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Abstract

Computational methods for sensitivity analysis are invaluable tools for fluid dynam-
ics research and engineering design. These methods are used in many applications,
including aerodynamic shape optimization and adaptive grid refinement.

However, traditional sensitivity analysis methods break down when applied to
long-time averaged quantities in chaotic dynamical systems, such as those obtained
from high-fidelity turbulence simulations. Also, a number of dynamical properties of
chaotic systems, most notably the “Butterfly Effect”, make the formulation of new
sensitivity analysis methods difficult.

This paper will discuss two chaotic sensitivity analysis methods and demonstrate
them on several chaotic dynamical systems including the Lorenz equations and a
chaotic Partial Differential Equation, the Kuramoto-Sivshinsky equation. The first
method, the probability density adjoint method, forms a probability density func-
tion on the strange attractor associated with the system and uses its adjoint to find
gradients. This was achieved using a novel numerical method in which the attractor
manifold, instead of a region of phase space, is discretized. The second method, the
Least Squares Sensitivity method, finds some “shadow trajectory” in phase space
for which perturbations do not grow exponentially. This method is formulated as
a quadratic programing problem with linear constraints. Several multigrid-in-time
methods to solve the KKT system arising from this optimization problem will be
discussed in depth.

While the probability density adjoint method is better suited for smaller systems
and reduced order models, least squares sensitivity analysis, solved with a multigrid-
in-time method could be applied to higher dimensional systems such as high fidelity
fluid flow simulations.
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Chapter 1

Introduction

1.1 Motivation

Sensitivity analysis of systems governed by ordinary differential equations (ODEs)
and partial differential equations (PDEs) is important in many fields of science and
engineering. Its goal is to compute sensitivity derivatives of key quantities of interest
to parameters that influence the system. Applications of sensitivity analysis in science
and engineering include design optimization, inverse problems, data assimilation, and
uncertainty quantification.

Adjoint based sensitivity analysis is especially powerful in many applications,
due to its efficiency when the number of parameters is large. In aircraft design, for
example, the geometric parameters that define the aerodynamic shape is very large.
As a result, the adjoint method of sensitivity analysis has proven to be very successful
for aircraft design [10], [19]. Similarly, the adjoint method has been an essential
tool for adaptive grid methods for solving PDE’s [22], solving inverse problems in
seismology, and for assimilating observation data for weather forecasting.

Sensitivity analysis for chaotic dynamical systems is important because of the
prevalence of chaos in many scientific and engineering fields. One example is highly
turbulent gas flow of mixing and combustion processes in jet engines. In this example,
and in other applications with periodic or chaotic characteristics, statistical averaged

quantities such as mean temperature and mean aerodynamic forces are of interest.
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Therefore, the general problem this paper seeks a solution to is:

. —
Given (fi—q; = f(u,§), 7:7151010%/0 J(u,&)dt, Compute g—é (1.1)

Sensitivity analysis for chaotic dynamical systems is difficult because of the high
sensitivity of these systems to the initial condition, known as the ”Butterfly Effect”.
Slightly different initial conditions will result in very different solutions, which diverge
exponentially with time [14]. This also results in exponential growth of sensitivities
and therefore the sensitivity of long-time averaged quantities is not equal to the long-
time average sensitivities of chaotic systems [12]. Because the derivative and long-time
average do not commute, the traditional adjoint method computes sensitivities that

diverge, as shown in the work done by Lea et al. [12].

This paper presents two new methods for computing sensitivities of mean quanti-
ties in chaotic dynamical systems. The two methods require that the chaotic system

is ergodic; that long time behavior of the system is independent of initial conditions.

The key idea of the first method, the probability density adjoint method, is to

describe the objective function J as an average in phase space as in [21]:

J = /n J(u)ps(u)du (1.2)

The probability density function or the invariant measure of the chaotic system pg(u)
is governed by a probability density equation, whose adjoint equation can be solved

to compute the desired sensitivities.

The second method, the least squares sensitivity (LSS) method, finds a perturbed
trajectory that does not diverge exponentially from some trajectory in phase space.
This non-diverging trajectory, called a “shadow trajectory”, has its existence guaran-
teed by the shadowing lemma [16] for a large number of chaotic systems and can be
used to compute sensitivities. The shadow trajectory is found by solving a quadratic
programing problem with linear constraints, and is more readily extendible to high

dimensional systems than the probability density adjoint method.
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1.2 Past Work

Prior work in this area includes the ensemble-adjoint method proposed by Lea et
al. [12]. This method has been applied to an ocean circulation model with some
success [13]. Eyink et al. then went on to generalize the ensemble-adjoint method
[6]. The ensemble-adjoint method involves averaging over a large number of ensemble
calculations. It was found by Eyink et al. that the sample mean of sensitivities
computed with the ensemble adjoint approach only converges as N %46 where N is
the number of samples, making it less computationally efficient than a naive Monte-
Carlo approach [6].

More recently, a Fokker-Planck adjoint approach for climate sensitivity analysis
has been derived [21]. This approach involves finding a probability density function
which satisfies a Fokker-Planck equation to model the climate. The adjoint of this
Fokker-Planck equation is then used to compute derivatives with respect to long time
averaged quantities. However, this method requires the discretization of phase space,
making it computationally infeasible for systems with a high number of dimensions.
Also, the method requires adding diffusion into the system, potentially making the

computed sensitivities inaccurate.

1.3 Thesis Outline

The rest of this paper is organized as follows: chapter 2 discusses the breakdown of
traditional sensitivity analysis methods for chaotic systems and the well-posedness of
the problem (1.1) by analyzing the differentiability of the time averaged quantities
J in both discrete and continuous chaotic dynamical systems. Chapter 3 presents
the probability density adjoint method for chaotic, 1D iterated maps. Chapter 4
extends the probability density adjoint method to continuous dynamical systems,
with the Lorenz equations as an example. Chapter 5 discusses least squares sensi-
tivity analysis (LSS) and demonstrates it on a system of ordinary differential equa-

tions (ODEs), the Lorenz equations, and a partial differential equation (PDE), the
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Kuramoto-Sivashinsky (KS) equation. Chapter 6 discusses several multigrid-in-time
schemes that could be used to solve the KKT system associated with LSS. Chapter

7 concludes this paper.
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Chapter 2

Computing Sensitivities of Chaotic

Systems

2.1 Traditional Sensitivity Analysis Methods

2.1.1 Forward/Tangent Sensitivity Analysis

Traditional sensitivity analysis for the system governed by equation (1.1) is conducted

by solving the following equation:

o 1 [ToJ
Y
o T Jy 0§

The term %g] can be computed by solving the linearization or tangent equation of the

ODE of interest:

dv  Of af ou
- L —L = 1
i "o T VT (21)
And using the chain rule:
oJ 1 [T /oJ

To compute sensitivities using forward sensitivity analysis:
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1. Compute the forward solution u by integrating the ODE in equation (1.1) for-

ward in time.

2. Compute the tangent v by integrating equation (2.1) forwards in time (starting

from t = 0). Note that % is computed using the forward solution wu.

3. Use equation (2.2) to compute gradients.

Forward sensitivity analysis is best for situations with few parameters, &, and

many objective functions, J.

2.1.2 Backward/Adjoint Sensitivity Analysis

The adjoint method allows us to efficiently compute the sensitivity of J to many dif-
ferent parameters. Using the adjoint, the computational cost to compute sensitivities
to all parameters of interest is roughly that of two forward integrations [10].

Using forward sensitivity analysis would require solving for v for every parameter
&. To avoid this, start by adding the inner product of the adjoint variable i and
equation (2.1):

a7 1 (T /aJ dv Of  Of
1) (oo (o ((Frae ) @

Where the inner product (-,-) is a dot product for vectors for an ODE or the dis-
cretization of a PDE. Using integration by parts:

0F _1 [ (9 v Of° o7 .
o TJy \ou prim L) dt
Where 2* denotes the transpose or complex conjugate of x. Rearranging to collect

terms including v:

oJ 1 (" dy  Of* 9J of
a_g_z_ﬁ/o <(a+a—u +%>>+<8—f,w> g+ (o) 1
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To eliminate any dependence of the gradient on the tangent solution v, we choose the

adjoint variable to satisfy:

dip Of*
W9y %o ) = wm) = (2:3)

Where [0] is a vector of all zeros. Now sensitivities can be computed using the

following equation:

2o ()

For different parameters &, % will change, but not 1. Therefore, to compute

sensitivities to &, just compute g—g and substitute it into equation (2.4).

To compute sensitivities:

1. Compute the forward solution u by integrating the ODE in equation (1.1) for-

ward in time.

2. Compute the adjoint ¢ by integrating equation (2.3) backwards in time (from
t =T tot=0). Note that % is computed using the forward solution wu.

3. Use equation (2.4) to compute gradients.

2.2 Breakdown of traditional sensitivity analysis

for chaotic systems

Although traditional sensitivity analysis methods work for systems with initial tran-
sience and can be modified to work for systems with limit cycles [11], the traditional
sensitivity analysis methods discussed in the previous section break down for chaotic
systems.

Consider the general problem defined in chapter 1, equation (1.1). Define:
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7'Q =7 [ Huw.oa T7(E = Jim )

T—00

Where J* is the infinite time average. For non-chaotic systems, J7 will converge

to J* as T — oo. However, this is not the case for chaotic systems, for which:

> i (2.5)

In words, the derivative of a time averaged quantity is not equal to the time aver-
aged derivative of that quantity. This inequality occurs because uniform convergence

of the derivatives is not achieved:

T B T
im [ tim ZEFE) =IO [
T—00 0 €—00 € T— 00 0 af

Consider the Lorenz equations, a low order model of Rayleigh-Bénard convection [14]:

dx dy dz

2 sy — 2 alr—2) — 2 e ry—bz. 2.
o s(y — ), = r(r—z)—y, o =Ly —bz (2.6)

As shown in figure 2-1, the magnitude of local derivatives grows exponentially as T’
is increased. However, the overall trend of mean z versus r indicates that g—f ~ 1. This
shows that the traditional sensitivity analysis methods do not give useful sensitivity

data for chaotic systems.

The discrepancy in equation (2.5) occurs because of the system’s unstable mode
associated with its positive Lyapunov exponent. The Lyapunov exponent is the rate
at which two trajectories that are initially a short distance apart in phase space at
some time converge (or diverge) in time. Unlike steady and periodic systems, chaotic
systems have at least one positive Lyapunov exponent, meaning that two initially
close trajectories will diverge. This means the sensitivity of J to some perturbation
at time ¢ = 0 will grow exponentially in time, resulting in the inequality of equation

(2.5). This divergence is the manifestation of Edward Lorenz’s “Butterfly effect” [14].
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Figure 2-1: Lorenz equation sensitivities. The objective function is time-averaged z.
The derivatives are with respect to the parameter r. [12]
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2.2.1 Sensitivity analysis of chaotic fluid flows

The divergence of time averaged sensitivities has also been shown (indirectly) by
the divergence of the magnitude of the drag-adjoint field of a cylinder in cross flow
[25]. This section demonstrates the problem for a NACA 0012 airfoil at a high
angle of attack, as this geometry and configuration is commonplace in aerospace
applications, including low speed aircraft maneuvers, and air flow around rotor and
propeller blades. The sensitivity of time averaged drag with respect to angle of attack
was investigated. Work by Pulliam [17] indicates that the airflow around a NACA
0012 at 20 degrees angle of attack and free stream Mach number of 0.2 is chaotic
when the Reynolds number is 3000 and above. It is important to note that it is not

known if the chaos observed by Pulliam is a physical property of the flow or a purely

numerical phenomenon.

Figure 2-2: Vorticity contours for Mach 0.1, Reynolds number 10000 flow past a
NACA 0012 airfoil at an angle of attack of 20 degrees.

All simulations were run using NASA’s FUN3D CFD code, which includes a dis-
crete adjoint solver. Divergence of the adjoint variable, which is used to compute
sensitivity gradients, is observed by averaging the sensitivity over time intervals of
different lengths. As the time interval of the average is increased in length, the mag-
nitude of the sensitivity should increase exponentially, as observed for the Lorenz
equation in the previous section. The adjoint is propagated backwards in time, and

earlier perturbations will have an exponentially greater effect on the final state of the
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system than later perturbations.

The simulation was a NACA 0012 at 20° angle of attack in M = 0.1, Re =
10000 flow. For these parameters the adjoint variables were observed to diverge
exponentially with backwards time. This is seen from the divergence of the L2 norm
of the adjoint residual shown in figure 2-4. This divergence shows that FUN3D’s

adjoint solver breaks down when applied to chaotic flow fields.

Mach=0.1
Alpha=20 deg
Re=10,000

0.1

m“

HM’

o
=
5

w i M J\ ‘\ |
‘H I\f !\l'lf ”\M‘” v ﬂm\p “”M

\

n n 1 n n 1 n n 1 J L n L 1 n " n 1 n " n 1 J
0 5001 10000 15000 0 5000 10000 15000
Pnysu:al Time Step Time Step

Figure 2-3: Drag coefficient Cy versus  Figure 2-4: L2 norm of the adjoint resid-
time step for the NACA 0012 airfoil. The ual versus time step. Note the exponen-
aperiodic nature of drag is one indication  tial increase in magnitude as the adjoint
that the air flow is chaotic. is propagated further back in time.

As in Pulliam’s work it is uncertain whether this chaos is a physical or numerical
effect. Regardless of the source of the chaos, the divergence of the adjoint-based
gradient poses a serious problem to engineers who wish to perform sensitivity analysis

on simulations with chaotic flow fields.

2.3 Smoothness of the Mean and Stationary Den-
sity Distribution of Chaos

Not every chaotic dynamical systems has differentiable mean quantities J. Hyper-
bolic chaos, a class of dynamical systems with ideal attractors, are known to have
mean quantities that respond differentiably to small perturbations in its parameters

[3]. Chaotic systems whose mean quantities are differentiable to perturbations are
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generally classified as quasi-hyperbolic systems [3]. Other chaotic dynamical systems
are known as non-hyperbolic. In these non-hyperbolic systems, the mean quantities
are usually not differentiable, or even continuous as the parameters vary. In fact,
the long time average for non-hyperbolic systems may have non-trivial dependence
on the initial condition, leading to mean quantities that are not well-defined. This
section numerically demonstrates this difference between quasi-hyperbolic chaos and
non-hyperbolic chaos with examples both in 1D maps and in 3D continuous chaotic

dynamical systems.

We first study three parameterized 1D chaotic maps:

1. The logistic map

Lkt1 = Eogistic(l‘k) = <4 - %) xk<1 - xk) (27)
2. The tent map
_ _ £\ .
Ty = Fren(x) = | 2 — 3 min(zg, 1 — xy) (2.8)

3. The Cusp map

13 1 1 =z
Ik—l—l:-Florenz(xk): (1_1 1-—- §—ZE - Z_E

) (2.9)
We also consider another “sharp” version of the Cusp map

T = Florens (1) = (1 - i) (1 - ‘% - x‘ - ('}1 - )0'?)) (2.10)

In all three maps, the parameter £ controls the height of the maps. Figure 2-5 shows

the logistic map for £ = 0.8, the tent map for & = 0.2 and the two Cusp maps for
£=0.2.

Although the logistic map, the tent map and the Cusp map have the same mono-
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tonic trends in [0,0.5] and [0.5, 1], the smoothness of their mean

N
B |
x—}\}gnooﬁkz_:xk (2.11)

with respect to the parameter ¢ are very different. Figure 2-6 plots the mean T of the

three chaotic maps against the parameter £&. The mean is approximated as
1 M N+4ng
TR SN @ik ik = Flag), M =1000,N = 50000,ne = 1000,

=1 k=ng

(2.12)

and x; o are uniformly randomly sampled in [0.25,0.75).
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Figure 2-5: The shape of the logistic, Figure 2-6: Smoothness of T as a func-
tent and Cusp maps. tion of parameter &.

The mean T of the logistic map appears to be discontinuous with respect to &.
The mean of the ten