Research Design

17.871
Spring 2004
General Comments

• The road map of political science
• Different ways of doing political science research
• Major components of research designs
• Designing research to ferret out *causal* relationships
• Social science vs. natural science/engineering
The Road Map

- Theoretical
 - Philosophy
 - Normative
 - Positive

- Empirical
 - Causal (Experimental)
 - Correlational (Observational)
 - Descriptive
Major Components of Research Designs

• Research question
• Theory
• Data
Research Question

• Important
 – Not too general
 – Not too specific
 – Just right

• Contribute to literature
 – How to tell: Social Sciences Citation Index
 – E.g.: effect of redistricting on congressional election results
 • Search for Cox & Katz, “The Reapportionment Revolution and Bias in U.S. Congressional Elections,” AJPS 1999
Theory

• Definition: A general statement of a proposition that argues *why* events occur as they do and/or predicts future outcomes as a function of prior conditions

• General/concrete trade-off

• Desirable qualities of theories
 – Falsification (Karl Popper)
 – Parsimony (Occam’s razor)
Data

• More on this later, but first some basic terms:
 – Cases
 – Observations
 – Variables
 • Dependent variables
 • Independent variables
 • Confounding (lurking) variables
 – Units of analysis
Causality

• Definition of causality
• Problems in causal research
• Campbell and Stanley
Definitions of Causality

• Logical
 – A causes B if the “presence” of A is a sufficient condition for B.

• Experimental
 – A causes B if B occurs following the “exogenous” introduction of A
 – When does exogeneity occur?
 • Classic experiments
 – Ansolabehere & Iyengar on negative campaign ads
 • “Natural” experiments
 – Voting machines in Georgia & Massachusetts
 – Village councils in India
 – When does it not occur?
 • Typical research in previous examples
 • Anything strategic (prices, deterrence, campaign spending)
The Biggest Problems in Causal Research

• Establishing the exogeneity of “causes” in observational/correlational studies
 – Selection into “treatment” and “control” cases rarely random
 • Medical examples
 • Schooling examples (private vs. public)
 • Freshman special programs example

• Jointly determined relationships
 – Prices/quantities in markets
 – Spending/(expected) votes in elections
 – Armaments/level of violence in international systems
How to Establish Causality

• Donald Campbell and Julian Stanley, *Experimental and Quasi-Experimental Designs for Research* (1963)
Design types

- Pre-test/post-test with control group
- Solomon four-group design
- One-shot case study
- One-group pre-test/post-test
- Static group comparison
- Post-test only experiment

[Running examples: voting machine effects]
Pre-test/Post-test Control Group

• Summary:
 \[
 \begin{array}{c|c|c|c}
 R & O^1_T & X & O^2_T \\
 \hline
 R & O^1_C & & O^2_C \\
 \end{array}
 \]

• Effect of treatment:
 \[[O^2_T - O^1_T] - [O^2_C - O^1_C] \]

• This is the classic randomized experiment

• Problem: “Hawthorne effect”
 – Placebo helps mitigate
Solomon Four-Group Design

• Summary:

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>O</th>
<th>X</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
<td></td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>O</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>O</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>R</td>
<td>X</td>
<td>O</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>R</td>
<td>O</td>
<td></td>
<td></td>
<td>O</td>
</tr>
</tbody>
</table>

• Allows you to control for the effect of the experiment itself
One-shot Case Study

• Summary:
 X O
 or
 O X
• Journalism
• Common sense
• “of no scientific value”
One-group Pre-test/Post-test

• Summary:
 O X O O

• “Historical control”
• Better than nothing
• Standard way of doing most research
• Big problems
 – No comparison group
 – No random assignment
 • Encourages “samples of convenience”
Static group comparison

• Summary:

\[
\begin{array}{ccc}
X & O^2_T \\
\hline
O^2_C \\
\end{array}
\]

• This is most cross-sectional & correlational analysis

• Problems
 – Selection into the two groups
 – No pre-“treatment” measurement

Imaginary Article adding Cambridge, Somerville, plus cities that don’t have Sunday liquor openings
Post-test only experiment

• Summary:

 R X O
 R
 R O

• No prior observation (assume $O^1_T = O^1_C$)

• Classical scientific and agricultural experimentalism
Where do standard political science studies fall among the Stanley/Campbell designs?

• One-shot case study
 – Little scientific value, but may be descriptively useful
• One-group pre-test/post-test
 – Often used in policy analysis
 – Only justified as a “best design” if there are ethical or other constraints
• Static group comparison
 – Correlational studies by far the most common “scientific” social science research
• Pre-test/post-test with control group
 – “Real” experiments uncommon, but growing in frequency
 – “Quasi-experiments” growing more rapidly
• Solomon four-group design
 – Don’t recall ever seeing this
• Post-test only experiment
 – Leads to weaker statistical tests
What are the Implications for My Research?

• Classical experimentation unlikely, but always preferred (never had one)

• Strive for “natural” or quasi-experiments
 – Alternating years of standardized testing
 – Ruling death penalty unconstitutional
 – Imposition of new voting machines
 – 9/11 terrorist attacks

• Gather as much cross-time data as possible (panel studies)

• If you have a pure cross-section, be humble