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This paper explores some issues in equilibrium solutions of stochastic

multicriteria decision problems. Correct treatment of this problem involves

an extended notion of state, thereby altering conventional concepts of open-
loop and closed-loop decisions. Restrictions on transfer of information
lead to signalling-free concepts. These topics are discussed and illus-

rated with a simple example.

1. INTRODUCTION

A common approach in the study of decentralized decision-making in op-

timization problems is to model the individual decision makers as players

within a game [2]. Such an approach is appropriate for classes of systems

where there are multiple criteria for multiple decision makers, decentral-

ized information, and natural hierarchies in the order of decision-making.

Recent works in the field [1], [53, [6], have focused on systems with a

sequential decision structure; these decisions are commonly referred to as

"Stackelberg" solutions. Most of these works have dealt with deterministic

systems, or with systems where the stochastic structure is very simple.

This paper discusses solutions of systems with sequential decision structure

and nontrivial stochastic information structure. In particular, it defines
and examines three classes of equilibrium solutions, providing a simple

example which highlights their differences.

2. DEFINITIONS

This section formally defines so-e basic terms, and formulates the se-

quential decision problem.

Definition 2.1. An n-player game is a triple G: {D, J, SRI, where

D = D1 X D2 x ...x DN is a decision space, Di is the set of decisions

for player i, J is a vector, extended-real valued performance criteria.

J:D + (Re )N

Ji is the criterion of the ith player. SR is a selection rule which
selects a subset S* C D as a solution of the game.

The essential problem of solving a game consists of obtaining S*. The

selection rule (also known as solution concept) is usually based on behav-
ioral principles governing the players in the game; examples of these prin-

ciples are Nash, Pareto, minimax, and Stackelberg principles.

Definition 2.2. An Equilibrium selection rule is a selection rule such that

d* = (d , ) S*

if J. (d*) < J (di) for all d. E D of the formz

-d (d,..., d*l di . d* - d*) for all i = 1,..N.
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Equilibrium solutions are thus defined in terms of performance criteria
and admissible strategies. Consider now the following stochastic sequential

dynamical system:

(A) State equation
1 n

xt+l = ft(xt, Uttr.., u t t) (2.1)

Observation equation

i i i
Yt = gt(xt' i) (2.2)

Loss functionals
T-1

i _ 1 n I
LO - ht(Xt Ut---Utl hT (xT ) (2.3)

t=0

i i
The variables xt, Yt, ut are elements of appropriately defined state, obser-
vation and decision spaces, assumed to be finite-dimensional Euclidean
spaces. The variables Ot, it and x are random variables, with the func-

tions ft' gt and ht assumed appropriately measu=zable. The active informa-
tion available to each decision-maker i at tire t is denoted Ii, where

i i 1 i- U (2,4)I 0 o .. " "O

i i ial n 0 i-i-
0t t-l U ... ,.u t} (2.5)

Each player knows the value of the previous decisions made by all players.
At each stage, decision are made and announced sequentially. This sequen-
tial information pattern is typical of Stackelherg dynamic games [3], [41.
The stochastic sequential dynamical systmn described in equations (2.1) to-
(2.5) is a typical model of hierarchical system [6]. However, this mathe-
matical description does not constitute a game; performance criteria, ad-
missible strategies and selection rules must be specified.

Definition 2.3. An open-loop strategy X t is a measurable map from the space
of information sets to the space of decision such that

t tt

Definition 2.4. An open-loop equilibrium solution to the dynamic decision
model (A) is a member of the equilibrium solution set of the game GOL, where

G : = {L J, SR }OL -OL- eq

and DI = {open-loop Xi (X. _1
L 0

; _(k 1 Awn)

J i(X) = E-(L)

and E- is the expectation with respect to the probability distribution in-
duced by the strategy X.

Notice that, even through the admissible strategies are functions of
available information, the solution is termed open-loop. This distinction
is made because the information sets It do not truly represent the state of
the system; they do not include knowledge of the previous strategies used
in the game by other players.



Definition 2.5: A closed-loop strategy Yt is a strategy-dependent map

which maps {} and It into an admissible decision ut, where

i 1 n 1 n 1 i-
=i {Yo '' ..' 0, Y1 Yt-l' Yt Yt }

i i i i

ut = t(I ' Y-

The key difference between open- and closed-loop strategies is the

dependence of closed-loop strategies on previous strategies, because the

true state of the system is a probability distribution (conditional or un-

conditional) depending on previous strategies.

Definition 2.6: A closed-loop equilibrium solution to the dynamic decision

model (A) is a member of the equilibrium solution set of the game GCL, where

GCL -CL' CL SReq}

and DOL: = {closed-loop i = (,...

i i

Ji(X) = E(L )

E- is the expectation with regard to the induced probability distribution.

Occasionally, the dependence of closed-loop strategies on previous

strategies may be summarized through a transformation to a standard form,

as in Witsenhausen [7], or Castanon and Sande!l [1]. The original sto-

chastic model is transformed to an equivalent deterministic model, defining

the unconditional probability distribution of the state, xt , denoted by rt'

as the true state.

The closed-loop strategies are represented as

t = Yt(It; T)

The equilibrium solutions obtained with this representation of admissible

strategies are included in the eauilibrium solutions obtained in definition

(2.6)'; the converse is not true in general.

This approach requires a non-trivial transformation of the system

dynamics to a standard form, which is not always possible to do. An alter-

native approach is to use another representation of closed-loop strategies,

making 4Y dependent on the conditional distribution of the state, given
information Ii and previous strategies yi. That is,

t

u t Yt(t, I t

where

^i i i
't = probability distribution or xt, given It and _

The form of closed-loop strategies implies that the players have exact

knowledge of all strategies used by other players previously. This enables

the players to extract information about the system state from observation

of the previous decisions. This is known as signalling (4]. In many situa-

tions, it is impractical or inaccurate to use strategies which require

exact knowledge of past strategies; furthermore, it may be desirable for

players to choose their strategies on the basis of internal perceptions

of cost (delayed commitment) rather than an external cost such as the uncon-

ditional expectation of the loss function.



Definition 2.7: A signalling-free conditional probability distribution for

player i at stage t, denoted pt, is a version of the conditional pnxbability
distribution of the system variables assuming all u It were proiced by

constant strategies.

Definition 2.8: A signalling-free equilibrium solution to the dynamic deci-
sion model (A) is a member of the equilibrium solution set of the game GSF,

where

G := {D ,J ,SR
GSF: {F' SF' eq

DSF: (I{yt(; P 
SF t t tp

i i

i i Pt'-t (Li)

Pt,'--t.

distribution pt, assuming future decisions are defined using strategies

A key point to note is that signalling-free equilibrium solutions are

equilibria between nT players, reflecting the fact that decisions.are made

stagewise based on internal perceptions. Also, the equilibrium properties

of the strategies are not lost if at any prior stage, non-equilibrinm strat-
egeis were used. This is possible because of the lack of signalling; the
solution (and the relevant probability densities) can be obtained recur-

sively.dealing exclusively with the information sets It and future strate-
gies yt.

3. ILLUST.ATTIVE EXAMPLES

Consider the discrete-time system described by the state equations

x1 = x0 + u0 + v0 +0 8 (3.1)

x2 =x + u1 + 81 (3.2)

with observations

ZO = O + i (3.3)o0 = x0 + 0

1 = X1 (3.4)

where xO, 8 01 8 are independent zero-mean Gaussian random variables

with covariances 0,' 00', ol E0 respectively, and all variables are real-
valued scalars.

The players' active information sets are

= {zo (3.5)

I1 ={x 1 zO, vO (3.6)

I2= {u01 (3.7)

where player u is denoted 1, player v is denoted 2. The loss functionals

are 1 2 2 2
L x2 0 1 (38)

L 2 x2 +v 2 (3.9)
2- 0



The linear quadratic Gaussian nature of this example implies that there

are open-loop and closed-loop stochastic equilibria of the form

u = az0 (3.10)

v = bu 0 (3.11)

U1 = CX1 (3.12)

Additionally, the signalling-free equilibria will also be in that form.

Appendix A computes the signalling-free equilibrium strategies and the asso-

ciated unconditional losses. .Appendices B and C compute the linear closed-

loop and open-loop strategy and the unconditional losses, respectively. The

results are summarized in Table 3.1 wahen 0 = 0 = 0 = 1.

Table 3.1

Signalling-free Closed-loop Open-loop

____ Eqcuilibrium.. Equilibrium

5 4 23
33 33 33 2

b*1 5 -1 ±- -
5 8 2

1 1 1

2 2 2

J 1.94 1.87 1.86 or 2.03

J2 1.45 1.43 1.46 or 1.51

4. CONCLUSION

The concepts of open-loop and closed-loop strategies in sequential sto-

chastic games were adapted from deterministic games with one principle in

mind: Closed-loop strategies are maps which depend on the state of the

system. In stochastic systems, this state is often a probability distribu-

tion. These concepts also apply to non-sequential games. The example in

Section 3 and Appendices B and C highlight the differences between open-loop

and closed-loop equilibrium strategies. In particular, open-loop equilibria

are obtained using variational principles; closed-loop equilibria can be ob-

tained through stagewise decomposition similar to dynamic programming.

A third class of equilibrium solutions was defined, based on the con-

cept of "delayed commitment" and no signalling. This solution is easier to

compute in general because of the restrictions on signalling and the recur-

sive nature of the definition.

There are many open areas of research. Castanon [4] has established an

equivalence between signalling-free and closed-loop equilibria for special

information patterns. It is not clear that open-loop equilibria are also

closed-loop equilibria in stochastic games, as is true in deterministic

games [8). The dependence of closed-loop equilibria on the representation

of the true system state must be studied in depth. Understanding these

questions is essential in formulating a unified theory of generalized deci-

sion-making.



APPENDIX A

Consider the problem of obtaining a signalling-free equilibrium for the

system described in Section 3.

1 2 2 2 2
J =Eju1

+ x2 xl = + (x, + u1 (A.1)

Eence,

u~* - - x (A.2)

Similarly,
2 2 2 1

Jo o 2 1+UO constant, u! -X}
J = E{v+ 1 21

1 2 2=E)0 + 1 + (u + vo + v0 + (A. 3)
= eo + l +(Uo + 4o)0 0

because x0 is zero-mean. Thus,

V* = - 5 uo (A.4)
0 50

For player u at stage 0, one gets

1 2 2 12X}
J0 Efx U + uol zo v= - xo 2 0, 00 0 2 1

1 -2 2 0
x + u0 + 1 (A.5)

where

O _ 0 (A.6)

4u

x= x + 5 (A. 7) i1 0 5,

o eoo
1 0Zo+Eo + )O (A.8)

Hence,
-10 -10 _

02 = 2· c Z (A.9) !

Assutming 0= -O 0 = 1 = 1, the unconditional costs can be computed as: 

E{u } = 1 10 2 (A.10)

2 1 2 2(A.
E{v I =, (A.1Z) 

0 2 33

2 = 2 8-29) 
E{x1 2

~1 (33)

Thus,
1 =10 2 4-29 t11 4 22 2 2 (A.13)

1 2 +( (33)2 33)2

3 5 + 2__(A.14)
2 2 (33)2 (33)2 2 (33)2

__~~~~;;._~. .. __.-··-~s~~lI-·-·------!--



APPENDIX B

Consider the problem of obtaining a closed-loop equilibrium solution
for the model in Section 3, using strategies with conditional probability
distribution dependence.

J1 = Efu2+x 2ab, ZO- = u (+ 2 01 (B.1)

Thus, u* = 1 x (B.2)

1 2 21

=O =Ex +u jazo = UO U 2 - 1x (B.3)0 2 0 0 2 1

If a=0O, then b=O. Thus, assume a : 0. In this case, knowledge of u 

implies knowledge of z . Thus
-2

2 Xl 2 0
J0 = + + + 01 + 1 (B.4)

where

Z0

xO Zo+.0 z0 (B.5)

x1 = xO + u6 + bUo (B.6)

' Z- =+ +0 0 LB.7)
i '0 -0 

i 1 0
Thus = + az) - (azO) (1 a(Z'+(E) B8)

0 0

Now,

J 0 Ex2 + 0u l , uu =1 -2x 1, vO =5 u (b * )}

0 1 2 0

2 + u + (B.9)

where
-- 4 ^
x1 =E (UO + x0 ) (B.10)

so,

8 0
uO = 33 zO 0 (B.11)

When ~0 = 0 = 01 = =o 1, then, the unconditional cost is given by

2 82 1
E{u = () (B.12)0 33 i

2 52 1
E{v} = (--) ' 2) (B.13)

2 53*13
E{x } = 2 (1 - 2 (B.14)

(66)

3 =2- 187 (B.15)
J1 = 2 - (22) (66)

3 589
2 =- 2 (B.16)
2 2 2(66)2

&a .. ._ ._~_._________ __ _________________________________



APPENDIX C

Consider the problem of obtaining a closed-loop equilibrium solution for
the model in Section 3, using strategies with unconditional probability dis-
tribution dependence. The equivalent deterministic problem is

2 2 2
E=O1+ a + ab)0( + () a + ab) + +) a + 0 (C.1)

E - 1 (l+c) + 1 (C.2)
Y2 = Z 1 ( c1 )

2 2
,1 =2 + C C1+ a (Z0 + _ ) (C.3)

J2 = Y2 + a2 b2 (0 + ) (C.4)

Using dynamic programming for the model of equations (C.l)-(C.4) yields

c* 2= - 1 (C.5)

1 __ _ _0
b* = -(1l + ) ~ (C.6)

5 a(+0 )
0 0

8 _0
a* = (C.7)

33 E.+E00 0

This solution is exactly the same solution obtained In Appendix B.

Now consider the problem of finding an open-loop equilibrium. Using
the equivalent deterministic moael of equations (C.1) to (C.4), one obtains

necessary conditions

c* = 2 tC.8)

aJ

aa

aJ2

ab = (C.10

aj

aa_ = 2( 0+E0)a + (E0tl+b)(l+a+ab) + E0 (l+a) (a+ab) (C.11

J2 0 2
~b = a~-- (±+a+ab) + a(a+ab) + 2a b(0 +) 0 (C.12)

Let g = + . Then, (C.8)-(C.12) imply
0 O

2a + (ltb) a + g(l+b) = 0 (c.13)

2 2
4a b + a (l+b) + ga = 0 (C.14)

Assuming a f 0, then

b = 1 +3 (C.15}
2 2

a 4g 3 t(- (C.16)
33 2



The solution costs, assuming GO = 1 = 1, are

1J 2 627 ,13(C.17)
J1 = 2- (11) (- +6~)

3 1 1 249 +10 (C.18)
2 2 211 12 ( (C.18).
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