airfoil presented in chapter 2. Eventually, LSS could be used to investigate more

complicated flows such as flow around a lifting body, the fuel injection system in a

jet engine or scramjet combustor, or a internal flow in a rocket engine.

86

Appendix A

Probability Density Adjoint

Method

A.1 Probability density adjoint for 1D maps

A.1.1 Deriving the continuous density adjoint equation

To derive the adjoint equation, we define a function v(x) = 1 and an inner product:

〈a, b〉 =

∫ 1

0

a(x)b(x)dx

Consider a small perturbation to P . From equation (3.2) and conservation of proba-

bility mass:

δ(Pρs) = δPρs + Pδρs = ρs, 〈v, δρs〉 = 0 (A.1)

Define φ as the adjoint variable. Using integration by parts:

0 = 〈φ, δPρs + Pδρs − ρs〉 = 〈P ∗φ− φ, δρs〉+ 〈φ, δPρs〉 (A.2)

Combining equations (A.1) and (A.2) with equation (3.5) :

87

δJ = 〈e, J〉 − 〈P ∗φ− φ, δρs〉+ 〈φ, δPρs〉 − η〈v, δρs〉 = 0

= 〈J − ηv − P ∗φ+ φ, δρs〉+ 〈φ, δPρs〉

For φ and η such that:

〈J − ηv − P ∗φ+ φ, δρs〉 = 0

Gradients can be computed as follows:

δJ = 〈φ, δPρs〉 (A.3)

We derive an expression to compute δPρs in section 3.3 and A.1.2.

To find η:

J + δJ = 〈J, ρs + δρs〉

For equation (A.3) to be consistent with this:

0 = 〈ρs, J − ηv − P ∗φ+ φ〉 = 〈ρs, J〉 − η〈ρs, v〉 − 〈φ, Pρs − ρs〉

The second and third inner products on the right hand side are by definition 1 and 0

respectively, therefore:

η = 〈ρs, J〉 = J

Therefore, the adjoint equation is:

P ∗φ− φ = J − J

88

A.1.2 Derivation of the gradient equation

To find δPρs, we first define δρ0 = δPρs. From equation 3.2:

ρs + δρ0 = (P + δP)ρs

Using the coordinates defined in figure A-1, density is mapped by P as follows:

∫ y

0

ρs ds =

∫ xL

0

ρs ds+

∫ 1

xR

ρs ds (A.4)

Similarly, P + δP maps density as this:

∫ y

0

ρs + δρ0 ds =

∫ xL

0

ρs ds+

∫ 1

xR

ρs ds (A.5)

Taking the difference of equations A.4 and A.5:

∫ y

0

δρ0 ds =

∫ x′L

xL

ρs ds+

∫ xR

x′R

ρs ds

Assuming a small perturbation δP (and therefore a small δF):

∫ y

0

δρ0 ds = ρs(xL)δxL − ρs(xR)δxR (A.6)

= ρs(xL)δF−1(y)L − ρs(xR)δF−1(y)R

From figure A-1, a local functional perturbation left of the peak moves F−1(y) by

δxL to the left. Also, note that δF/δxL is a first order approximation to the local

slope, therefore δF = −F ′(F−1(y))δxL for small δF . A similar argument can be

made to show that the same equation applies to the right of of the peak. Therefore

equation 3.8 can be rewritten as:

∫ y

0

δρ0 ds =
ρs(xL)

F ′(xL)
δF (xL)− ρs(xR)

F ′(xR)
δF (xR)

Differentiating both sides with respect to y:

89

xk+1

xk

1

10
0

F−1(y)

y

xL

F (x)

δxL

δyL = δF (xL)

x′L

y′

xR x′R

δxR

F−1(y)

δyR = δF (xR)

Figure A-1: The effect of a perturbation on the mapping function.

δρ0 = δPρs =
∂

∂y

(
ρs(xL)

F ′(xL)
δF (xL)− ρs(xR)

F ′(xR)
δF (xR)

)
(A.7)

A.1.3 Deriving the discrete density adjoint equation

Recall that the first eigenvalue of the discrete operator Pn is not exactly one. Denoting

λ as the first eigenvalue, which converges to one as n→∞:

Pnρs − λρs = 0

Now consider the linearization:

δPnρs − δλρs + Pnδρs − λδρs = 0, −vT δρ
s

= 0

Combine this with the discrete version of equation 3.5:

δJ =
1

n
[JT δρ

s
+ φT (−δλρ

s
+ Pnδρs − λδρs) + φT δPnρs − ηv

T δρ
s
]

Where η is the adjoint variable for the eigenvalue perturbation δλ. Rearrange to

isolate δρ
s

and δλ:

90

δJ =
1

n
[φT δPnρs + (JT − φTPn − φTλ− ηvT)δρ

s
+ (−φTρ

s
)δλ]

Equation (3.15) is obtained by eliminating any dependence of δJ on δρ
s

and δλ. Also,

from the continuous adjoint equation, it can be seen that η = J :

P T
n φ− λφ− vJ = J

−ρT
s
φ = 0

A.2 Probability density adjoint for continuous chaos

A.2.1 Deriving the continuous adjoint equation

First, linearize equation (4.1)

~∇s · (δρ~f + ρδ ~f) = 0 (A.8)

As (A.8) is zero, it can be multiplied by some scalar variable φ and added to

equation (4.6). By conservation of probability mass, a perturbation to ρs does not

change the total probability:

∫∫
δρ dlds = 0

Therefore, δρ can also be added to equation (4.6):

δJ =

∫∫
φ~∇s · (δρ~f + ρsδ ~f) + J(~x)δρ+ cδρ dlds (A.9)

Where c is some constant. Conducting integration by parts:

91

δJ =

∫∫
φ∇s · (δρ~f) + J(~x)δρ+ cδρ+ φ∇s · (ρsδ ~f) dlds

=

∫∫
−δρ~f · ∇sφ+ J(~x)δρ+ cδρ+ φ∇s · (ρsδ ~f)) dlds

=

∫∫
(−∂φ

∂t
+ J(~x) + c)δρ+ φ∇s · (ρsδ ~f)) dlds

In order to eliminate the dependence of δJ on δρ, the adjoint density equation is:

∂φ

∂t
= J(~x) + c (A.10)

Multiplying both sides of (A.10) by ρs and integrating over the attractor surface

shows that c = −J :

∫∫
ρsf(~x)∇sφ dlds =

∫∫
ρsJ(~x) + ρsc dlds∫∫

φ∇s · (ρsf(~x)) dlds =

∫∫
ρsJ(~x) + ρsc dlds

0 =

∫∫
ρsJ(~x) dlds+ c

∫∫
ρs dlds

c = −J

Therefore:

∂φ

∂t
= J(~x)− J

If the above equation is satisfied, equation (A.9) reduces to

δJ =

∫∫
φ ~∇s · (ρsδ ~f) dlds

92

A.2.2 Deriving the discrete Adjoint Equation

Consider the eigenvalue equation for the Poincaré stationary density:

Pnρ0
= λρ

0

This can be modified using D, a diagonal matrix with |~f(~x0) × ŝ0|ds0 for the ith

streamline along the main diagonal:

DPnD
−1Dρ

0
= λDρ

0

Defining Dρ
0

= q and DPnD
−1 = A:

Aq = λq

The adjoint is derived using A and q because perturbations to q correspond to

density perturbations on the attractor surface. A perturbation δq can be written as

follows:

δ(λq) = δ(Aq)

λδq + qδλ = δAq + Aδq

(λI − A)δq − δAq + qδλ = 0 (A.11)

From equation (4.9), δJ is related to a perturbation to q as follows

δJ = J T δq (A.12)

where we define J
i

=
∫ T

0
J(t)dt for streamline i.

Also, it can be shown that:

∫∫
δρsdlds ⇒ vTD−1δq = 0 (A.13)

93

Adding equation (A.12) to the product of equation (A.11) and the discrete density

adjoint φ
0

as well as equation (A.13) and the adjoint eigenvalue η yields:

δJ = J T δq + φT
0

((λI − A)δq + η(vTD−1δq)− δAq + qδλ)

δJ = (φT
0

(λI − A) + ηvTD−1 + J T)δq + φT
0
qδλ− φT

0
δAq

To eliminate the dependence of δJ on δq and δλ:

(A− I)Tφ
0

+ ηD−1v = J , qTφ
0

Therefore:

(DPnD
−1 − I)Tφ

0
+ ηD−1v = J , ρT

s
Dφ

0

As in section 3.3, it can be shown that η = −J , therefore:

 (D−1P TD − λI) −D−1v

ρT
s
D 0

 φ
0

J

 =

 J
0



A.2.3 Computing Attractor Surface Areas

Recall:

ρ(~x)|~f(~x)|ds = ρ0|~f0 × ŝ0|ds0

Where ds is the streamline width and the subscript 0 indicates values at the

start of the streamline. ds0 is set as the average distance from a streamline to its

neighboring streamlines along the Poincaré section.

Noting that |~f(~x)| = ∂l
∂t

:

|~f(~x)|ds =
∂l

∂t
ds =

∂A

∂t

94

Therefore:
∂A

∂t
=
ρ0|~f0 × ŝ0|ds0

ρ(~x)
(A.14)

Integrating this equation along a streamline yields the total area of that streamline.

For a given node k, dAk is found by taking the difference of A at the midpoint between

nodes k − 1 and k and the midpoint between nodes k and k + 1. The area of the

first node is computed as A at the first midpoint. The area of the last node is the

difference between A for the entire streamline and the last midpoint.

A.2.4 Computing gradients on the attractor surface

The partial derivative in the l direction is found using a central difference when

possible. At the beginning of a given streamline, a forward difference is used and

a backward difference is used at the end of a given streamline. As ρs
∂ ~f
∂ξ

is a three

dimensional vector, three derivatives are obtained, corresponding to the x, y and z

components.

To find the partial derivative in the s direction, first consider the forward difference

between the jth node on streamline i and the jth node on streamline i + 1. This

difference can be used to approximate the derivative in the s′ direction, which is not

equal to the s direction. To find the s direction, the difference of some vector ~X in

the s′ direction, ∆s′
~X can be decomposed as follows:

∆s′
~X = α

∆l
~X

∆l
+ β

∆s
~X

∆s

Where ~X = ρs
∂ ~f
∂ξ

, α = ~s′ · l̂ and β = ~s′ · ŝ. It is important to note that ~s′ is not a

unit vector like l̂ and ŝ. This expression can be rearranged to yield an expression for

∂ ~X
∂s

:

∂ ~X

∂s
≈ ∆s

~X

∆s
=

1

β
∆s′

~X − α

β

∆l
~X

∆l

This same equation can be solved for the backwards difference and the average of

the forward and backward differences can be taken to find the central difference.

95

Finally, to find the surface gradient:

∇s ·
(
ρs
∂f

∂ξ

)
=
∂ ~X

∂l
· l̂ +

∂ ~X

∂s
· ŝ

Therefore:

∂J

∂ξ
≈

N∑
k=0

φk

[
∂ ~X

∂l
· l̂ +

∂ ~X

∂s
· ŝ
]
k

dAk

96

Appendix B

Least Squares Sensitivity Analysis

B.1 Deriving the KKT System

First form the Lagrangian function for equation (5.1):

L =

∫ T

0

v2 + α2η2

2
+

〈
w,

(
−dv
dt

+
∂f

∂u
v +

∂f

∂ξ
+ ηf

)〉
dt

Now consider the first variation, which can be rearranged and transformed by inte-

gration by parts:

δL =

∫ T

0

〈
δv,

(
v +

dw

dt
+
∂f

∂u

∗
w

)〉
dt+

∫ T

0

(α2η + 〈f, w〉)δη dt+ 〈δv, w〉|T0

For first order optimality δL = 0 for all δv and δη, therefore:

v +
dw

dt
+
∂f

∂u

∗
w = 0, w(0) = w(T) = 0 (B.1)

and

α2η + 〈f, w〉 = 0 (B.2)

Equations (B.1) and (B.2), along with the tangent equation, make up the KKT

system.

97

B.2 Computing Sensitivities using a Shadow Tra-

jectory

For a trajectory u(t) and shadow trajectory u′(t):

δJ̄ =
1

T

∫ T
0

J(u′(τ)) dτ − 1

T

∫ T

0

J(u(t)) dt

=

∫ T

0

1

T J(u′(τ(t)))
dτ

dt
+

1

T
J(u(t)) dt

For some perturbation to the tangent equation δf = ε∂f
∂ξ

, the time transformation is

dτ
dt

= 1 + εη:

T =

∫ T

0

dτ

dt
dt = T + ε

∫ T

0

η dt︸ ︷︷ ︸
≡H

= T + εH

Therefore:

δJ̄ =
1

T + εH

∫ T

0

J(u′(τ(t)))− J(u(t)) + εηJ(u′(τ(t)))− εH

T
J(u(t)) dt

Diving through by ε:

∂J̄

∂ξ
= lim

ε→0

[
1

T + εH

∫ T

0

(J(u′(τ(t)))− J(u(t))

ε
+ ηJ(u′(τ(t)))− H

T
J(u(t)) dt

]
=

1

T

∫ T

0

〈
∂J

∂u
, v

〉
dt+

1

T

∫ T

0

ηJ(u(t)) dt− H

T

1

T

∫ T

0

J(u(t)) dt

By the definition of H, and defining x ≡ 1
T

∫ T
0
x dt:

∂J̄

∂ξ
=

〈
∂J

∂u
, v

〉
+ ηJ − ηJ

98

B.3 Cyclic Reduction

B.3.1 Conducting cyclic reduction without inverting main

diagonal matrices

Consider the following system:


D1 U1 0

L2 D2 U2

0 L3 D3




w1

w2

w3

 =


b1

b2

b3


Applying equation (6.5), the following system is obtained:

Aw2 = b

with:

A = −L2D
−1
1 U1 +D2 − U2D

−1
3 L3

b = −L2D
−1
1 b1 + b2 − U2D

−1
3 b3

This system can be solved iteratively, using some preconditioner P :

P∆x = b− Axk, xk+1 = xk + ∆x

Where xk is the value of λ2 after k iterations. To compute Axk, it is decomposed into

three parts:

Axk = −L2D
−1
1 U1xk +D2xk − U2D

−1
3 L3xk = α + β + γ

α and γ include an inverted matrix, but the inversion can be avoided as follows:

−L2D
−1
1 U1xk = α

Compute yk = U1xk:

−L2D
−1
1 yk = α

99

Next, define zk = D−1
1 yk. Iteratively solve:

D1zk = yk

and use the result to compute α:

α = −L2zk

γ and the right hand side b can be computed using a similar method. This idea

can be applied to a much larger system and allows cyclic reduction to be conducted

without inverting any Jacobian matrices. Also, all the matrices are products of Ja-

cobians and identities, so they can be formed when needed, so cyclic reduction is

relatively memory efficient for solving such a large system.

B.3.2 Estimating the operation count for cyclic reduction

Define:

• p: the number of flops required to multiply a vector by a Jacobian matrix for

the system of interest.

• q: the number of iterations required to carry out multiplication by an inverse

matrix.

• n: the number of states in the system

As Li = Fi−1G
T
i−1 and Ui = GiF

T
i , multiplication by these matrices requires 2p

flops. As Di = Fi−1F
T
i−1 + GiG

T
i + fif

T
i , multiplication by these matrices requires

4p+2n flops. For a Jacobi solver, the number of flops for inverse matrix multiplication

is qp.

An estimate of the operation count of cyclic reduction is shown for a few low

order terms. These were computed using a symbolic calculator. Starting from a 1 by

1 coarse grid, the number of flops for multiplication by D, U or L were substituted into

equation (6.5) recursively. The highest order term for a few different grids is shown in

100

table B.1, with the number of operations for a single Jacobi iteration (derived in the

same way) for comparison. These estimates do not take into account fixed number of

operations to backward substitute the coarse grid solution for the fine grid solution.

Time steps m CR Flops Jacobi Flops
3 8pq2 20p+ 13n
5 16pq3 36p+ 23n
9 32pq4 68p+ 43n
17 64pq5 132p+ 83n

Table B.1: Estimate of Operation Count per iteration for cyclic reduction and for the
Jacobi method for comparison.

101

102

Bibliography

[1] R. Mineck B. Diskin and J. Thomas. Textbook multigrid efficiency for leading
edge stagnation. Technical Report TM-2004-213037, NASA Langley Research
Center, Hampton, Virginia, May 2004.

[2] R. E. Bank and C. C. Douglas. Sharp estimates for multigrid rates of convergence
with general smoothing and acceleration. SIAM journal on numerical analysis,
22.4:617–633, 1985.

[3] C. Bonatti, L. Diaz, and M. Viana. Uniform Hyperbolicity: A Global Geometric
and Probabilistic Perspective. Springer, 2005.

[4] T. F. Chan and W. L. Wan. Robust multigrid methods for nonsmooth coeffi-
cient elliptic linear systems. Journal of Computational and Applied Mathematics,
123.1:323–352, 2000.

[5] J. Ding and T. Li. Markov finite approximation of frobenius-perron operator.
Nonlinear Analysis, Theory, Methods & Applications, 17:759–772, 1991.

[6] G. Eyink, T. Haine, and D. Lea. Ruelle’s linear response formula, ensemble
adjoint schemes and lévy flights. Nonlinearity, 17:1867–1889, 2004.

[7] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins
Univ. Press, Baltimore, 1996.

[8] B. Hasselblatt. Hyperbolic dynamical systems. In Handbook of Dynamical Sys-
tems 1A, pages 239–319.

[9] J. M. Hyman and B. Nicolaenko. The kuramoto-sivashinsky equation: A bridge
between pde’s and dynamical systems. Physica D: Nonlinear Phenomena, 18:1-
3:113–126, January 1986.

[10] A. Jameson. Aerodynamic design via control theory. Journal of Scientific Com-
puting, 3:233–260, 1988.

[11] J.A. Krakos, Q. Wang, S.R. Hall, and D.L. Darmofal. Sensitivity analysis of limit
cycle oscillations. Journal of Computational Physics, 231:8:3228–3245, 2012.

[12] D. Lea, M. Allen, and T. Haine. Sensitivity analysis of the climate of a chaotic
system. Tellus, 52, 2000.

103

[13] D. Lea, T. Haine, M. Allen, and J. Hansen. Sensitivity analysis of the climate of
a chaotic ocean circulation model. Journal of the Royal Meteorological Society,
128:2587–2605, 2002.

[14] E. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences,
20:130–141, 1963.

[15] S. F. McCormick and J. W. Ruge. Multigrid methods for variational problems.
SIAM Journal on Numerical Analysis, 19.5:924–929, 1982.

[16] S. Y. Pilyugin. Shadowing in dynamical systems. Lecture Notes in Mathematics,
1706, 1999.

[17] T. H. Pulliam. Low reynolds number numerical solutions of chaotic flow. In Proc.
AIAA 27th Aerospace Sciences Meeting, Reno, NV Symposium on the Theory of
Computing, 1989. AIAA 89-0123.

[18] S. Gomez Q. Wang and P. Blonigan. Towards scalable parallel-in-time tur-
bulent flow simulations. Submitted to Physics of Fluids. Preprint available at
arXiv:1211.2437, 2013.

[19] J.J. Reuther, A. Jameson, J. J. Alonso, M. J. Rimlinger, and D. Sanders. Con-
strained multipoint aerodynamic shape optimization using an adjoint formula-
tion and parallel computers. Journal of Aircraft, 36:21–58, 2001.

[20] D. Ruelle. Differentiation of srb states. Communications in Mathematical
Physics, 187:227–241, 1997.

[21] J. Thuburn. Climate sensitivities via a fokker-planck adjoint approach. Quarterly
Journal of the Royal Meteorological Society, 131:73–93, 2005.

[22] D. Venditti and D. Darmofal. Grid adaptation for functional outputs: Ap-
plication to two-dimensional inviscid flow. Journal of Computational Physics,
176:40–69, 2002.

[23] V. E. Henson W. L. Briggs and S. F. McCormick. A multigrid tutorial. Society
for Industrial and Applied Mathematics, 2000.

[24] Q. Wang. Forward and adjoint sensitivity computation of chaotic dynamical
systems. Journal of Computational Physics, 235:1–13, February 2013.

[25] Q. Wang and J. Gao. The drag-adjoint field of a circular cylinder wake at reynolds
numbers 20, 100 and 500. submitted to the Journal of Fluid Mechanics, 2012.

[26] Q. Wang and R. Hui. Sensitivity computation of periodic and chaotic limit
cycle oscillations. Submitted to SIAM J. Sci. Comp. Preprint availible at
arXiv:1204.0159, 2013.

104

