
Dynamic Programming Applied to
Electromagnetic Satellite Actuation

by
Gregory John Eslinger

B.S., United States Air Force Academy (2011)
Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of
Master of Science in Aeronautics and Astronautics

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013
This material is declared a work of the U.S. Government and is not

subject to copyright protection in the United States

Author .
Department of Aeronautics and Astronautics

May 22, 2013
Certified by. .

Alvar Saenz-Otero
Principal Research Scientist

Thesis Supervisor
Certified by. .

David W. Miller
Professor of Aeronautics and Astronautics

Thesis Supervisor
Accepted by .

Eytan H. Modiano
Professor of Aeronautics and Astronautics

Chair, Graduate Program Committee

Disclaimer: The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the United States Air Force, Department of

Defense, or the United States Government.

2

Dynamic Programming Applied to Electromagnetic Satellite

Actuation

by

Gregory John Eslinger

Submitted to the Department of Aeronautics and Astronautics
on May 22, 2013, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract
Electromagnetic formation flight (EMFF) is an enabling technology for a number
of space mission architectures. While much work has been done for EMFF control
for large separation distances, little work has been done for close-proximity EMFF
control, where the system dynamics are quite complex. Dynamic programming has
been heavily used in the optimization world, but not on embedded systems. In this
thesis, dynamic programming is applied to satellite control, using close-proximity
EMFF control as a case study. The concepts of dynamic programming and approx-
imate dynamic programming are discussed. Several versions of the close-proximity
EMFF control problem are formulated as a dynamic programming problems. One of
the formulations is used as a case study for developing and examining the cost-to-
go. Methods for implementing an approximate dynamic programming controller on a
satellite are discussed. Methods for resolving physical states and dynamic program-
ming states are presented. Because the success of dynamic programming depends on
the system model, a novel method for finding the mass properties of a satellite, which
would likely be used in the dynamic programming model, is introduced. This method
is used to characterize the mass properties of three satellite systems: SPHERES,
VERTIGO, and RINGS. Finally, a method for position and attitude estimation for
systems that use line-of-sight measurements that does not require the use of a model
is developed. This method is useful for model validation of the models used in the
dynamic programming formulation.

Thesis Supervisor: Alvar Saenz-Otero
Title: Principal Research Scientist

Thesis Supervisor: David W. Miller
Title: Professor of Aeronautics and Astronautics

3

4

Acknowledgments

I would like to thank the Air Force for allowing me the opportunity to attend graduate

school. I would also like to recognize a number of people and entities for their support

of RINGS.

• DARPA, especially Dave Barnhart.

• Aurora Flight Sciences, including John, Roedolph, and Joanne.

• The RINGS team at the University of Maryland: Allison Porter, Dustin Alinger,

and Dr. Raymond Sedwick.

• My thesis supervisors, Prof. Miller and Dr. Saenz-Otero.

I would also like to recognize the following people:

• Alex Buck, my partner in crime. Despite you being in the Navy, we managed

to make a good team. Best of luck.

• Bruno Alvisio, good luck carrying on RINGS.

• Hal Schmidt and Evan Wise, its been a pleasure working at the mill with you

gentlemen. May our adventures in California prove even more fruitful.

• My fellow labmates and SPHERES team members. Keep up the good work.

• Michael Frossard, for keeping America safe (or at least training to) while I wrote

this work.

• My mother, father, sister, and girlfriend. Thank you for your love and support.

5

6

Contents

1 Introduction 15

1.1 Motivation . 16

1.1.1 Spacecraft Formation Flight 17

1.1.2 Electromagnetic Formation Flight 19

1.1.3 Resonant Inductive Near-Field Generation System 24

1.1.4 RINGS Control . 26

1.1.5 Dynamic Programming . 27

1.2 Previous Work . 27

1.2.1 EMFF Dynamics . 28

1.2.2 EMFF Testbeds . 28

1.2.3 EMFF Control . 31

2 Dynamic Programming 35

2.1 Fundamentals of Dynamic Programming 37

2.2 Dynamic Programming Formulation Types 39

2.2.1 Discounted Cost . 39

2.2.2 Stochastic Shortest Path . 40

2.2.3 Average Cost . 42

2.3 Approximate Dynamic Programming 42

2.3.1 Aggregation . 42

2.3.2 Cost Approximation . 46

2.4 Applying Dynamic Programming to a Physical System 48

7

3 Formulating RINGS as a Dynamic Programming Problem 51

3.1 RINGS Dynamic Programming Formulations 52

3.1.1 Position State Reduction . 53

3.1.2 Attitude State Reduction . 55

3.2 Specific Formulations . 56

3.2.1 Static Axial Case . 57

3.2.2 Rotating Axial Case . 58

3.2.3 Planer Motion with Commanded Attitude 59

3.2.4 Full Planer with Commanded Torque 60

4 Cost-to-Go For EMFF Systems 61

4.1 Cost-to-Go Results . 61

4.1.1 Aggregation Results . 61

4.1.2 Cost Approximation Results 62

4.2 Analysis . 63

4.2.1 Aggregation Controller Performance 65

4.2.2 Aggregation Balance . 65

4.2.3 Cost Approximation Performance 67

4.2.4 Aggregation vs. Cost Approximation 67

5 Implementing A Dynamic Programming Controller 71

5.1 Control Design Considerations . 71

5.1.1 Problem Formulation . 72

5.1.2 Controller Development . 73

5.1.3 Controller Storage . 73

5.1.4 Controller Operation . 74

5.1.5 Use of Dynamic Programming 74

5.2 Dynamic Programming Implementation 75

5.2.1 General Architecture . 75

5.2.2 Direct Input Controller . 79

5.2.3 Rollout Controller . 79

8

6 Nonlinear Programming Mass Property Identification for Space-

craft 83

6.1 Known Methods for Mass Identification 84

6.1.1 Least Squares Methods . 84

6.1.2 Filtering . 84

6.2 Problem Formulation . 85

6.3 Solving the Program . 88

6.3.1 Computing the Gradient . 88

6.3.2 Gradient-Only Solvers . 90

6.4 Convergence Guarantees . 92

6.4.1 Convexity of h(x) . 93

6.4.2 Convergence on Actual Mass Parameters 94

6.5 Implementation Considerations . 95

7 System Characterization for Thruster-Based Spacecraft 97

7.1 SPHERES With Expansion Port . 98

7.1.1 Predicted Changes . 98

7.1.2 Mass Characterization Test 100

7.1.3 Results . 102

7.2 VERTIGO . 104

7.2.1 Thruster Impingement . 105

7.2.2 Mass Property Identification 108

7.3 RINGS . 108

7.3.1 Expected Results . 110

7.3.2 Thruster Impingement . 113

7.3.3 Mass Property Identification 113

8 Model-Free State Estimation Using Line-of-Sight Transmitters 117

8.1 Motivation . 118

8.2 Problem Formulation . 119

8.3 Position Determination . 120

9

8.3.1 Derivation . 122

8.3.2 Solving for Position . 125

8.3.3 Simulations . 127

8.4 Attitude Determination . 128

8.4.1 Derivation . 128

9 Conclusion 131

9.1 Novel Contributions . 131

9.2 Future Work . 132

9.3 Concluding Remarks . 133

10

List of Figures

1-1 Scope of Motivation . 17

1-2 Example of a Mission Architecture That Uses Wireless Power Transfer 23

1-3 Example of Non-Keplerian Orbits Using EMFF 24

1-4 RINGS and SPHERES During an RGA Flight 25

1-5 Linear Track EMFF Testbed . 29

1-6 3 DoF EMFF Testbed . 30

1-7 µEMFF Testbed . 30

2-1 Simple Markov Process . 35

2-2 Dynamic Programming Analysis of a Simple Markov Process 36

2-3 Stochastic Shortest Path Markov Process 41

2-4 Illustration of State Aggregation . 43

2-5 Aggregation Formulation . 44

2-6 Illustration of Aggregation Techniques 44

2-7 Controller Development Using Dynamic Programming 49

3-1 Definition of Two Coils in Proximity 52

3-2 General RINGS State Illustration . 54

3-3 Definition of Coil Normal Vector . 56

3-4 Static Axial RINGS Setup . 57

3-5 Rotating Axial RINGS Setup . 58

3-6 Full Planer Motion RINGS Setup . 60

4-1 Cost To Go Using Aggregation . 62

11

4-2 Cost To Go Using Cost Approximation With Sample Trajectories . . 64

4-3 Aggregation Performance Over Differing Number of Divisions 66

4-4 Aggregation Performance Over Differing Number of Divisions 68

5-1 Controller Development Flow . 72

5-2 General Control Architecture . 76

5-3 State Breakout Architecture . 77

5-4 RINGS Static Axial Breakout Architecture 78

5-5 Direct Input Controller Architecture 80

5-6 Rollout Controller Architecture . 82

6-1 Hidden Markov Model . 85

6-2 Mass Property Identification Simulation 96

7-1 SPHERES With Expansion Port . 98

7-2 Results of Thruster Characterization Test 101

7-3 Results of Thruster Characterization Test 103

7-4 The VERTIGO System with NASA Astronaut Tom Marshburn [75] . 105

7-5 VERTIGO Thruster Characterization Results 107

7-6 Results of VERTIGO Mass Identification Maneuvers 109

7-7 RINGS Center of Gravity Ground Test 111

7-8 RINGS Thruster Characterization Results 113

8-1 Example Transmitter Setup . 119

8-2 SPHERES Receiver Locations . 120

8-3 Transmitter Distance Illustration . 122

8-4 Bearing Angle and Range Adjustment Probability Distribution Functions124

8-5 Position Estimate Error Analysis . 129

12

List of Tables

1.1 RINGS Technical Specifications . 25

5.1 Controller Trade Space . 72

5.2 Problem Formulation Model Trade Space 73

6.1 Mass Identification Assumptions . 87

7.1 SPHERES CAD Mass Property Predictions 99

7.2 SPHERES Parallelogram Mass Property Results 99

7.3 SPHERES KC-135 Mass Property Results 100

7.4 Monte-Carlo Setup for SPHERES Expansion Port Mass Identification 102

7.5 Monte-Carlo Results for SPHERES Expansion Port Mass Identification 104

7.6 Monte-Carlo Setup for SPHERES/VERTIGO Mass Identification . . 108

7.7 Monte-Carlo Setup for SPHERES/VERTIGO Mass Identification . . 110

7.8 RINGS Center of Mass Ground Testing Results 111

7.9 RINGS Inertia Prediction Calculations 112

7.10 RINGS Inertia Prediction . 112

7.11 RINGS MassID RGA Test Results 114

7.12 RINGS Inertia Experimental Results 114

8.1 SPHERES Receiver Locations . 121

8.2 Model-Free State Assumptions . 121

8.3 Model-Free State Assumptions . 127

13

14

Chapter 1

Introduction

Electromagnetic Formation Flight (EMFF) is the concept of using electromagnets to

control the relative position and orientation of spacecraft while flying in a formation.

EMFF is an enabling technology for a number of spacecraft missions architectures.

While EMFF has been demonstrated on the ground [1], it has yet to be demonstrated

in space. The Resonant Inductive Near-field Generation System (RINGS) will be the

first time EMFF is demonstrated in a microgravity environment [2]. However, the

close proximity of the non-holonomic coils makes control of RINGS difficult, requir-

ing advanced control methods. While there are many potential control methods for

RINGS, this work will use RINGS as a case study for applying dynamic programming

to satellite control.

Dynamic programming has been used as a tool for optimization in many different

fields of study, including mathematics, economics, and computer science; however, it

is rarely used for spacecraft applications. Until recently, spacecraft dynamics, which

include translational and rotational dynamics, were simple enough that linear con-

trollers were sufficient. With the advent of novel, nonlinear actuators, spacecraft

dynamics are becoming increasingly complex, making dynamic programming a po-

tentially useful option. The limiting factor for dynamic programming was the limited

processing power and storage capacity of spacecraft avionics. While computing on

spacecraft still lags behind terrestrial processors, there have been advances in space-

craft processing, making dynamic programming a possibility.

15

However, applying dynamic programming to a physical, embedded systems is not

as straightforward as applying it to a simulation. An embedded system is a system

that a person does not have the ability to directly interface with the system. For

example, engineers typically cannot connect a monitor and keyboard to a satellite,

instead the engineers must infer the state of the system via telemetry and physical

actuation. When dynamic programming is applied to simulations, the simulations

typically are built to easily interface with the dynamic program. Embedded systems,

on the other hand, are not inherently designed to accommodate controllers built using

dynamic programming. This thesis discusses methods for bridging the gap between

embedded physical systems, specifically satellites, and dynamic programming.

The rest of this thesis is organized in two general sections. Chapters 2 to 5 discuss

applying dynamic programming to RINGS. Chapter 2 gives an overview of dynamic

programming and approximate dynamic programming. Chapter 3 formulates the

RINGS system as a dynamic programming problem. Chapter 4 discusses how to find

the cost-to-go using the formulations described in Chapter 3. Chapter 5 describes

methods for implementing the solutions derived in Chapter 4 on the physical system.

The second half of the thesis, Chapters 6 to 8, describes methods for finding

and validating the spacecraft model, which is significant because the model is an

integral part of the dynamic programming formulation. Chapter 6 presents a novel

method for determining the mass properties of a satellite using nonlinear program-

ming. Chapter 7 applies Chapter 6 to three different systems, including RINGS.

Chapter 8 discusses methods for state estimation without the use of models, which is

useful for dynamic programming model validation.

1.1 Motivation

This thesis applies dynamic programming to spacecraft actuation, with a primary

focus on EMFF and RINGS. However, this work can be abstracted to the more general

notion of spacecraft formation control using dynamic programming, or even general

satellite control using dynamic programming. The areas this thesis is motivated by

16

Spacecraft Mission Architecture

Spacecraft Formation Flight

Electromagnetic Formation Flight

RINGS

Spacecraft Control Using Dynamic Programming

Dec
reas

ing
Scop

e

Figure 1-1: Scope of Motivation

is described by Fig. 1-1.

While the motivation for spacecraft development is well known, the motivation

for spacecraft formation flight, electromagnetic formation flight, and RINGS are not.

The motivations for these are discussed in Sections 1.1.1, 1.1.2 and 1.1.3, respectively.

1.1.1 Spacecraft Formation Flight

Spacecraft formation flight is the concept of having multiple spacecraft flying in prox-

imity in order to accomplish a mission. Spacecraft formations can be used to enhance

a number of missions, including:

• Remote Sensing

• Robotic Assembly

• Fractionated Spacecraft Architectures

• Large Satellite Arrays

17

Remote Sensing

Remote sensing stands as one of the major advantages of space [3]. However, mono-

lithic remote sensing satellites have reached the maximum size and weight allowed

by launch vehicles [4]. By using a distributed spacecraft architecture, scientists

can achieve higher resolution images by taking advantage of the distributed, re-

configurable constellation.

For example, synthetic aperture radar (SAR) has proven to be a revolutionary

technology for scientific, commercial, and military applications. However, "the accu-

racy of present spaceborne SAR interferometers is severely limited by either temporal

de-correlation associated with repeat pass interferometry (e.g. Envisat, ERS) or by

the physical dimensions of the spacecraft bus that constraints the achievable baseline

length (e.g. X-SAR/SRTM Shuttle Topography mission). These limitations may be

overcome by means of two spacecrafts flying in close formation building a distributed

array of sensors, where the two antennas are located on different platforms" [5].

Fractionated Architectures

Tightening budgets, increasingly demanding missions, and a shifting geopolitical land-

scape have given rise to a potential new type of spacecraft architecture. Instead of

putting all of the components of a satellite in one monolithic unit, individual compo-

nents of a spacecraft could be flown in proximity. In this architecture, components can

be added or replaced by launching a new component, instead of an entirely new satel-

lites. This architecture can make the system resilient to technical failures, funding

fluctuations, changing missions, and even physical threats [6].

Robotic Assembly

As the complexity of space missions architectures increase, launch vehicle limitations

will limit the size of monolithic spacecraft. If fractionated architectures are not an

option for a particular space mission, then assembly of the spacecraft on-orbit will

be required. Instead of relying on astronauts for assembly of these systems in orbit,

18

robotic assembly stands as a potentially cheaper and safer method of assembling these

satellites [7].

An example of a spacecraft mission that uses robotic assembly is the X-ray Evolv-

ing Universe Spectroscopy (XEUS) satellite. XEUS is designed to search for large

black holes created about 10 billion years ago at the beginning of the universe [8].

During the middle of the mission, the satellite will dock with the International Space

Station in order to replace one part of the satellite with a new part [9].

The University of Southern California has developed a method for robotic assem-

bly that involves using retractable tethers in a microgravity environment to assemble

the structure in a particular configuration [10]. Tethers are a lighter alternative to a

truss structure and allow limited reconfiguration of the system. However, the tethers

must be kept in tension, which complicates the concept of operations.

Carnegie Mellon University is developing the Skyworker system. The concept of

Skyworker is that a machine would "walk" on an existing structure in order to add new

pieces to the existing structure [11]. This system eliminates the problems associated

with free-flying assembly methods, but requires significant infrastructure and may

not be able to service all parts of a structure.

Large Satellite Arrays

Satellite arrays with a large number of satellites could potentially be used to solve

some of the planet’s strategic problems, such as energy shortages. Solar power satel-

lites have the potential of delivering megawatts of power from space [12]. These

satellite arrays would require hundreds of satellites that would have to be either as-

sembled in space or flown in a formation.

1.1.2 Electromagnetic Formation Flight

In order to maintain a spacecraft formation, each satellite must have an actuator in

order to maintain its position and attitude relative to the other satellites. Thrusters,

the conventional technology used for relative and absolute satellite position and at-

19

titude control, have limited fuel and can cloud sensitive optics. Tethers are another

option for maintaining a satellite formation; however, they are difficult to deploy,

limit the orientations of the structure, and require physical attachment of compo-

nents. Electrostatic forces, which are generated by charging up spacecraft, could be

used for formation flight; however, this introduces a risk of arcing to the satellites

[13].

Electromagnetic formation flight is an enabling technology that would remove the

limitations on spacecraft formations due to thruster or tether requirements. Electric-

ity can be generated via solar panels, giving the system a replenishable power source.

Electromagnets will not cloud optics, nor do they require physical attachment between

spacecraft.

Satellite Array Control

The primary function of electromagnetic formation flight is to control and maintain

a spacecraft formation, making it an enabling technology for satellite formation flight

(Section 1.1.1). Using electromagnets, spacecraft can control their position and at-

titude relative to other spacecraft. Since all forces on the satellite array are internal,

the center of mass of the system does not change.

Electromagnetic formation flight has several major advantages over other forma-

tion flight options. Unlike thrusters, EMFF does not require an expendable pro-

pellant; instead, electricity is used. That electricity can be harvested from the sun

via solar panels or produced by other means. This means EMFF can theoretically

operate so long as the satellite has sufficient power. In reality this means that the

"propellant," electricity in this case, may no longer be the limiting factor for mission

lifetime. Another advantage of EMFF for formation flight is the fact that EMFF

is contamination-free. This makes EMFF a potential candidate for formation flight

missions where contamination of optical sensors is a concern [14], [15].

The idea for electromagntic formation flight was originally motiviated by the en-

gineering challenges of the Terrestrial Planet Finder (TPF). The primary goal of the

Terrestrial Planet Finder was to detect Earth-like planets located in habitable orbits

20

around solar type stars using a nulling infrared interferometer [16]. This architec-

ture requires a constantly rotating formation of satellites. Different methods have

been proposed, including tethers and plasma propulsion systems [17]. Propulsion

systems will limit the mission lifetime due to fuel constrictions. Also, plumes from

the thrusters could also cloud the sensitive optics required for such a mission. EMFF

could solve both of these issues, providing a centripetal force without any consumables

or optical impingement.

Satellite thrusters are not the only method for formation flight. As discussed

in Section 1.1.1, tethers and physical attachments have also been proposed for the

specific formation flight mission of robotic assembly. The advantage EMFF holds

is that physical attachment between spacecraft is not required. Tethered formation

flight requires the tethers to be attached to each spacecraft and deployed. This means

the system must either be fully assembled on the ground, which defeats some of the

advantages of spacecraft formation flight, or assembled on-orbit, which is not possible

with tethers alone. Tether anchors cannot not be reconfigured on-orbit, reducing the

flexibility of the system.

Physical attachments for robotic assembly, such as the Skyworker system [11], re-

quire a structure that allows another system to traverse upon it. While this allows the

system to be re-configurable, this also requires building the system robustly enough

that a system could traverse the structure of the satellite. This structural robust-

ness, given the high cost of launch opportunities, may severely stunt the growth of an

on-orbit assembly project. EMFF for robotic assembly would still require extra in-

frastructure for the coils; however, given the close proximity of movement for robotic

assembly, the infrastructure required may be relatively small.

The next generation X-ray telescope, or Gen-X, serves as an excellent case study

for the advantages of EMFF. The Gen-X system will require focal lengths greater than

50m. In a trade study for Gen-X, Ahsun, Rodgers, and Miller compared a structurally

connected X-ray telescope (SCX), a propellant-based spacecraft formation (PFF),

and an EMFF-based spacecraft formation [18]. The authors found that an EMFF-

based system is less massive than a SCX or PFF based system under certain mission

21

conditions. They also found that EMFF becomes even more advantageous when

satellite movement is required. The advantages of EMFF also increase as the mass

of the detector module increases.

EMFF is not without its own disadvantages for formation flight. First, to achieve

actuation authority at significant distances, large amounts of current are required.

While these currents can be achieved using superconducting electromagnets, these

electromagnets then need to be cooled. To realize the advantages of an extended

mission life and no optical contamination, a closed-loop cooling system is required.

While work has been done on these systems, they are not at the same technological

readiness level as EMFF [19]–[21].

Wireless Power Transfer

Wireless power transfer is another potential benefit of electromagnetic formation

flight. If the satellites use electromagnets with an alternating current, an alternating

magnetic field can be generated. This alternating magnetic field can be used to power

or charge other spacecraft without a physical connection.

Consider a satellite architecture where only one satellite in a formation is respon-

sible for power generation. This satellite could have solar panels, a Radioisotope

Thermoelectric Generator (RTG), or other source of power. It could then transfer

some of its power to satellites flying in formation. This would mean the other satel-

lites would not need a power generation source since the power can be supplied to

them remotely. This allows the other satellites to be more specialized for a different

purpose. This architecture is illustrated in Fig. 1-2.

Other Applications

Another use of electromagnetic formation flight is maintaining non-Keplerian motion

of a satellite. Although the center of mass of a satellite formation using electromag-

netic formation flight would move in a Keplerian manner, each satellite would appear

to move in a manner that was not governed by Kepler’s laws of motion. Since most

satellite orbit estimators rely on Keplerian assumptions, flying in a non-Keplerian

22

Power
Generation
Satellite

Commun-
ication
Satellite

Antenna
Satellite

Ground
Station

Data
Handling
Satellite

Power

Power

Power

Signals

Data

Data Commands

Commands

Commands

Figure 1-2: Example of a Mission Architecture That Uses Wireless Power Transfer

manner could defeat conventional satellite tracking methods. This would make the

satellite difficult to track, which is advantageous from a satellite defense perspective.

Fig. 1-3 illustrates a potential orbit where EMFF is used to maintain a non-

Keplerian orbit. Satellites A and B maintain a spin about the cross-track direction,

keeping formation together using an attractive electromagnetic force between the

two. The system center of mass obeys Kepler’s laws, but Satellite A and Satellite

B individually appear to move in a manner that is not predictable under Keplerian

assumptions.

The electromagnets used for electromagnetic formation flight can also be used to

protect the spacecraft from energetic spacecraft radiation. Energetic radiation can

damage spacecraft electronics, resulting in data corruption, satellite resets, or even

permanent satellite failure [22]. However, active magnetic shielding can be used to

deflect the radiation, thus reducing the chances of radiation affecting the spacecraft

[23]. By using the electromagnets on the spacecraft, the spacecraft can generate an

active magnetic field that would act as a radiation shield for the spacecraft.

23

Earth

System Center of Mass Satellite A Satellite B

Figure 1-3: Example of Non-Keplerian Orbits Using EMFF (Not To Scale)

1.1.3 Resonant Inductive Near-Field Generation System

The Resonant Inductive Near-Field Generation System (RINGS) is a testbed that will

be used to demonstrate electromagnetic formation flight in a space. RINGS is spon-

sored by the Defense Advanced Research Project Agency (DARPA) and is lead by

Professor Raymond Sedwick of the University of Maryland. The RINGS are designed

to be integrated into the Synchronized Position Hold Engage and Reorient Exper-

imental Satellites (SPHERES) testbed, which has been onboard the International

Space Station since 2006 [24]–[26]. The combined RINGS and SPHERES system can

be seen during an Reduced Gravity Aircraft (RGA) flight in Fig. 1-4. The RINGS sys-

tem consists of two units; each unit is an AC electromagnet with supporting control

avionics. The specifications of RINGS can be seen in Table 1.1

The RINGS have two general modes: Electromagnetic Formation Flight and Wire-

less Power Transfer. In electromagnetic formation flight mode, the units generate a

synchronized alternating magnetic field that attracts, repels, and torques the units.

Both the amplitude and phase of each unit can be independently controlled. In Wire-

less Power Transfer mode, one unit generates an alternating magnetic field while the

other "receives" the power by placing a load resistor in line with the circuit, dissipating

24

Figure 1-4: RINGS and SPHERES During an RGA Flight

Table 1.1: RINGS Technical Specifications
Description Value
Number of Units 2
Mean Coil Diameter 0.64m
Number of Turns 100
Max Current (RMS) 18A
EMFF Frequency 83Hz
WPT Frequency 460Hz
Unit Mass 17.1 kg

25

the transferred power. While wireless power transfer is a promising new technology,

the focus of this work will be on electromagnetic formation flight relating to RINGS.

1.1.4 RINGS Control

To date, all of the work on EMFF control has assumed a fully controllable dipole. In

a six degree of freedom environment, this requires three orthogonal coils (or at least

three coils where no two are parallel). This allows the magnetic dipole to be pointed

in any direction by controlling the amount of current in each coil. For EMFF testbeds

on the ground, only two coils were required for a controllable dipole, since the system

is limited to three degrees of freedom.

Despite operating in a six degree of freedom environment, RINGS only has one

coil per vehicle. This means the dipole is not fully controllable; instead, only the

magnitude and the polarity of the coil are controllable by the electromagnet itself.

To control the direction of the dipole, the system must be physically rotated. This

makes the system non-holonomic, and subsequently makes the control of RINGS more

difficult than a holonomic EMFF system.

RINGS control is also difficult because of the proximity of the coil. Previous EMFF

work assumed the coils were at least several coil diameters apart. At this distance, the

first term of the Taylor series expansion of the force and torque equations is sufficient

for describing the system behavior. This "far-field" model is used in nearly all of the

previous EMFF research. However, the RINGS will be confined to the SPHERES

working volume. This means the RINGS will rarely ever be more than a few coil

diameters apart. Therefore, the "near-field" model will need to be used to describe

the motion of the RINGS. There is no closed form solution of the "near-field" force and

torque model as a function of attitude and separation, making controller development

even more difficult. Additionally, the "near-field" model is highly nonlinear with

satellite position and attitude.

26

1.1.5 Dynamic Programming

Because of the unique and difficult dynamics presenting by RINGS, dynamic program-

ming was chosen as the control method for this work. While other control methods

can be used [27], dynamic programming was chosen for two main reasons. First, dy-

namic programming offers a robustness for nonlinear systems, something that many

other control methods do not. Secondly, modeling the RINGS system for a dynamic

program requires making less assumptions than other types of controllers.

While dynamic programming is used often in simulation and optimization, it is

rarely used for embedded systems. This is most likely because of the large amount

of storage space required for the lookup tables generated by dynamic programming.

However, this does not mean dynamic programming cannot be applied to embedded

systems. The next generation of aircraft collision avoidance uses dynamic program-

ming to advise pilots of the optimal action when faced with a potential collision [28].

Neural dynamic programming has also been applied to the tracking, control, and

trimming of helicopters [29]–[31].

While Chapters 3 and 4 are specific to the RINGS system, Chapter 2, which

discusses the theory behind dynamic programming and approximate dynamic pro-

gramming, and Chapter 5, which discusses implementing dynamic programming con-

trollers, can be applied to any embedded system. This means that dynamic program-

ming is not necessarily limited to RINGS or EMFF. Given the advances in computing

power and data compression, dynamic programming may become a more prevalent

option for control engineers.

1.2 Previous Work

The previous work discusses in this section pertains to electromagnetic formation

flight. The limited amount of previous work on applying dynamic programming to

embedded systems is discussed in Section 1.1.4. The previous work completed on

mass property identification is discussed in Section 6.1.

In a series of papers, Hashimoto, Sakai, Ninomiya, et al. introduce the idea of

27

using superconducting electromagnets to maintain a satellite formation in low earth

orbit (LEO) [32], [33]. Since then, the Massachusetts Institute of Technology’s Space

Systems Laboratory has taken the initiative on EMFF. While a significant amount of

work has been done examining EMFF at the systems level [15], [34]–[39], the focus

of this literature review will be on the technical aspects of EMFF, namely modeling

and simulation, testbed, and control.

1.2.1 EMFF Dynamics

In the thesis by Elias, a non-linear model of EMFF dynamics was developed [40].

This analysis assumed each satellite had a fully controllable dipole. The satellites

were also assumed to be separated enough such that the "far-field" assumption held.

This "far-field" model assumes the coils are far enough apart such that only the first

term of the Taylor series approximation of the force between two coils is sufficient to

describe their interaction. The model derived by Elias accounts for electromagnetic

forces as well as reaction wheels, the spacecraft bus, and the coupling between the

reaction wheels and the spacecraft.

In a thesis by Schweighart, an in-depth model of the intra-satellite forces gener-

ated by electromagnets is developed [41]. A "near-field" model is developed for the

first time, which describes the forces and torques produced by electromagnetic coils

regardless of separation distance. From the "near-field" model, the "far-field" model

is then derived and compared against the "near-field" model. Methods for solving the

equations of motion are then discussed.

1.2.2 EMFF Testbeds

Under the direction of Professor David Miller, the Massachusetts Institute of Technol-

ogy’s Space Systems Laboratory (MIT SSL) has developed several EMFF testbeds.

Elias developed an 1 Degree of Freedom (DoF) EMFF testbed which rode on a linear

air track [40]. The system consisted of a permanent magnet on a low friction car-

riage, which was allowed to move along the linear track, and an electromagnet fixed

28

Figure 1-5: Linear Track EMFF Testbed [40]

at the end of the track. The current in the electromagnet was manipulated in order

to control the position of the permanent magnet. An ultrasonic ranging device was

used to provide position data. The poles of the system could be changed by changing

the inclination of the air track. This testbed is seen in Fig. 1-5.

The next testbed was 3 DoF testbed consisting of two vehicles, each with two or-

thogonal high temperature superconducting electromagnets [42]. Each vehicle floated

on a planer surface using air bearings. The first testbed was originally designed by

undergraduates [43], with additional work completed by graduate students [1]. The

testbed was able to demonstrate position holds as well as the ability to follow a tra-

jectory using EMFF [44]. One of the vehicles, along with Professor Miller, is seen in

Fig. 1-61.

In an investigation of the use of non-superconducting electromagnets for EMFF,

Sakaguchi developed the µEMFF testbed [45]. This testbed consisted of two tra-

ditional (non-superconducting) electromagnetic coils. One coil was fixed to a servo

motor while another was cantilevered from a bar that was allowed to rotate about an

air bearing. The attitude of the cantilevered coil was also controlled via a servo mo-

tor. The system was able to demonstrate EMFF without the use of superconducting

electromagnets. The µEMFF testbed is seen in Fig. 1-7.
1Credit: William Littant/MIT Photo

29

Figure 1-6: Professor David Miller with the 3 Degree of Freedom EMFF Testbed

(a) Conceptual Rendering. (b) Actual System.

Figure 1-7: µEMFF Testbed [45]

30

1.2.3 EMFF Control

The first investigation into the control of an electromagnetic formation flight was

conducted by Hashimoto, Sakai, Ninomiya, et al. [32], [33]. In their analysis, a two

satellite co-planer formation is considered. These satellites maintain an inertially fixed

separation distance. The effects of disturbance torques and forces are analyzed for

low earth orbit. A phase-shift controller is presented to control the satellite positions.

Kong examined the controllability of an EMFF system [35]. The analysis models

each electromagnetic field as a stationary multi-pole. The analysis showed that the

system is able to control all degrees of translational motion from small perturbations

from a nominal position.

In a thesis [46] and series of papers [37], [47]–[49] by Ashun, a non-linear control

law is developed for EMFF systems. The controller is designed for a system with

any number of satellites. Ashun also shows that, under general assumptions, a multi-

satellite formation can be stabilized [47]. Legendre Psedudospectral Methods are used

to generate the optimal trajectories, while adaptive control is used to account for the

disturbances of Earth’s magnetic field and the errors of the "far-field" EMFF model

[48], [49].

In a thesis by Ramirez Riberos, a method for controlling an EMFF system using

decentralized control is presented [50]. The control method presented uses a "token"

approach where one satellite, which has the "token", is allowed to actuate at a time.

The control problem is split into a "high level" and "low level" problem. In the high

level problem, the order in which the satellites actuate is determined using dynamic

programming. In the lower level problem, a Legendre pseudospectral decomposition

approach to find the appropriate actuator control is used.

In a series of papers by Schweighart [39], [51], [52], control methods are presented

for a mutli-satellite EMFF formation. Control methods for spinning a satellite array

using EMFF are presented [51]. These maneuvers are significant because they would

be required for a sparse aperture satellite formation architecture. For other maneu-

vers, a method of using Newton’s method combined with the continuation method

31

was presented [39], [52]. Since the EMFF dipole solutions are over-determined, a

method for choosing the dipole strengths is also presented [52].

In a paper by Cai, Yang, Zhu, et al., methods for finding the optimal trajectory

for a satellite formation reconfiguration using EMFF is developed [53]. In their for-

mulation, the objective is to minimize the power required to reconfigure a satellite

formation using EMFF. Power was chosen as the objective in order to minimize the

strain on an EMFF cooling system. Gauss Pseudospectral Methods are used to de-

termine the optimal trajectories. In order to implement the trajectories, a trajectory

tracking controller is presented that uses both output feedback feedback linearization

on an inner control loop and adaptive sliding mode control on an outer loop. The-

oretical convergence guarantees for the control are also presented. Simulations are

also shown. The simulations show proper trajectory tracking but also show control

"chatter" in the dipole solutions.

In a series of papers by Wawrzaszek and Banaszkiewicz, the control of a two

satellite planer spinning array is discussed [54], [55]. A linearized model is developed

using the "near-field" model of force is developed for two satellites spinning in an array,

with the coils axially aligned along the line connecting the two satellites’ center of

mass. Stability analysis showed this system is unstable without feedback control. A

linear controller is presented that stabilizes the system for a range of disturbances.

A three body planer formulation where a third coil is centered between two coils is

also presented. The system is shown to be neutrally stable in low earth orbit without

control. Using a linear controller, the system is demonstrated to be stabilized for a

limited set of disturbances.

In a series of papers by Zhang, Yang, Zhu, et al., a nonlinear control method for

docking satellites in six degrees of freedom using EMFF is presented [56], [57]. The

"far-field" force and torque model is used to develop a nonlinear system for control.

The satellites are assumed to have independent angular control, so only translational

control is considered. A controller is developed that uses a linear quadratic regulator

around a pre-designed trajectory. The controller was shown in simulation to control

a docking of two satellites. The paper is novel in that it is the first to address

32

docking of EMFF satellites, but uses the "far-field" model for control development

despite operating the "near-field". The paper does not state whether the "far-field" or

"near-field" model was used for the dynamics of the simulation.

In a paper by Zeng and Hu, a finite time controller for translational dynamics

is presented [58]. A standard "far-field" model is developed and is used for a planer

two satellite system. Convergence of the controller in finite, rather than asymptotic,

time is proven. The controller was shown in simulation to converge in finite time for

multiple scenarios.

33

34

Chapter 2

Dynamic Programming

The idea of dynamic programming was conceived by Richard Bellman. In his work,

Bellman writes "An optimal policy has the property that whatever the initial state and

the initial decision are, the remaining decisions must constitute an optimal policy with

regard to the state resulting from the first decision" [59]. This is known as Bellman’s

Principle, and is the central idea to dynamic programming. More simply stated, if

an trajectory is known to be optimal, then any sub-trajectory of that trajectory is

also optimal.

To illustrate this idea, consider the process illustrated in Fig. 2-1. Each circle is

a state, while each line is a path with an associated transition cost. The objective is

to move from node A to node F with minimum cost. If the optimal trajectory from

A to F is A-C-D-F, then Bellman’s principle states that the optimal trajectory from

C is C-D-F.

A B

C

D

E F

a1

a2

b1

c1

b2

c2

d

e

Figure 2-1: Simple Markov Process

The power of dynamic programming lies in the fact that the optimal trajectory

35

can be found by working backwards from node F. Any trajectory that reaches node

F must go through either nodes D or E. The "cost-to-go" from node D to node F is

known, as well as the cost-to-go from node E to node F. This step is illustrated in

Fig. 2-2(a). Now, the cost-to-go from node B to node F through node D is simply the

summation of the transition cost from B to D and the cost-to-go from node D to F.

The cost-to-go from B to F going through node E can also be computed in the same

manner. The optimal trajectory from node B is simply the trajectory that results in

the lowest cost-to-go. The cost-to-go for node C can be found in a similar manner.

This step is illustrated in Fig. 2-2(b).

A B

C

D

E F

Cost: d

Cost: e

a1

a2

b1

c1

b2

c2

d

e

(a) Step 1.

A B

C

D

E F

Cost: b

Cost: e

Cost: d

Cost: c

c = min{c1 + d, c2 + e}

b = min{b1 + d, b2 + e}

a1

a2

b1

c1

b2

c2

d

e

(b) Step 2.

Figure 2-2: Dynamic Programming Analysis of a Simple Markov Process

With the cost-to-go to node F from both B and C known, the cost-to-go from

node A to F through node C is the summation of the transition cost from A to C and

the cost-to-go from node C to F. This is significant because the cost of all paths from

node C to F are not required; rather, only the cost-to-go from C to F is required. The

path from A to F through B can also be evaluated in such a manner. The optimal

path from A is whichever path that results in minimum cost, determined by Eq. (2.1).

a = min{a1 + b, a2 + c} (2.1)

36

If a2 + c < a1 + b, then the optimal path from A is the path to C. The optimal path

from C is found in a similar manner, solving min{c1 +d, c2 +e}. If c1 +d < c2 +e, then

the optimal path from C is to D and then F. This example illustrates the fundamental

principles of dynamic programming.

While it is easy to evaluate all paths for Fig. 2-1, typical dynamic programming

problems have many more states, making the possibility of evaluating all paths nearly

impossible. The power of dynamic programming is that every path does not need

to be evaluated. Instead, the optimal path can be methodically found in reverse,

reducing the number of paths evaluated.

2.1 Fundamentals of Dynamic Programming

Let xk be the state of a system at time k. The state equation of a system, seen in

Eq. (2.2), computes the propagation of state xk one time step based on the input uk.

xk+1 = f (xk,uk) (2.2)

In a traditional control sense, the objective of a controller is to minimize the cost

function

J0 (x0) =
N∑
k=0

gk (xk,uk,xk+1) (2.3)

where gk (xk,uk,xk+1) is the cost of transitioning from state xk to state xk+1 using

input uk. The cost at time k can be written as

Jk (xk) = gk (xk,uk,xk+1) + Jk+1(xk+1) (2.4)

where

Jk+1(xk+1) =
N∑

i=k+1
gi (xi,ui,xi+1) (2.5)

Jk+1(xk+1) is called the cost-to-go from state xk+1, since it is encapsulates the remain-

ing cost of the trajectory. Bellman’s Principle states that if the optimal cost-to-go at

time k + 1, written as J∗k+1(xk+1), is known for all xk+1, then the optimal cost-to-go

37

at time k can be solved using Eq. (2.6).

J∗k (xk) = min
uk∈Uk

gk (xk,uk, f(xk,uk)) + J∗k+1(f(xk,uk)) (2.6)

Eq. (2.6) is known as Bellman’s Equation and is the basis of dynamic programming.

Dynamic programming finds the optimal cost-to-go for a system by using Bellman’s

Equation backwards on a trajectory. If the terminal costs J∗N(xN) are known for all

xN , then J∗N−1(xN−1) can be found for all xN−1 by using Bellman’s Equation. Once

J∗N−1(xN−1) is known for all xN−1, then J∗N−2(xN−2) can be found for all xN−2. This

process can be repeated until J∗0 (x0) is known for all x0. With the optimal cost-to-go

known for all states and times, the optimal input of the system at xk can be found

by solving Eq. (2.7)

u∗k = arg min
uk∈Uk

gk (xk,uk, f(xk,uk)) + J∗k+1(f(xk,uk)) (2.7)

The advantage of dynamic programming is that it computes the optimal trajectory

for every possible state, meaning dynamic programming converges on the global min-

imum of Eq. (2.3). Other control methods, such as Gauss Pseudospectral methods,

often do not have the global minimum convergence guarantees that dynamic pro-

gramming offers. The convergence guarantees come at the cost of having to compute

and store the cost-to-go for every possible state at every time step. While this is

done off-line, this can still be cumbersome in terms of both required computational

power and required memory. The amount of computation and memory for a dynamic

program increases exponentially with the number of states. This is known as the

"curse of dimensionality".

One way to reduce the amount of computation and memory required is to formu-

late the control problem as an infinite horizon problem. In an infinite horizon formu-

lation, the system is assumed to be run for an infinite amount of time. This makes

the optimal cost-to-go time invariant, which removes the dimension of time from

38

formulation. The cost-to-go for an infinite horizon formulation is seen in Eq. (2.8).

J (x0) = lim
N→∞

1
N

N−1∑
k=0

gk (xk,uk,xk+1) (2.8)

In anticipation of the large number of states for dynamic programming formula-

tions of satellite control problems, the remainder of this work will focus on infinite

horizon dynamic programming.

2.2 Dynamic Programming Formulation Types

If an infinite horizon dynamic program is not formulated correctly, the cost-to-go

described by Eq. (2.8) can become unbounded, which renders the program unsolvable.

There are three general formulations for infinite horizon dynamic programming that

provide bounds on Eq. (2.8). They are:

• Discounted Cost

• Stochastic Shortest Path

• Average Cost

These formulations are described in Sections 2.2.1 to 2.2.3, respectively.

2.2.1 Discounted Cost

In a discounted dynamic programming formulation, the cost function seen in Eq. (2.8)

is adapted by adding a discount factor, α ∈ (0, 1). Using the discount factor, Eq. (2.8)

becomes

J (x0) = lim
N→∞

1
N

N−1∑
k=0

αkgk (xk,uk,xk+1) (2.9)

Assuming that gk (xk,uk,xk+1) ∈ R for all xk,xk+1 ∈ Rn and uk ∈ uk, Eq. (2.9) will

converge finitely [60].

This formulation has the best convergence guarantees out of the three methods

discussed in Section 2.2. It also requires the least amount of adaptation when con-

39

verting a finite horizon problem into an infinite horizon problem. The downside of a

discounted cost formulation is that the trajectories governed by the discounted cost

formulation, when compared against trajectories from a stochastic shortest path or

average cost formulation, may be sub-optimal.

A discounted cost formulation generally works well with a linear quadratic regula-

tor (LQR) cost function, seen in Eq. (2.10). An LQR cost function is quite common in

the control field due to its desirable properties of convexity, existence and simplicity

of the first derivative, and performance guarantees for linear systems. Let xt be the

target state of the system. The LQR cost function takes the form

gk (xk,uk) = (xk − xt)>Q (xk − xt) + u>k Ruk (2.10)

where Q and R are positive definite weighting matrices corresponding to state error

and control input, respectively. An LQR style cost function would work well with a

discounted dynamic programming formulation for regulating a system around a target

state. Assuming that all possible states and controls are in the set of real numbers,

then the LQR cost function will always be bounded, meaning all trajectories in a

discounted DP formulation will have a finite cost.

2.2.2 Stochastic Shortest Path

Consider the Markov process illustrated in Fig. 2-3. In this process, the state of

the system is allowed to travel freely between nodes A,B,C,D, and E. However, once

the state of the system reaches node T, the system will remain at node T for the

remainder of time.

40

A

C

B

D E

T

Figure 2-3: Stochastic Shortest Path Markov Process

In a stochastic shortest path dynamic programming formulation, the Markov pro-

cess is augmented with a state called the termination state, T. If the transition costs

are defined as

gk (xk,uk,xk+1) =


gk (xk,uk,xk+1) , xk 6∈ T

0, xk ∈ T
(2.11)

and there is a positive probability of reaching the termination state from any given

state, then the cost-to-go will remain bounded [60].

As the name suggests, this type of formulation is best for driving a system to a

target set of states via the shortest path. The definition of path will drive the form of

the transition cost function. If this objective is to drive the system to a state via the

shortest spatial route, then the cost function will be driven by the distances between

nodes. If a minimum-time path is desired, then the transition cost will be driven by

the transition time between nodes.

The advantage of stochastic shortest path formulations is that it finds the true

shortest path between any node and the termination state. Discounted cost formu-

lations, when used to find the shortest path to target states(s), may not converge on

the actual shortest path. This is because the discount factor reduces the importance

of the cost-to-go from a particular node, increasing the weight of transition costs on

the state’s cost-to-go. This may result in convergence on a trajectory that is not truly

the shortest path.

The disadvantage of stochastic shortest path formulations is the potential exis-

tence of improper policy. An improper policy exists when a trajectory from a certain

41

state never reaches the termination state. This will cause the trajectory cost to be-

come unbounded, resulting in an infinite cost-to-go for certain states. To ensure that

the cost-to-go is bounded, there must be a positive probability that the system will

reach the termination state from any state.

2.2.3 Average Cost

The average cost formulation can be considered an extension of the stochastic shortest

path formulation. Instead of a termination state, there is a recurring state. The goal

of the dynamic program is to reduce the average cost of the system, where the cost is

reset when the system reaches the recurring state. Unlike the stochastic shortest path

formulation, the system may leave the recurring state. The cost-to-go of an average

cost formulation is bounded so long as there is a positive probability of reaching the

recurrent state from any given state of the system.

2.3 Approximate Dynamic Programming

Despite continual advances in computers, many dynamic programs cannot be directly

solved due to the shear number of states. However, recent advances in approximate

dynamic programming provide approximate solutions for the cost-to-go for a system

that cannot be solved using dynamic programming. There are two general ways to

solve dynamic programs of large scales: state aggregation and cost approximation.

State aggregation is analogous to "lumping" similar states together into an aggregate

state, reducing the total number of states of the formulation. Cost evaluation involves

approximating the cost function with an basis function. This requires projecting the

cost vector into a subspace.

2.3.1 Aggregation

Let C be the set of all possible states of the system. For dynamic programming to

be feasible, the state space must be reduced to a finite number of states. Therefore,

42

Aggregation
C

D1 D2

D3 D4

State Space Aggregated State Space

x1

x2

x1

x2

Figure 2-4: Illustration of State Aggregation

subsets of points in C are aggregated to make mutually disjoint subsets of C. The

state of the system of this formulation becomes i = 0, ..., n, while Di ⊂ C, i =

0, ..., n represent the set of states that the discrete state i represents. The concept of

aggregation is illustrated in Fig. 2-4.

This type of formulation transforms a deterministic formulation into a stochastic

one. When the system is at state i, the actual state of the system is one of the

states in Di. Let pij (u) be the probability of transitioning from aggregate state i

to aggregate state j when input u is applied to the system. Using the framework

described in Fig. 2-5, the aggregate state transition probabilities can be computed

using Eq. (2.12).

pij(u) =
∑
x

dix
∑
y

pxy(u)ayj (2.12)

There are many ways to define the dissaggregation and aggregation probabilities.

The simplest method is called hard aggregation. The hard aggregation technique

is equivalent to a nearest-point approximation, where the aggregation probabilities

are assigned based on singular aggregate state that encompasses the point. Hard

aggregation can be described using Eqs. (2.13a) and (2.13b) and is illustrated in

Fig. 2-6(a).

dix =


1, x ∈ Di

0, x 6∈ Di

(2.13a)

43

Aggregate
State i

System
State x

Aggregate
State j

System
State y

Disaggregation
Probabilities dix Transition

Probability
pxy(u)

Aggregation
Probabilities ayj

Transition
Probability
pij(u)

Figure 2-5: Aggregation Formulation [60]

1 2

3 4

x1

x2

(a) Hard Aggregation.

1 2

3 4

x1

x2

(b) Soft Aggregation.

Figure 2-6: Illustration of Aggregation Techniques

ayj =


1, y ∈ Dj

0, y 6∈ Dj

(2.13b)

Another aggregation and disaggregation method is called soft aggregation. In soft

aggregation, the probabilities are are assigned based on an interpolation of the prob-

abilities of the aggregate states. Soft aggregation is illustrated in Fig. 2-6(b).

Bellman’s equation for an aggregate state formulation can be seen in Eq. (2.14).

J∗ (i) = g (i,u) +
n∑
j=0

pij (u) J∗ (j) (2.14)

To solve for the fixed point described in Eq. (2.14), there are three general methods

44

to use:

• Value Iteration

• Policy Iteration

• Linear Programming

Policy iteration and linear programming are better suited problems with a small

number of states, while value iteration is more suitable for problems with a large

number of states. In anticipation of dealing with a large number of states, value

iteration will be the solution method considered here. Let

(TJ)(i) = min
u∈U(i)

g(i,u) +
n∑
j=1

pij(u)J(j) (2.15)

be the mapping of T . Value iteration looks to find the fixed point J∗(i) = TJ∗(i) for

all i = 0, ..., n by iterating the mapping TJ(i).

J∗(i) = lim
k→∞

(T kJ)(i) (2.16)

For value iteration to be implemented, the term pij(u)J(j) must be approximated.

If points in Di, i = 0, ..., n are uniformly distributed and sampled q times, pij(u)J(j)

can be approximated by

pij(u)J(j) ≈ 1
q

q∑
s=1

J(js) (2.17)

where

xs ∈ Di (2.18a)

f(xs,u) ∈ Djs (2.18b)

The other other adjustment for aggregation methods is if f(xk,uk) /∈ C for all uk ∈

Uk. This happens when the system, by the nature of the dynamics, transitions out

of the state space regardless of the control applied. In this case, the system can be

penalized with cost τ . If a stochastic shortest path formulation is used, the system

can also transition to the termination state, since the system would terminate anyway.

45

The algorithm used for solving the the aggregation formulation is seen in Algo-

rithm 1.

Algorithm 1 Aggregation Value Iteration Algorithm
Given J0 (i)
for k = 0, ..., N do . Run through N iterations

for i = 0, ..., n do . Loop through all aggregation sets
for m = 0, ..., p do . Loop through inputs in U

um ∈ U
for s = 1, ..., q do . Run through q samples

xks ∈ Di . Sample a point in Di

xk+1
s = f(xks , um) . Propagate the state equation
ĝk(s) = g(xks , xk+1

s , um) . Compute transition cost
if xk+1

s /∈ C then . Check for out-of-bounds
Ĵk(s) = τ . Penalize out of bounds

else
Ĵk(s) = J(j), where xk+1

s ∈ Dj

end if
end for
g̃k(m) = 1

p+1
∑p
s=0 ĝk(s) . Compute expected transition cost

J̃k(m) = 1
p+1

∑p
s=0 Ĵk(s) . Compute expected cost-to-go

end for
Jk+1(i) = minm∈(1,..,p) gk(m) + J̃k(m) . Evaluate Bellman’s equation

end for
end for

2.3.2 Cost Approximation

In cost approximation a basis function, combined with tuning parameters, is used to

approximate the cost-to-go of the system. The cost approximation takes the general

form of J̃(φ(x), r), where φ(x) is a basis function that can be computed given state

x, and r is a tuning parameter for the approximation. In the linear case:

J̃(x, r) = φ(x)r (2.19)

where φ(x) is a row vector and r is a column vector. The key concept of cost ap-

proximation is that an approximation for the cost-to-go can be found on-line using

state information combined with a set of pre-computed tuning parameters r. The

46

true cost-to-go is mapped into the subspace described byφ(x) and r. There are sev-

eral different methods to compute the tuning parameters for a linear approximation,

including:

• Temporal Difference

• Least Squares Temporal Difference

• Least Squares Policy Evaluation

For this work the linear cost approximation, shown in Eq. (2.19), will be used. The

r vector will be updated according to the least squares temporal differences (LSTD)

method. This method involves simulating a long trajectory and building a matrix C

and vector d such that

Cr∗ = d (2.20)

The LTSD finds r∗ iteratively using information from the trajectories. As a trajectory

moves from ik to ik+1, Ck and dk are updated via Eqs. (2.21) and (2.22)

Ck = (1− δk)Ck−1 + δkφ(ik) (φ(ik)− φ(ik+1))> (2.21)

dk = (1− δk)dk−1 + δkφ(ik)g(ik, ik+1) (2.22)

When a batch of simulations is complete, rk is updated using Eq. (2.23).

rk = C−1
k dk (2.23)

Since the trajectories will eventually terminate, it is necessary to restart the trajecto-

ries. To ensure sufficient exploration, a random feasible state is used as the starting

state of the system.

Using the LSTD algorithm described in Algorithm 2 the parameter vector r that

best matches the cost to go can be found via simulation.

47

Algorithm 2 Cost Approximation Iteration Algorithm
Given r0
rk = r0
for k = 0, ..., n do . Loop through n iterations

x0 ∈ Ds

C−1 = [0]
d−1 = [0]
i = 0
while i < N do . Run through N samples

ui = arg minu∈U(i) g (xi, f(xi, ui)) + J̃ (φ (f (xi, u)) r)
xi+1 = f (xi, ui) . Propagate the state equation
δk = 1

k+1
Ci
k = (1− δk)Ci−1

k + δkφ(xi) (φ(xi)− φ(xi+1))>
dik = (1− δk)di−1

k + δkφ(xi)g(xi)
if xi+1 ∈ T then . Check for termination

xi+1 ∈ Ds . Restart with a new point
end if
i = i+ 1

end while
rk+1 = (CN

k)−1dNk
end for

2.4 Applying Dynamic Programming to a Physical

System

While dynamic programming has been used to solve a multitude of complex prob-

lems, dynamic programming solutions have rarely been used as a control method

for physical systems. The large amount of computation required combined with the

large amount of storage space required have hindered dynamic programming’s use

on physical systems. With advances in computing and storage, applying dynamic

programming to physical systems is becoming a reality. The flow of development for

a dynamic programming controller is described in Fig. 2-7.

There are several major considerations when developing a dynamic programming

controller. The first is that the physical system needs to be able to be formulated in a

dynamic programming formulation with as few states as possible. This will most likely

involve mapping the states of the real system into a subspace, performing dynamic

programming on the subspace, and mapping the subspace back to the real system. A

48

Problem
Formulation

Aggregation

Cost
Approx-
imation

Direct
Input
Method

Rollout
Method

Cost-to-go Controller

Figure 2-7: Controller Development Using Dynamic Programming

good understanding of the important versus the non-important states of the system

will be required for the problem formulation. It is up to the control engineer to decide

which states can be simplified and which must be accounted for.

The finding the cost-to-go for a physical system may also be difficult because

the system lives in the real world where an infinite number of states are possible.

While approximate dynamic programming maps the infinite number of states into

a subspace, it is still up to the control engineer to decide which states are feasible

and therefore be accounted for in the cost-to-go. For instance, certain states may

be impossible to achieve because of obstructions or physical limitations. Also, there

may be certain states that have associated trajectories that take the system out of

the state space of the dynamic program. It is again up the control engineer on how

to account for these cases. Chapter 4 will present one method for dealing with these

problems, but there are multiple ways to address these issues.

More considerations for applying dynamic programming to a control problem are

discussed in Section 5.1.

49

50

Chapter 3

Formulating RINGS as a Dynamic

Programming Problem

While the following two chapters will present novel results for RINGS control, the

real purpose of these two chapters are to be a case study for formulating and solving

a control problem for a satellite system using dynamic programming. This chapter

will discuss specific formulations of the RINGS system that are convenient for dy-

namic programming. Chapter 4 will develop solutions of the cost-to-go the specific

formulation outlined in Section 3.2.1.

The most fundamental part of the RINGS formulation is the interaction between

the two coils. The forces and torques on one electromagnet from the other can be

found by integrating the Biot-Savart law, as seen in Eqs. (3.1) and (3.2) [41], where

the terms in these equations are defined in Fig. 3-1.

~F2 = µ0i1i2
4π

∮ ∮ r̂ × d~l1
r3

× d~l2 (3.1)

~τ2 = µ0i1i2
4π

∮
~a2 ×

∮ r̂ × d~l1
r3

× d~l2

 (3.2)

There are no closed form solutions of Eqs. (3.1) and (3.2), so numerical methods

will have to be used to approximate Eqs. (3.1) and (3.2).

51

~r

d~l1

d~l2

~a1

~a2

i1

i2

Coil 1

Coil 2

Figure 3-1: Definition of Two Coils in Proximity

3.1 RINGS Dynamic Programming Formulations

Unlike a simulation built for dynamic programming, which limits the states to those

that the dynamic program is concerned about, an embedded system has a set num-

ber of real, physical states. To implement dynamic programming on an embedded

system, the physical states must be mapped into states that are useful for dynamic

programming. This section will map the physical states of RINGS into states that

are useful for dynamic programming.

A satellite typically has thirteen standard states, which are grouped into four

general categories:

• Position (3 states)

• Velocity (3 states)

• Attitude, measured in quaternions (4 states)

• Angular Rate (3 states)

For a two satellite system, this results in 26 states, which is far too many states for a

dynamic programming formulation. However, symmetry in the problem can be used

to reduce the number of states in the system.

52

3.1.1 Position State Reduction

Let x1 and x2 be the position of satellite 1 and 2, respectively, in the global frame. If

the RINGS units are the only actuators producing force, then all forces on the system

are internal, meaning the center of mass of the system does not change. The location

of the center of mass can be found using Eq. (3.3), while the position of the primary

RINGS unit relative to the center of mass can be found using Eq. (3.4).

xc = 0.5 (x1 − x2) + x2 (3.3)

r = x1 − xc (3.4)

Let xt be the target position of the primary RINGS unit in the global frame. The

target position of the primary RINGS unit relative to the system center of mass can

also be computed using Eq. (3.5).

rt = xt − xc (3.5)

The objective of a controller is to drive r to rt, meaning the target state of the system

is r = rt and ṙ = ṙt. This formulation takes advantage of the fact that the position

of one satellite is symmetric about the origin of the system. This removes the three

position states and three velocity states of the secondary satellite from the formulation

because they can be inferred from the position of the primary satellite with respect

to the center of mass. This symmetry is illustrated in Fig. 3-2.

The state space can be further reduced by mapping the motion of the satellites

into a plane. Consider is plane defined by x1, xc and xt. This plane allows the

reduction of r and rt into r, rt, θ, and θ̇, where θ and θ̇ is the angle and angular rate,

respectively, between r and rt in the plane. This reduces the three position and three

velocity states to a position and an angle with their associated rates. This reduces

the number of states by two.

The distance of a RINGS unit from the center of mass r is found by taking the

Euclidean norm, denoted by ‖ • ‖, of r. Since the RINGS system is assumed to have

53

CoM

RING 1

RING 2

Global Origin

rt

r

−rt

−r

x1

x2

θ

Figure 3-2: General RINGS State Illustration

no external forces, the center of mass does not change. This means the first derivative

of r with respect to time becomes

ṙ = ẋ>1 r
r

(3.6)

The angle between r and rt can be found using the dot product.

θ = cos−1
(

r>rt
r · rt

)
(3.7)

The rate of change of θ is therefore seen in Eq. (3.8a). By canceling out an rt from

both the numerator and the denominator, Eq. (3.8a) can be simplified to Eq. (3.8b).

θ̇ = −
r · rt

(
ṙ>rt

)
− ṙ · rt

(
r>rt

)
(r · rt)2

√
1−

(
r>rt

r·rt

) (3.8a)

θ̇ = −
r
(
ṙ>rt

)
− ṙ

(
r>rt

)
r2 · rt

√
1−

(
r>rt

r·rt

) (3.8b)

54

3.1.2 Attitude State Reduction

The attitude of each RINGS can be summarized by two angles. The in-plane angle

φ describes the attitude of the coil in the plane. The out of plane angle ψ describes

how far the coil is rotated out of the plane. Since the coil is assumed to be radially

symmetric, any rotation about the axis of symmetry, called the coil normal vector,

does not affect the dynamic of the system, so this rotation is ignored.

In order to compute φ and ψ, it is first necessary to define a relative coordinate

system. This coordinate system, defined by
[̂
il ĵl k̂l

]
will be considered inertial but

will be updated at each control update. The primary direction will be parallel to the

position vector.

îl = r
r

(3.9)

The tertiary vector will be normal to the plane of motion, which is defined by the

center of the system, the target position, and the current position.

k̂l = r× rt
‖r× rt‖

, r 6= rt (3.10)

The secondary direction falls out from the primary and tertiary.

ĵl = −î× k̂ (3.11)

The rotation matrix from the global frame to the local frame becomes

TL/G =


î · îl ĵ · îl k̂ · îl
î · ĵl ĵ · ĵl k̂ · ĵl
î · k̂l ĵ · k̂l k̂ · k̂l

 (3.12)

Let ĉ, the coil normal vector in the global reference frame, be the unit vector

normal to the coil plane, as shown in Fig. 3-3.

55

ĉ

Coil

Figure 3-3: Definition of Coil Normal Vector

The coil normal vector in the local frame, ĉl, can be found by using TL/G

ĉl = TL/G · ĉ (3.13)

The in-plane angle φ can then be computed by projecting ĉl into the plane of motion

and computing the dot product between the radial direction and ĉl. This is shown in

Eqs. (3.14a) and (3.14b). Eq. (3.14a) is the dot product, while Eq. (3.14b) computes

the magnitude of the projection of ĉl into the plane.

φ = cos−1


[
1 0 0

]
· ĉl

√
cp

 , c̄z 6= 1 (3.14a)

cp = ĉ>l


1 0 0

0 1 0

0 0 0

 ĉl (3.14b)

The out of plane angle ψ can be found using Eq. (3.15).

ψ = cos−1
(
k̂>ĉl

)
(3.15)

3.2 Specific Formulations

Using the general formulation described Section 3.1, it is possible to further sim-

plify the problem by removing degrees of freedom. The following cases are specific

formulations which have a reduced number of states.

56

3.2.1 Static Axial Case

In the static axial case, the RINGS are assumed to be fixed in attitude and can only

vary position in one dimension. The attitude of both RINGS are fixed such that ĉl
for each RINGS unit is parallel with the other’s. Both RINGS are positioned such

that the center of each coil lies on the line parallel to the coil normal vector. The

only translation of the RINGS units occurs along this central line. An illustration of

this setup is seen in Fig. 3-4.

Line of Travel

r

Figure 3-4: Static Axial RINGS Setup

Let r be the distance from the center of mass of the system to the center of a

RINGS unit, ṙ be the rate of change of the separation distance, and Fa(r, u) be the

axial force on a coil found by evaluating Eq. (3.1) with a separation of r and an input

of u = i1i2. The ordinary differential equation of motion governing this formulation

is seen in Eq. (3.16).

r̈ = −Fa(r, u)
m

(3.16)

In this formulation, φ = 0 and ψ = 0. When implementing the static axial case,

φ and ψ will have to be controlled by a separate controller.

57

3.2.2 Rotating Axial Case

The rotating axial case is the same as the static axial case described in Section 3.2.1,

except for the line of travel is not fixed in inertial space. Instead, the line of travel

rotates about the center of mass. Since the angular momentum of the system of

conserved, the angular rate of the line of travel is affected by the separation of the

RINGS. An illustration of the rotating axial case is seen in Fig. 3-5.

θ

Figure 3-5: Rotating Axial RINGS Setup

The motion of this system is governed by the ordinary differential equation seen

in Eq. (3.17).

r̈ = θ̇2r − Fa(r, u)
m

(3.17)

Let L be the total angular momentum of the system and J be the inertia of the

RINGS units normal to the plane of motion. The angular momentum of the system

58

can be found using Eq. (3.18).

2Jθ̇ + 2mr2θ̇ = L (3.18)

Since there are no external forces or torques on the system, the angular momentum

of the system is conserved. Therefore, Eq. (3.18) can be manipulated in order to find

the angular rate of the system as a function of separation distance.

θ̇ = L

2J + 2mr2 (3.19)

Like the static axial case, φ = 0 and ψ = 0. When implementing the static axial

case, φ and ψ will have to be controlled by a separate controller.

3.2.3 Planer Motion with Commanded Attitude

This case introduces two more states to the system as compared to Sections 3.2.1

and 3.2.2. Now, the RINGS are allowed to move freely in a two dimensional space.

The attitude of the RINGS is assumed to be commanded. This can be accomplished

with a separate attitude controller tracking commanded attitude. Section 5.2 dis-

cusses how this would be accomplished.

It is important to note that the position of one of the RINGS is simply the negative

of the position of the other RINGS unit with respect to the origin. This is illustrated

in Fig. 3-6. This is significant because only the position and velocity of one RINGS

unit must be tracked to have full knowledge of the system, since the state of the other

RINGS unit can be inferred from the first.

The equation of motion for this setup is seen in Eq. (3.20).

ẍ
ÿ

 =

1 0 0

0 1 0

 F (r,u)
m

(3.20)

The required control torque to overcome the torques caused by EMFF can be

found for a given position using Eq. (3.2). This formulation still constrains ψ to 0

59

x

y r

−r

n̂1

n̂2

α

β

Figure 3-6: Full Planer Motion RINGS Setup

but lets φ be commanded instead of fixed.

3.2.4 Full Planer with Commanded Torque

This formulation as the same described in Section 3.2.3, but instead of commanding

attitude, the system can only command torques. This adds four more states to the

system: the two attitudes in the inertial frame α and β, as well as the associated rates

of change. This formulation still requires an auxiliary controller for ψ but allows φ

for both satellites to be controlled by the dynamic programming controller instead of

an auxiliary controller.

60

Chapter 4

Cost-to-Go For EMFF Systems

Like Chapter 3, this chapter serves as a case study for applying dynamic programming

to a physical system. Here results are presented for the static axial RINGS case,

outlined in Section 3.2.1. This formulation is ideal for analysis because it only has

two states, making visualizing the results more simple. The physical parameters for

used are defined in Table 1.1.

4.1 Cost-to-Go Results

Using the methods described in Chapter 2, the cost to go for the RINGS axial static

case were found using both aggregation and cost approximation. The results of both

the aggregation method and cost approximation method are presented below for a

stochastic shortest path formulation.

4.1.1 Aggregation Results

The sets of states Di, i = 0, ..., n where made by defining a set C of all potential

states and then creating a uniformly distributed grid within C. The set C presented

is the convex hull of the points [r, ṙ] = [1.1± 0.9, 0± 0.4], where r is in meters and ṙ

in meters per second. The target box is the convex hull of [r, ṙ] = [1± 0.01, 0± 0.01].

The maximum time τ was set to 30 seconds. The results of this formulation is seen

61

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Seperation Distance (m)

R
at
e
of

C
ha

ng
e
of

Se
pe

ra
tio

n
D
ist

an
ce

(m
/s
)

0

5

10

15

20

25

30

35

40

45

C
os
t
To

G
o

Figure 4-1: Cost To Go Using Aggregation

in Fig. 4-1.

The upper right region of high cost is the "terminal velocity" region of the state

space, where the system has built up sufficient energy to reach escape velocity, hence

why it never reaches the target. There are defined steps in this region because states

that cannot reach the target position propagate to the "terminal velocity" states. The

bottom left region of high cost is the region where no input will prevent the RINGS

from crashing.

4.1.2 Cost Approximation Results

The starting separation of the RINGS was assumed to be uniformly distributed across

the set r = [0.2, 2]. The RINGS are always assumed to be starting at rest, since

this is how a real test would be conducted. The first basis function used was a

two dimensional Taylor series; however, the cost approximation never converged on

62

an optimal set of parameters with the Taylor series basis function. After several

iterations, the matrix Ck would become singular, regardless of the number of terms in

the Taylor series expansion. In addition to that problem, the Taylor series expansion

allowed the cost function to have local minima not at the target set that would

"trap" the simulation. One potential fix for this issue was only using even terms in

the expansion; however, this made the rollout policy optimal to stay at the starting

position for all starting positions.

After iterating over tens of basis functions, the following framework converged on

an optimal set of tuning parameters. Let

h(x) =


x, x > 0

0, x ≤ 0
(4.1)

be a piecewise functions of x. Further, let ‖ • ‖ be the Euclidian norm operator and

xt be the target state. Using Eq. (4.1), the new basis function can be written as

φ(x) =
[
h (xr − xtr) h (− (xr − xtr)) ‖x− xt‖

]
(4.2)

where xr corresponds to the state vector element relating to separation distance. The

trajectories produced by this formulation can be seen in Fig. 4-2.

4.2 Analysis

Given the cost-to-go results presented in Section 4.1, the next step is the controller

development process in to determine the best dynamic programming method for the

system. This involves making a few design decisions in order to obtain the best cost-

to-go for the system. The major decisions for the control engineer discussed here

are:

• Whether to use Aggregation or Cost Approximation Cost-to-Go

• If using Aggregation, which type of interpolation to use

63

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Seperation Distance (m)

R
at
e
of

C
ha

ng
e
of

Se
pe

ra
tio

n
D
ist

an
ce

(m
/s
)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Figure 4-2: Cost To Go Using Cost Approximation With Sample Trajectories

64

• Whether to use Direct Input or Rollout Implementation

There are two trades that are not discussed in this section but nevertheless may be

an important consideration for controller development. The first is the formulation

type. A stochastic shortest path formulation was used here, but a discounted cost

formulation could have also been used. If a discounted cost formulation was used,

then the other trade would be the optimal cost function. While there are methods

for tuning cost functions [61], [62], the choice of cost function is still up to the control

engineer.

4.2.1 Aggregation Controller Performance

The results of the aggregation show that the optimal controller is essentially a "bang-

bang" controller. The controller will use the maximum possible input, either positive

or negative, until it reaches the switching curve, at which point the input maintains

the same magnitude but switches to the opposite sign. The system then travels down

the switching curve to the set of target states. This type of control agrees with the

basic control theory that states a minimum time controller should take the form of a

"bang-bang" controller.

In Fig. 4-1, the upper right corner of the plot appears to have distinct plateaus

of constant cost. This entire region is the region that cannot reach the target state

without leaving the state space. The region that leaves the state space in one con-

trol cycle regardless of input. The associates these states with the transition cost τ

resulting from transitioning to the termination state. The stair effect results from

other states in the terminal velocity region transitioning to the states other states

that have found a path to the out-of-bounds termination state.

4.2.2 Aggregation Balance

Aggregation is a useful technique to reduce an infinite state space into a finite one.

However, the level of aggregation is a balance between controller performance and

storage space. To examine this trade, Algorithm 1 was run for different levels of

65

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Divisions Per State

M
ea
n
Tr

aj
ec
to
ry

C
os
t

Discrititzation Evaluation

Hard Rollout Soft Rollout (Linear Interpolation)
Soft Rollout (Cubic Interpolation) Optimal Linear Feedback Controller

Figure 4-3: Aggregation Performance Over Differing Number of Divisions

aggregation. To compare between different levels of aggregation, the mean of the cost

is used. The results are seen in Fig. 4-3. The average cost-to-go was calculated by

taking the average of all of the values J(i) over all i. The average rollout cost was

calculated by simulating 500 trajectories that started at rest (ṙ = 0).

It is significant to note that the spikes in the data resulted from cost-to-go grids

that had a local minimum that was not in the set of termination states. Certain states

would fall into the local minimum and remain there until the simulation times out.

A better cost metric may have been the integral sum of separation distance error.

Nevertheless, when the aggregation grid was coarse, the rollout policy seemed to

perform at about the same level as the base policy, which was a hard aggregation.

However, in this case, there is a point at about 50 divisions per state that yielded

a significant improvement in the rollout policy. After this point, the rollout policy

outperformed the base policy, which is often a positive property of rollout policies. It is

also significant to notice that after a certain point, increasing the number of divisions

per state yields little marginal benefit. This is significant because optimizing against

this break even point can reduce the storage space required to store an aggregation

66

policy.

Aggregation also suffers from the curse of dimensionality. All spacecraft, including

SPHERES, are subject to controller size constraints. Typically these restrictions

are very constrictive. While the axial case examined in this paper could be loaded

and used to control RINGS, any higher dimensional cases could not be solved using

aggregation. For the formulation described in Section 3.2.4, eight dimensions are

required to describe the system. At ten division per dimension—which is a fairly

coarse grid—at least 763 megabytes of storage space would be required. This is far

to large for the SPHERES satellite. That would even stress the data uplink to the

International Space Station itself.

4.2.3 Cost Approximation Performance

After a significant amount of work, Algorithm 2 was able to converge on an optimal

tuning parameter vector using the basis function described by Eqs. (4.1) and (4.2).

The issue of convergence most likely revolves around the choice of the basis function.

One potential fix to make the algorithm converge would be to find a basis function

that still accurately describe the system without causing Ck to become singular. This

will most likely involve trial and error, although basis function adaptation could also

be used [63]. Ensuring convexity also helped in basis function selection. A convex (or

at least quasi-convex [64]) basis function will help solve convergence issues. However,

pre-describing this type of solution may remove potential basis function candidates.

Also, as evidenced by the failure of the convex Taylor series approximation to con-

verge, having a convex basis function does not guarantee convergence either.

4.2.4 Aggregation vs. Cost Approximation

Given the RINGS system starts at rest (ṙ = 0), the time to the target state is seen in

Fig. 4-4. For any given initial position, the controller based on aggregation methods

reached the target state in fewer time steps. Since aggregation methods store more

information about the cost-to-go function, it is not surprising that the aggregation

67

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

Initial Seperation

Tr
aj
ec
to
ry

C
os
t

Soft Rollout (Linear Interpolation) Cost Approximation

Figure 4-4: Aggregation Performance Over Differing Number of Divisions

method produced a lower time to target.

The major advantage of cost approximation over aggregation is that a cost ap-

proximation algorithm can be stored using significantly less storage space than an

a controller developed using aggregation. Assuming the computational overhead of

evaluating the basis function is low, an aggregation-based and a cost-approximation

based controller would have the same computational overhead; however, the aggre-

gation controller requires the lookup table be stored. As stated in Section 4.2.2, this

overhead may be too much for a spacecraft to handle unless a coarse aggregation is

used, which will affect the controller’s performance.

Another advantage cost approximation has over aggregation is that simulation

based methods can include states that the aggregation state might exclude. In this

case, states with ṙ < 0 might have chosen to attract more, but that would have placed

them out of the state space despite being able to rejoin the state space further down

the trajectory.

The major advantage of aggregation over cost approximation is the ease in which

the controller can be developed. Assuming the computer the controller is developed

on has sufficient resources (processing power and memory), the aggregation controller

68

development is a straightforward extension of finite state infinite horizon controllers.

On the other hand, cost approximation requires intuition into the basis functions. No

matter how much computing power is used, if the basis function do not match the

problem well, then it will be impossible to find an optimal tuning parameter.

69

70

Chapter 5

Implementing A Dynamic

Programming Controller

One of the impediments of using dynamic programming for controller development

is implementing the controller on the system. Spacecraft are often limited in both

storage space and computational ability, making implementing a dynamic program-

ming controller difficult. Therefore, choosing the proper implementation technique is

critical for the feasibility and success of the controller.

5.1 Control Design Considerations

In order do decide whether dynamic programming is an appropriate controller for a

system, the general control engineering process must be considered. Using dynamic

programming as a control method requires a paradigm shift in the spacecraft control

field. Control engineers must consider the available computational and storage facil-

ities on the ground for controller development, as well as the spacecraft capabilities.

Such a foresight is typically not required when developing basic controllers.

In the development of any control, there is a general flow of development, which

is described in Fig. 5-1. While there may be more considerations, including require-

ment verification and control validation, Fig. 5-1 describes the four major steps of

control development. Steps 1,2, and 3 require design inputs from the control engi-

71

Problem
Formulation

Controller
Development

Controller
Storage

Controller
Operation

Ground Development Hardware Implementation

Figure 5-1: Controller Development Flow

Table 5.1: Controller Trade Space
Step Decision Limiting Factor
Problem Formulation Model, States & Inputs
Controller Development Controller Type Computing Resources
Controller Storage Compression Storage Capacity
Controller Operation Computational Power

neer; however, steps 2,3, and 4 have constraints that may guide these decision. The

decisions and limiting factors of the controller development process are summerized

in Table 5.1.

5.1.1 Problem Formulation

Problem formulation involves taking a physical system and describing it with a system

model. Typically this involves describing the system with states and inputs. The

major trade during the problem formulation phase is the balance between accuracy

and simplicity. A formulation that involves a complex model with many states may

describe a system more accurately; however, controller development will be more

difficult because of the complex model. On the other hand, a simple model will be

easier to develop a controller for. The downside is that the controller based on the

simple model may not perform well when implemented on the physical system. This

is because the simplified system may not properly or fully describe the characteristics

of the physical system.

72

Table 5.2: Problem Formulation Model Trade Space
More Simple More Accurate
Analytic Numerical
Linear Non-Linear
Deterministic Stochastic
Continuous Time Discrete Time
Unbounded Control Control Saturation

Typical trades during the problem formulation can be seen in Table 5.2. Table 5.2

is only meant to be an example, the trade space may differ based on the physical

system.

5.1.2 Controller Development

Once a system model is properly formulated, a controller can be developed for the

system based on the system model. The controller development step is typically

where most of the time of the control engineer is spent. The key decision point in

the controller development phase is what type of control will be used. The control

engineer must trade between development time, intellectual difficulty of development,

and available resources. Development time and intellectual difficulty of development

will not be considered here, as they involve the engineer more than the controller

itself. However, available resources—typically computational resources—may limit

what type of control is used. For example, the development of linear controllers

require little to no computational resources during development. Pseudo-spectral

optimal control requires some computational resources. Dynamic programming, de-

pending on the number of states, can require significant computational resources when

developing the cost-to-go.

5.1.3 Controller Storage

Once a controller is developed, it must then be stored in the electronics1 of the physical

system. This typically involves storing or booting a system with the control software.
1Some controllers can be realized via a mechanical system instead of electronics. Those systems

are not considered here.

73

The two considerations here are boot time and storage space. If the controller will be

updated frequently, the time it takes to change the controller may be a consideration.

Where the controller is written is also an important consideration. Depending

on the types of avionics used, the controller may have to be written to a section of

memory that can only be written to a limited number of times. This reduces the

ability to iterate controllers during operation.

The key decision point for the control engineer at this stage is the type and

amount of compression used to store the controller. Data compression is a trade

between the amount of storage space required to store the controller and the amount

of processing required to extract the required information. This trade is largely driven

by the amount of available memory for the controller and the processing ability of

the avionics.

5.1.4 Controller Operation

Once the controller is stored, it is ready to be operated. At this point there are no

more design decisions for the engineer. Instead, the performance of the system can

be measured. The metrics of performance are not only the actual response from the

system, but also the computational load of the controller. Although the controller

may perform well, the controller may also strain the processor, drawing extra power

and dissipating extra heat. If this is the case, then the controller may have to be

redesigned.

5.1.5 Use of Dynamic Programming

Given the considerations listed in Sections 5.1.1 to 5.1.4, the advantages dynamic

programming are:

• A complex model can be used (Section 5.1.1)

• The controller will be robust (Section 5.1.4)

The disadvantages of dynamic programming are:

74

• Controller development will require significant computational resources for sys-

tem with more than a couple states (Section 5.1.2)

• The controller will require a significant amount of storage space (Section 5.1.3)

If the system needs the advantages of dynamic programming and is tolerant of the

disadvantages, then dynamic programming may be an appropriate controller for the

system.

5.2 Dynamic Programming Implementation

There are two general methods for implementing a dynamic programming controller:

• Storing the optimal input as a function of the state directly (Direct Input)

• Storing the cost-to-go and performing a rollout algorithm (Rollout)

The storage requirements of a direct input controller scale linearly with the number

of control inputs, while the storage requirement of a rollout controller is independent

of the number of inputs. However, a direct input controller requires little online com-

putation, whereas the rollout controller may require significant online computation.

The general method for applying a dynamic programming controller to a physical

system, which applies to both direct input and rollout controllers, is discussed in

Section 5.2.1. The specifics of the direct input controller are described in Section 5.2.2,

while the specifics of the rollout controller are described in Section 5.2.3.

5.2.1 General Architecture

The objective of a dynamic programming controller, and typically any controller, is

to take an estimated state and a target state and return the relevant input(s). This

architecture is described by Fig. 5-2.

The controller can be further broken down into the dynamic programming con-

troller and other controllers. This separation may be needed because the state vector

returned by the estimator may not be the same state vector used by the dynamic

75

ControllerTarget State Actuator(s) Physical
System

Sensors &
Estimator

Input(s)

Actual State x

Estimated State x̂

Figure 5-2: General Control Architecture

programming controller. In this case, the state vector returned from the estimator

must be mapped to the states that the dynamic programming controller is expecting.

Additionally, the formulation of the dynamic program may make assumption about

certain states of the physical system. To ensure these assumptions are valid, other

controllers may be necessary to regulate certain states of the system while the dy-

namic programming controller acts on other states of the system. This state breakout

is illustrated in Fig. 5-3.

The first step of the controller is to take the estimated state x̂ and map those

states into the states used in the dynamic programming controller and the auxiliary

controller. The dynamic programming states and auxiliary states are not necessarily

mutually exclusive.

At this point, the dynamic programming controller and auxiliary controller can

run simultaneously. The dynamic programming controller will take the dynamic

programming target state and and the dynamic programming state to determine the

appropriate control. The dynamic programming target state may have been known

a priori, or determined on-line using the same mapping as the estimated state. At

the same time, the auxiliary controller can determine the appropriate control based

on the auxiliary states. Any control method can be used for the auxiliary controller,

so long as the physical system is able to meet the storage and processing demands of

both the dynamic programming controller and auxiliary controller.

Once both the dynamic programming controller and the auxiliary controller have

determined the appropriate control, the controls must reconciled before they can

76

ControllerTarget State Actuator(s) Physical
System

Sensors &
Estimator

Input(s)

Actual State x

Estimated State x̂

State
Mapping

DP
Controller

Auxiliary
Controller

Control
Mixer

Controller

DP
States

Auxiliary
States

DP
Control

Auxiliary
Control

Estimated
State x̂

Dynamic Programming
Target State

Auxiliary
Target State

Input(s)

Figure 5-3: State Breakout Architecture

77

State
Mapping

DP
Controller

Auxiliary
Controller

Control
Mixer

Controller

[
r
ṙ

]

[
φ
ψ

]

Desired
Current

Thruster
Firings

Estimated
State x̂

Target Seperation
Distance rt

Target Relative
Attitude

Input(s)

Figure 5-4: RINGS Static Axial Breakout Architecture

be applied. If the controls are mutually exclusive, then the mixing process is very

straightforward. However, if the dynamic programming controller returns a control

that conflicts with a control returned by the auxiliary controller, the control has

to be reconciled. This may involve choosing one over the other, choosing a convex

combination of the two controls, or some other method. Once the control is reconciled,

it can be passed out of the controller as an input to the actuators.

An example of Fig. 5-3 applied to the RINGS static axial case, described in Sec-

tion 3.2.1, is seen in Fig. 5-4. In this example, the objective is to drive the RINGS

to a target separation distance rt using EMFF while maintaining the RINGS in an

axial configuration using thrusters.

The SPHERES estimator returns a thirteen element state vector for each satellite

containing the (estimated) position, velocity, attitude in quaternions, and angular

rate. The state mapping would be accomplished via the method described in Sec-

tion 3.1. Once the separation distance and the separation distance rate of change

(r and ṙ, respectively) are known, the dynamic programming controller can then be-

gin computing the desired current. When the relative attitude error is known, the

78

auxiliary controller, can determine the appropriate thruster firings to regulate the

attitude.

5.2.2 Direct Input Controller

The most intuitive way to implement a dynamic programming controller is to store

the optimal input as a function of the state. The on-line controller would simply have

to perform a lookup at every control update. To develop such a lookup table, states

would have to be sampled and the input associated with that state stored.

The basic implementation in this form requires storing every input at every sam-

pled state. During a control update, the controller finds the proper input based on

the current state of the system and the stored input table. Finding the proper input

could involve linear or cubic interpolation, or could be as simple as a nearest-point

lookup. A block diagram of this type of architecture is seen in Fig. 5-5. Notice that

the lookup table is a function of the target state(s). This means that a different

lookup table may be required for different target states.

5.2.3 Rollout Controller

The other option is to implement a rollout controller. A rollout controller solves

Bellman’s equation at the current state using the stored cost-to-go as a heuristic.

The advantage of this approach over a direct input method is two fold. First, rollout

algorithms outperform the base heuristic used in the rollout [60]. Second, a rollout

controller requires only storing the cost-to-go for every sampled state, while a direct

input controller requires storing every input at every sample state. The amount of

storage required can increase significantly ff the system has multiple inputs. The

downside of rollout controllers is that they require more on-line computation than

direct input controllers. A rollout controller has to compute the minimum of Bell-

man’s equation, meaning it must predict the state at the next control cycle for a set

of inputs. This requires propagating the system for every set of inputs, which can

be computationally expensive. A block diagram of a rollout controller architecture is

79

State
Mapping

DP
Controller

Auxiliary
Controller

Control
Mixer

Controller

DP
States

Auxiliary
States

DP
Control

Auxiliary
Control

Estimated
State x̂

Dynamic Programming
Target State

Auxiliary
Target State

Input(s)

Lookup
Table

Interpolator

DP Controller

Inputs

Figure 5-5: Direct Input Controller Architecture

80

seen in Fig. 5-6.

The propagation step of the rollout controller takes the estimated state of the

system and predicts the state of the system after input u is applied. This is done

for all potential inputs. If the state equation has a closed form solution, this step

may be very simple. If the state must be numerically propagated, this step may be

computationally intensive. In either case,

x̂k+1(u) = f(x̂k,u) (5.1)

must be computed for all u ∈ U . Once x̂k+1(u) is known, the cost-to-go for each

input must be computed. The cost-to-go in the cost table is typically stored as a

function of the state. To find cost-to-go as a function of input, the cost-to-go must

be evaluated at the potential states stored in x̂k+1(u). This process occurs at the

interpolator step.

Once the cost-to-go as a function of input is known, all that is left is to solve

Bellman’s equation. The optimal control is found by solving

u∗ = arg min
u∈U

g(x̂k, x̂k+1(u), u) + J(x̂k+1(u)) (5.2)

where g(xk,xk+1,u) is the transition cost from state xk to state xk+1 using control u.

81

State
Mapping

DP
Controller

Auxiliary
Controller

Control
Mixer

Controller

DP
States

Auxiliary
States

DP
Control

Auxiliary
Control

Estimated
State x̂

Dynamic Programming
Target State

Auxiliary
Target State

Input(s)

SolverInterpolator

Lookup
Table

Propagator

DP Controller

J(x)

x̂k+1(u)

J(x̂k+1(u))

Figure 5-6: Rollout Controller Architecture

82

Chapter 6

Nonlinear Programming Mass

Property Identification for

Spacecraft

The performance of dynamic programming algorithms, like many other control meth-

ods, depends on the fidelity of the model of the system. Good estimates for the inertia

and center of mass of a spacecraft are required for precision attitude and position con-

trol. When there is an error between the modeled and actual mass properties, extra

propellant or energy is expelled as the controller attempts to fix its own errors. This

also causes a degradation in attitude knowledge, attitude pointing ability, and the

ability to maintain tight position requirements.

This chapter will describe a new method for identifying mass properties in a micro-

gravity environment using nonlinear programming. Section 6.1 provides a summary

of established on-orbit mass property identification. Section 6.2 formulates a mass

property identification problem as a nonlinear program. Section 6.3 discusses how to

solve for the mass properties given the problem formulation. Section 6.4 establishes

the convergence guarantees for this method. Section 6.5 discusses the considerations

when implementing these algorithms on a physical system.

83

6.1 Known Methods for Mass Identification

The previous methods for mass property identification can be grouped into two gen-

eral categories: least-squares methods and filtering methods.

6.1.1 Least Squares Methods

Least squares mass identification algorithms attempt to find the mass properties

contained in the vector x by manipulating Euler’s equation of motion in order to

write it in the form

Ax = b (6.1)

where A is an m by n matrix and b is a n by 1 vector. The mass properties can then

be solved for by multiplying both sides of Eq. (6.1) by the left psuedo-inverse of A.

x = (A>A)−1A>b (6.2)

Tanygin and Williams derived a least squares mass property identification algo-

rithm for coasting maneuvers that was nonlinear in dynamics but linear in mass

properties [65]. Wilson, Lages, and Mah developed a recursive least squares method

for mass property estimation [66].

These methods require knowledge of the angular acceleration of the system. This

typically requires numerical differentiation of the angular rate, which is measured

using rate gyros. Process and sample noise on the rate gyros often lead to poor

estimates of the angular acceleration.

6.1.2 Filtering

It is also possible to consider the mass identification problem as a hidden Markov

model problem. In a hidden Markov model problem, the objective is to find x(t)

given y(0), y(1), ..., y(t). A description of a hidden Markov process is seen in Fig. 6-1.

Filters are often used to solve hidden Markov models. Filters use the measure-

ment at the current time step y(t) as well as a sufficient statistic encapsulating

84

x(t− 1)...

y(t− 1)

x(t)

y(t)

x(t+ 1) ...

y(t+ 1)

Figure 6-1: Hidden Markov Model

y(0), y(1), ..., y(t − 1). Filters that can be used to solve the hidden Markov prob-

lem include:

• Kalman Filter

• Extended Kalman Filter

• Unscented Kalman Filter

• Particle Filter

A main advantage of filters is that they can typically be implemented on-line. This is

particularly useful if the mass properties change in a relatively short period of time

where it is not feasible to compute the mass properties off-line.

Bergmann, Walker, and Levy developed a second order filter to determine the

inertia of a system and Kalman filter to determine the center of gravity [67]–[69].

According to Bergmann, a good estimate for the angular acceleration is required for

the filter to perform well. As discussed in Section 6.1.1, a good estimate of the angular

acceleration may be difficult to compute because it requires numerical differentiation

of noisy data.

6.2 Problem Formulation

Nonlinear programming has not previously been applied to the mass identification

problem. A nonlinear program uses search algorithms to find the minimum of a cost

85

function iteratively by using the gradient and, depending on the search algorithm,

the Hessian of the cost function. Nonlinear search algorithms include:

• Steepest Descent Method

• Newton Method

• BFGS Method

• First-Order Methods

The overall methodology of a nonlinear programming-based mass identification algo-

rithm can be summarized in a three step process that is run iteratively until conver-

gence:

1. Simulate trajectories using a guess of the mass properties

2. Compare the simulated trajectory against a measured trajectory

3. Updated the mass properties guess based on the comparison of the simulated

and actual trajectories using one of the methods described above.

The objective of the mass identification algorithm is to find the inertia tensor J

and center of gravity in the body frame c of a system, where J and c are describe in

Eqs. (6.3) and (6.4), respectively.

J =


jxx jxy jxz

jxy jyy jyz

jxz jyz jzz

 (6.3)

c =
[
cx cy cz

]>
(6.4)

The vector of unknown parameters x can then be written as

x =
[
jxx jyy jzz jxy jxz jyz cx cy cz

]>
(6.5)

86

The motion of all rigid bodies are governed by Euler’s Equations of Motion, seen

in Eq. (6.6).

Jω̇ + ω × (Jω) = τ (6.6)

For a sufficiently small time step, Eq. (6.6) can be written as

ωk+1 = ωk + ∆t · J−1 (τ k − ωk × (Jωk)) (6.7)

where ωk and τ k is the angular rate and applied torque at time k, respectively. In

anticipation of simulating angular rate trajectories based on the values of x, Eq. (6.7)

can be written in terms of x.

ωk+1(x) = ωk(x) + ∆t ·N(x) [τ k(x)− (ωk(x))× [J(ωk(x)])] (6.8)

where N(x) = (J(x))−1.

The assumptions used in the mass identification algorithm are summarized in

Table 6.1.

Table 6.1: Mass Identification Assumptions
Assumption

1 All torques on the system are known

2 The spacecraft is a rigid body, meaning the spacecraft dynamics

can be described by Eq. (6.6). This implies the mass properties are

invariant as a function of time (J̇ = [0], ċ = 0)

3 The time between angular rate measurements is sufficiently small

such that Eq. (6.7) holds

The actual dynamics of the spacecraft are assumed to be governed by the following

two equations.

ω̄k+1 = ω̄k + ∆t · J−1 (τ k − ω̄k × (Jω̄k)) + σk (6.9)

ω̃ = ω̄ + δk (6.10)

87

where ω̄ and ω̃ are the true and measured values of angular rate, respectively, and

σk and δk are random variables associated with process noise and sample noise,

respectively, at time k. However, Assumptions 1 and 2 of Table 6.1 imply that

σk = 0 for all k. The implications of this assumption are discussed in Section 6.5.

The error between a simulated trajectory and an actual trajectory can be measured

using Eq. (6.11).

ei(x) =
i+n∑
k=i

(ωk(x)− ω̃k + E[δk])> (ωk(x)− ω̃k + E[δk]) (6.11)

where ωi(x) = ω̃i.

The cost function described in Eq. (6.12) is the summation of many trajectory

simulation.

h(x) =
N∑
i=0

ei(x) (6.12)

6.3 Solving the Program

Once the objective function is defined, it can then be solved using one of the dif-

ferent nonlinear programming solvers. Most nonlinear programming solvers require

knowledge of the gradient. Since the objective function is computationally intensive,

computing the Hessian of the objective function was considered infeasible. Therefore,

gradient-only solvers are considered here.

6.3.1 Computing the Gradient

Let ωik be the ith element of ωk. The gradient of h can be written as

∇h = 2
N∑
i=0

i+n∑
k=i

∂ωk
∂x
· (ωk(x)− ω̃k + E[δ]) (6.13)

88

where

∂ωk
∂x

=



∂ω1
k

∂jxx

∂ω2
k

∂jxx

∂ω3
k

∂jxx

∂ω1
k

∂jyy

∂ω2
k

∂jyy

∂ω3
k

∂jyy

...
∂ω1

k

∂cz

∂ω2
k

∂cz

∂ω3
k

∂cz


(6.14)

Eq. (6.14) can be computed using Eq. (6.15).

∂ωk
∂x

= ∂ωk−1

∂x
+ ∆t ∂

∂x
(N(x) · τk(x))−∆t ∂

∂x
(N(x) [ωk−1(x)× (J(x)ωk−1(x))])

(6.15)

In order to solve Eq. (6.15), let

z =

 x

ωk−1

 (6.16)

The first term, ∂ωk−1/∂x, is propagated from the previous time step. The second

term, ∂
∂x (N(x) · τk(x)), is straightforward to compute. The last term in Eq. (6.15),

which is more difficult to compute, can be written as f(z), as seen in Eq. (6.17).

f(z) = N(z) (ωk−1 × [J(z)ωk−1]) (6.17)

Solving for ∂f/∂x can be accomplished in the following manner

∂f
∂x

= ∂f
∂z

∂z
∂x

(6.18)

where
∂z
∂x

=

 I 0
∂ωk−1
∂x I

 (6.19)

Finite difference methods are another way of approximating ∇h, since implement-

ing and evaluating Eqs. (6.13) and (6.15) is not trivial.

89

6.3.2 Gradient-Only Solvers

Since the Hessian of the objective function is not easily accessible, the available op-

timization algorithms are:

• Steepest Descent

• Quasi-Newton Methods

• First Order Methods

These methods are outlined below.

Steepest Descent Methods

The Steepest Descent Algorithm, as presented by Prof Robert Freund of MIT, is seen

in Algorithm 3.

Algorithm 3 Steepest Descent
Given x0

k ← 0
repeat

dk := −∇f(xk)
α = arg minα f(xk + αdk)
xk+1 ← xk + αdk

k ← k + 1
until dk = 0

The steepest descent method has the advantage of being one of the simplest op-

timization methods. It is also requires little overhead, as the only information that

is saved from an iteration is the current value of xk. However, the steepest descent

method does use a line search, which can be costly depending on the function. The

steepest descent method can also break down when the problem is ill-conditioned,

that is, when the search path falls into a valley that is steep in one direction but

shallow in another.

90

Quasi-Newton Methods

Quasi-Newton Methods attempt to build up an estimate of the Hessian as the search

progresses by using information on the cost function and the gradient. The earliest

Quasi-Newton Method is the Davidon, Fletcher, Powell, or DFP, method [70]. The

most popular method nowadays is the Broyden, Fletcher, Goldfarb, Shanno, or BFGS,

method [71]. The BFGS Algorithm, as presented by Prof Steven Hall of MIT, is seen

in Algorithm 4.

Algorithm 4 Quasi-Newton (BFGS)
Given x0

B0 := I
k ← 0
repeat

dk := −Bk∇f(xk)
α = arg minα f(xk + αdk)
xk+1 ← xk + αdk

sk = αdk = xk+1 − xk
yk = ∇f(xk+1)− f(xk)

Bk+1 ←
(
I − yks

T
k

yT
k
sk

)T
Bk

(
I − yks

T
k

yT
k
sk

)
+ sks

T
k

yT
k
sk

k ← k + 1
until dk = 0

The advantage of Quasi-Newton methods is that they do not struggle with ill-

conditioned problems as much as steepest descent methods do. The downside is

that additional calculations are required at each iteration. In addition, additional

information, in the form of Bk+1, must be stored at every iteration.

First Order Methods

The Simple Gradient Scheme of the First Order Method, as presented by Prof Robert

Freund of MIT, is seen in Algorithm 5.

This method is very similar to the steepest descent method in that the descent di-

rection is simply the negative of the gradient of the function evaluated at xk. However,

one of the major assumptions of the first order method is that f(•) has a Lipschitz

91

Algorithm 5 First Order
Given x0, L
k ← 0
repeat

dk := −∇f(xk)
xk+1 ← xk − 1

L
∇f(xk)

k ← k + 1
until dk = 0

gradient. That is, there is a scalar L for which

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖ ∀ x, y ∈ Rn (6.20)

Unlike the steepest descent algorithm, which performs a line search at every step,

the first-order method takes a fixed step governed by L. This reduces the amount

of computation at each iteration, since L provides the approximate step distance

the algorithm should take, whereas a steepest descent method has to search for the

optimal step distance.

Since L is unknown for this application, L will be initialized at L = 1. At every

iteration, if Eq. (6.21) holds, then the current value of L is sufficent for the search

algorithm to converge.

f(y) ≤ f(x) +∇f(x)T (y − x) + L

2 ‖y − x‖
2 (6.21)

Should the current iteration fail this test, the algorithm is set to double the current

guess of L and the step is recomputed. The algorithm that includes this change is

seen in Algorithm 6.

6.4 Convergence Guarantees

A major advantage of the nonlinear programming method for mass property identifi-

cation is the existence of convergence guarantees. In order to prove that the nonlinear

program converges on the true mass properties, there are two major points that need

92

Algorithm 6 First Order (Modified)
Given x0

L = L0 . The user must provide a guess for L0

k ← 0
repeat

dk := −∇f(xk)
xk+1 ← xk − 1

L
∇f(xk)

if f(xk+1) > f(xk) +∇f(xk)T (xk+1 − xk+1) + L
2 ‖y − x‖

2 then
L = 2L
xk+1 ← xk . This reruns the iteration with the new value for L

end if
k ← k + 1

until dk = 0

to be proven:

• The error function h(x) is convex

• The global minimum of h(x) is achieved only when x is the vector of correct

mass parameters

The former item ensures the search algorithm reaches the global minimum of h(x),

while the latter item ensures the global minimum is reached by the true mass proper-

ties and only the true mass properties. These two points are proven in Section 6.4.1

and Section 6.4.2, respectively.

6.4.1 Convexity of h(x)

Convexity of an objective function like h(x) is significant because there are conver-

gence guarantees for nonlinear programming solvers if the objective function is convex.

Let H be the Hessian of h(x). The objective function is convex if and only if H is

positive semi-definite. A matrix is positive semi-definite if and only if the eigenvalues

of the matrix are all non-negative. A matrix is also positive semi-definite if

x>Hx ≥ 0 (6.22)

for all x ∈ Rn

93

At this point, h(x) has not been proven convex. This is an ongoing area of research

on the topic.

6.4.2 Convergence on Actual Mass Parameters

Theorem 6.4.1. Let x∗ be the vector of true mass parameters of the system. Then

x̂ = arg min h(x) if x̂ = x∗

Proof. Suppose x∗ is the vector of true mass parameters. If the sample trajectory

is initiated at the same angular rate as the actual system (see Section 6.5), then

ωk(x) = ω̄k for all k. This means Eq. (6.11) will reduce to

ei(x∗) =
i+n∑
k=i

(E[δ]− δk)> (E[δ]− δk) (6.23)

which is significant because

∂

∂x

(
i+n∑
k=i

(E[δ]− δk)> (E[δ]− δk)
)

= 0 (6.24)

Therefore,

∇h =
N∑
i=0

0 (6.25)

and x∗ achieves the minimum of h(x).

It is significant to note that Theorem 6.4.1 did not read if and only if x̂ = x∗. This

is because it is possible to achieve the global minimum of h(x) with mass parameters

that are not the true mass parameters. This occurs when the maneuvers used to

characterize the mass properties do not provide sufficient information to characterize

all mass properties. When this happens, a particular mass parameter can vary without

changing the cost function, making that parameter unobservable.

The most obvious example of this occurring is when there are no torques imparted

on the system. While the relation of the inertia values with respect to each other can

be identified, the entire inertia matrix will be off by a scale factor. If there exist other

94

possible solutions, the can be found by using Eq. (6.26), searching over ε.

∇h(x + ε) = 0 (6.26)

6.5 Implementation Considerations

There are two major assumptions that may not hold when this algorithm is imple-

mented:

• A trajectory is started at the true angular velocity (ωi = ω̄)

• There is zero process noise (σk = 0 for all k)

While the rest of the trajectory is tolerant of noise on the angular rate measure-

ments, if the trajectory is started off of the true angular rate, the assumptions used to

derive Theorem 6.4.1 do not hold. The best way of ensuring a trajectory is initiated

at the true angular velocity is to filter the angular rate data.

To analyze the affect of effect of process and sample noise on the performance of

the mass identification algorithm, a simulation was constructed that simulated the

SPHERES mass property identification maneuvers, discussed in Section 7.1. Differ-

ing amounts of sample and process noise were injected into the system before the

mass property identification algorithm was applied. The results are seen in Fig. 6-2.

In Fig. 6-2(a), the calculated major moment of inertia was compared to the actual

major moment of inertia. The plot shows the average present error as a function of

process noise for three different sample noise characteristics. When the process noise

is low, there is a small error, most likely caused by the violation of Assumption 3 in

Table 6.1. As the process noise increases, so does the average error. In Fig. 6-2(b),

a similar analysis was conducted for the center of mass prediction, with the same

result: increasing process noise increases the error.

95

−9 −8 −7 −6 −5 −4 −3 −2
0

10

20

30

Natural Log of Process Noise (log(rad/s))

Av
er
ag
e
Pe

rc
en
t
E
rr
or

Mass Identification Simulation Results

Sample Noise
Standard Deviation
10−4

10−3

10−2

(a) Major Moment of Inertia Error.

−9 −8 −7 −6 −5 −4 −3 −2
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Natural Log of Process Noise (log(rad/s))

C
en
te
r
of

M
as
s
E
rr
or

(m
)

Sample Noise
Standard Deviation
10−4

10−3

10−2

(b) Center of Mass Error.

Figure 6-2: Mass Property Identification Simulation

96

Chapter 7

System Characterization for

Thruster-Based Spacecraft

In a 1-G environment, it is difficult to fully characterize a spacecraft’s mass and

thruster properties. A spacecraft may not be able to support itself in a 1-G environ-

ment. The satellite may also change its configuration in space in such a manner that

is difficult to replicate on the ground. Finally, the disturbance forces on the ground,

such as airflow and friction, are much greater than the disturbance forces seen on

orbit. For these reasons, a system characterization on orbit may greatly help the

control algorithms of a spacecraft.

The SPHERES system is an ideal testbed for practicing on-orbit system charac-

terizations. Video streams are available during a SPHERES test session, allowing for

a visual feedback on the characterization. It is also a risk-tolerant way to practice

system characterizations. If the characterization does not perform as expected, the

satellite is at no risk of breaking or becoming lost in space. Therefore, the SPHERES

testbed is an excellent place to mature system characterization tests.

The two main system characterizations considered here are thruster force char-

acterization and mass property identification. With the addition of the SPHERES

expansion port in January of 2012, the thruster force and mass properties of the

system will change as new sensors and actuators are added to the system. These

additions provide opportunities to demonstrate system characterization for thruster-

97

Figure 7-1: SPHERES With Expansion Port

based spacecraft.

7.1 SPHERES With Expansion Port

In January of 2012, an expansion port was added to the SPHERES testbed. This

expansion port allows for additional actuators and sensors to be attached to the

SPHERES both mechanically and electrically. A picture of the SPHERES with the

expansion port is seen in Fig. 7-1.

While the new expansion port did not obstruct any of the thrusters, it did change

the mass properties of the system. Therefore, a mass property characterization needed

to be performed.

7.1.1 Predicted Changes

The mass properties of the SPHERES system without the expansion port had been

found a number of different ways. A Computer Aided Design (CAD) model can

predict the mass of a system through finite element methods. This method is highly

dependent on the fidelity of the CAD model. If the mass of the modeled parts are

not correct the CAD model predictions for the mass properties can be significantly

98

Table 7.1: SPHERES CAD Mass Property Predictions
Values Full Tank Empty Tank Units
jxx 2.30× 10−2 2.19× 10−2 kgm2

jyy 2.42× 10−2 2.31× 10−2 kgm2

jzz 2.14× 10−2 2.13× 10−2 kgm2

jxy 9.90× 10−5 9.90× 10−5 kgm2

jxz −2.95× 10−4 −2.95× 10−4 kgm2

jyz −2.54× 10−5 −2.54× 10−5 kgm2

cx 0.48 0.49 mm
cy −1.19 −1.24 mm
cz 1.08 3.98 mm

Reference Frame: Geometric Center

Table 7.2: SPHERES Parallelogram Mass Property Results
Values Full Tank Empty Tank Units
jxx 2.57× 10−2 2.45× 10−2 kgm2

jyy 2.25× 10−2 2.15× 10−2 kgm2

jzz 2.03× 10−2 2.03× 10−2 kgm2

Reference Frame: Geometric Center

off. An easy way to verify the fidelity of the model is to compare the predicted mass

of the CAD model against the actual mass of the object.

Another method for inertia estimation is using a swinging parallelogram test. In

this test, the frequency of a swinging parallelogram is used to find the inertia tensor

[72]. Finally, mass property identification methods described in Chapter 6 can also

be used.

The mass properties as determined by the SPHERES CAD model, the swinging

parallelogram test [73], and a least squares mass identification test [66] are seen in

Tables 7.1 to 7.3.

The expansion port weighs 110 g±0.25 g. The center of gravity of the expansion

port is located approximately 10 cm in the +X direction from the geometric center of

the SPHERES. For the purposes of predicting mass property changes, the expansion

port was assumed to be a point mass. Using the parallel axis theorem, the expansion

port was determined to add 1.1× 10−3Nm2 to the inertia about the Y and Z axes.

As for the center of gravity, the SPHERES system with a full tank weighs 4.6 kg

and empty weighs 4.43 kg. With the addition of the expansion port, the center of

99

Table 7.3: SPHERES KC-135 Mass Property Results
Values Empty Tank Units
jxx 2.20× 10−2 kgm2

jyy 1.97× 10−2 kgm2

jzz 1.82× 10−2 kgm2

jxy 1.96× 10−4 kgm2

jxz −5.5× 10−5 kgm2

jyz −2.15× 10−4 kgm2

cx −0.016 mm
cy −0.821 mm
cz 3.082 mm
Reference Frame: Center of Mass

gravity should shift approximately 3mm in the +X direction.

7.1.2 Mass Characterization Test

In order to characterize the SPHERES mass properties with the expansion port at-

tached, a test was conducted during the 37th SPHERES test session, which occurred

on 26 February 2013. This test consisted a thruster characterization maneuver and

two mass property identification maneuvers.

The thruster characterization maneuver was conducted in order to estimate the

force produced by a single thruster. The thruster force is infered using data from

the accelerometers. The recorded acceleration of the acceleromter is described in

Eq. (7.1).

âr = ai − ω × (ω × r)− ω̇ × r + γ (7.1)

where ar is the acceleration in the rotating reference frame (which is the acceleration

of interest), ai is the acceleration in the inertial reference frame (which is what the

accelerometers measure), ω is the angular velocity of the satellite, r is the position

vector from the center of mass to the accelerometer, and γ is the sample noise of

the acceleromter. Since the acceleromter is not moving with respect to the center of

gravity, the Coriolis effect was not included in Eq. (7.1).

If the angular rate and angular acceleration of the satellite is kept sufficiently low,

100

0 50 100 150 200 250 300 350 400 450
0

2 · 10−2

4 · 10−2

6 · 10−2

Thrust Time (ms)

A
cc
el
er
at
io
n
(m
/
s2
)

SPHERES Thruster Characterization

Firing 1 Firing 2 Firing 3
Firing 4 Firing 5 Firing 6

Figure 7-2: Results of Thruster Characterization Test

Eq. (7.1) can be reduced to

âr = ai + γ (7.2)

If E[γ] = 0 and many samples of the acceleration are taken, Eq. (7.2) can then be

approximated as

ar =
n∑
i=1

âir (7.3)

where n is the number of accelerometer samples and âir is the ith accelerometer

sample.

For the SPHERES thruster characterization test, the thruster pairs were chosen

to impart as little angular acceleration as possible. Two thrusters were fired at a time,

with the assumptions that the force produced by the thruster is constant and is the

same for all thrusters. The results of the thruster firing test are seen in Fig. 7-2

The mean acceleration during the tests was 0.0385m/s2. The maximum thruster

force Ft is found by

Ft · (1− ε)n−1 = m · ar
n

(7.4)

where n is the number of thrusters open at a time and ε is the reduction of thrust due

101

to an additional thruster being fired. The thrust reduction has been characterized to

be approximately ε = 0.06[74]. For the case of SPHERES thruster characterization,

n = 2.

The first mass property identification maneuver consisted of a set of single thruster

firings. In this maneuver, one thruster at a time was fired for 0.6 s, then the system

would coast for 0.4 s. This was repeated until all twelve SPHERES thrusters had fired.

The second mass identification maneuver was a high speed spin without thruster

firings. The satellite was spun up about a non-body axis and then allowed to spin for

twelve seconds. The angular rates produced by these maneuvers are seen in Fig. 7-3.

7.1.3 Results

Using the nonlinear programming method described in Chapter 6, the mass properties

of the SPHERES satellite with the expansion port were found using data presented

in Section 7.1.2. Since the exact mass and thruster reduction was not known, a

Monte-Carlo based method was employed to estimate the expected value of the mass

properties as well as the standard deviation of those values. The mass and thruser

reduction were assumed to take the from of a Gaussian distribution. For the simu-

lation, a mass and thruster reduction were sampled from the respective distribution.

If the values were out of bounds, the values were resampled until a set of values that

were in bounds were found. The parameters for the Monte-Carlo simulation are seen

in Table 7.4.

Table 7.4: Monte-Carlo Setup for SPHERES Expansion Port Mass Identification
Values Mean Std Dev Min Max Units

Mass (m) 4.487 0.0567 4.43 4.6 kg

Thruster Reduction (ε) 0.06 0.01 0 0.12 Unitless

The results of the Monte-Carlo simulation are seen in Table 7.5.

102

0 1 2 3 4 5 6 7 8 9 10 11 12

−0.2

0

0.2

Time (seconds)

A
ng

ul
ar

R
at
e
(r
a
d
/
s2
)

SPHERES Space Station Results

X Y Z

(a) Single Thruster Firings.

0 1 2 3 4 5 6 7 8 9 10 11 12

−0.2

0

0.2

0.4

0.6

Time (seconds)

A
ng

ul
ar

R
at
e
(r
a
d
/
s2
)

X Y Z

(b) High Speed Spin.

Figure 7-3: Results of Thruster Characterization Test

103

Table 7.5: Monte-Carlo Results for SPHERES Expansion Port Mass Identification
Values Mean Std Dev Units

jxx 2.41× 10−2 3.24× 10−4 kgm2

jyy 2.34× 10−2 3.15× 10−4 kgm2

jzz 2.01× 10−2 2.70× 10−4 kgm2

jxy −1.30× 10−4 1.78× 10−6 kgm2

jxz −1.42× 10−4 1.90× 10−6 kgm2

jyz 5.74× 10−5 8.05× 10−7 kgm2

cx 3.88 1.12× 10−3 mm

cy −1.49 1.65× 10−3 mm

cz 1.92 7.44× 10−3 mm

As expected, the center of mass moved approximately 3mm in the +X direction.

As for inertia, the inertia values fell in the general range of predicted changes, but the

previous inertia predictions were not consistent enough to provide a good baseline.

7.2 VERTIGO

In November of 2012 the Visual Estimation for Relative Tracking and Inspection of

Generic Objects (VERTIGO) system was launched to the International Space Station.

VERTIGO consists of a stereo vision camera and an avionics box containing a small

computer. The VERTIGO system is meant to be an additional sensor for SPHERES,

enabling vision based navigation and tracking. The VERTIGO system, seen with

astronaut Tom Marshburn, is seen in Fig. 7-4.

The VERTIGO system attaches to SPHERES on the expansion port. The sys-

tem is connected electrically through a 40 pin connector and mechanically via the

two thumb screws on the expansion port which thread into holes on the VERTIGO

avionics box. Attaching VERTIGO to SPHERES obviously changes the mass prop-

erties of SPHERES, but the VERTIGO system may also impinge the thrusters on

the +X face of SPHERES. Therefore, a full system characterization of the combined

104

Figure 7-4: The VERTIGO System with NASA Astronaut Tom Marshburn [75]

SPHERES/VERTIGO system was performed.

7.2.1 Thruster Impingement

To test for thruster impingement, the acceleration of the spacecraft when unob-

structed thrusters fire will be compared against the acceleration of the spacecraft

when the potentially obstructed thrusters are fired. The VERTIGO system attached

to the +X face of SPHERES, meaning the center of gravity of the combined system

shifts significantly in the +X direction as compared to the SPHERES themselves.

The center of mass of the VERTIGO system is approximately at the geometric cen-

ter, meaning the center of mass of the combined system does not shift significantly

in the Y or Z direction when compared to the SPHERES center of gravity.

To investigate the thruster impingement, a SPHERES test was developed that

alternates between firing the +X and -X thrusters. The -X thrusters will serve as

the control since they are unobstructed. The +X thrusters will assume to be equally

obstructed. Performing an individual thruster characterization would require using

105

Eq. (7.1); however, calculating the center of mass requires knowing the thruster force,

which is derived here. Therefore, the thrusters will have to be assumed as having the

same impingement in order to derive the thruster force.

On March 12th, 2013 the SPHERES/VERTIGO test with the thruster charac-

terization was performed on orbit. The measured accelerations are seen in Fig. 7-5.

Firings 1,4, and 5 involved firing the unobstructed -X thrusters while firings 2,3, and

6 involved firing the potentially obstructed +X thrusters. The data for thruster firing

6 was disregarded because the angular rates of the satellite were too great for the

assumptions used to derive Eq. (7.2) to hold.

The mean acceleration of the satellite was 0.0302m/s2 for the -X thrusters and

0.211m/s2 for the +X thrusters. However, this test violated the assumption that there

were no external forces exerted on the SPHERES. The thruster characterization test

involved two SPHERES, which were aligned along the X axis. In firings 1,4, and 5,

the SPHERES with VERTIGO attached thrusted in such a manner that impeded

the motion of secondary SPHERES. In firings 3,4, and 6, the secondary SPHERES

fired in such a manner that impeded the motion of the SPHERES with VERTIGO

attached.

To adjust for this difference, a sum of equations can be used to remove the dis-

turbing force from the measurement. Let Fdrag be the drag force induced by the

other SPHERES firing its thrusters. The adjusted acceleration can then be found in

Eq. (7.5)

ar =
n∑
i=1

âir −
Fdrag
m

(7.5)

The drag force Fdrag can be found by comparing the performance of the secondary

SPHERES against the performance described in Section 7.1.2. The average acceler-

ation measured for the SPHERES expansion port checkout during firings 2,3, and 5

was 0.0379m/s2. In the VERTIGO test, the non-VERTIGO SPHERES had an aver-

age acceleration of 0.0387m/s2. This is a difference of 2.2%, which can be attributed

a slightly different mass or tank pressure. In contrast, the average acceleration of

the non-VERTIGO SPHERES when the VERTIGO SPHERES thrusted against the

106

100 150 200 250 300 350 400 450 500 550
0

2 · 10−2

4 · 10−2

6 · 10−2

Thrust Time (ms)

A
cc
el
er
at
io
n
(m
/
s2
)

VERTIGO Thruster Characterization

Firing 1 Firing 4 Firing 5

(a) Un-impinged Thrusters

100 150 200 250 300 350 400 450 500 550
0

2 · 10−2

4 · 10−2

6 · 10−2

Thrust Time (ms)

A
cc
el
er
at
io
n
(m
/
s2
)

VERTIGO Thruster Characterization

Firing 2 Firing 3

(b) Impinged Thrusters

Figure 7-5: VERTIGO Thruster Characterization Results

107

Table 7.6: Monte-Carlo Setup for SPHERES/VERTIGO Mass Identification
Values Mean Variance Min Max Units
Mass 6.346 0.02 5.5 7.0 kg
Thruster Reduction 0.06 0.01 0 0.12 Unitless

non-VERTIGO SPHERES was 0.0305m/s2. Assuming the mass was approximately

the same between the two tests, the drag force is therefore approximately 0.0373N.

The VERTIGO system has a mass of 1.746 kg±0.0025 kg. Using the combined

SPHERES/VERTIGOmass along with Eq. (7.5), the adjusted accelerations for the -X

firings become 0.0267m/s2. Since the thruster force scales linearly with the measured

acceleration, this indicates that the VERTIGO system causes an 11.3% reduction in

thruster force.

7.2.2 Mass Property Identification

In the same March 12th test, the same two mass identification maneuvers described

in Section 7.1.2 were performed with the VERTIGO system attached to SPHERES.

The angular rates produced by this test are seen in Fig. 7-6.

The same method described in Section 7.1.3 was used to calculate the SPHERES/VERTIGO

mass properties. Unlike the SPHERES expansion port mass identification test, the

SPHERES CO2 tank was replaced just prior to the test run, meaning the mass of

the system was known with near-certainty. The parameters used for the Monte-Carlo

simulation are seen in Table 7.6. The results of the Monte-Carlo simulation are seen

in Table 7.7.

7.3 RINGS

In order to prepare for operations in the International Space Station, the engineer-

ing RINGS units were taken on a Reduced Gravity Aircraft (RGA) flight. During

the four day campaign a number of tests were performed, one of which was a sys-

tem characterization, which included both a thruster impingement test and a mass

characterization test.

108

0 1 2 3 4 5 6 7 8 9 10 11 12

−0.2

0

0.2

Time (seconds)

A
ng

ul
ar

R
at
e
(r
a
d
/
s2
)

SPHERES/VERTIGO Space Station Results

X Y Z

(a) Single Thruster Firings.

0 1 2 3 4 5 6 7 8 9 10

−0.2

0

0.2

0.4

0.6

Time (seconds)

A
ng

ul
ar

R
at
e
(r
a
d
/
s2
)

X Y Z

(b) High Speed Spin.

Figure 7-6: Results of VERTIGO Mass Identification Maneuvers

109

Table 7.7: Monte-Carlo Setup for SPHERES/VERTIGO Mass Identification
Values Mean Std Dev Units
jxx 3.19× 10−2 3.59× 10−4 kgm2

jyy 6.12× 10−2 6.90× 10−4 kgm2

jzz 5.85× 10−2 6.60× 10−4 kgm2

jxy −3.51× 10−4 4.05× 10−6 kgm2

jxz −2.00× 10−4 2.24× 10−5 kgm2

jyz 7.18× 10−5 7.29× 10−7 kgm2

cx 47.1 3.69× 10−3 mm
cy −0.781 5.18× 10−4 mm
cz 1.66 9.79× 10−4 mm

7.3.1 Expected Results

The addition of the RINGS system changes the mass properties of the SPHERES sys-

tem much more significantly than the expansion port or VERTIGO. In order to ensure

the RGA flights would produce the desired data, analysis was performed prior to the

flight in order to ensure the data collected would contain the necessary resolution for

a thruster characterization and mass identification.

Thruster Characterization

For the thruster characterization test, thruster pairs will be fired in order to mea-

sure the acceleration of the system without inducing significant angular rates. The

SPHERES thrusters nominally produce about 0.1N of thrust. The combined SPHERES

and RINGS system has a mass of 17.1 kg. If the thrusters are not impinged in any

manner, then the system should accelerate at a rate of 11.7× 10−3m/s2 when a

thruster pair is fired. The noise of the accelerometers has a measured standard de-

viation of 1.9× 10−3m/s2, meaning the acceleration of the RINGS system will be

discernible from the accelerometer data.

The amount of expected impingement varies based on the thruster direction. The

thrusters pointed in the positive or negative X direction will be severely impinged, as

they point directly at the RINGS coil housing. The positive and negative Y thrusters

are not physically obstructed and should not show any impingement. The positive

and negative Z thrusters are generally unobstructed but may interact slightly with

110

Table 7.8: RINGS Center of Mass Ground Testing Results
Axis Value Uncertainty Units
X -2.5 ± 0.5 cm
Z 0.19 ± 0.5 cm

the outer coil housing.

Mass Property Identification

In order to estimate the mass properties of the combined SPHERES/RINGS system,

analysis was performed on both the center of mass and the expected inertia. In order

to find the center of mass of the system on the ground, a test setup seen in Fig. 7-7.

ScaleSupport

Figure 7-7: RINGS Center of Gravity Ground Test

If the distance between supports d is known, the distance of the center of mass

from the support can be found by using Eq. (7.6)

c = d · s
m

(7.6)

where s is the scale readout, m is the mass of the system, and g is the acceleration

due to gravity. This setup assumes that the system is perfectly level. For the RINGS

system, this setup can be used to measure the location of center of mass in the

SPHERES body frame. The results of these test are seen in Table 7.8.

The parallel axis theorem was used to estimate the inertia of the RINGS system.

First, the major components of RINGS where weighed. Next, basic inertia approxi-

mates were found for each component. The inertia of each component was computed,

as well as the inertia caused by the center of mass being offset from the total center

111

Table 7.9: RINGS Inertia Prediction Calculations
Component Mass

(kg) Approximation CoM Offset
(m)

Total Inertia
(kgm2)

Coil 3.52 Hoop

0
0
0


0.180

0.360
0.180


Shell 1.936 Hoop

0
0
0


0.099

0.198
0.099


4 × Cuff 0.151 Point Mass

±0.228
0

±0.228


0.031

0.062
0.031


2 × Battery 0.673 Point Mass

−0.171
0

±0.089


0.011

0.050
0.039


2 × Battery

Holder 0.236 Point Mass

−0.171
0

±0.089


0.004

0.018
0.014


Avionics 1.125 Point Mass

0.248
0
0


 0.0

0.069
0.069



Table 7.10: RINGS Inertia Prediction
Axis J (kgm2)
X 0.325
Y 0.757
Z 0.432

of mass. Table 7.9 contains the list of components evaluated and their associated

inertia.

From Table 7.9, the estimated inertia of the RINGS system is seen in Table 7.10.

These are inertia will be an underestimate of the actual inertia, since several compo-

nents, such as the fans, bolts, and SPHERES cuff, were not included. This numbers

are to serve as a baseline to ensure the inertia found from the RGA flight were the

same order of magnitude.

112

0 50 100 150 200 250 300 350 400 450 500 550 600
0

1 · 10−2

2 · 10−2

3 · 10−2

4 · 10−2

5 · 10−2

Thrust Time (ms)

A
cc
el
er
at
io
n
(m
/
s2
)

RINGS Thruster Characterization

+Y -Y +Z

Figure 7-8: RINGS Thruster Characterization Results

7.3.2 Thruster Impingement

The RINGS units severely obstruct several of the thrusters. In order to characterize

the thurster impingement, a test was written that fires pairs of thrusters corresponding

to each thruster direction (+X,-X,+Y,-Y,+Z,-Z). The center of mass of the RINGS

unit is approximately the same as the SPHERES center of mass, so the assumptions

used to derive Eq. (7.2) hold.

The acceleration in the positive and negative X direction was indescribable from

the noise. This indicates that the associated thrusters are severely impinged. This

agrees with the prediction. The results of the +Y,-Y, and +Z thrusts are seen in

Fig. 7-8. The satellite was disturbed before it could complete the -Z thruster firing.

The results indicate that the Y and Z axis thrusters are not impinged by RINGS.

7.3.3 Mass Property Identification

The same mass identification maneuvers performed in Sections 7.1.2 and 7.2.2 were

performed on the RGA flight. However, despite running the test several times, the

satellite was disturbed before it could finish the test. Also, the significant increase

113

Table 7.11: RINGS MassID RGA Test Results
∆ω (rad/s)

Run Number X Z
1 0.1399 0.0838
2 0.1357 0.0867
3 0.1371 0.1044
4 0.0945

Average 0.1376 0.0923
Std Dev 0.0021 0.0092

Table 7.12: RINGS Inertia Experimental Results
Axis ᾱ (rad/s2) J (kgm2)

X 0.0459±0.0014 0.3742 +0.0118
-0.0110

Z 0.0308±0.0061 0.5577 +0.1377
-0.0922

in inertia of the system made distinguishing induced motion from noise difficult.

Therefore, long duration torques were executed in order to find the major moments

of inertia.

Given that the tests were three seconds long, the average angular acceleration ᾱ

can be computed. To compute the error bounds, the 95% confidence interval was

used. The average angular acceleration is documented in Table 7.12. Given that the

angular acceleration of the system is governed by

τ = J · α (7.7)

where τ is the torque on the system, the inertia J about that axis can be computed.

The torque τ was computed by crossing the force vector with the moment arm.

The magnitude of the force vector was assumed to be 0.089N. Since the thruster

characterization of RINGS did not provide enough data for a qualitative force analysis,

the thruster value was derived from the analysis in Section 7.1.2. As for the moment

arm, the RINGS center of mass was assumed to be at the body center. The moment

arm is therefore 0.0965m. Using Eq. (7.7), the inertia about the X and Z axis can be

computed and are shown in Table 7.12.

114

The results in Table 7.12 can then be compared to the predictions in Table 7.10 in

order to estimate the inertia about the Y axis. The experimental results indicate that

the actual inertia was 15.1% and 29.1% greater than the prediction for the X and Z

axis, respectively. Therefore, the Y axis can be estimated as 22.1% (the average of

the two other axes) greater than the prediction, making the predicted Y axis inertia

approximately 0.924 kgm2. To compute the error bounds, the smallest possible scale

factor and largest possible scale factors possible, given the uncertainty in Table 7.12.

These values are 7.8% and 61.0%, respectively, and are driven by the uncertainty in

the Z axis inertia. Therefore, the Y axis inertia is estimated to be between 0.816 kgm2

and 1.219 kgm2. While the uncertainty for this axis is rather large, EMFF forces will

produce an insignificant amount of torque about the Y axis, meaning the only motion

about the Y axis will be induced from either the initial release of RINGS or thrusters.

Given the severe thruster impingement of the thrusters required to create a torque

about the Y axis and the significant amount of inertia about this axis, little can be

done to change the angular velocity of RINGS about the Y axis, making the inertia

about the Y axis of little use.

115

116

Chapter 8

Model-Free State Estimation Using

Line-of-Sight Transmitters

Model-based estimation and control has become common practice in control engineer-

ing; however, the success of these estimators and controllers depends on the accuracy

of the model used. To validate a model, the model is typically compared against

real-world measurements. The catch is that the model cannot be used when gener-

ating the real-world measurements; otherwise the measurements are biased by the

unproven model.

The SPHERES testbed uses a model-based filter for state estimation. When new

models, such as the RINGS, need to be validated against the real system, the model-

based filter cannot be used for reasons stated previously. This chapter will present

a method for estimating the satellite state without using a model of the satellite.

Instead, the SPHERES metrology system, which relies on line-of-sight ultrasound

measurements, will be used to generate the system state. While SPHERES is used as a

case study, this process can be applied to any system uses line-of-sight measurements,

so long as it satisfies the assumptions listed in Section 8.2.

117

8.1 Motivation

The performance of a dynamic programming controller is heavily dependent on the

accuracy of the model used to generate the cost-to-go. Therefore, model validation

is essential when applying dynamic programming to a physical system. A dynamic

programming controller is "doomed to succeed" when applied in simulation, since the

simulation will most likely use the same model to simulate the trajectories as the

one used to generate the cost-to-go. If the model does not accurately represent the

system, then the controller will perform poorly on the system despite performing well

in simulation.

Validating the model of the system may not be a trivial process either. Model

validation typically involves inferring some performance over the envelope of potential

states of the system. This requires knowledge of the system state. Model-based filters,

such as the Kalman Filter, Extended Kalman Filter, and Particle Filter have become

the standard for state estimation; however, estimators cannot be used during model

validation for two reasons:

• Using a model to predict the state vector would bias the state vector, meaning

the model validation would be biased towards the model used in the estimator.

• If a model has not been validated, it is inadvisable to use it in the filter anyway.

Given these reasons, when performing model validation, it is necessary to use a model-

free method when obtaining the state vector for model validation.

While some model validation for spacecraft can be performed on the ground, it

may be necessary to move to a microgravity environment for a full model validation.

For example, the RINGS system produces small amounts of oscillating force. These

forces are very hard to measure on the ground because of the mass of the system causes

the electromagnetic forces to show up in the noise of any force measurements. Precise

accelerometers are needed to capture the intra-vehicular forces of RINGS, but these

same accelerometers saturate in the presence of gravity. Therefore, a micro-gravity

environment is the best environment for RINGS model validation.

118

1

2

3

4 5

Figure 8-1: Example Transmitter Setup

For spacecraft, the state vector typically consists of position, attitude, and their

associated rates of change. In a micro-gravity testbed environment, such as a Reduced

Gravity Aircraft (RGA) or on-board the International Space Station, there are a few

options for producing a state measurement, such as stereoscopic vision or LIDAR.

However, these methods are complex, require significant power, and are expensive. A

simple and cheap method of measuring position and attitude is using a line-of-sight

transmitter/receiver system. While there has been previous work on how to find

position and attitude using line-of-sight measurements [76], these methods rely on

models of the system. This chapter will discuss how to use such a system to estimate

the position and attitude of a system without using a system model.

8.2 Problem Formulation

A typical transmitter/receiver system involves several transmitters placed at various

locations in the area where the system will be operating. Since the system is as-

sumed to require line-of-sight from the transmitter to receiver in order to receive a

measurement, the transmitters are usually placed at the extent of the working vol-

ume pointed inward. Fig. 8-1 illustrates the locations of transmitters used by the

SPHERES testbed onboard the International Space Station.

119

The system being estimated is assumed to have multiple receivers, places in various

positions and orientations on the system. This analysis will be using the SPHERES

receiver setup, illustrated in Fig. 8-2. The location of each receiver is listed in Ta-

ble 8.1.

Figure 8-2: SPHERES Receiver Locations [77]

The assumptions used for this analysis are summarized in Table 8.2.

8.3 Position Determination

Although it may seem counter-intuitive, it is actually advantageous to decouple the

position and attitude estimation. An estimate of the relative attitude of the spacecraft

to the transmitter can be inferred from the beacon measurements, decoupling the

attitude and position estimation. Once the position of the spacecraft is estimated, a

more accurate estimation of the attitude can be made.

120

Table 8.1: SPHERES Receiver Locations [77]
Receiver Location (cm)

Face Number X Y Z

+X

0 10.23 -3.92 3.94
1 10.23 3.92 3.94
2 10.23 3.92 -3.94
3 10.23 -3.92 -3.94

+Y

4 3.94 10.23 -3.92
5 3.94 10.23 3.92
6 -3.94 10.23 3.92
7 -3.94 10.23 -3.92

+Z

8 -3.92 3.94 10.26
9 3.92 3.94 10.26
10 3.92 -3.94 10.26
11 -3.92 -3.94 10.26

-X

12 -10.23 3.92 -3.94
13 -10.23 3.92 3.94
14 -10.23 -3.92 3.94
15 -10.23 -3.92 -3.94

-Y

16 -3.94 -10.23 3.92
17 3.94 -10.23 3.92
18 3.94 -10.23 -3.92
19 -3.94 -10.23 -3.92

-Z

20 3.92 -3.94 -10.23
21 3.92 3.94 -10.23
22 -3.92 3.94 -10.23
23 -3.92 -3.94 -10.23

Table 8.2: Model-Free State Assumptions
Assumption
1 There are measurements available from (at least) four unique trans-

mitters
2 The measurement received by the system for each receiver is pro-

portional to the distance between the receiver and the transmitter
3 The proportion listed in Assumption 1 is the same for all receivers

and transmitters
4 The location of the receivers are fixed in the body frame
5 The location of the transmitters are fixed relative to the global

frame

121

t

x

r (M
easur

ement)

Fa
ce
3

Face 2 Fa
ce
1

Face 4
φ

Figure 8-3: Transmitter Distance Illustration

8.3.1 Derivation

The SPHERES are designed such that no transmitter will have a bearing angle φ of

more than 54.7◦ with a face of the satellite. Although this assumption may not hold

for all systems, this analysis can be adapted for a system with different maximum

bearing angles. Let t be the location of the transmitter and x be the location of the

geometric center of the system. An illustration of the bearing angle concept (in two

dimensions) is seen in Fig. 8-3.

Let f be the distance from the geometric center of the system to a face. The

distance between between t and x, defined at d is governed by Eq. (8.1).

d = r + f · cos(φ) (8.1)

For SPHERES, the center of a face is always 10.23 cm from the geometric center of

the satellite.

Since, at this point, attitude is assumed to be random. Therefore, a probability

distribution function of φ can be developed. The euler angles, used to describe the at-

titude of the satellite, are assumed to be random variables with a uniform probability

distribution between 0 and 2π. The resulting probability distribution function for φ

is seen in Fig. 8-4(a). Using Fig. 8-4(a), the probability distribution function for the

cosφ term of Eq. (8.1) can also be computed. The resulting probability distribution

122

function for the cosφ term is seen in Fig. 8-4(b). From Fig. 8-4(b), it holds that

E [cos(φ)] = 0.8576.

There are two general ways for proceeding given Fig. 8-4(b). The first would be

the use the expected value of Eq. (8.1), seen in Eq. (8.2), in further analysis.

E[d] = r + 0.8576f (8.2)

This would be advantageous for an on-line solution, where accuracy may need to be

traded for computational efficiency. The other option is to compute a Monte-Carlo

simulation of the position analysis. This not only produces the expected value of

the position, but also gives error bounds. This method requires more computational

power, and is not ideal for on-line implementations.

The measurement r from the receiver most likely does not return the exact distance

from the transmitter to the receiver. Instead, it will return a value proportional to

the distance between the transmitter and receiver. The relation between r and the

measurement m is seen in Eq. (8.3)

r = s ·m (8.3)

where s is the scale factor. The scale factor may depend on a number of factors.

For example, the SPHERES receiver measurement depends on the processor clock

period and the speed of sound. While the processor clock period may be known, the

speed of sound is dependent on temperature, which may not be known at the time.

However, Assumption 2 of Table 8.2 states that this scale factor must be the same

for all transmitters.

Let ti be the location of transmitter i in the global frame. The system center of

mass x and scale factor s are then determined by the system of equations described

by Eqs. (8.4a) to (8.4d). While there a multitude of methods for solving nonlinear

equation systems [78], a basic Newton method will be presented in Section 8.3.2.

(s ·m1 + f · E[cosφ])2 = (x− t1)>(x− t1) (8.4a)

123

0 5 10 15 20 25 30 35 40 45 50 55
0

5 · 10−3

1 · 10−2

1.5 · 10−2

2 · 10−2

Bearing Angle φ (◦)

P
ro
ba

bi
lit
y

Probability Distribution Functions

(a) Bearing Angle Probability Distribution Function.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

cos(φ) (unitless)

P
ro
ba

bi
lit
y

(b) Added Distance Probability Distribution Function.

Figure 8-4: Bearing Angle and Range Adjustment Probability Distribution Functions

124

(s ·m2 + f · E[cosφ])2 = (x− t2)>(x− t2) (8.4b)

(s ·m3 + f · E[cosφ])2 = (x− t3)>(x− t3) (8.4c)

(s ·m4 + f · E[cosφ])2 = (x− t4)>(x− t4) (8.4d)

If a Monte Carlo simulation was desired in order to more precisely predict the position,

then E[cosφ] in Eqs. (8.4a) to (8.4d) would be replaced by a random variable α. For

the Monte Carlo analysis, α would be randomly sampled from the cosφ probability

distribution defined in Fig. 8-4(b).

When solving the system of equations defined by Eqs. (8.4a) to (8.4d), there will

be four answers. In order to choose the proper answer, an estimate of the proper scale

factor is required. Let ŝ be the estimated scale factor and s̃ be the set of solutions

for s, with s̃i being the ith solution. The proper s, defined as s∗ can be found using

Eq. (8.5).

s∗ = min
i∈{1,2,3,4}

(s̃i − ŝ)2 (8.5)

If there are more than four transmitters providing measurements, then the system

is over-determined. If the system is over-determined, there are two general options

for computing the position estimate:

• Use measurements that correspond to the best four transmitter readings

• Permute the transmitters used

Both methods attempt to use the extra measurements to reduce the uncertainty in

the measurement.

8.3.2 Solving for Position

The algorithm for determining the best face measurement is seen in Algorithm 7. It

is important to note that because the receivers are symmetrical distributed about a

face, the measurement for the face is the mean of the receiver measurements. While

this algorithm is designed for SPHERES, it can easily be adapted for other systems.

125

Algorithm 7 Four Transmitter Position Determination
Given mij, i = {1, ..., N}, j = {1, ..., 24} . N is number of transmitters
for i = 1, ..., N do . Loop through the four transmitters

for j = 0, ..., 5 do . Loop through all faces
βj = 1

4
∑4j+3
k=4jmij . Find measurement for face j

end for
m̂i = minj={0,1,2,3,4,5} βj . Find the best face measurement

end for
Return m̂i, i = {1, ..., N}

With the face measurements determined, they can be used to solve for x and s

using Eqs. (8.4a) to (8.4d). Let the search variable z be defined as follows:

z =

x

s

 (8.6)

In order to solve for z, Eqs. (8.4a) to (8.4d) must be set equal to zero. The updated

equations are seen in Eqs. (8.7a) to (8.7d).

(s ·m1 + f · E[cosφ])2 − (x− t1)>(x− t1) = 0 (8.7a)

(s ·m2 + f · E[cosφ])2 − (x− t2)>(x− t2) = 0 (8.7b)

(s ·m3 + f · E[cosφ])2 − (x− t3)>(x− t3) = 0 (8.7c)

(s ·m4 + f · E[cosφ])2 − (x− t4)>(x− t4) = 0 (8.7d)

Eqs. (8.7a) to (8.7d) can then be compacted to the form

f(z) = 0 (8.8)

where f(•) is the vector function comprised of Eqs. (8.7a) to (8.7d). The Jacobian of

f , written as ∂f/∂z, is defined in Eq. (8.9).

∂f
∂z

= 2

−(x− t1) −(x− t2) −(x− t3) −(x− t4)

s s s s

 (8.9)

126

Using the Jacobian defined in Eq. (8.9), it is possible to iteratively solve for z us-

ing Newton’s Method. A basic form of Newton’s Method applied to the position

determination problem is seen in Algorithm 8.

Algorithm 8 Newton’s Method for Position Determination

Initialize z1 =
[
0
ŝ

]
i← 0
repeat

i = i+ 1
zi+1 = zi −

[
∂f
∂z

]−1
f(zi)

until ‖zi+1 − zi‖ < δ . δ is the convergence criteria

While Newton’s Method is simple, it is not perfect. If ∂f/∂z becomes singular, it

will no longer be invertable and the method will break. There are other methods that

can circumvent this problem [71], Newton’s Method is arguably the most simple.

8.3.3 Simulations

In order to analyze the performance of this method, a Monte Carlo simulation was

conducted to characterize the system. The parameters of the system are seen in

Table 8.3. The results of the simulation are seen in Fig. 8-5(a). As expected, the

error of the system increases as the amount of noise in the measurements increases.

Table 8.3: Model-Free State Assumptions
Parameter Value

Transmitter Locations

X Y Z

-1.181 -0.792 -0.833

1.181 0.792 0.833

1.181 -0.792 0.833

1.181 0.792 -0.833

-1.181 0.792 0.833

Mean Position
[
0 0 0

]>
m

Position Variance 1.0m

127

In Fig. 8-5(b), an over-determined system is compared four-transmitter system.

The four-transmitter system had an average error of 3.63 cm, while the over-determined

system had an average error of 2.33 cm, meaning the over-determined system had a

36% lower average error.

8.4 Attitude Determination

With the position of the system determined, the next step is determining the attitude

of the system. For this analysis, the attitude, which has three degrees of freedom, is

assumed to be over-determined. The position analysis also determined the appropri-

ate scale factor for the measurements, making determining the attitude easier.

8.4.1 Derivation

Let θ be the vector of Euler angles describing the system attitude in the global frame,

and θi be the ith element of θ. Further, let ci, i = 1, 2, 3 be the cosine of θi and si,

i = 1, 2, 3 be the sine of θi. The rotation matrix R(θ) can be found by using the 1-2-3

rotation sequence about the X, Z, and X axes, denoted in Eq. (8.10).

R(θ) =


c2 −c3s2 s2s3

c1s2 c1c2c3 − s1s3 −c3s1 − c1c2s3

s1s2 c1s3 + c2c3s1 c1c3 − c2s1s3

 (8.10)

Further, let gij be distance from transmitter i to receiver j, while bj is the vector from

the system center to receiver j. The value of gij can be computed using Eq. (8.11).

gij(θ) = x +R(θ) · bj − ti (8.11)

Since the attitude is assumed to be over-determined, there is no explicit function

that can be used to determine the attitude. Instead, a least-squares fit of the beacon

measurements can be used to determine the attitude. The least-squares approach

attempts to minimize the difference between the predicted and measured distances

128

0

2 ·
10
−2

4 ·
10
−2

6 ·
10
−2

8 ·
10
−2

0.1 0.1
2

0.1
4

0.1
6

0.1
8 0.2 0.2

2
0.2

4
0.2

6
0.2

8 0.3
0

100

200

300

Position Error (m)

P
ro
ba

bi
lit
y

Error Results for 2000 Sample Monte Carlo Simulation

Measurement Variance
0 cm, Mean Error: 3.63 cm
2 cm, Mean Error: 4.17 cm
4 cm, Mean Error: 4.65 cm
8 cm, Mean Error: 6.28 cm

(a) Position Estimate Error.

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14
0

5 · 10−2

0.1

0.15

0.2

Position Error (m)

P
ro
ba

bi
lit
y

Four Transmitter System
Over-Determined System

(b) Over-Determined System Comparison.

Figure 8-5: Position Estimate Error Analysis

129

between transmitters and receivers. Let N be the number of transmitters and M be

the number of receivers. The error function is seen in Eq. (8.12)

f(θ) =
N∑
i=0

M∑
j=0

(
g>ij(θ)gij(θ)− (s ·mij)2

)2
(8.12)

In order to solve for θ, it is first necessary to compute the gradient of f(θ).

∇θf = 4
N∑
i=1

M∑
j=1

∂gij
∂θ

gij(θ)
(
g>ij(θ)gij(θ)− (s ·mij)2

)
(8.13)

The term ∂gij/∂θ is found using Eq. (8.14).

∂gij
∂θ

=
[
∂R
∂θ1
· bj ∂R

∂θ2
· bj ∂R

∂θ3
· bj

]>
(8.14)

The terms ∂R/∂θ1, ∂R/∂θ2, and ∂R/∂θ3 of Eq. (8.14) are defined in Eqs. (8.15a)

to (8.15c), respectively.

∂R

∂θ1
=


0 0 0

−s1s2 −s1c2c3 − c1s3 −c1c3 + c2s1s3

c1s2 −s2s3 + c1c2c3 −c3s1 − c1c2s3

 (8.15a)

∂R

∂θ2
=


−s2 −c2c3 0

−s1s2 −s1c2c3 − c1s3 −c1c3 + c2s1s3

c1s2 −s2s3 + c1c2c3 −c3s1 − c1c2s3

 (8.15b)

∂R

∂θ3
=


0 s2s3 c3s2

0 −c1c2s3 − s1c3 s3s1 − c1c2c3

0 c1c3 − c2s1s3 −c1s3 − c2c3s1

 (8.15c)

Eq. (8.12) can then be solved using Eq. (8.13) combined with conventional gradient-

based nonlinear programming solvers, such as those discussed in Section 6.3.2.

130

Chapter 9

Conclusion

Spacecraft formation flight has the potential to revolutionize urban planning, farm-

ing, hydrology, among other applications [79]. However, there are technical challenges

constraining the future of spacecraft formation flight. EMFF seeks to enable space-

craft formation flight by removing propellant from the mission architecture. Before

spacecraft engineers are ready to accept EMFF as a true enabling technology, it must

first be proven. RINGS will take a step in proving EMFF as a viable technology, yet

demonstrating EMFF via RINGS requires advanced control methods.

Dynamic programming has been used in the fields of computer science [80], eco-

nomics [81], biology [82], and chemistry [83], yet is has yet to be significantly used

for spacecraft control. The large storage space required for dynamic programming

solutions have made control engineers shy away from dynamic programming in fa-

vor of linear control and other optimal control methods. However, the increasing

complexity of spacecraft mission architectures, such as EMFF, and their associated

control problems may justify the use of dynamic programming for spacecraft.

9.1 Novel Contributions

The major novel contribution of this thesis is presenting a framework for applying

dynamic programming to satellite control. Chapter 5 presents a way of analyzing

control problems that shows whether dynamic programming is an appropriate control

131

strategy for any embedded system. This paradigm shift is important when considering

whether to use dynamic programming for control. Chapter 5 also presents two ways

of implementing a dynamic programming controller on an embedded system. This

gives some flexibility to the control engineer to adapt the dynamic programming

implementation to the constraints of the system. Finally, a method for resolving the

difference between physical states and dynamic programming states was presented.

In Chapter 3, novel formulations of the RINGS control problem were developed as

a case study for formulating a dynamic programming system. These formulations do

not have to be limited to the application of dynamic programming; state reduction

is useful for nearly every control methodology. Another method, such as a Gauss

Pseudospectral method, could be applied to these same system. In Chapter 4, the

cost-to-go for one formulation was examined in order to serve as an example of the

type of analysis required when developing the cost-to-go for a spacecraft.

In Chapter 6, a novel mass property identification method that uses nonlinear

programming was presented. This method was presented because of the importance

of having a good spacecraft model, since the performance of the dynamic programming

controller is dependent on the model accuracy. The method presented in Chapter 6

was applied in Chapter 7 to three different spacecraft systems, with the results of each

presented. In Chapter 8, a novel, model-free method for determining the position

and attitude of a system using line-of-sight measurement devices was presented. This

method is intended to be used for model validation, which is important for dynamic

programming.

9.2 Future Work

The biggest step forward for dynamic programming for spacecraft is actually imple-

menting a dynamic programming controller on an actual satellite. This will show

show the feasibility of a dynamic programming controller. This will also give flight

heritage to the new control scheme. The most obvious opportunity for the applica-

tion of dynamic programming is the RINGS system. The axial cost-to-go is already

132

developed and could be implemented. The cost-to-go for other formulations still need

to be developed.

As for mass property identification, there still remains some theoretical work to

be done. The convexity of the error function has yet to be proven. Also, the lack of

uniqueness of a global minima for certain data sets needs to be further addressed.

The model-free state estimation discussed in Chapter 8 has significant room for

additional work. Another method that could be implemented is a Kalman filter that

determines both the position and the scale factor. This is different then the current

SPHERES estimator that has position and attitude coupled in the estimator [84].

While this method would be model based, it would have to model the acceleration of

the system as a random process. This may not be as accurate as an estimator that

includes the model of the actuators, but an estimator-free model is still useful for

model validation.

Another step for Chapter 8 will be validating the system. This would involve

implementing it alongside an already validated estimator and comparing the results.

This could easily be performed on the SPHERES testbed.

9.3 Concluding Remarks

Dynamic programming is a potentially viable control option that has yet to become

prevalent in the spacecraft control field. Although it has only been applied to a limited

scope in this thesis, the methodology presented here can potentially be applied to a

wide variety of control problems for spacecraft. This thesis lays the groundwork

for dynamic programming as a option for spacecraft control engineers. Given the

dependence of the performance of dynamic programming results on the model used to

derive them, model validation is important when using dynamic programming. This

thesis presents methods for characterizing the mass properties as well as providing

state estimates for actuator validation.

133

134

Bibliography

[1] M. Neave and R. Sedwick, “Dynamic and thermal control of an electromagnetic
formation flight testbed,” Master’s thesis, Massachusetts Institute of Technol-
ogy, 2005.

[2] R. Sedwick. (2013). Resonant inductive near-field generation system (rings),
[Online]. Available: http://www.energy.umd.edu/projects/smartgrid-08.

[3] J. J. Sellers, Understanding Space, D. Krkpatrick, Ed. McGraw-Hill, 2005.
[4] J. Leitner, “Formation flying - the future of remote sensing from space,” in

Symposium on Space Flight Dynamics, 2004.
[5] S. DŠAmico, O. Montenbruck, C. Arbinger, and H. Fiedler, “Formation flying

concept for close remote sensing satellites,” in 15th AAS/AIAA Space Flight
Mechanics Conference, 2005.

[6] O. Brown and P. Eremenko, “Fractionated space architectures: a vision for
responsive space,” Defence Advanced Research Projects Agency, Tech. Rep.,
2006.

[7] J. Everist, K. Mogharei, H. Suri, N. Ranasinghe, B. Khoschnevis, P. Will,
and W.-M. Shen, “A system for in-space assembly,” in Procceedings of 2004
IEEE/RSJ Interntation Conference on Intelligent Robots and Systems, 2004.

[8] A. N. Parmar, M. Arnaud, X. Barcons, J. M. Bleeker, G. Hasinger, H. Inoue,
G. Palumbo, and M. J. Turner, “Science with xeus: the x-ray evolving uni-
verse spectroscopy mission,” in Astronomical Telescopes and Instrumentation,
International Society for Optics and Photonics, 2004, pp. 388–393.

[9] R Licata, M Parisch, I. Ruiz Urien, M De Bartolomei, G Grisoni, and F Didot,
“Robotic assembly of large space structures: application to xeus,” in 7th ESA
Workshop on. Advanced Space Technologies for Robotics and Automation, 2002.

[10] W.-M. Shen, P. Will, and B. Khoschnevis, “Self-assembly in space via self-
reconfigurable robots,” Robotics and Automation, vol. 2, pp. 2516–2521, 2003.

[11] P. Staritz, S. Skaff, C. Urmson, and W. Whittaker, “Skyworker: a robot for
assembly, inspection and maintenance of large scale orbital facilities,” in IEEE
International Conference on Robotics & Automation, 2001, pp. 4180–4185.

[12] J. C. Mankins, “Sps-alpha: the first practical solar power satellite via arbitrarily
large phased array,” NASA Innovative Advanced Concepts, Tech. Rep., 2012.

135

[13] L. B. King, G. G. Parker, S. Deshmukh, and J.-H. Chong, “Study of inter-
spacecraft coulomb forces and implications for formation flying,” Journal of
Propulsion and Power, vol. 19, no. 3, pp. 497–505, 2003.

[14] Y. K. Bae, “A contamination-free ultrahigh precision formation flying method
for micro-, nano-, and pico-satellites with nanometer accuracy,” in AIP Con-
ference Proceedings, vol. 813, 2006, p. 1213.

[15] E. M. Kong, D. W. Kwon, S. A. Schweighart, L. M. Elias, R. J. Sedwick, and D.
W. Miller, “Electromagnetic formation flight for multisatellite arrays,” Journal
of Spacecraft and Rockets, vol. 41, no. 4, pp. 659–666, 2004.

[16] D. R. Coulter, “Nasa’s terrestrial planet finder mission: the search for habitable
planets,” in Earths: DARWIN/TPF and the Search for Extrasolar Terrestrial
Planets, vol. 539, 2003, pp. 47–54.

[17] K. A. Polzin, E. Y. Choueiri, P. Gurfil, and N. J. Kasdin, “Plasma propulsion
options for multiple terrestrial planet finder architectures,” Journal of spacecraft
and rockets, vol. 39, no. 3, pp. 347–356, 2002.

[18] U. Ahsun, L. Rodgers, and D. W. Miller, “Comparison between structurally con-
nected propellant formation flying and electromagnetic formation flying space-
craft configurations for gen-x mission,” in Optics & Photonics 2005, Interna-
tional Society for Optics and Photonics, 2005, pp. 58990M–58990M.

[19] D. W. Kwon and R. J. Sedwick, “Cryogenic heat pipe for cooling high temper-
ature superconductors,” Cryogenics, vol. 49, no. 9, pp. 514–523, 2009.

[20] D. W. Kwon and R Sedwick, “Cryogenic heat pipe for cooling high temperature
superconductors with application to electromagnetic formation flight satellites,”
PhD thesis, Massachusetts Institute of Technology, Department of Aeronautics
and Astronautics, 2009.

[21] D. W. Kwon, “Electromagnetic formation flight system design,” in Small Satel-
lites for Earth Observation, Springer, 2008, pp. 221–229.

[22] D. M. Fleetwood, P. S. Winokur, and P. E. Dodd, “An overview of radiation
effects on electronics in the space telecommunications environment,” Microelec-
tronics Reliability, vol. 40, no. 1, pp. 17–26, 2000.

[23] L. Townsend, “Overview of active methods for shielding spacecraft from ener-
getic space radiation,” Physica Medica, vol. 17, pp. 84–85, 2001.

[24] D. Miller, A Saenz-Otero, J Wertz, A Chen, G Berkowski, C Brodel, S Carl-
son, D Carpenter, S Chen, S Cheng, et al., “Spheres: a testbed for long du-
ration satellite formation flying in micro-gravity conditions,” in Proceedings of
the AAS/AIAA Space Flight Mechanics Meeting, Clearwater, Florida, January,
2000, pp. 167–179.

[25] J. Enright, M. Hilstad, A. Saenz-Otero, and D. Miller, “The spheres guest scien-
tist program: collaborative science on the iss,” in Aerospace Conference, 2004.
Proceedings. 2004 IEEE, IEEE, vol. 1, 2004.

136

[26] E. M. Kong, A. Saenz-Otero, S. Nolet, D. S. Berkovitz, D. W. Miller, and
S. W. Sell, “Spheres as a formation flight algorithm development and valida-
tion testbed: current progress and beyond,” in 2nd International Symposium on
Formation Flying Missions and Technologies, 2004, pp. 14–16.

[27] A. J. Buck, “Path planning and position control and of an underactuated elec-
tromagnetic formation flight satellite system in the near field,” Master’s thesis,
Massachusetts Institute of Technology, 2013.

[28] M. J. Kochenderfer and J. Chryssanthacopoulos, “Robust airborne collision
avoidance through dynamic programming,” Massachusetts Institute of Tech-
nology Lincoln Laboratory. Project Report ATC-371, 2011.

[29] R. Enns and J. Si, “Helicopter trimming and tracking control using direct neural
dynamic programming,” Neural Networks, IEEE Transactions on, vol. 14, no.
4, pp. 929–939, 2003.

[30] ——, “Apache helicopter stabilization using neural dynamic programming,”
Journal of guidance, control, and dynamics, vol. 25, no. 1, pp. 19–25, 2002.

[31] ——, “Helicopter tracking control using direct neural dynamic programming,”
in Neural Networks, 2001. Proceedings. IJCNN’01. International Joint Confer-
ence on, IEEE, vol. 2, 2001, pp. 1019–1024.

[32] T. Hashimoto, S.-i. Sakai, K. Ninomiya, K. Maeda, and T. Saitoh, “Formation
flight control using super-conducting magnets,” in International Symposium on
Formation Flying Missions and Technologies, Centre National d’Etudes Spa-
tiales, Touluse Space Center, France, 2002.

[33] T. Hashimoto, S. Sakai, K. Ninomiya, K. Maeda, and T. Saitoh, Formation
Flight using Super-Conducting Magnets, F. Toulouse, Ed. International Sympo-
sium of Formation Flying Missions and Technologies, 2002.

[34] D. W. Kwon, “Electromagnetic formation flight of satellite arrays,” Master’s
thesis, Massachusetts Institute of Technology, 2005.

[35] E. M.-C. Kong, “Spacecraft formation flight exploiting potential fields,” PhD
thesis, Massachusetts Institute of Technology, 2002.

[36] D. W. Miller, R. J. Sedwick, E. M. Kong, and S. Schweighart, “Electromag-
netic formation flight for sparse aperture telescopes,” in Aerospace Conference
Proceedings, 2002. IEEE, IEEE, vol. 2, 2002, pp. 2–729.

[37] U. Ehsun, “Using electromagnetic formation flying for remote sensing applica-
tions,” in Advances in Space Technologies, 2008. ICAST 2008. 2nd International
Conference on, IEEE, 2008, pp. 118–123.

[38] D. W. Kwon, “Propellantless formation flight applications using electromagnetic
satellite formations,” Acta Astronautica, vol. 67, no. 9, pp. 1189–1201, 2010.

[39] S. A. Schweighart and R. J. Sedwick, “Propellantless formation flight operations
using electromagnetic formation flight,” in SpaceOps Conference, 2006.

137

[40] L. M. Elias, “Dynamics of multi-body space interferometers including reac-
tion wheel gyroscopic stiffening effects,” PhD thesis, Massachusetts Institute of
Technology, 2004.

[41] S. Schweighart and R. Sedwick, “Electromagnetic formation flight dipole solu-
tion planning,” PhD thesis, Massachusetts Institute of Technology, 2005.

[42] S. A. Schweighart and R. J. Sedwick, “Dynamics of an electromagnetically flown
formation of spacecraft within the earth’s magnetic field,” in Optical Science
and Technology, SPIE’s 48th Annual Meeting, International Society for Optics
and Photonics, 2004, pp. 86–97.

[43] S. S. P. Development, “Emfforce design appendix,” Massachusets Institute of
Technology Department of Aeronautics and Astronautics, Tech. Rep., 2003.

[44] D. W. Kwon, R. J. Sedwick, S.-I. Lee, and J. Ramirez-Riberos, “Electromagnetic
formation flight testbed using superconducting coils,” Journal of Spacecraft and
Rockets, vol. 48, no. 1, pp. 124–134, 2011.

[45] A. Sakaguchi, “Micro-electromagnetic formation flight of satellite systems,”
Master’s thesis, Massachusetts Institute of Technology, 2007.

[46] U. Ahsun, “Dynamics and control of electromagnetic satellite formations,” PhD
thesis, Massachusetts Institute of Technology, 2007.

[47] U. Ahsun and D. W. Miller, “Dynamics and control of electromagnetic satellite
formations,” in American Control Conference, 2006, IEEE, 2006, 6–pp.

[48] D. W. Miller, U. Ahsun, and J. L. Ramirez-Riberos, “Control of electromag-
netic satellite formations in near-earth orbits,” Journal of guidance, control,
and dynamics, vol. 33, no. 6, pp. 1883–1891, 2010.

[49] U. Ahsun, “Dynamics and control of electromagnetic satellite formations in low
earth orbits,” in AIAA Guidance, Navigation, and Control Conference, 2006.

[50] J. L. Ramirez Riberos, “New decentralized algorithms for spacecraft formation
control based on a cyclic approach,” PhD thesis, Massachusetts Institute of
Technology, 2010.

[51] R. J. Sedwick and S. A. Schweighart, “Propellantless spin-up of tethered or
electromagnetically coupled sparse apertures,” in Astronomical Telescopes and
Instrumentation, International Society for Optics and Photonics, 2002, pp. 193–
204.

[52] S. A. Schweighart and R. J. Sedwick, “Explicit dipole trajectory solution for
electromagnetically controlled spacecraft clusters,” Journal of guidance, control,
and dynamics, vol. 33, no. 4, pp. 1225–1235, 2010.

[53] W.-w. Cai, L.-p. Yang, Y.-w. Zhu, and Y.-w. Zhang, “Optimal satellite for-
mation reconfiguration actuated by inter-satellite electromagnetic forces,” Acta
Astronautica, 2013.

[54] R. Wawrzaszek and M. Banaszkiewicz, “Control and reconfiguration of satellite
formations by electromagnetic forces,” Proceedings of 2nd Microwave & Radar
Week in Poland, STW-2006, Krakow, Poland, 2007.

138

[55] R Wawrzaszek and M Banaszkiewicz, “Dynamics of 2 and 3 satellite formations
controlled by electromagnetic forces,” in 36th COSPAR Scientific Assembly,
vol. 36, 2006, p. 3028.

[56] Y.-w. Zhang, L.-p. Yang, Y.-w. Zhu, H. Huang, and W.-w. Cai, “Nonlinear
6-dof control of spacecraft docking with inter-satellite electromagnetic force,”
Acta Astronautica, vol. 77, pp. 97–108, 2012.

[57] Y.-W. Zhang, L.-P. Yang, Y.-W. Zhu, X.-H. Ren, and H. Huang, “Self-docking
capability and control strategy of electromagnetic docking technology,” Acta
Astronautica, vol. 69, no. 11, pp. 1073–1081, 2011.

[58] G. Zeng and M. Hu, “Finite-time control for electromagnetic satellite forma-
tions,” Acta Astronautica, vol. 74, pp. 120–130, 2012.

[59] R. Bellman, Dynamic programming and modern control theory, R. E. Kalaba,
Ed. Academic Press, 1965.

[60] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena Scientific,
2005, vol. 2.

[61] G. J. Eslinger and A. Saenz-Otero, “Electromagnetic formation flight control
using dynamic programming,” in American Astronautical Society Rocky Moun-
tain Chapter, 2013. Proceedings..

[62] D. M. Asmar and G. J. Eslinger, “Nonlinear programming approach to filter
tuning,” 2012.

[63] I. Menache, S. Mannor, and N. Shimkin, “Basis function adaptation in temporal
difference reinforcement learning,” Annals of Operations Research, vol. 134, no.
1, pp. 215–238, 2005.

[64] R. Freund, “Analysis of convex sets and functions,” Massachusetts Institute of
Technology, Tech. Rep., 2012.

[65] S. Tanygin and T. Williams, “Mass property estimation using coasting ma-
neuvers,” Journal of Guidance, Control, and Dynamics, vol. 20, pp. 625–632,
1997.

[66] E. Wilson, C. Lages, and R. Mah, “On-line, gryo-based, mass-property identi-
fication for thruster-controlled spacecraft using recursive least squares,” 2002.

[67] E. Bergmann, B. Walker, and D. Levy, “Mass property estimation for control
of asymmetrical satellites,” Journal of Guidance, Control, and Dynamics, vol.
10, pp. 483–491, 1987.

[68] R. F. Richfield, B. K. Walker, and E. V. Bergmann; “Input selection for a
second-order mass property estimator,” Journal of Guidance, Control, and Dy-
namics, vol. 11, pp. 207–212, 1988.

[69] J Bergmann E; Dzielski, “Spacecraft mass property identification with torque-
generating control,” Journal of Guidance, Control, and Dynamics, vol. 13, pp. 99–
103, 1990.

139

[70] R. Fletcher and M. J. Powell, “A rapidly convergent descent method for mini-
mization,” The Computer Journal, vol. 6, no. 2, pp. 163–168, 1963.

[71] C. G. Broyden, “A class of methods for solving nonlinear simultaneous equa-
tions,” Mathematics of computation, vol. 19, no. 92, pp. 577–593, 1965.

[72] C. Schedlinsk and M. Link, “A survey of current inertia parameter identifica-
tion methods,” Mechanical Systems and Signal Processing, vol. 15, pp. 189–211,
2001.

[73] D. Berkovitz, “System characterization and online mass property identification
of the spheres formation flight testbed,” Master’s thesis, Massachusetts Institute
of Technology, 2007.

[74] A. Chen, “Propulsion system characterization for the spheres formation flight
and docking testbed,” Master’s thesis, Massachusetts Institute of Technology,
2002.

[75] NASA. (2013). Synchronized position, hold, engage, reorient, experimental satel-
lites - vertigo (spheres-vertigo), [Online]. Available: http://www.nasa.gov/
mission_pages/station/research/experiments/869.html.

[76] J. L. Crassidis, R. Alonso, and J. L. Junkins, “Optimal attitude and position
determination from line-of-sight measurements.,” Journal of Astronautical Sci-
ences, vol. 48, no. 2, pp. 391–408, 2000.

[77] M. O. Hilstad, J. P. Enright, and A. G. Richards, “The spheres guest scientist
program,” Space Systems Laboratory, Massachusetts Institute of Technology,
2003.

[78] W. C. Rheinboldt,Methods for Solving Systems of Nonlinear Equations. Society
for Industrial and Applied Mathematics, 1987, vol. 70.

[79] M. D. Graziano, “Overview of distributed missions,” Distributed Space Missions
for Earth System Monitoring, vol. 31, p. 375, 2012.

[80] J. Y. Zien, Hierarchical string matching using multi-path dynamic programming,
US Patent 6,556,984, 2003.

[81] J. Rust, “Numerical dynamic programming in economics,” Handbook of compu-
tational economics, vol. 1, pp. 619–729, 1996.

[82] E. Rivas and S. R. Eddy, “A dynamic programming algorithm for rna structure
prediction including pseudoknots,” Journal of molecular biology, vol. 285, no.
5, pp. 2053–2068, 1999.

[83] D. Bylund, R. Danielsson, G. Malmquist, and K. E. Markides, “Chromato-
graphic alignment by warping and dynamic programming as a pre-processing
tool for parafac modelling of liquid chromatography–mass spectrometry data,”
Journal of Chromatography A, vol. 961, no. 2, pp. 237–244, 2002.

[84] S. Nolet, “Development of a guidance, navigation and control architecture and
validation process enabling autonomous docking to a tumbling satellite,” PhD
thesis, Massachusetts Institute of Technology, 2007.

140

